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ABSTRACT

Efficient fine-tuning methods are critical to address the high computational and pa-
rameter complexity while adapting large pre-trained models to downstream tasks.
Our study is inspired by prior research that represents each convolution filter as
a linear combination of a small set of filter subspace elements, referred to as fil-
ter atoms. In this paper, we propose to fine-tune pre-trained models by adjusting
only filter atoms, which are responsible for spatial-only convolution, while pre-
serving spatially-invariant channel combination knowledge in atom coefficients.
In this way, we bring a new filter subspace view for model tuning. Furthermore,
each filter atom can be recursively decomposed as a combination of another set
of atoms, which naturally expands the number of tunable parameters in the filter
subspace. By only adapting filter atoms constructed by a small number of pa-
rameters, while maintaining the rest of model parameters constant, the proposed
approach is highly parameter-efficient. It effectively preserves the capabilities of
pre-trained models and prevents overfitting to downstream tasks. Extensive ex-
periments show that such a simple scheme surpasses previous tuning baselines for
both discriminate and generative tasks.

1 INTRODUCTION

Large models have demonstrated exceptional performance across diverse domains and tasks (Brown
et al., 2020; Dosovitskiy et al., 2020; He et al., 2016; Kirillov et al., 2023; Radford et al.; Rombach
et al., 2022; Silver et al., 2016; Touvron et al., 2023; Vaswani et al., 2017), attributing to their
capability to effectively represent complex patterns and relationships (Khan et al., 2020) by pre-
training on massive datasets (Russakovsky et al., 2015; Raffel et al., 2020; Zhu et al., 2015). A
common strategy to adapt these large models for specific downstream tasks is fine-tuning them with
full parameters. But this method presents two main challenges: (1) Adjusting a vast number of
parameters for particular target tasks is computationally intensive; (2) The limited availability of
target data increases the risk of overfitting (Lian et al., 2022).

To address these challenges, researchers have developed parameter-efficient methods (Chen et al.,
2022; Hu et al., 2021; Jia et al., 2022; Shen et al., 2021; YEH et al., 2023; Zaken et al., 2022) by fine-
tuning the pre-trained models with only a minimal number of parameters. Among these methods,
LoRA (Hu et al., 2021) fine-tunes models without altering the model architecture, becoming notably
popular for its efficacy. However, LoRA still risks overfitting when fine-tuned on limited data and
compromising the generalization capability of large models. For instance, Figure 1 illustrates that
with only 5 training samples, LoRA tends to produce images that closely resemble the training data,
compromising the ability for diverse image generation, compared with pre-trained models.

Motivation. To preserve the capabilities of pre-trained models when fine-tuning them on the
downstream tasks, one prominent approach in continual learning (Parisi et al., 2019; Rusu et al.,
2016; Yoon et al., 2019) is to formulate convolution filters in ConvNets as a linear combination
of filter atoms (Li et al., 2019; Papyan et al., 2017; Qiu et al., 2018) and fine-tuning only filter
atoms (Miao et al., 2021; Zhai et al., 2021). Specifically, filters in each convolutional layer are de-
composed over a small set of filter subspace elements, referred to as filter atoms, responsible for
spatial-only convolution. Each convolutional layer is now constructed as linear combinations of
filter atoms using decomposition coefficients, referred to as atom coefficients, responsible for the
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Figure 1: Compared with LoRA (Hu et al., 2021), our method updates a small set of parameters and mitigates
the risk of overfitting to the target concept. In this example task of learning the concept ⟨castle⟩ from 5 input
images, we only require fine-tuning 0.75M parameters, a stark reduction from the 22.67M parameters required
by LoRA. Furthermore, the model fine-tuned by our method captures the target concept while ensuring a
rich diversity and strong alignment with input text prompts. It demonstrates that our approach preserves the
generalization capability of large models. The text prompts used to generate images from left to right are:
“The ⟨castle⟩ stands against a backdrop of snow-capped mountains”, “A ⟨castle⟩ surrounded by a lush, vibrant
forest”, “The ⟨castle⟩ overlooks a serene lake”, and “The ⟨castle⟩ in the autumn season with colorful foliage”.

spatially invariant channel combination. Hypothesizing variations across tasks can be reduced by
bridging spatial discrepancies in the images, we propose to calibrate the pre-trained model by solely
fine-tuning the spatial-only filter atoms while preserving the spatially-invariant channel weights, i.e.,
atom coefficients.

In our work, we demonstrate that fine-tuning a large model via filter atoms is substantially effec-
tive and parameter-efficient, as filter atoms are responsible for spatial-only convolution and usually
comprise only a few hundred parameters. This strategy is in harmony with task subspace modeling
principles, which suggest that task parameters occupy a low-dimensional subspace, allowing tasks to
be represented as combinations of latent basis tasks (Evgeniou & Pontil, 2007; Kumar & Daume III,
2012; Maurer et al., 2013; Romera-Paredes et al., 2013; Zhang & Yang, 2021). We also discover that
maintaining fixed atom coefficients, i.e., spatially-invariant channel mixing weights, plays a crucial
role in preserving the generalization capability of pre-trained large models.

With a large number of parameters fixed, fine-tuning only a tiny set of parameters in filter atoms
is potentially challenging to adapt to more complex tasks. We further demonstrate a simple yet
effective way to expand the tunable parameters in filter subspace, without any modification on atom
coefficients, by decomposing each filter atom over another set of filter atoms. This process provides
an overcomplete set of filter atoms and expands the tunable parameter space, all while still requiring
fewer parameters than LoRA. Additionally, we provide a simple technique to extend this method
to linear layers, ensuring alignment with the characteristics in prior literature (Li et al., 2019; Miao
et al., 2021; Papyan et al., 2017; Qiu et al., 2018). Our method is illustrated in Figure 2.

We demonstrate the effectiveness of our approach on both discriminative and generative tasks with
ResNet50 (He et al., 2016), ConvNeXt (Liu et al., 2022) and Stable Diffusion (Rombach et al.,
2022). We summarize our contributions as follows,

• We propose a method by adapting only filter subspace elements (filter atoms), with a few
hundred parameters, to achieve significantly parameter-efficient fine-tuning.

• We observe that maintaining fixed atom coefficients plays a crucial role in preserving the
generalization capability of large models.

• We further demonstrate a simple way to expand the number of tunable parameters in fil-
ter subspace by recursively decomposing each filter atom over another set of filter atoms,
which extends the parameter space for tuning.

• We conduct extensive experiments demonstrating the efficacy of our approach on discrim-
inative and generative tasks for fine-tuning large models.
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2 PRELIMINARY

2.1 LOW-RANK ADAPTATION FOR FINE-TUNING

LoRA (Hu et al., 2021) introduces trainable low-rank matrices into layers to approximate weight
updates. For a pre-trained weight matrix W ∈ Rc′×c, LoRA represents the weight update with a
low-rank decomposition

W +∆W = W +WdownWup,

where Wdown ∈ Rc′×r and Wup ∈ Rr×c are tunable parameters, r is the intrinsic rank of weight
updates, d′ and d are the size of inputs and outputs. r is usually much smaller than c′ and c. A
learnable scalar hyperparameter α scales the weight updates, which leads to W + αWdownWup.

2.2 SPARSE CODING AND MATRIX FACTORIZATION

Sparse coding attempts to find the representation of input w with respect to a dictionary of m atoms
{dl}ml=1 with the fewest number of coefficients αl, i.e., w =

∑m
l=1 α

ldl. The objective of a sparse
coding problem can be written as

min
αi,l,dl

∑
j

∥wi −
∑
i

αi,ldl∥22 + λ
∑
i

∥αi,l∥1,

where ∥·∥1 is the L1 norm, and λ is a Lagrange multiplier.

It can be further expressed in a tensor form,

min
α,D

∥F −α×D∥2F + λ∥α∥1,1, (1)

where F ∈ Rc′×c×k′×k is the input tensor, α ∈ Rc′×c×m is the tensor of coefficients and D ∈
Rm×k′×k is a tensor of basis. Several algorithms have been developed to solve (1), such as fast
iterative soft-thresholding algorithm (FISTA) (Beck & Teboulle, 2009), matching pursuit (Mallat
& Zhang, 1993), and least absolute shrinkage and selection operator (LASSO) (Santosa & Symes,
1986). We can interpret the first term in (1) as finding a suitable tensor factorization for F , while
the second term serves as a penalty enforcing sparsity in the representation of F .

3 METHODS

In this section, we decompose convolution filters over a small set of filter subspace elements, referred
to as fitler atoms. This formulation enables a new model tuning method via filter subspace by solely
adjusting filter atoms.

3.1 FORMULATION OF FILTER DECOMPOSITION

Our approach involves decomposing each convolutional layer F into two standard convolutional
layers: a filter atom layer D that models filter subspace1, and an atom coefficient layer α with 1× 1
filters that represent combination rules of filter atoms, as displayed in Figure 2 (a). This formulation
is written as

F = α×D, (2)
where × is the tensor product.

F ∈ Rc′×c×k×k contains c′ × c filters {F i,j}i=c′,j=c
i=1,j=1 , where c′ and c are the numbers of input and

output channels, k is the kernel size. D ∈ Rm×k×k is a set of m filter atoms, i.e., D = {dl}ml=1,
where dl ∈ Rk×k. Each filter F i,j is a linear combination of m filter atoms, calculated by F i,j =∑m

l=1 α
i,j,ldl, αi,j,l represents each element in α ∈ Rc′×c×m.

Considering input features X ∈ Rc′×h′×w′
and output features Z ∈ Rc×h×w, where h′ × w′ and

h × w represent the dimension of input features and output features. The convolution process now
can be comprehended as the following two steps:

1The filter subspace is a span of m filter atoms D.
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Figure 2: A filter subspace view of model tuning. (a) Each convolutional layer F is constructed
as linear combinations of filter subspace elements, i.e., filter atoms D, using decomposition coeffi-
cients, i.e., atom coefficients α. Hypothesizing variations across tasks can be reduced by bridging
spatial discrepancies in the images, we propose to calibrate the pre-trained model by solely fine-
tuning the spatial-only D while keeping the spatially-invariant channel weights α fixed. (b) The
convolution operation is represented in two stages: At the spatial-only convolution stage, each filter
atom D is adapting to the target task, and then at the cross-channel mixing stage, Z′ are combined
into Z using fixed atom coefficients α, which is obtained from the pre-trained model. More details
are provided in Section 3.

• Spatial-only Convolution with D. Each channel of the input features X convolves with each
filter atom separately to produce intermediate features

Z′ = D ∗X,

where Z′ ∈ R(c′×m)×h×w, ∗ is the convolution operation.

For each input feature channel Xi and filter atom dl ∈ Rk×k, we have Z′i,l = Xi∗dl, where Z′i,l ∈
Rh×w,Xi ∈ Rh′×w′

are one feature channel in Z′,X, and dl is one filter atom in D = {dl}ml=1.

This process leads to the generation of m distinct intermediate output channels for each input chan-
nel, which is illustrated in Figure 2 (b). In this step, filter atoms focus only on handling the spatial
information of input features, and cross-channel mixing is postponed to the next step.

• Cross-channel Mixing with α. Subsequently, atom coefficients weigh and linearly combine the
intermediate features to produce output features

Z = α× Z′.

Each output feature channel Zj ∈ Rh×w is linearly combined from c′ × m intermediate feature
channels Z′i,l ∈ Rh×w with the coefficient {αi,j,l}i=c′,l=m

i=1,l=1 , which is, Zj =
∑c′

i=1

∑m
l=1 α

i,j,l ·Z′i,l.
Here, αi,j,l represents each element in atom coefficients α ∈ Rc′×c×m.

The spatially invariant channel weights, atom coefficients α, serve as operators for channel mixing,
functioning as distinct combination rules that construct the output features from the elemental feature
maps generated by the filter atoms. During the model tuning, α is obtained from the pre-trained
model and remains unchanged, while only filter atoms D adapt to the target task.

Summary. The two-step convolution operation explains different functionalities of filter atoms D
and atom coefficients α, which is, D only contribute to spatial convolution and α only perform
cross-channel mixing. In practice, the convolution operation is still performed as one layer, without
generating intermediate features, to avoid memory cost. In the fine-tuning process, we solely adjust
D, which contains a small set of number of parameters, k×k ≪ c′×c, thereby facilitating parameter-
efficient fine-tuning.

3.2 OVERCOMPLETE FILTER ATOMS

The parameters of filter atoms are extremely small compared with overall model parameters. For
instance, the filter atoms constitute a mere 0.004% of the total parameters in ResNet50 (He et al.,
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Figure 3: (a) The process of constructing overcomplete filter atoms: One filter atom in D is presented
as a linear combination of m1 filter atoms in D1. (b) The convolution operation is represented in
three stages: At the spatial-only convolution stage, a set of overcomplete filter atoms D1 is adapting
to the target task and generates m ·m1 feature channels by convolving with each input channel. At
the intra-channel mixing stage, every group of m1 features is linearly combined by coefficients β
with no cross-channel mixing. At the cross-channel mixing stage, Z′ are combined into Z using
fixed atom coefficients α, which is obtained from the pre-trained model.

2016). To fully explore the potential of filter subspace fine-tuning, we show next a simple way to
construct a set of overcomplete2 filter atoms by recursively applying the above decomposition to
each filter atom, to expand the parameter space for fine-tuning as needed.

Specifically, each filter atom dl can be further decomposed over m1 number of filter atoms in
D1,l = {dj

1,l}
m1
j=1 with its corresponding coefficients βi =

[
βi,1, · · · , βi,m1

]
∈ Rm1 , i.e.,

dl =
∑m1

j=1 β
i,jdj

1,l. Therefore, D1 ∈ R(m·m1)×k×k contains m · m1 filter atoms, leading to a
overcomplete set. The recursive decomposition process is illustrated in Figure 3 (a).

Considering input X ∈ Rc′×h′×w′
and output Z ∈ Rc×h×w, convolution using the overcomplete

filter atoms can be comprehended as three steps. While the spatial-only convolution with D and
cross-channel mixing with α steps are the same as before, it linearly combines the features channels
corresponding to m1 decomposed filter atoms in intra-channel mixing step.

• Intra-channel Mixing with β. After convolving X and D1 to get Z′
1 ∈ R(c′·m×m1)×h×w, the

intermediate feature map Z′ ∈ R(c′·m)×h×w is obtained by linearly combining feature channels
within the corresponding input channel via coefficients β,

Z′ = β × Z′
1.

Each feature channel Z
′i is calculated by Z

′i =
∑m1

j=1 β
i,jZ

′i,j
1 , where βi,j is one element in β,

and Z
′i,j
1 ∈ Rh×w is one feature channel in Z′

1. This phase exclusively blends the feature channels
within the same input channel, avoiding any mixing across different channels. The whole process
is illustrated in Figure 3 (b). To adapt the model to downstream tasks, we fine-tune both β and D1,
which contain more tunable parameters than D.

This method can be readily adapted to 1 × 1 convolutional and linear layers as well. We start by

applying Kronecker decomposition on a linear layer W = A ⊗ B, where A ∈ R
c′
k′
c
× c

kc , B ∈
Rk′

c×kc , W ∈ Rc′×c, ⊗ is the Kronecker product. This approach has been explored by recent
literature on fine-tuning (Edalati et al., 2022; YEH et al., 2023). The idea is to represent a matrix
as multiple blocks, where each block comes from the same basis B but varied by different constant
Aij . We then introduce mc pairs of A and B to reconstruct W, W =

∑mc

i=1 Ai ⊗ Bi, such that
each block in W is represented as a linear combination of all Bi.

3.3 DECOMPOSITION OF LINEAR LAYERS

2As the size of filters is k×k, m = k2 independent filter atoms is complete since every filter can be linearly
combined by these filter atoms. As the number of filter atoms is larger than k2, it becomes overcomplete.
Overcompleteness can potentially bring a more stable fine-tuning, and in our case, expand the number of
parameters for adapting to downstream tasks.
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Figure 4: Formulate the linear layer W as a com-
bination of atoms, W = αc ×Dc.

We re-write the above formulation as the no-
tation with coefficients and atoms such that
αc = {Ai}mc

i=1 and Dc = {Bi}mc
i=1. There-

fore, W is constructed from mc atoms in Dc ∈
Rmc×k′

c×kc by the combination using coeffi-

cients αc ∈ R
c′
k′
c
× c

kc
×mc , which is, W =

αc × Dc. This formulation is mathematically
equal to the decomposition filters as filter atoms
and atom coefficients. Similarly, the 1× 1 con-
volutional layer Fc ∈ Rc′×c×1×1 can be for-
mulated as αc and Dc with the same process,

Fc = αc ×Dc. (3)

The procedure of formulating linear layers as coefficients and atoms is illustrated in Figure 4. During
the model tuning, αc is obtained from the pre-trained model and remains unchanged, while only
filter atoms Dc adapt to the target task.

3.4 PARAMETER EFFICIENT FINE-TUNING

Building on our filter subspace formulation, we investigate various parameter-efficient fine-tuning
strategies for tuning the pre-trained model. For convolutional filters F , we directly use sparse coding
(1) to decompose them as atom coefficients and filter atoms α × D. For linear layers or 1 × 1
convolution layers, we first formulate them as Fc (3), and then decompose them as coefficients αc

and atoms Dc using (1). For fine-tuning the models, we only adapt D or Dc, while keeping α or αc

fixed. When more parameters are needed, we represent D as β and D1 to incorporate overcomplete
filter atoms. We initialize D1 by simply repeating each filter atom in D for m1 times and initialize
every element in β with the value 1/m1. This enables us to fine-tune both β and D1.

In this study, we investigate three strategies that offer a range of tunable parameters from a small set
to a slightly larger number: fine-tuning (1) only D, (2) D and Dc, and (3) β, D1 and Dc. Down-
stream tasks are modeled by their updates ∆D, ∆β, ∆D1 and ∆Dc. In the Appendix A.2.1, we
present an analysis of the decomposition complexity and a comparison of the number of parameters
with baseline methods.

4 EXPERIMENTS

In this section, we begin with studying the effectiveness of our method across various configura-
tions to determine the most suitable application scenario for each configuration. Subsequently, we
demonstrate that fine-tuning only filter atoms requires far fewer parameters while preserving the
capacity of pre-trained models, compared with baseline methods in the contexts of discriminative
and generative tasks.

4.1 EXPERIMENTAL SETTINGS

Datasets. Our experimental evaluations are mainly conducted on the Visual Task Adaptation
Benchmark (VTAB) (Zhai et al., 2019), which contains 19 distinct visual recognition tasks sourced
from 16 datasets. As a subset of VTAB, VTAB-1k comprises a mere 1, 000 labeled training exam-
ples in each dataset.

Models. For the validation experiment, we choose ResNet50 (He et al., 2016) pre-trained on
ImageNet-1K. For discriminative tasks, we choose the convolution-based model, ConvNeXt-B (Liu
et al., 2022) pre-trained on ImageNet-21K as the initialization for fine-tuning. For generative tasks,
we choose Stable Diffusion (Rombach et al., 2022) which contains a downsampling-factor 8 au-
toencoder with an 860M UNet and CLIP ViT-L/14 as text encoder for the diffusion model. The
model is pre-trained on the LAION dataset (Schuhmann et al., 2022), which contains over 5 billion
image-text pairs. More details of pre-trained models are listed in the Appendix A.
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Table 1: Comparison among different configurations of our method.
Fine-tune D

Linear Probe LoRA Full Finetuning m = 6 m = 9 m = 12

Accuracy ↑ 55.4 78.6 83.3 66.25 66.86 68.68
Param. (M) ↓ 0.2 2 25.6 0.21 0.21 0.21

Fine-tune β and D1 Fine-tune D and Dc FT β, D1 and Dc

m1 = 3 m1 = 4 m1 = 5 kc = 2 kc = 4 m1 = 4, kc = 4

Accuracy ↑ 78.69 78.7 78.9 75.03 79.83 81.8
Param. (M) ↓ 0.82 1 1.2 0.23 0.62 2.1

4.2 VALIDATION EXPERIMENTS

In this section, we study the performance of our approach across various configurations.

Implementation details. We employ ResNet50 (He et al., 2016) pre-trained on ImageNet-
1K (Russakovsky et al., 2015) and fine-tune it on CIFAR-100 (Krizhevsky & Hinton, 2009) for
50 epochs. We utilize the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 and a
weight decay of 1× 10−4 and a batch size of 256.

We compare different configures of our methods with the following experimental settings and α,
αc are always fixed: (1) When fine-tuning D, we experiment with different numbers of filter atoms
m in the range of [6, 9, 12]. (2) When fine-tuning D and Dc, we choose (k′c, kc) ∈ {(2, 2), (4, 4)},
and the number of filter atoms is m = 9. (3) When fine-tuning D1 and β, we choose m = 9, and
m1 in the range of [3, 4, 5]. (4) When fine-tuning Dc, D1 and β, we choose m = 9, m1 = 3 and
(k′c, kc) = (2, 2).

The effectiveness of filter subspace. The results of all configurations are displayed in Table 1,
with m = 9 as an example, and m = 6, 12 are detailed in the Appendix C. (1) While fine-tuning D
with fixed α, our approach requires a negligible increase in the number of parameters, amounting
to only 0.5% additional parameters, but it achieves an almost 20% improvement in accuracy when
compared to linear probing. (2) Fine-tuning β and D1 further improves accuracy from 66.8% to
78.7% compared to fine-tuning D alone. It validates that overcomplete filter atoms provide more
capacities for model tuning. (3) Fine-tuning D and Dc results in significant improvements com-
pared to fine-tuning D alone. For example, with kc = 2, fine-tuning 0.02M additional parameters
improves accuracy from 66.86% to 75.03%. (4) Fine-tuning Dc, D1, and β achieves the highest
accuracy but it also requires the greatest number of parameters among all of our configurations.

Discussion. Fine-tuning the filter atoms D or atoms Dc enhances accuracy while keeping the
parameter increase minimal, making it highly appropriate for scenarios where the number of pa-
rameters is a critical consideration. However, increasing the number of atoms does not easily yield
further accuracy improvements. To achieve additional accuracy gains, incorporating the set of over-
complete filter atoms D1 and their coefficients β can be effective, but at the cost of an increase in
parameters.

4.3 GENERATIVE TASKS

Baselines. We compare our method to 8 baseline fine-tuning approaches: (i) Full fine-tuning,
which entails updating all model parameters during the fine-tuning process; (ii) LoRA (Hu et al.,
2021), involving the introduction of a low-rank structure of accumulated gradient update by decom-
posing it as up-projection and down-projection. (iii) LoHa (YEH et al., 2023) utilizes the Hadamard
product across two sets of low-rank decompositions to elevate the rank of the resultant matrix and
reduce the approximation error. (iv) LoKr (YEH et al., 2023) introduces the Kronecker product for
matrix decomposition to reduce the tunable parameters. (v) BitFit (Zaken et al., 2022) fine-tunes the
bias term of each layer. (vi) DiffFit (Xie et al., 2023) fine-tunes the bias term, as well as the layer
norm and the scale factor of each layer. (vii) OFT and COFT (Qiu et al., 2023) adapts the diagonal
blocks of weight matrices to achieve orthogonal fine-tuning.

Implementation details. We fine-tune Stable Diffusion using the AdamW optimizer (Loshchilov
& Hutter, 2018) with a learning rate of 5 × 10−6 for full parameter fine-tuning, and 1 × 10−3

for all other parameter-efficient fine-tuning methods. For few-shot learning, we adopt 30 different
customized concepts from Dreambooth (Ruiz et al., 2023) and fine-tune the model on 4 ∼ 9 images.
We utilize 25 different text prompts following (Qiu et al., 2023; Ruiz et al., 2023) and generate
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(a) Input Images (b) No Fine-tuning (c) BitFit (d) Ours, D only

(e) LoRA (f) LoHa (g) Full Fine-tuning (h) Ours, D and α

Figure 5: Fine-tune Stable Diffusion (Rombach et al., 2022) to learn the concept ⟨castle⟩ from (a)
and generate images using text prompt: “A peacock in front of the ⟨castle⟩”. (b) Images generated by
the pre-trained model, without any fine-tuning, align well with the text prompt but fail to match the
target concept. (d) When only fine-tuning the filter atoms D, our approach achieves good alignment
with the text prompt and the target concept. (h) However, fine-tuning the spatially-invariant channel
weights, i.e., atom coefficients α, results in generated images only align with the target concept,
compromising the capability of the pre-trained model of producing diverse images that align with
the text prompt. This issue is also observed in (e-g).

Table 2: Evaluate different approaches in learning the customized concept.

Pre-trained Full FT LoRA LoHa LoKr OFT COFT DiffFit BitFit C1 C2 C3 C4

Fidelity ↑ 0.144 0.711 0.697 0.693 0.693 0.656 0.652 0.622 0.571 0.594 0.652 0.707 0.716
Diversity ↑ 42.88 4.01 4.84 3.96 5.14 5.86 5.92 7.22 10.08 20.42 9.37 6.92 3.17

T2I Alignment ↑ 0.332 0.234 0.232 0.216 0.238 0.267 0.264 0.268 0.277 0.301 0.279 0.236 0.201

Param. (M) ↓ - 860 22.67 8.47 1.06 11.75 11.75 0.58 0.34 0.05 0.75 2.39 587

images with a shape of 512 × 512 for each concept using these prompts. We follow the method in
YEH et al. (2023) and fine-tune the model for 1000 steps, and evaluate the fidelity, diversity, and
text-to-image alignment of generated images.

We assess the fidelity as the average cosine similarity between DINOv2 embeddings (Oquab et al.,
2023) of the generated and dataset images. The diversity of generated images is measured by the
Vendi score (Friedman & Dieng, 2022) calculated with the DINOv2 embeddings. The alignment
between generated images and corresponding prompts is measured via average cosine similarity in
the CLIP feature space (Radford et al., 2021).

For the VTAB dataset, we fine-tune β, D1, and Dc of the model for 5000 steps with the image shape
of 256 × 256 and utilize Frechet Inception Distance (FID) (Heusel et al., 2017) as a quantitative
metric for evaluation. To calculate FID, we generate 20,000 images from each checkpoint and
compare them with images from the corresponding dataset. In cases where the dataset contains more
than 20,000 images, we sample 20,000 images for comparison. See the Appendix A for details of
experimental settings.

Few-shot generative transfer learning. We report the evaluation of all methods in Table 2. Our
method with different configurations is denoted as C1 − C4. (1) C1 and C2 represent fine-tuning
D and Dc of the model with (m, kc) ∈ {(6, 4), (9, 16)}. (2) C3 fine-tunes β, D1 and Dc, with
(m, kc,m1) = (9, 16, 3). (3) C4 is similar to C2 but it fine-tunes α together with D and Dc.

Compared with other baseline methods, our method with configuration C1 − C3 generate diverse
images that are well-aligned with the text prompt. It means they preserve the capability of the pre-
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Table 3: FIDs (lower the better) of image generation models on VTAB benchmark with Stable
Diffusion pre-trained on LAION.
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(M
)

No fine-tuning 52.0 113.3 74.5 45.5 117.1 212.2 28.8 258.8 186.2 144.2 307.7 271.3 225.0 288.5 373.9 266.7 179.1 -

Full fine-tuning 39.0 33.8 46 42.9 32.6 93.2 17.0 107.6 144.5 54.3 69.0 25.8 30.3 92.9 75.8 75.6 61.3 860

LoRA (Hu et al., 2021) 36.8 42.4 40.6 45.3 30.8 120.9 17.7 101.2 81.9 61.6 69.5 33.6 32.1 64.4 69.4 71.6 57.5 22.67
LoHa (YEH et al., 2023) 33.8 40.5 41.6 41.5 33 140.9 17.3 111.4 73.7 60.4 66.5 32.1 37.9 64.5 73.3 65.7 58.4 33.86
LoKr (YEH et al., 2023) 37.7 43.5 43.2 50.6 41.1 144.2 21.4 95.4 70.5 65.5 79.3 33.9 44.8 64.1 79.4 74.4 61.8 2.12

Ours 38.6 32.4 43.9 38.5 30.6 96.8 17.2 109.7 64.1 62.4 60.6 18.7 41.9 69.5 73.2 76.5 54.7 1.11

trained model while learning the new concept. However, C4 fine-tunes the atom coefficients α,
resulting in the model overfitting to the target concept, which is reflected in a notably high fidelity
score, while compromising the model’s ability to generate images aligned with the text prompt.
This observation suggests that maintaining the spatially invariant channel weights α helps prevent
overfitting when fine-tuning pre-trained models to downstream tasks. Figure 1 illustrates visual
examples of learning the concept ”castle” from CustomConcept101 dataset (Kumari et al., 2023).

Methods like LoRA (Hu et al., 2021) or full fine-tuning potentially update these α, thus, they lead
to lower diversity and text-to-image alignment in generated images. In contrast, BitFit (Zaken et al.,
2022) and DiffFit (Xie et al., 2023) mostly fine-tune the bias, leaving α fixed, thus, they have
a higher diversity and text-to-image alignment than LoRA. However, they also keep the spatial
operation D unchanged, resulting in a lower fidelity score compared with C2. More results can be
found in Appendix C.

Performance comparisons on generative transfer learning. We report FIDs of models trained
and evaluated on VTAB tasks in Table 3. In contrast to full parameter fine-tuning and LoRA, our ap-
proach attains the lowest FID scores (54.7 v.s. 57.5) while employing the least number of fine-tuning
parameters (1.11M v.s. 22.67M). Despite fine-tuning only 0.13% of the total model parameters, our
method effectively tailors pre-trained Stable Diffusion to align it with the desired target distribution.

4.4 DISCRIMINATIVE TASKS

In this section, we apply our method to the discriminative task, namely the classification on VTAB-
1k (Zhai et al., 2019). We compare our method to 4 baseline fine-tuning approaches: (i) Full fine-
tuning, (ii) Linear probing, (iii) BitFit (Zaken et al., 2022), and (iv) LoRA (Hu et al., 2021).

Implementation details. Images are resized to 224 × 224, following the default settings in
VTAB (Zhai et al., 2019). We employ the AdamW (Loshchilov & Hutter, 2018) optimizer to fine-
tune models for 100 epochs. The cosine decay strategy is adopted for the learning rate schedule,
and the linear warm-up is used in the first 10 epochs. In this experiment, we fine-tune D and Dc

while keeping α and αc fixed, as this configuration delivers adequate accuracy without increasing
parameters.

Performance comparisons on few-shot transfer learning. We compare the performance of our
approach and other baseline methods, and the results on VTAB-1k are shown in Table 4. In these
tables, the bold font shows the best accuracy of all methods and the underlined font shows the sec-
ond best accuracy. Our method outperforms other parameter-efficient fine-tuning methods and even
outperforms full fine-tuning. Specifically, our method obtains 6% improvement in accuracy com-
pared to LoRA on the VTAB-1k benchmark while utilizing significantly fewer trainable parameters
(0.45M v.s. 17.4M). The Appendix C also includes the experimental results for ViT-B/16.

5 RELATED WORKS

Pre-training and Fine-tuning. The standard practice of pre-training and fine-tuning (He et al.,
2016; Huang et al., 2017; Tan & Le, 2019; Xie et al., 2017) entails models initially undergoing
pre-training on datasets such as ImageNet-21K, BookCorpus, and Common Crawl (Russakovsky
et al., 2015; Raffel et al., 2020; Zhu et al., 2015). Subsequently, these models are fine-tuned
to enhance their convergence and performance on specific tasks (He et al., 2019). In the realm
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Table 4: Performance comparisons on the VTAB-1k benchmark with ConvNeXt models pre-trained
on ImageNet-21K.
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Full fine-tuning 94.9 64.2 73.6 99.5 90.8 89.6 37.7 86.6 85.1 85.9 73.6 73.3 61.3 52.1 83.1 86.8 61.1 32.7 38.8 72.14 87.67
Linear Probing 92.3 65.8 76.8 99.3 92.7 50.5 55.8 84.0 92.7 82.5 74.7 46.1 38.5 41.1 66.3 24.2 35.4 18.4 26.0 61.21 0.11

BitFit (Zaken et al., 2022) 94.5 71.6 76.7 99.4 93.0 85.7 57.2 86.4 94.0 86.4 74.3 67.8 57.2 49.8 80.5 77.7 59.1 30.4 22.0 71.77 0.24
LoRA (Hu et al., 2021) 94.3 51.7 61.4 88.1 69.8 91.2 38.1 74.5 91.9 81.4 73.6 60.8 62 50.3 80.1 96.3 56.3 39.3 21.9 67.53 17.4

Ours 94.8 71.7 76.9 99.6 93.1 87.1 57.5 85.1 94.6 87.6 74.8 70.9 62.8 50.3 82.7 89.4 60.4 31.2 29 73.59 0.45

of parameter-efficient fine-tuning (Zhou et al., 2022), various approaches have been proposed.
LoRA (Hu et al., 2021) fine-tunes lower-rank matrices at each layer to represent weight updates.
The adapter (Houlsby et al., 2019) approach inserts small modules between layers and reduces pa-
rameters by only tuning these adapters (Chen et al., 2022; Karimi Mahabadi et al., 2021; Li & Liang,
2021; Zaken et al., 2022). Visual prompt tuning (VPT) (Jia et al., 2022; Sohn et al., 2023) has intro-
duced a limited number of learnable parameters for optimization while keeping the backbone frozen.
SSF (Lian et al., 2022) proposes scaling and shifting deep features extracted by a pre-trained model.

Model Architectures. Compared with transformer-based models (Dosovitskiy et al., 2020; Liu
et al., 2021; Touvron et al., 2021; Yu et al., 2022), convolution has been used for a long time as
the main module to extract the image features in computer vision tasks. With an inductive prior,
convolution-based models require fewer training images and computation resources to achieve good
generalization. Convolution-based architectures have been largely studied (He et al., 2016; Liu
et al., 2022; Simonyan & Zisserman, 2015) and have found multiple applications, such as feature
extracting (Razavi et al., 2019), image generation (Karras et al., 2020; Song et al., 2021), super-
resoluton (Wang et al., 2020), and et cetera. Numerous studies explore the integration of convolu-
tional techniques with vision transformers to enhance their performance (Guo et al., 2022; Raghu
et al., 2021). Parameter-efficient fine-tuning in downstream tasks is crucial and requires further
examinations when utilizing pre-trained large-scale convolution-based models.

Discriminative and Generative Tasks. Discriminative and generative tasks are fundamental in
machine learning. Discriminative models (Hao et al., 2020; He et al., 2016; Padilla et al., 2020;
Zou et al., 2023) are designed to distinguish between various data instances, while generative mod-
els (Karras et al., 2020; Razavi et al., 2019; Song et al., 2021; Wang et al., 2020) are employed to
create new data instances. Discriminative models have been applied to image classifications (He
et al., 2016; Liu et al., 2022; Simonyan & Zisserman, 2015), object detection (Padilla et al., 2020;
Zou et al., 2023), and semantic segmentation (Hao et al., 2020). Generative models have been exten-
sively studied for image synthesis, including variational autoencoder (Kingma et al., 2021; Razavi
et al., 2019; Vahdat & Kautz, 2020; Van Den Oord et al., 2017), diffusion (Dhariwal & Nichol, 2021;
Rombach et al., 2022; Song et al., 2021), and autoregressive models (Parmar et al., 2018; Van den
Oord et al., 2016; Van Den Oord et al., 2016). In this study, our primary focus is on implementing
parameter-efficient fine-tuning techniques for two tasks: image classification using ConvNeXt (Liu
et al., 2022) and image synthesis employing Stable Diffusion (Rombach et al., 2022).

6 CONCLUSION

In this work, we proposed the parameter-efficient fine-tuning method for large convolutional models
by formulating the convolutional layers over the filter subspace. Fine-tuning filter atoms composed
of a small number of parameters and keeping the atom coefficients unchanged, is notably efficient in
terms of parameters. It successfully maintains the capabilities of pre-trained models while avoiding
overfitting to downstream tasks. We then formulate a simple yet effective way to achieve an over-
complete filter subspace by decomposing each filter atom over another set of filter atoms, thereby
expanding the parameter space available for fine-tuning as needed. Our approach has demonstrated
effectiveness in different configurations on both discriminate and generative tasks.

Limitations. Our method, which concentrates on tuning models within the filter subspace, is par-
ticularly advantageous for ConvNets. While it can be naturally extended to linear layers through
appropriate mathematical formulations, the full potential of our approach when applied to linear
layers remains under-explored.
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Table 5: Information of VTAB dataset.

Dataset classes train val test all

Caltech-101 102 2754 306 6084 9144
CIFAR-100 100 45000 5000 10000 60000
Clevr (object distance) 6 63000 7000 15000 85000
Clevr (count) 8 63000 7000 15000 85000
Diabetic Retinopathy 5 35126 10906 42670 88702
DMLab 6 65550 22628 22735 110913
Dsprites (x position) 16 589824 73728 73728 737280
Dsprites (orientation) 16 589824 73728 73728 737280
DTD 47 1880 1880 1880 5640
EuroSAT 10 16200 5400 5400 27000
Flowers102 102 1020 1020 6149 8189
Kitti 4 6347 423 711 7481
Patch Camelyon 2 262144 32768 32768 327680
Pet 37 2944 736 3669 7349
Resisc45 45 18900 6300 6300 31500
Smallnorb (azimuth) 18 24300 12150 12150 48600
Smallnorb (elevation) 9 24300 12150 12150 48600
SUN397 397 76128 10875 21750 108753
SVHN 10 65931 7326 26032 99289

A DETAILS OF EXPERIMENTS

A.1 DETAILS OF DATASETS

VTAB Dataset. VTAB dataset is uniquely challenging and well-suited for the evaluation of
parameter-efficient tuning methods in the context of few-shot knowledge transfer. VTAB-1k encom-
passes a diverse range of image domains, including natural, structured, and specialized categories
such as medical or satellite imagery. The tasks span various objectives, comprising object and scene
recognition, distance classification, and counting. Consequently, VTAB-1k emerges as a highly
valuable resource catering to the needs of both discriminative and generative transfer learning tasks.

In Table 5, we provide information on 19 tasks of the VTAB dataset, including the number of classes
and the number of images in each data split of VTAB. Images in the VTAB benchmark encompass
three distinct domains: (1) Natural images captured using standard cameras, (2) Specialized images
captured using non-standard cameras like those in remote sensing and medical applications, and
(3) Structured images generated through simulation environments. VTAB-1k is a subset of VTAB.
It contains only 1000 training and validation samples, which are designed for few-shot transfer
learning.

Dreambooth Dataset. The DreamBooth dataset Ruiz et al. (2023) focuses on fine-tuning large
pre-trained text-to-image diffusion models for personalized subject-driven image generation. This
dataset supports the development and evaluation of methods, which enable the generation of novel,
photorealistic images of a specific subject in diverse contexts based on a few reference images.

A.2 EXPERIMENTAL SETTINGS

Baseline Methods We compare our method to 7 PEFT approaches: (i) LoRA (Hu et al., 2021),
involving the introduction of a low-rank structure of accumulated gradient update by decomposing it
as up-projection and down-projection 3. (ii) LoHa (YEH et al., 2023) utilizes the Hadamard product
across two sets of low-rank decompositions to elevate the rank of the resultant matrix and reduce
the approximation error. (iii) LoKr (YEH et al., 2023) introduces the Kronecker product for matrix
decomposition to reduce the tunable parameters 4. (iv) BitFit (Zaken et al., 2022) fine-tunes the bias

3LoRA implementation: https://github.com/microsoft/LoRA
4LoHa and LoKr implementation: https://github.com/KohakuBlueleaf/LyCORIS
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term of each layer. (v) DiffFit (Xie et al., 2023) fine-tunes the bias term, as well as the layer norm
and the scale factor of each layer 5. (vi) OFT and COFT (Qiu et al., 2023) adapts the diagonal blocks
of weight matrices to achieve orthogonal fine-tuning 6.

A.2.1 GENERATIVE TASKS

Stable diffusion checkpoints. The pre-trained checkpoint we choose for Stable Diffusion
is stable-diffusion-v1-4, which can be found at https://huggingface.co/CompVis/
stable-diffusion.

Text prompts for the few-shot generative task. We adapt the text prompts from YEH et al.
(2023) to generate images for Figure 5. Additionally, we use text prompts from Dreambooth (Ruiz
et al., 2023) to generate the images and get evaluation results in Table 2.

Text prompts for the full generative task. We use specific text prompts to train the Stable Diffu-
sion or generate the images. We list the example prompts for each dataset as follows:

• Caltech-101: This is a picture of accordion.

• CIFAR-100: This is a picture of apple.

• Clevr: This is a picture from CLEVR dataset.

• Diabetic Retinopathy: This is a retina image with no diabetic retinopathy.

• DMLab: This is a picture from DMLab dataset.

• Dsprites: This is a picture from dSprites dataset.

• DTD: This is a picture of banded texture.

• EuroSAT: This is a satellite picture of annual crop.

• Flowers102: This is a picture of pink primrose.

• Kitti: This is a picture from KITTI dataset.

• Patch Camelyon: This is a histopathologic scans without tumor.

• Pet: This is a picture of Abyssinian cat.

• Resisc45: This is a remote sensing picture of airplane.

• Smallnorb: This is a picture from SmallNORB dataset.

• SUN397: This is a picture of abbey.

• SVHN: This is a picture of street view house number 0.

B ADDITIONAL ANALYSIS

Computational Time. The decomposition process using the ISTA algorithm for convolutional
atoms and atom coefficients takes about 1 second for each layer and 20 seconds for the whole
model, with the code implemented on a GPU. This time is negligible compared to the training
duration, which is approximately 60 minutes.

Additionally, we only need to perform sparse coding once for each pre-trained model. The decom-
posed coefficients can then be reused across all fine-tuning tasks, further reducing the computational
cost.

5DiffFit and BitFit implementation: https://github.com/mkshing/DiffFit-pytorch
6OFT and COFT implementation from PEFT library https://github.com/huggingface/peft
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Table 6: Number of parameters of different PEFT methods.

Conv. Param. Attn. Param.

Original c′ckk 3, 686, 400 4c2 1, 638, 400
LoRA c′kr + ckr 30, 720 8cr 40, 960
LoHa 2c′kr + 2ckr 61, 440 16cr 81, 920
Lokr c′k + ck + r2 3, 904 8c+ 4r2 5, 378
OFT c′ckk/r 460, 800 4c2/r + 4c 207, 360

Ours (D or Dc) mk2 81 4mk2c 576
Ours (+β) mm1k

2 + c′mm1 17, 523 4mk2c 576

Computational Cost. We estimate the computation cost in terms of FLOPs for solving the sparse
coding problem: min 1

2 ||W − αD||22 + λ||α||1, where we aim to obtain atom coefficients α and
atoms D from the pre-trained weights W. Here α ∈ Rc′c/k2×m, D ∈ Rm×k2

, W ∈ Rc′×c, c′
and c are the numbers of input and output channels, k is the kernel size, m is the number of filter
atoms. Suppose ISTA requires K iterations, the FLOPs required for this algorithm is K(4c′cm +
c′c+ 6mk2).

In comparison, given the input data X ∈ RB×c′ with batch size B, the FLOPs required for one linear
layer Z = WX + b, where W ∈ Rc′×c is 6Bc′c + 4Bc + c′c + c which includes 2Bc′c + 2Bc
(forward pass), 4Bc′c+Bbc (backward pass) and c′c+ c (update parameters).

Suppose we have c′ = c = 512, k = 4, B = 64, m = 9, with one iteration the computational cost of
the decomposition is approximately 9.7 MFLOPs, while the computational cost of one linear layer
is 101 MFLOPs.

Number of Parameters. We estimate the parameter numbers of different PEFT methods by con-
sidering two types of layers as examples: convolutional layers with dimensions (c′, c, k, k), and at-
tention layers with parameters Wq , Wk, Wv , Wo, which have dimensions (c, c). Table 6 lists the
PEFT fine-tuning methods along with their corresponding parameter counts. Suppose c′ = c = 640,
k = 3, the hyper-parameter for other approach is r = 8, the hyper-parameters for our method are
kc = 4,m = 9,m1 = 3.

In Table 6, “Ours (D or Dc)” refers to our method with tuning filter atoms D and atoms in the linear
layer Dc, while “Ours (+β)” indicates that, in addition to tuning filter atoms, we also incorporate
overcomplete filter atoms and their coefficients β. Compared to other approaches, our method
requires the least number of parameters. To determine the parameter counts reported in the paper,
we enumerate all the model parameters and sum those that require gradients.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 VALIDATION EXPERIMENTS

We compare different configures of our methods with the following experimental settings and α,
αc are always fixed: (1) When fine-tuning D, we experiment with different numbers of filter atoms
m in the range of [6, 9, 12]. (2) When fine-tuning D and Dc, we choose (k′c, kc) ∈ {(2, 2), (4, 4)},
and the number of filter atoms is m = 9. (3) When fine-tuning D1 and β, we choose m = 9, and
m1 in the range of [3, 4, 5]. (4) When fine-tuning Dc, D1 and β, we choose m = 9, m1 = 3 and
(k′c, kc) = (2, 2). We provide additional experiments with m = 6, 12 in Figure 6. As we increase
m from 6 to 12, the accuracy improves from 66.86% to 68.68%.

C.2 ADDITIONAL EXPERIMENTS OF DISCRIMINATIVE TASKS

Full Dataset Fine-tuning. For CIFAR-100 and ImageNet-1K, we follow the fine-tuning setting
of ConvNeXt in (Lian et al., 2022). We employ the AdamW (Loshchilov & Hutter, 2018) optimizer
to fine-tune models for 100 epochs for CIFAR-100, and 30 epochs for ImageNet-1K. The cosine
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Figure 6: The relations between accuracy and number of fine-tuning parameters, with different
numbers of filter atoms (m = 6 and m = 12).

Table 7: Performance comparisons on the VTAB-1k benchmark with ConvNeXT models pre-trained
on ImageNet-21K.

CIFAR-100 Params. (M) ImageNet-1k Params. (M)

Full Fine-tuning 94.1 87.7 85.8 88.9
Linear Probe 88.6 0.1 84.7 1.0

LoRA (Hu et al., 2021) 89.2 20.1 84.8 21.0

Ours 91.8 0.3 84.9 1.2

decay strategy is adopted for the learning rate schedule, and the linear warm-up is used in the first
10 epochs for CIFAR-100 and 5 epochs for ImageNet-1K.

We compare the performance of our approach with other baseline methods, and the results on
CIFAR-100 and ImageNet-1K are shown in Table 7. With full dataset fine-tuning, the full fine-
tuning achieves the highest accuracy, outperforming the parameter-efficient fine-tuning methods.
One possible reason is both datasets have sufficient data to prevent over-fitting of the model. Our
method achieves a higher accuracy than LoRA while requiring only a small number of parameters
(1.2M v.s. 21M). In contrast, in the VTAB-1k benchmark, the amount of data is not very large (e.g.,
only 1,000 training images), which might cause over-fitting of the model for the full fine-tuning.

Few-shot Results of ViT. We also present the results of ViT in the Table 8. Compared to SSF (Lian
et al., 2022), FacT (Jie & Deng, 2023), and Adapter (Houlsby et al., 2019), our method achieves
higher average accuracy while keeping the number of tuned parameters minimal.

C.3 RESULTS OF FEW-SHOT GENERATIVE TASKS

We provide more experimental results of few-shot generative learning learned on concepts “castle”
and “canal” in Table. 9 and 10. In this experiment, we also include LoRA, LoHa, and LoKr with
different configurations.

The generated images of different fine-tuning methods are shown in Figure 7 and 8.

Table 8: Performance comparisons on the VTAB-1k benchmark with ViT-B/16 models pre-trained
on ImageNet-21K.
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Full fine-tuning 87.7 68.9 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.57 85.84
Linear probing 85.0 63.4 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 52.94 0.04

Adapter (Houlsby et al., 2019) 86.1 74.1 63.2 97.7 87.0 34.6 50.8 76.3 88.0 73.1 70.5 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 55.82 0.27
FacT (Jie & Deng, 2023) 90.6 70.6 70.8 99.1 90.7 88.6 54.1 84.8 86.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 73.23 0.11
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(a) Full Fine-tuning (b) LoRA

(c) LoHa (d) LoKr

Figure 7: Images sampled from Stable Diffusion (Rombach et al., 2022) checkpoints fine-tuned
with different approaches. The text prompts used to generate images from top to bottom are: “The
⟨castle⟩ stands against a backdrop of snow-capped mountains”, “A ⟨castle⟩ surrounded by a lush,
vibrant forest”, “A peacock in front of the ⟨castle⟩”, and ‘The ⟨castle⟩ overlooks a serene lake,
where a family of geese swims”.

Table 9: Evaluate different approaches in learning the concept ⟨castle⟩.

LoHa LoRA LoKr DiffFit BitFit Ours
d = 16 d = 4 r = 16 r = 4 r = 1 f = 16 f = 4 m = 6, kc = 4 m = 9, kc = 8 m = 9, kc = 8,m1 = 3

Fidelity 0.73 0.73 0.71 0.67 0.7 0.73 0.65 0.57 0.44 0.44 0.62 0.72
Diversity 3.51 3.51 4.85 5.39 4.96 4.27 6.98 10.38 16.8 16.82 8.97 8.53

T2I Alignment 0.21 0.21 0.23 0.23 0.23 0.23 0.25 0.26 0.25 0.31 0.28 0.27
Param. (M) 33.86 8.47 22.67 5.67 1.42 1.12 1.06 0.58 0.34 0.05 0.75 2.39

C.4 VISUALIZATION OF GENERATED IMAGES

We visualize images generated by the models trained on each of VTAB tasks from Figure 9 to
Figure 24.
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(a) Pre-trained (b) DiffFit

(c) BitFit (d) Ours

Figure 8: Images sampled from Stable Diffusion (Rombach et al., 2022) checkpoints fine-tuned
with different approaches. The text prompts used to generate images from top to bottom are: “The
⟨castle⟩ stands against a backdrop of snow-capped mountains”, “A ⟨castle⟩ surrounded by a lush,
vibrant forest”, “A peacock in front of the ⟨castle⟩”, and ‘The ⟨castle⟩ overlooks a serene lake,
where a family of geese swims”.

Table 10: Evaluate different approaches in learning the concept ⟨canal⟩.

LoHa LoRA LoKr DiffFit BitFit Ours
d = 16 d = 4 r = 16 r = 4 r = 1 f = 16 f = 4 m = 6, kc = 4 m = 9, kc = 8 m = 9, kc = 8,m1 = 3

Fidelity 0.52 0.47 0.39 0.38 0.37 0.36 0.38 0.31 0.33 0.16 0.29 0.39
Diversity 6.29 12.49 15.03 15.71 16.18 18.47 19.53 26.48 21.11 38.63 24.72 24.92

T2I Alignment 0.15 0.18 0.19 0.20 0.20 0.22 0.21 0.24 0.23 0.29 0.25 0.26
Param. (M) 33.86 8.47 22.67 5.67 1.42 1.12 1.06 0.58 0.34 0.05 0.75 2.39

C.5 GRAD-CAM

To understand the underlying reason for the effectiveness of our approach on convolution-based
models, we employ Grad-CAM (Gildenblat & contributors, 2021) on the first block of ResNet50,
which are fine-tuned on the CUB dataset (Wah et al., 2011) using the same experimental setting as

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 9: Images sampled from Stable Diffusion checkpoints fine-tuned on the Caltech-101.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 10: Images sampled from Stable Diffusion checkpoints fine-tuned on the CIFAR-100.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 11: Images sampled from Stable Diffusion checkpoints fine-tuned on the SUN397.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 12: Images sampled from Stable Diffusion checkpoints fine-tuned on the SVHN.
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(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 13: Images sampled from Stable Diffusion checkpoints fine-tuned on the Flowers102.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 14: Images sampled from Stable Diffusion checkpoints fine-tuned on the Pets.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 15: Images sampled from Stable Diffusion checkpoints fine-tuned on the DTD.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 16: Images sampled from Stable Diffusion checkpoints fine-tuned on the EuroSAT.
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(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 17: Images sampled from Stable Diffusion checkpoints fine-tuned on the Resisc45.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 18: Images sampled from Stable Diffusion checkpoints fine-tuned on the Patch Camelyon.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 19: Images sampled from Stable Diffusion checkpoints fine-tuned on the Diabetic Retinopa-
thy.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 20: Images sampled from Stable Diffusion checkpoints fine-tuned on the Kitti.
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(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 21: Images sampled from Stable Diffusion checkpoints fine-tuned on the Smallnorb.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 22: Images sampled from Stable Diffusion checkpoints fine-tuned on the Dsprites.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 23: Images sampled from Stable Diffusion checkpoints fine-tuned on the CLEVR.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 24: Images sampled from Stable Diffusion checkpoints fine-tuned on the DMLab.
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LoRA ∆𝑫 ∆𝑫𝟏∆𝜶𝟏Ours OursInput andNo fine-tuning

(a) (b)

(c) (d)

Figure 25: The Grad-CAM heatmap comparisons between our method and LoRA reveal that our ap-
proach exhibits larger active regions. The heatmap is generated from the first block of ResNet50 (He
et al., 2016) utilizing the CUB dataset (Wah et al., 2011). Fine-tuning the model with ∆D1 involves
additional filter atoms, which leads to larger active regions in the heatmap compared to fine-tuning
∆D only. (a) The Grad-CAM from the first block of ResNet50. (b-d) The Grad-CAM from the 2-4
blocks of ResNet50.
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(a)

Figure 26: Additional Grad-CAM heatmap comparisons between our method and LoRA from the
first block of ResNet50.

above. For our method, we compare the experiment setting with m = 9, which means 9 filter atoms
∆D and the setting with (m,m1) = (9, 4), which means 36 ∆D1.

Based on the Grad-CAM visualization in Figure 25, our method exhibits larger active regions com-
pared with LoRA. This observation indicates that our approach benefits from preserving the spatial
structure of convolutional layers. When utilizing ∆D1, which expands the number of filter atoms,
we observe more active regions in the Grad-CAM heatmap. This suggests that the introduction of
extra filter atoms potentially captures a wider range of feature maps.

We provide more heatmap visualizations of Grad-CAM from the first block of ResNet50 in Fig-
ure 26.
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