
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LARGE CONVOLUTIONAL MODEL TUNING VIA FILTER
SUBSPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient fine-tuning methods are critical to address the high computational and pa-
rameter complexity while adapting large pre-trained models to downstream tasks.
Our study is inspired by prior research that represents each convolution filter as
a linear combination of a small set of filter subspace elements, referred to as fil-
ter atoms. In this paper, we propose to fine-tune pre-trained models by adjusting
only filter atoms, which are responsible for spatial-only convolution, while pre-
serving spatially-invariant channel combination knowledge in atom coefficients.
In this way, we bring a new filter subspace view for model tuning. Furthermore,
each filter atom can be recursively decomposed as a combination of another set
of atoms, which naturally expands the number of tunable parameters in the filter
subspace. By only adapting filter atoms constructed by a small number of pa-
rameters, while maintaining the rest of model parameters constant, the proposed
approach is highly parameter-efficient. It effectively preserves the capabilities of
pre-trained models and prevents overfitting to downstream tasks. Extensive ex-
periments show that such a simple scheme surpasses previous tuning baselines for
both discriminate and generative tasks.

1 INTRODUCTION

Large models have demonstrated exceptional performance across diverse domains and tasks (Brown
et al., 2020; Dosovitskiy et al., 2020; He et al., 2016; Kirillov et al., 2023; Radford et al.; Rombach
et al., 2022; Silver et al., 2016; Touvron et al., 2023; Vaswani et al., 2017), attributing to their
capability to effectively represent complex patterns and relationships (Khan et al., 2020) by pre-
training on massive datasets (Russakovsky et al., 2015; Raffel et al., 2020; Zhu et al., 2015). A
common strategy to adapt these large models for specific downstream tasks is fine-tuning them with
full parameters. But this method presents two main challenges: (1) Adjusting a vast number of
parameters for particular target tasks is computationally intensive; (2) The limited availability of
target data increases the risk of overfitting (Lian et al., 2022).

To address these challenges, researchers have developed parameter-efficient methods (Chen et al.,
2022; Hu et al., 2021; Jia et al., 2022; Shen et al., 2021; YEH et al., 2023; Zaken et al., 2022) by fine-
tuning the pre-trained models with only a minimal number of parameters. Among these methods,
LoRA (Hu et al., 2021) fine-tunes models without altering the model architecture, becoming notably
popular for its efficacy. However, LoRA still risks overfitting when fine-tuned on limited data and
compromising the generalization capability of large models. For instance, Figure 1 illustrates that
with only 5 training samples, LoRA tends to produce images that closely resemble the training data,
compromising the ability for diverse image generation, compared with pre-trained models.

Motivation. To preserve the capabilities of pre-trained models when fine-tuning them on the
downstream tasks, one prominent approach in continual learning (Parisi et al., 2019; Rusu et al.,
2016; Yoon et al., 2019) is to formulate convolution filters in ConvNets as a linear combination
of filter atoms (Li et al., 2019; Papyan et al., 2017; Qiu et al., 2018) and fine-tuning only filter
atoms (Miao et al., 2021; Zhai et al., 2021). Specifically, filters in each convolutional layer are de-
composed over a small set of filter subspace elements, referred to as filter atoms, responsible for
spatial-only convolution. Each convolutional layer is now constructed as linear combinations of
filter atoms using decomposition coefficients, referred to as atom coefficients, responsible for the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Input Images

Pr
e-

tra
in

ed
Lo

R
A

O
ur

s

Fidelity Diversity Text2Image Alignment

LoRA

Ours

LoRA

Ours

LoRA

Ours

Pre-trained Pre-trained Pre-trained

Figure 1: Compared with LoRA (Hu et al., 2021), our method updates a small set of parameters and mitigates
the risk of overfitting to the target concept. In this example task of learning the concept ⟨castle⟩ from 5 input
images, we only require fine-tuning 0.75M parameters, a stark reduction from the 22.67M parameters required
by LoRA. Furthermore, the model fine-tuned by our method captures the target concept while ensuring a
rich diversity and strong alignment with input text prompts. It demonstrates that our approach preserves the
generalization capability of large models. The text prompts used to generate images from left to right are:
“The ⟨castle⟩ stands against a backdrop of snow-capped mountains”, “A ⟨castle⟩ surrounded by a lush, vibrant
forest”, “The ⟨castle⟩ overlooks a serene lake”, and “The ⟨castle⟩ in the autumn season with colorful foliage”.

spatially invariant channel combination. Hypothesizing variations across tasks can be reduced by
bridging spatial discrepancies in the images, we propose to calibrate the pre-trained model by solely
fine-tuning the spatial-only filter atoms while preserving the spatially-invariant channel weights, i.e.,
atom coefficients.

In our work, we demonstrate that fine-tuning a large model via filter atoms is substantially effec-
tive and parameter-efficient, as filter atoms are responsible for spatial-only convolution and usually
comprise only a few hundred parameters. This strategy is in harmony with task subspace modeling
principles, which suggest that task parameters occupy a low-dimensional subspace, allowing tasks to
be represented as combinations of latent basis tasks (Evgeniou & Pontil, 2007; Kumar & Daume III,
2012; Maurer et al., 2013; Romera-Paredes et al., 2013; Zhang & Yang, 2021). We also discover that
maintaining fixed atom coefficients, i.e., spatially-invariant channel mixing weights, plays a crucial
role in preserving the generalization capability of pre-trained large models.

With a large number of parameters fixed, fine-tuning only a tiny set of parameters in filter atoms
is potentially challenging to adapt to more complex tasks. We further demonstrate a simple yet
effective way to expand the tunable parameters in filter subspace, without any modification on atom
coefficients, by decomposing each filter atom over another set of filter atoms. This process provides
an overcomplete set of filter atoms and expands the tunable parameter space, all while still requiring
fewer parameters than LoRA. Additionally, we provide a simple technique to extend this method
to linear layers, ensuring alignment with the characteristics in prior literature (Li et al., 2019; Miao
et al., 2021; Papyan et al., 2017; Qiu et al., 2018). Our method is illustrated in Figure 2.

We demonstrate the effectiveness of our approach on both discriminative and generative tasks with
ResNet50 (He et al., 2016), ConvNeXt (Liu et al., 2022) and Stable Diffusion (Rombach et al.,
2022). We summarize our contributions as follows,

• We propose a method by adapting only filter subspace elements (filter atoms), with a few
hundred parameters, to achieve significantly parameter-efficient fine-tuning.

• We observe that maintaining fixed atom coefficients plays a crucial role in preserving the
generalization capability of large models.

• We further demonstrate a simple way to expand the number of tunable parameters in fil-
ter subspace by recursively decomposing each filter atom over another set of filter atoms,
which extends the parameter space for tuning.

• We conduct extensive experiments demonstrating the efficacy of our approach on discrim-
inative and generative tasks for fine-tuning large models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

2.1 LOW-RANK ADAPTATION FOR FINE-TUNING

LoRA (Hu et al., 2021) introduces trainable low-rank matrices into layers to approximate weight
updates. For a pre-trained weight matrix W ∈ Rc′×c, LoRA represents the weight update with a
low-rank decomposition

W +∆W = W +WdownWup,

where Wdown ∈ Rc′×r and Wup ∈ Rr×c are tunable parameters, r is the intrinsic rank of weight
updates, d′ and d are the size of inputs and outputs. r is usually much smaller than c′ and c. A
learnable scalar hyperparameter α scales the weight updates, which leads to W + αWdownWup.

2.2 SPARSE CODING AND MATRIX FACTORIZATION

Sparse coding attempts to find the representation of input w with respect to a dictionary of m atoms
{dl}ml=1 with the fewest number of coefficients αl, i.e., w =

∑m
l=1 α

ldl. The objective of a sparse
coding problem can be written as

min
αi,l,dl

∑
j

∥wi −
∑
i

αi,ldl∥22 + λ
∑
i

∥αi,l∥1,

where ∥·∥1 is the L1 norm, and λ is a Lagrange multiplier.

It can be further expressed in a tensor form,

min
α,D

∥F −α×D∥2F + λ∥α∥1,1, (1)

where F ∈ Rc′×c×k′×k is the input tensor, α ∈ Rc′×c×m is the tensor of coefficients and D ∈
Rm×k′×k is a tensor of basis. Several algorithms have been developed to solve (1), such as fast
iterative soft-thresholding algorithm (FISTA) (Beck & Teboulle, 2009), matching pursuit (Mallat
& Zhang, 1993), and least absolute shrinkage and selection operator (LASSO) (Santosa & Symes,
1986). We can interpret the first term in (1) as finding a suitable tensor factorization for F , while
the second term serves as a penalty enforcing sparsity in the representation of F .

3 METHODS

In this section, we decompose convolution filters over a small set of filter subspace elements, referred
to as fitler atoms. This formulation enables a new model tuning method via filter subspace by solely
adjusting filter atoms.

3.1 FORMULATION OF FILTER DECOMPOSITION

Our approach involves decomposing each convolutional layer F into two standard convolutional
layers: a filter atom layer D that models filter subspace1, and an atom coefficient layer α with 1× 1
filters that represent combination rules of filter atoms, as displayed in Figure 2 (a). This formulation
is written as

F = α×D, (2)
where × is the tensor product.

F ∈ Rc′×c×k×k contains c′ × c filters {F i,j}i=c′,j=c
i=1,j=1 , where c′ and c are the numbers of input and

output channels, k is the kernel size. D ∈ Rm×k×k is a set of m filter atoms, i.e., D = {dl}ml=1,
where dl ∈ Rk×k. Each filter F i,j is a linear combination of m filter atoms, calculated by F i,j =∑m

l=1 α
i,j,ldl, αi,j,l represents each element in α ∈ Rc′×c×m.

Considering input features X ∈ Rc′×h′×w′
and output features Z ∈ Rc×h×w, where h′ × w′ and

h × w represent the dimension of input features and output features. The convolution process now
can be comprehended as the following two steps:

1The filter subspace is a span of m filter atoms D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In
pu

t

O
ut
pu

t

+

ℱ

× ∆𝑫

∆ℱ
𝜶=

∆ℱ = 𝜶	×	∆𝑫

∆ℱ

(a)

𝑐′ 𝑐
Input Features Output Features

X ∈ ℝ𝑐′×ℎ′×𝑤′
Z′ ∈ ℝ(𝑐′×𝑚)×ℎ×𝑤 Z ∈ ℝ𝑐×ℎ×𝑤

𝑫 ∈ ℝ𝑚×𝑘×𝑘

𝑐′ ⋅ 𝑚

𝜶 ∈ ℝ𝑐′×𝑐×𝑚

𝜶

∗ ⨂

𝑫

(b)

Figure 2: A filter subspace view of model tuning. (a) Each convolutional layer F is constructed
as linear combinations of filter subspace elements, i.e., filter atoms D, using decomposition coeffi-
cients, i.e., atom coefficients α. Hypothesizing variations across tasks can be reduced by bridging
spatial discrepancies in the images, we propose to calibrate the pre-trained model by solely fine-
tuning the spatial-only D while keeping the spatially-invariant channel weights α fixed. (b) The
convolution operation is represented in two stages: At the spatial-only convolution stage, each filter
atom D is adapting to the target task, and then at the cross-channel mixing stage, Z′ are combined
into Z using fixed atom coefficients α, which is obtained from the pre-trained model. More details
are provided in Section 3.

• Spatial-only Convolution with D. Each channel of the input features X convolves with each
filter atom separately to produce intermediate features

Z′ = D ∗X,

where Z′ ∈ R(c′×m)×h×w, ∗ is the convolution operation.

For each input feature channel Xi and filter atom dl ∈ Rk×k, we have Z′i,l = Xi∗dl, where Z′i,l ∈
Rh×w,Xi ∈ Rh′×w′

are one feature channel in Z′,X, and dl is one filter atom in D = {dl}ml=1.

This process leads to the generation of m distinct intermediate output channels for each input chan-
nel, which is illustrated in Figure 2 (b). In this step, filter atoms focus only on handling the spatial
information of input features, and cross-channel mixing is postponed to the next step.

• Cross-channel Mixing with α. Subsequently, atom coefficients weigh and linearly combine the
intermediate features to produce output features

Z = α× Z′.

Each output feature channel Zj ∈ Rh×w is linearly combined from c′ × m intermediate feature
channels Z′i,l ∈ Rh×w with the coefficient {αi,j,l}i=c′,l=m

i=1,l=1 , which is, Zj =
∑c′

i=1

∑m
l=1 α

i,j,l ·Z′i,l.
Here, αi,j,l represents each element in atom coefficients α ∈ Rc′×c×m.

The spatially invariant channel weights, atom coefficients α, serve as operators for channel mixing,
functioning as distinct combination rules that construct the output features from the elemental feature
maps generated by the filter atoms. During the model tuning, α is obtained from the pre-trained
model and remains unchanged, while only filter atoms D adapt to the target task.

Summary. The two-step convolution operation explains different functionalities of filter atoms D
and atom coefficients α, which is, D only contribute to spatial convolution and α only perform
cross-channel mixing. In practice, the convolution operation is still performed as one layer, without
generating intermediate features, to avoid memory cost. In the fine-tuning process, we solely adjust
D, which contains a small set of number of parameters, k×k ≪ c′×c, thereby facilitating parameter-
efficient fine-tuning.

3.2 OVERCOMPLETE FILTER ATOMS

The parameters of filter atoms are extremely small compared with overall model parameters. For
instance, the filter atoms constitute a mere 0.004% of the total parameters in ResNet50 (He et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝜶 ×

×

𝑫 ∈ ℝ!×#×#

ℱ

𝑫𝟏 ∈ ℝ(!⋅!!)×#×#

𝜷

(a)

𝑐′ 𝑐
Input Features Output Features

𝑐′ × 𝑚(𝑐′⋅ 𝑚) × 𝑚1

𝜷 ∈ ℝ(𝑐′⋅𝑚)×𝑚1

X ∈ ℝ𝑐′×ℎ′×𝑤′
Z′ ∈ ℝ(𝑐′×𝑚)×ℎ×𝑤 Z ∈ ℝ𝑐×ℎ×𝑤Z′1 ∈ ℝ(𝑐′⋅𝑚×𝑚1)×ℎ×𝑤

𝑫𝟏 ∈ ℝ(𝑚⋅𝑚1)×𝑘×𝑘 𝜶 ∈ ℝ𝑐′×𝑐×𝑚

⨂⨂

𝑫𝟏

𝜷
𝜶

∗

(b)

Figure 3: (a) The process of constructing overcomplete filter atoms: One filter atom in D is presented
as a linear combination of m1 filter atoms in D1. (b) The convolution operation is represented in
three stages: At the spatial-only convolution stage, a set of overcomplete filter atoms D1 is adapting
to the target task and generates m ·m1 feature channels by convolving with each input channel. At
the intra-channel mixing stage, every group of m1 features is linearly combined by coefficients β
with no cross-channel mixing. At the cross-channel mixing stage, Z′ are combined into Z using
fixed atom coefficients α, which is obtained from the pre-trained model.

2016). To fully explore the potential of filter subspace fine-tuning, we show next a simple way to
construct a set of overcomplete2 filter atoms by recursively applying the above decomposition to
each filter atom, to expand the parameter space for fine-tuning as needed.

Specifically, each filter atom dl can be further decomposed over m1 number of filter atoms in
D1,l = {dj

1,l}
m1
j=1 with its corresponding coefficients βi =

[
βi,1, · · · , βi,m1

]
∈ Rm1 , i.e.,

dl =
∑m1

j=1 β
i,jdj

1,l. Therefore, D1 ∈ R(m·m1)×k×k contains m · m1 filter atoms, leading to a
overcomplete set. The recursive decomposition process is illustrated in Figure 3 (a).

Considering input X ∈ Rc′×h′×w′
and output Z ∈ Rc×h×w, convolution using the overcomplete

filter atoms can be comprehended as three steps. While the spatial-only convolution with D and
cross-channel mixing with α steps are the same as before, it linearly combines the features channels
corresponding to m1 decomposed filter atoms in intra-channel mixing step.

• Intra-channel Mixing with β. After convolving X and D1 to get Z′
1 ∈ R(c′·m×m1)×h×w, the

intermediate feature map Z′ ∈ R(c′·m)×h×w is obtained by linearly combining feature channels
within the corresponding input channel via coefficients β,

Z′ = β × Z′
1.

Each feature channel Z
′i is calculated by Z

′i =
∑m1

j=1 β
i,jZ

′i,j
1 , where βi,j is one element in β,

and Z
′i,j
1 ∈ Rh×w is one feature channel in Z′

1. This phase exclusively blends the feature channels
within the same input channel, avoiding any mixing across different channels. The whole process
is illustrated in Figure 3 (b). To adapt the model to downstream tasks, we fine-tune both β and D1,
which contain more tunable parameters than D.

This method can be readily adapted to 1 × 1 convolutional and linear layers as well. We start by

applying Kronecker decomposition on a linear layer W = A ⊗ B, where A ∈ R
c′
k′
c
× c

kc , B ∈
Rk′

c×kc , W ∈ Rc′×c, ⊗ is the Kronecker product. This approach has been explored by recent
literature on fine-tuning (Edalati et al., 2022; YEH et al., 2023). The idea is to represent a matrix
as multiple blocks, where each block comes from the same basis B but varied by different constant
Aij . We then introduce mc pairs of A and B to reconstruct W, W =

∑mc

i=1 Ai ⊗ Bi, such that
each block in W is represented as a linear combination of all Bi.

3.3 DECOMPOSITION OF LINEAR LAYERS

2As the size of filters is k×k, m = k2 independent filter atoms is complete since every filter can be linearly
combined by these filter atoms. As the number of filter atoms is larger than k2, it becomes overcomplete.
Overcompleteness can potentially bring a more stable fine-tuning, and in our case, expand the number of
parameters for adapting to downstream tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

⨂

𝑾 ∈ ℝ!!×!

𝑨 ∈ ℝ
!!
#"!
×!#

𝑨

𝑩 ∈ ℝ#"!×#"

𝑩

⨂𝑨 𝑩

…

⨂𝑨 𝑩

𝜶𝒄 𝑫𝒄×

𝜶𝒄 ∈ ℝ
!!
#"!
×!#×%"

𝑫𝒄 ∈ ℝ%×#"
!×#"

𝜶𝒄 = 𝑨𝒊 '()
%" 𝑫𝒄 = 𝑩𝒊 '()

%"

Figure 4: Formulate the linear layer W as a com-
bination of atoms, W = αc ×Dc.

We re-write the above formulation as the no-
tation with coefficients and atoms such that
αc = {Ai}mc

i=1 and Dc = {Bi}mc
i=1. There-

fore, W is constructed from mc atoms in Dc ∈
Rmc×k′

c×kc by the combination using coeffi-

cients αc ∈ R
c′
k′
c
× c

kc
×mc , which is, W =

αc × Dc. This formulation is mathematically
equal to the decomposition filters as filter atoms
and atom coefficients. Similarly, the 1× 1 con-
volutional layer Fc ∈ Rc′×c×1×1 can be for-
mulated as αc and Dc with the same process,

Fc = αc ×Dc. (3)

The procedure of formulating linear layers as coefficients and atoms is illustrated in Figure 4. During
the model tuning, αc is obtained from the pre-trained model and remains unchanged, while only
filter atoms Dc adapt to the target task.

3.4 PARAMETER EFFICIENT FINE-TUNING

Building on our filter subspace formulation, we investigate various parameter-efficient fine-tuning
strategies for tuning the pre-trained model. For convolutional filters F , we directly use sparse coding
(1) to decompose them as atom coefficients and filter atoms α × D. For linear layers or 1 × 1
convolution layers, we first formulate them as Fc (3), and then decompose them as coefficients αc

and atoms Dc using (1). For fine-tuning the models, we only adapt D or Dc, while keeping α or αc

fixed. When more parameters are needed, we represent D as β and D1 to incorporate overcomplete
filter atoms. We initialize D1 by simply repeating each filter atom in D for m1 times and initialize
every element in β with the value 1/m1. This enables us to fine-tune both β and D1.

In this study, we investigate three strategies that offer a range of tunable parameters from a small set
to a slightly larger number: fine-tuning (1) only D, (2) D and Dc, and (3) β, D1 and Dc. Down-
stream tasks are modeled by their updates ∆D, ∆β, ∆D1 and ∆Dc. In the Appendix A.2.1, we
present an analysis of the decomposition complexity and a comparison of the number of parameters
with baseline methods.

4 EXPERIMENTS

In this section, we begin with studying the effectiveness of our method across various configura-
tions to determine the most suitable application scenario for each configuration. Subsequently, we
demonstrate that fine-tuning only filter atoms requires far fewer parameters while preserving the
capacity of pre-trained models, compared with baseline methods in the contexts of discriminative
and generative tasks.

4.1 EXPERIMENTAL SETTINGS

Datasets. Our experimental evaluations are mainly conducted on the Visual Task Adaptation
Benchmark (VTAB) (Zhai et al., 2019), which contains 19 distinct visual recognition tasks sourced
from 16 datasets. As a subset of VTAB, VTAB-1k comprises a mere 1, 000 labeled training exam-
ples in each dataset.

Models. For the validation experiment, we choose ResNet50 (He et al., 2016) pre-trained on
ImageNet-1K. For discriminative tasks, we choose the convolution-based model, ConvNeXt-B (Liu
et al., 2022) pre-trained on ImageNet-21K as the initialization for fine-tuning. For generative tasks,
we choose Stable Diffusion (Rombach et al., 2022) which contains a downsampling-factor 8 au-
toencoder with an 860M UNet and CLIP ViT-L/14 as text encoder for the diffusion model. The
model is pre-trained on the LAION dataset (Schuhmann et al., 2022), which contains over 5 billion
image-text pairs. More details of pre-trained models are listed in the Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison among different configurations of our method.
Fine-tune D

Linear Probe LoRA Full Finetuning m = 6 m = 9 m = 12

Accuracy ↑ 55.4 78.6 83.3 66.25 66.86 68.68
Param. (M) ↓ 0.2 2 25.6 0.21 0.21 0.21

Fine-tune β and D1 Fine-tune D and Dc FT β, D1 and Dc

m1 = 3 m1 = 4 m1 = 5 kc = 2 kc = 4 m1 = 4, kc = 4

Accuracy ↑ 78.69 78.7 78.9 75.03 79.83 81.8
Param. (M) ↓ 0.82 1 1.2 0.23 0.62 2.1

4.2 VALIDATION EXPERIMENTS

In this section, we study the performance of our approach across various configurations.

Implementation details. We employ ResNet50 (He et al., 2016) pre-trained on ImageNet-
1K (Russakovsky et al., 2015) and fine-tune it on CIFAR-100 (Krizhevsky & Hinton, 2009) for
50 epochs. We utilize the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 and a
weight decay of 1× 10−4 and a batch size of 256.

We compare different configures of our methods with the following experimental settings and α,
αc are always fixed: (1) When fine-tuning D, we experiment with different numbers of filter atoms
m in the range of [6, 9, 12]. (2) When fine-tuning D and Dc, we choose (k′c, kc) ∈ {(2, 2), (4, 4)},
and the number of filter atoms is m = 9. (3) When fine-tuning D1 and β, we choose m = 9, and
m1 in the range of [3, 4, 5]. (4) When fine-tuning Dc, D1 and β, we choose m = 9, m1 = 3 and
(k′c, kc) = (2, 2).

The effectiveness of filter subspace. The results of all configurations are displayed in Table 1,
with m = 9 as an example, and m = 6, 12 are detailed in the Appendix C. (1) While fine-tuning D
with fixed α, our approach requires a negligible increase in the number of parameters, amounting
to only 0.5% additional parameters, but it achieves an almost 20% improvement in accuracy when
compared to linear probing. (2) Fine-tuning β and D1 further improves accuracy from 66.8% to
78.7% compared to fine-tuning D alone. It validates that overcomplete filter atoms provide more
capacities for model tuning. (3) Fine-tuning D and Dc results in significant improvements com-
pared to fine-tuning D alone. For example, with kc = 2, fine-tuning 0.02M additional parameters
improves accuracy from 66.86% to 75.03%. (4) Fine-tuning Dc, D1, and β achieves the highest
accuracy but it also requires the greatest number of parameters among all of our configurations.

Discussion. Fine-tuning the filter atoms D or atoms Dc enhances accuracy while keeping the
parameter increase minimal, making it highly appropriate for scenarios where the number of pa-
rameters is a critical consideration. However, increasing the number of atoms does not easily yield
further accuracy improvements. To achieve additional accuracy gains, incorporating the set of over-
complete filter atoms D1 and their coefficients β can be effective, but at the cost of an increase in
parameters.

4.3 GENERATIVE TASKS

Baselines. We compare our method to 8 baseline fine-tuning approaches: (i) Full fine-tuning,
which entails updating all model parameters during the fine-tuning process; (ii) LoRA (Hu et al.,
2021), involving the introduction of a low-rank structure of accumulated gradient update by decom-
posing it as up-projection and down-projection. (iii) LoHa (YEH et al., 2023) utilizes the Hadamard
product across two sets of low-rank decompositions to elevate the rank of the resultant matrix and
reduce the approximation error. (iv) LoKr (YEH et al., 2023) introduces the Kronecker product for
matrix decomposition to reduce the tunable parameters. (v) BitFit (Zaken et al., 2022) fine-tunes the
bias term of each layer. (vi) DiffFit (Xie et al., 2023) fine-tunes the bias term, as well as the layer
norm and the scale factor of each layer. (vii) OFT and COFT (Qiu et al., 2023) adapts the diagonal
blocks of weight matrices to achieve orthogonal fine-tuning.

Implementation details. We fine-tune Stable Diffusion using the AdamW optimizer (Loshchilov
& Hutter, 2018) with a learning rate of 5 × 10−6 for full parameter fine-tuning, and 1 × 10−3

for all other parameter-efficient fine-tuning methods. For few-shot learning, we adopt 30 different
customized concepts from Dreambooth (Ruiz et al., 2023) and fine-tune the model on 4 ∼ 9 images.
We utilize 25 different text prompts following (Qiu et al., 2023; Ruiz et al., 2023) and generate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Input Images (b) No Fine-tuning (c) BitFit (d) Ours, D only

(e) LoRA (f) LoHa (g) Full Fine-tuning (h) Ours, D and α

Figure 5: Fine-tune Stable Diffusion (Rombach et al., 2022) to learn the concept ⟨castle⟩ from (a)
and generate images using text prompt: “A peacock in front of the ⟨castle⟩”. (b) Images generated by
the pre-trained model, without any fine-tuning, align well with the text prompt but fail to match the
target concept. (d) When only fine-tuning the filter atoms D, our approach achieves good alignment
with the text prompt and the target concept. (h) However, fine-tuning the spatially-invariant channel
weights, i.e., atom coefficients α, results in generated images only align with the target concept,
compromising the capability of the pre-trained model of producing diverse images that align with
the text prompt. This issue is also observed in (e-g).

Table 2: Evaluate different approaches in learning the customized concept.

Pre-trained Full FT LoRA LoHa LoKr OFT COFT DiffFit BitFit C1 C2 C3 C4

Fidelity ↑ 0.144 0.711 0.697 0.693 0.693 0.656 0.652 0.622 0.571 0.594 0.652 0.707 0.716
Diversity ↑ 42.88 4.01 4.84 3.96 5.14 5.86 5.92 7.22 10.08 20.42 9.37 6.92 3.17

T2I Alignment ↑ 0.332 0.234 0.232 0.216 0.238 0.267 0.264 0.268 0.277 0.301 0.279 0.236 0.201

Param. (M) ↓ - 860 22.67 8.47 1.06 11.75 11.75 0.58 0.34 0.05 0.75 2.39 587

images with a shape of 512 × 512 for each concept using these prompts. We follow the method in
YEH et al. (2023) and fine-tune the model for 1000 steps, and evaluate the fidelity, diversity, and
text-to-image alignment of generated images.

We assess the fidelity as the average cosine similarity between DINOv2 embeddings (Oquab et al.,
2023) of the generated and dataset images. The diversity of generated images is measured by the
Vendi score (Friedman & Dieng, 2022) calculated with the DINOv2 embeddings. The alignment
between generated images and corresponding prompts is measured via average cosine similarity in
the CLIP feature space (Radford et al., 2021).

For the VTAB dataset, we fine-tune β, D1, and Dc of the model for 5000 steps with the image shape
of 256 × 256 and utilize Frechet Inception Distance (FID) (Heusel et al., 2017) as a quantitative
metric for evaluation. To calculate FID, we generate 20,000 images from each checkpoint and
compare them with images from the corresponding dataset. In cases where the dataset contains more
than 20,000 images, we sample 20,000 images for comparison. See the Appendix A for details of
experimental settings.

Few-shot generative transfer learning. We report the evaluation of all methods in Table 2. Our
method with different configurations is denoted as C1 − C4. (1) C1 and C2 represent fine-tuning
D and Dc of the model with (m, kc) ∈ {(6, 4), (9, 16)}. (2) C3 fine-tunes β, D1 and Dc, with
(m, kc,m1) = (9, 16, 3). (3) C4 is similar to C2 but it fine-tunes α together with D and Dc.

Compared with other baseline methods, our method with configuration C1 − C3 generate diverse
images that are well-aligned with the text prompt. It means they preserve the capability of the pre-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: FIDs (lower the better) of image generation models on VTAB benchmark with Stable
Diffusion pre-trained on LAION.

Natural Specialized Structured

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

Pa
tc

h
C

am
el

yo
n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr

D
M

L
ab

K
IT

T
I

dS
pr

ite
s

Sm
al

lN
O

R
B

M
ea

n

Pa
ra

m
s.

(M
)

No fine-tuning 52.0 113.3 74.5 45.5 117.1 212.2 28.8 258.8 186.2 144.2 307.7 271.3 225.0 288.5 373.9 266.7 179.1 -

Full fine-tuning 39.0 33.8 46 42.9 32.6 93.2 17.0 107.6 144.5 54.3 69.0 25.8 30.3 92.9 75.8 75.6 61.3 860

LoRA (Hu et al., 2021) 36.8 42.4 40.6 45.3 30.8 120.9 17.7 101.2 81.9 61.6 69.5 33.6 32.1 64.4 69.4 71.6 57.5 22.67
LoHa (YEH et al., 2023) 33.8 40.5 41.6 41.5 33 140.9 17.3 111.4 73.7 60.4 66.5 32.1 37.9 64.5 73.3 65.7 58.4 33.86
LoKr (YEH et al., 2023) 37.7 43.5 43.2 50.6 41.1 144.2 21.4 95.4 70.5 65.5 79.3 33.9 44.8 64.1 79.4 74.4 61.8 2.12

Ours 38.6 32.4 43.9 38.5 30.6 96.8 17.2 109.7 64.1 62.4 60.6 18.7 41.9 69.5 73.2 76.5 54.7 1.11

trained model while learning the new concept. However, C4 fine-tunes the atom coefficients α,
resulting in the model overfitting to the target concept, which is reflected in a notably high fidelity
score, while compromising the model’s ability to generate images aligned with the text prompt.
This observation suggests that maintaining the spatially invariant channel weights α helps prevent
overfitting when fine-tuning pre-trained models to downstream tasks. Figure 1 illustrates visual
examples of learning the concept ”castle” from CustomConcept101 dataset (Kumari et al., 2023).

Methods like LoRA (Hu et al., 2021) or full fine-tuning potentially update these α, thus, they lead
to lower diversity and text-to-image alignment in generated images. In contrast, BitFit (Zaken et al.,
2022) and DiffFit (Xie et al., 2023) mostly fine-tune the bias, leaving α fixed, thus, they have
a higher diversity and text-to-image alignment than LoRA. However, they also keep the spatial
operation D unchanged, resulting in a lower fidelity score compared with C2. More results can be
found in Appendix C.

Performance comparisons on generative transfer learning. We report FIDs of models trained
and evaluated on VTAB tasks in Table 3. In contrast to full parameter fine-tuning and LoRA, our ap-
proach attains the lowest FID scores (54.7 v.s. 57.5) while employing the least number of fine-tuning
parameters (1.11M v.s. 22.67M). Despite fine-tuning only 0.13% of the total model parameters, our
method effectively tailors pre-trained Stable Diffusion to align it with the desired target distribution.

4.4 DISCRIMINATIVE TASKS

In this section, we apply our method to the discriminative task, namely the classification on VTAB-
1k (Zhai et al., 2019). We compare our method to 4 baseline fine-tuning approaches: (i) Full fine-
tuning, (ii) Linear probing, (iii) BitFit (Zaken et al., 2022), and (iv) LoRA (Hu et al., 2021).

Implementation details. Images are resized to 224 × 224, following the default settings in
VTAB (Zhai et al., 2019). We employ the AdamW (Loshchilov & Hutter, 2018) optimizer to fine-
tune models for 100 epochs. The cosine decay strategy is adopted for the learning rate schedule,
and the linear warm-up is used in the first 10 epochs. In this experiment, we fine-tune D and Dc

while keeping α and αc fixed, as this configuration delivers adequate accuracy without increasing
parameters.

Performance comparisons on few-shot transfer learning. We compare the performance of our
approach and other baseline methods, and the results on VTAB-1k are shown in Table 4. In these
tables, the bold font shows the best accuracy of all methods and the underlined font shows the sec-
ond best accuracy. Our method outperforms other parameter-efficient fine-tuning methods and even
outperforms full fine-tuning. Specifically, our method obtains 6% improvement in accuracy com-
pared to LoRA on the VTAB-1k benchmark while utilizing significantly fewer trainable parameters
(0.45M v.s. 17.4M). The Appendix C also includes the experimental results for ViT-B/16.

5 RELATED WORKS

Pre-training and Fine-tuning. The standard practice of pre-training and fine-tuning (He et al.,
2016; Huang et al., 2017; Tan & Le, 2019; Xie et al., 2017) entails models initially undergoing
pre-training on datasets such as ImageNet-21K, BookCorpus, and Common Crawl (Russakovsky
et al., 2015; Raffel et al., 2020; Zhu et al., 2015). Subsequently, these models are fine-tuned
to enhance their convergence and performance on specific tasks (He et al., 2019). In the realm

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Performance comparisons on the VTAB-1k benchmark with ConvNeXt models pre-trained
on ImageNet-21K.

Natural Specialized Structured

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

Pa
tc

h
C

am
el

yo
n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
/c

ou
nt

C
le

vr
/d

is
ta

nc
e

D
M

L
ab

K
IT

T
I

dS
pr

ite
s/

lo
c

dS
pr

ite
s/

or
i

Sm
al

lN
O

R
B

/a
zi

Sm
al

lN
O

R
B

/e
le

M
ea

n

Pa
ra

m
s.

(M
)

Full fine-tuning 94.9 64.2 73.6 99.5 90.8 89.6 37.7 86.6 85.1 85.9 73.6 73.3 61.3 52.1 83.1 86.8 61.1 32.7 38.8 72.14 87.67
Linear Probing 92.3 65.8 76.8 99.3 92.7 50.5 55.8 84.0 92.7 82.5 74.7 46.1 38.5 41.1 66.3 24.2 35.4 18.4 26.0 61.21 0.11

BitFit (Zaken et al., 2022) 94.5 71.6 76.7 99.4 93.0 85.7 57.2 86.4 94.0 86.4 74.3 67.8 57.2 49.8 80.5 77.7 59.1 30.4 22.0 71.77 0.24
LoRA (Hu et al., 2021) 94.3 51.7 61.4 88.1 69.8 91.2 38.1 74.5 91.9 81.4 73.6 60.8 62 50.3 80.1 96.3 56.3 39.3 21.9 67.53 17.4

Ours 94.8 71.7 76.9 99.6 93.1 87.1 57.5 85.1 94.6 87.6 74.8 70.9 62.8 50.3 82.7 89.4 60.4 31.2 29 73.59 0.45

of parameter-efficient fine-tuning (Zhou et al., 2022), various approaches have been proposed.
LoRA (Hu et al., 2021) fine-tunes lower-rank matrices at each layer to represent weight updates.
The adapter (Houlsby et al., 2019) approach inserts small modules between layers and reduces pa-
rameters by only tuning these adapters (Chen et al., 2022; Karimi Mahabadi et al., 2021; Li & Liang,
2021; Zaken et al., 2022). Visual prompt tuning (VPT) (Jia et al., 2022; Sohn et al., 2023) has intro-
duced a limited number of learnable parameters for optimization while keeping the backbone frozen.
SSF (Lian et al., 2022) proposes scaling and shifting deep features extracted by a pre-trained model.

Model Architectures. Compared with transformer-based models (Dosovitskiy et al., 2020; Liu
et al., 2021; Touvron et al., 2021; Yu et al., 2022), convolution has been used for a long time as
the main module to extract the image features in computer vision tasks. With an inductive prior,
convolution-based models require fewer training images and computation resources to achieve good
generalization. Convolution-based architectures have been largely studied (He et al., 2016; Liu
et al., 2022; Simonyan & Zisserman, 2015) and have found multiple applications, such as feature
extracting (Razavi et al., 2019), image generation (Karras et al., 2020; Song et al., 2021), super-
resoluton (Wang et al., 2020), and et cetera. Numerous studies explore the integration of convolu-
tional techniques with vision transformers to enhance their performance (Guo et al., 2022; Raghu
et al., 2021). Parameter-efficient fine-tuning in downstream tasks is crucial and requires further
examinations when utilizing pre-trained large-scale convolution-based models.

Discriminative and Generative Tasks. Discriminative and generative tasks are fundamental in
machine learning. Discriminative models (Hao et al., 2020; He et al., 2016; Padilla et al., 2020;
Zou et al., 2023) are designed to distinguish between various data instances, while generative mod-
els (Karras et al., 2020; Razavi et al., 2019; Song et al., 2021; Wang et al., 2020) are employed to
create new data instances. Discriminative models have been applied to image classifications (He
et al., 2016; Liu et al., 2022; Simonyan & Zisserman, 2015), object detection (Padilla et al., 2020;
Zou et al., 2023), and semantic segmentation (Hao et al., 2020). Generative models have been exten-
sively studied for image synthesis, including variational autoencoder (Kingma et al., 2021; Razavi
et al., 2019; Vahdat & Kautz, 2020; Van Den Oord et al., 2017), diffusion (Dhariwal & Nichol, 2021;
Rombach et al., 2022; Song et al., 2021), and autoregressive models (Parmar et al., 2018; Van den
Oord et al., 2016; Van Den Oord et al., 2016). In this study, our primary focus is on implementing
parameter-efficient fine-tuning techniques for two tasks: image classification using ConvNeXt (Liu
et al., 2022) and image synthesis employing Stable Diffusion (Rombach et al., 2022).

6 CONCLUSION

In this work, we proposed the parameter-efficient fine-tuning method for large convolutional models
by formulating the convolutional layers over the filter subspace. Fine-tuning filter atoms composed
of a small number of parameters and keeping the atom coefficients unchanged, is notably efficient in
terms of parameters. It successfully maintains the capabilities of pre-trained models while avoiding
overfitting to downstream tasks. We then formulate a simple yet effective way to achieve an over-
complete filter subspace by decomposing each filter atom over another set of filter atoms, thereby
expanding the parameter space available for fine-tuning as needed. Our approach has demonstrated
effectiveness in different configurations on both discriminate and generative tasks.

Limitations. Our method, which concentrates on tuning models within the filter subspace, is par-
ticularly advantageous for ConvNets. While it can be naturally extended to linear layers through
appropriate mathematical formulations, the full potential of our approach when applied to linear
layers remains under-explored.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, pp. 183–202, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 2020.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

An Evgeniou and Massimiliano Pontil. Multi-task feature learning. Advances in neural information
processing systems, 2007.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
learning. arXiv preprint arXiv:2210.02410, 2022.

Jacob Gildenblat and contributors. Pytorch library for cam methods. https://github.com/
jacobgil/pytorch-grad-cam, 2021.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022.

Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic segmentation with deep
learning. Neurocomputing, pp. 302–321, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, 2022.

11

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI conference on artificial intelligence, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 2021.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020.

Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of the recent
architectures of deep convolutional neural networks. Artificial intelligence review, 2020.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. PhD
thesis, University of Toronto, 2009.

Abhishek Kumar and Hal Daume III. Learning task grouping and overlap in multi-task learning.
International Conference on Machine Learning, 2012.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the Association for Computational Linguistics, 2021.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2019.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in Neural Information Processing Systems,
2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on signal processing, pp. 3397–3415, 1993.

Andreas Maurer, Massi Pontil, and Bernardino Romera-Paredes. Sparse coding for multitask and
transfer learning. In International conference on machine learning, 2013.

Zichen Miao, Ze Wang, Wei Chen, and Qiang Qiu. Continual learning with filter atom swapping. In
International Conference on Learning Representations, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Rafael Padilla, Sergio L Netto, and Eduardo AB Da Silva. A survey on performance metrics for
object-detection algorithms. In 2020 international conference on systems, signals and image
processing (IWSSIP), 2020.

Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via
convolutional sparse coding. The Journal of Machine Learning Research, 18:2887–2938, 2017.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, 2018.

Qiang Qiu, Xiuyuan Cheng, Guillermo Sapiro, and Robert Calderbank. DCFNet: Deep neural net-
work with decomposed convolutional filters. In International Conference on Machine Learning,
2018.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 2020.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 2021.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2022.

Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massimiliano Pontil. Mul-
tilinear multitask learning. In International Conference on Machine Learning, 2013.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. NIPS Deep
Learning Symposium, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fadil Santosa and William W Symes. Linear inversion of band-limited reflection seismograms.
SIAM journal on scientific and statistical computing, pp. 1307–1330, 1986.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 2022.

Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. Partial is better than
all: revisiting fine-tuning strategy for few-shot learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
Lu Jiang. Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. Advances in Neural Information Processing Systems, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 2016.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Cub-200-2011. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011.

Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2020.

Enze Xie, Lewei Yao, Han Shi, Zhili Liu, Daquan Zhou, Zhaoqiang Liu, Jiawei Li, and Zhenguo
Li. Difffit: Unlocking transferability of large diffusion models via simple parameter-efficient
fine-tuning. arXiv preprint arXiv:2304.06648, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017.

SHIH-YING YEH, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin
Gong. Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In
International Conference on Learning Representations, 2023.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust con-
tinual learning with additive parameter decomposition. In International Conference on Learning
Representations, 2019.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, 2022.

Mengyao Zhai, Lei Chen, and Greg Mori. Hyper-lifelonggan: Scalable lifelong learning for image
conditioned generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 2022.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, 2015.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20
years: A survey. Proceedings of the IEEE, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Information of VTAB dataset.

Dataset classes train val test all

Caltech-101 102 2754 306 6084 9144
CIFAR-100 100 45000 5000 10000 60000
Clevr (object distance) 6 63000 7000 15000 85000
Clevr (count) 8 63000 7000 15000 85000
Diabetic Retinopathy 5 35126 10906 42670 88702
DMLab 6 65550 22628 22735 110913
Dsprites (x position) 16 589824 73728 73728 737280
Dsprites (orientation) 16 589824 73728 73728 737280
DTD 47 1880 1880 1880 5640
EuroSAT 10 16200 5400 5400 27000
Flowers102 102 1020 1020 6149 8189
Kitti 4 6347 423 711 7481
Patch Camelyon 2 262144 32768 32768 327680
Pet 37 2944 736 3669 7349
Resisc45 45 18900 6300 6300 31500
Smallnorb (azimuth) 18 24300 12150 12150 48600
Smallnorb (elevation) 9 24300 12150 12150 48600
SUN397 397 76128 10875 21750 108753
SVHN 10 65931 7326 26032 99289

A DETAILS OF EXPERIMENTS

A.1 DETAILS OF DATASETS

VTAB Dataset. VTAB dataset is uniquely challenging and well-suited for the evaluation of
parameter-efficient tuning methods in the context of few-shot knowledge transfer. VTAB-1k encom-
passes a diverse range of image domains, including natural, structured, and specialized categories
such as medical or satellite imagery. The tasks span various objectives, comprising object and scene
recognition, distance classification, and counting. Consequently, VTAB-1k emerges as a highly
valuable resource catering to the needs of both discriminative and generative transfer learning tasks.

In Table 5, we provide information on 19 tasks of the VTAB dataset, including the number of classes
and the number of images in each data split of VTAB. Images in the VTAB benchmark encompass
three distinct domains: (1) Natural images captured using standard cameras, (2) Specialized images
captured using non-standard cameras like those in remote sensing and medical applications, and
(3) Structured images generated through simulation environments. VTAB-1k is a subset of VTAB.
It contains only 1000 training and validation samples, which are designed for few-shot transfer
learning.

Dreambooth Dataset. The DreamBooth dataset Ruiz et al. (2023) focuses on fine-tuning large
pre-trained text-to-image diffusion models for personalized subject-driven image generation. This
dataset supports the development and evaluation of methods, which enable the generation of novel,
photorealistic images of a specific subject in diverse contexts based on a few reference images.

A.2 EXPERIMENTAL SETTINGS

Baseline Methods We compare our method to 7 PEFT approaches: (i) LoRA (Hu et al., 2021),
involving the introduction of a low-rank structure of accumulated gradient update by decomposing it
as up-projection and down-projection 3. (ii) LoHa (YEH et al., 2023) utilizes the Hadamard product
across two sets of low-rank decompositions to elevate the rank of the resultant matrix and reduce
the approximation error. (iii) LoKr (YEH et al., 2023) introduces the Kronecker product for matrix
decomposition to reduce the tunable parameters 4. (iv) BitFit (Zaken et al., 2022) fine-tunes the bias

3LoRA implementation: https://github.com/microsoft/LoRA
4LoHa and LoKr implementation: https://github.com/KohakuBlueleaf/LyCORIS

16

https://github.com/microsoft/LoRA
https://github.com/KohakuBlueleaf/LyCORIS

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

term of each layer. (v) DiffFit (Xie et al., 2023) fine-tunes the bias term, as well as the layer norm
and the scale factor of each layer 5. (vi) OFT and COFT (Qiu et al., 2023) adapts the diagonal blocks
of weight matrices to achieve orthogonal fine-tuning 6.

A.2.1 GENERATIVE TASKS

Stable diffusion checkpoints. The pre-trained checkpoint we choose for Stable Diffusion
is stable-diffusion-v1-4, which can be found at https://huggingface.co/CompVis/
stable-diffusion.

Text prompts for the few-shot generative task. We adapt the text prompts from YEH et al.
(2023) to generate images for Figure 5. Additionally, we use text prompts from Dreambooth (Ruiz
et al., 2023) to generate the images and get evaluation results in Table 2.

Text prompts for the full generative task. We use specific text prompts to train the Stable Diffu-
sion or generate the images. We list the example prompts for each dataset as follows:

• Caltech-101: This is a picture of accordion.

• CIFAR-100: This is a picture of apple.

• Clevr: This is a picture from CLEVR dataset.

• Diabetic Retinopathy: This is a retina image with no diabetic retinopathy.

• DMLab: This is a picture from DMLab dataset.

• Dsprites: This is a picture from dSprites dataset.

• DTD: This is a picture of banded texture.

• EuroSAT: This is a satellite picture of annual crop.

• Flowers102: This is a picture of pink primrose.

• Kitti: This is a picture from KITTI dataset.

• Patch Camelyon: This is a histopathologic scans without tumor.

• Pet: This is a picture of Abyssinian cat.

• Resisc45: This is a remote sensing picture of airplane.

• Smallnorb: This is a picture from SmallNORB dataset.

• SUN397: This is a picture of abbey.

• SVHN: This is a picture of street view house number 0.

B ADDITIONAL ANALYSIS

Computational Time. The decomposition process using the ISTA algorithm for convolutional
atoms and atom coefficients takes about 1 second for each layer and 20 seconds for the whole
model, with the code implemented on a GPU. This time is negligible compared to the training
duration, which is approximately 60 minutes.

Additionally, we only need to perform sparse coding once for each pre-trained model. The decom-
posed coefficients can then be reused across all fine-tuning tasks, further reducing the computational
cost.

5DiffFit and BitFit implementation: https://github.com/mkshing/DiffFit-pytorch
6OFT and COFT implementation from PEFT library https://github.com/huggingface/peft

17

https://huggingface.co/CompVis/stable-diffusion
https://huggingface.co/CompVis/stable-diffusion
https://github.com/mkshing/DiffFit-pytorch
https://github.com/huggingface/peft

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Number of parameters of different PEFT methods.

Conv. Param. Attn. Param.

Original c′ckk 3, 686, 400 4c2 1, 638, 400
LoRA c′kr + ckr 30, 720 8cr 40, 960
LoHa 2c′kr + 2ckr 61, 440 16cr 81, 920
Lokr c′k + ck + r2 3, 904 8c+ 4r2 5, 378
OFT c′ckk/r 460, 800 4c2/r + 4c 207, 360

Ours (D or Dc) mk2 81 4mk2c 576
Ours (+β) mm1k

2 + c′mm1 17, 523 4mk2c 576

Computational Cost. We estimate the computation cost in terms of FLOPs for solving the sparse
coding problem: min 1

2 ||W − αD||22 + λ||α||1, where we aim to obtain atom coefficients α and
atoms D from the pre-trained weights W. Here α ∈ Rc′c/k2×m, D ∈ Rm×k2

, W ∈ Rc′×c, c′
and c are the numbers of input and output channels, k is the kernel size, m is the number of filter
atoms. Suppose ISTA requires K iterations, the FLOPs required for this algorithm is K(4c′cm +
c′c+ 6mk2).

In comparison, given the input data X ∈ RB×c′ with batch size B, the FLOPs required for one linear
layer Z = WX + b, where W ∈ Rc′×c is 6Bc′c + 4Bc + c′c + c which includes 2Bc′c + 2Bc
(forward pass), 4Bc′c+Bbc (backward pass) and c′c+ c (update parameters).

Suppose we have c′ = c = 512, k = 4, B = 64, m = 9, with one iteration the computational cost of
the decomposition is approximately 9.7 MFLOPs, while the computational cost of one linear layer
is 101 MFLOPs.

Number of Parameters. We estimate the parameter numbers of different PEFT methods by con-
sidering two types of layers as examples: convolutional layers with dimensions (c′, c, k, k), and at-
tention layers with parameters Wq , Wk, Wv , Wo, which have dimensions (c, c). Table 6 lists the
PEFT fine-tuning methods along with their corresponding parameter counts. Suppose c′ = c = 640,
k = 3, the hyper-parameter for other approach is r = 8, the hyper-parameters for our method are
kc = 4,m = 9,m1 = 3.

In Table 6, “Ours (D or Dc)” refers to our method with tuning filter atoms D and atoms in the linear
layer Dc, while “Ours (+β)” indicates that, in addition to tuning filter atoms, we also incorporate
overcomplete filter atoms and their coefficients β. Compared to other approaches, our method
requires the least number of parameters. To determine the parameter counts reported in the paper,
we enumerate all the model parameters and sum those that require gradients.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 VALIDATION EXPERIMENTS

We compare different configures of our methods with the following experimental settings and α,
αc are always fixed: (1) When fine-tuning D, we experiment with different numbers of filter atoms
m in the range of [6, 9, 12]. (2) When fine-tuning D and Dc, we choose (k′c, kc) ∈ {(2, 2), (4, 4)},
and the number of filter atoms is m = 9. (3) When fine-tuning D1 and β, we choose m = 9, and
m1 in the range of [3, 4, 5]. (4) When fine-tuning Dc, D1 and β, we choose m = 9, m1 = 3 and
(k′c, kc) = (2, 2). We provide additional experiments with m = 6, 12 in Figure 6. As we increase
m from 6 to 12, the accuracy improves from 66.86% to 68.68%.

C.2 ADDITIONAL EXPERIMENTS OF DISCRIMINATIVE TASKS

Full Dataset Fine-tuning. For CIFAR-100 and ImageNet-1K, we follow the fine-tuning setting
of ConvNeXt in (Lian et al., 2022). We employ the AdamW (Loshchilov & Hutter, 2018) optimizer
to fine-tune models for 100 epochs for CIFAR-100, and 30 epochs for ImageNet-1K. The cosine

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Param. (M)

50

60

70

80

Ac
c.

Linear probe

m1 = 0

m1 = 3m1 = 4 m1 = 5 m1 = 6 LoRA

(a) m = 6

0.0 0.5 1.0 1.5 2.0
Param. (M)

50

60

70

80

Ac
c.

Linear probe

m1 = 0

m1 = 3 m1 = 4
m1 = 5

m1 = 6 LoRA

(b) m = 12

Figure 6: The relations between accuracy and number of fine-tuning parameters, with different
numbers of filter atoms (m = 6 and m = 12).

Table 7: Performance comparisons on the VTAB-1k benchmark with ConvNeXT models pre-trained
on ImageNet-21K.

CIFAR-100 Params. (M) ImageNet-1k Params. (M)

Full Fine-tuning 94.1 87.7 85.8 88.9
Linear Probe 88.6 0.1 84.7 1.0

LoRA (Hu et al., 2021) 89.2 20.1 84.8 21.0

Ours 91.8 0.3 84.9 1.2

decay strategy is adopted for the learning rate schedule, and the linear warm-up is used in the first
10 epochs for CIFAR-100 and 5 epochs for ImageNet-1K.

We compare the performance of our approach with other baseline methods, and the results on
CIFAR-100 and ImageNet-1K are shown in Table 7. With full dataset fine-tuning, the full fine-
tuning achieves the highest accuracy, outperforming the parameter-efficient fine-tuning methods.
One possible reason is both datasets have sufficient data to prevent over-fitting of the model. Our
method achieves a higher accuracy than LoRA while requiring only a small number of parameters
(1.2M v.s. 21M). In contrast, in the VTAB-1k benchmark, the amount of data is not very large (e.g.,
only 1,000 training images), which might cause over-fitting of the model for the full fine-tuning.

Few-shot Results of ViT. We also present the results of ViT in the Table 8. Compared to SSF (Lian
et al., 2022), FacT (Jie & Deng, 2023), and Adapter (Houlsby et al., 2019), our method achieves
higher average accuracy while keeping the number of tuned parameters minimal.

C.3 RESULTS OF FEW-SHOT GENERATIVE TASKS

We provide more experimental results of few-shot generative learning learned on concepts “castle”
and “canal” in Table. 9 and 10. In this experiment, we also include LoRA, LoHa, and LoKr with
different configurations.

The generated images of different fine-tuning methods are shown in Figure 7 and 8.

Table 8: Performance comparisons on the VTAB-1k benchmark with ViT-B/16 models pre-trained
on ImageNet-21K.

Natural Specialized Structured

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

Pa
tc

h
C

am
el

yo
n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
/c

ou
nt

C
le

vr
/d

is
ta

nc
e

D
M

L
ab

K
IT

T
I

dS
pr

ite
s/

lo
c

dS
pr

ite
s/

or
i

Sm
al

lN
O

R
B

/a
zi

Sm
al

lN
O

R
B

/e
le

M
ea

n

Pa
ra

m
s.

(M
)

Full fine-tuning 87.7 68.9 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.57 85.84
Linear probing 85.0 63.4 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 52.94 0.04

Adapter (Houlsby et al., 2019) 86.1 74.1 63.2 97.7 87.0 34.6 50.8 76.3 88.0 73.1 70.5 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 55.82 0.27
FacT (Jie & Deng, 2023) 90.6 70.6 70.8 99.1 90.7 88.6 54.1 84.8 86.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 73.23 0.11
SSF (Lian et al., 2022) 92.6 69.0 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 73.1 0.24

Ours 96.3 70.5 74.4 99.4 92.1 90.4 52.7 85.9 96.0 88.6 75.8 77.4 62.2 53.0 82.6 78.1 55.1 31.7 35.9 73.77 0.22

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Full Fine-tuning (b) LoRA

(c) LoHa (d) LoKr

Figure 7: Images sampled from Stable Diffusion (Rombach et al., 2022) checkpoints fine-tuned
with different approaches. The text prompts used to generate images from top to bottom are: “The
⟨castle⟩ stands against a backdrop of snow-capped mountains”, “A ⟨castle⟩ surrounded by a lush,
vibrant forest”, “A peacock in front of the ⟨castle⟩”, and ‘The ⟨castle⟩ overlooks a serene lake,
where a family of geese swims”.

Table 9: Evaluate different approaches in learning the concept ⟨castle⟩.

LoHa LoRA LoKr DiffFit BitFit Ours
d = 16 d = 4 r = 16 r = 4 r = 1 f = 16 f = 4 m = 6, kc = 4 m = 9, kc = 8 m = 9, kc = 8,m1 = 3

Fidelity 0.73 0.73 0.71 0.67 0.7 0.73 0.65 0.57 0.44 0.44 0.62 0.72
Diversity 3.51 3.51 4.85 5.39 4.96 4.27 6.98 10.38 16.8 16.82 8.97 8.53

T2I Alignment 0.21 0.21 0.23 0.23 0.23 0.23 0.25 0.26 0.25 0.31 0.28 0.27
Param. (M) 33.86 8.47 22.67 5.67 1.42 1.12 1.06 0.58 0.34 0.05 0.75 2.39

C.4 VISUALIZATION OF GENERATED IMAGES

We visualize images generated by the models trained on each of VTAB tasks from Figure 9 to
Figure 24.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Pre-trained (b) DiffFit

(c) BitFit (d) Ours

Figure 8: Images sampled from Stable Diffusion (Rombach et al., 2022) checkpoints fine-tuned
with different approaches. The text prompts used to generate images from top to bottom are: “The
⟨castle⟩ stands against a backdrop of snow-capped mountains”, “A ⟨castle⟩ surrounded by a lush,
vibrant forest”, “A peacock in front of the ⟨castle⟩”, and ‘The ⟨castle⟩ overlooks a serene lake,
where a family of geese swims”.

Table 10: Evaluate different approaches in learning the concept ⟨canal⟩.

LoHa LoRA LoKr DiffFit BitFit Ours
d = 16 d = 4 r = 16 r = 4 r = 1 f = 16 f = 4 m = 6, kc = 4 m = 9, kc = 8 m = 9, kc = 8,m1 = 3

Fidelity 0.52 0.47 0.39 0.38 0.37 0.36 0.38 0.31 0.33 0.16 0.29 0.39
Diversity 6.29 12.49 15.03 15.71 16.18 18.47 19.53 26.48 21.11 38.63 24.72 24.92

T2I Alignment 0.15 0.18 0.19 0.20 0.20 0.22 0.21 0.24 0.23 0.29 0.25 0.26
Param. (M) 33.86 8.47 22.67 5.67 1.42 1.12 1.06 0.58 0.34 0.05 0.75 2.39

C.5 GRAD-CAM

To understand the underlying reason for the effectiveness of our approach on convolution-based
models, we employ Grad-CAM (Gildenblat & contributors, 2021) on the first block of ResNet50,
which are fine-tuned on the CUB dataset (Wah et al., 2011) using the same experimental setting as

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 9: Images sampled from Stable Diffusion checkpoints fine-tuned on the Caltech-101.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 10: Images sampled from Stable Diffusion checkpoints fine-tuned on the CIFAR-100.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 11: Images sampled from Stable Diffusion checkpoints fine-tuned on the SUN397.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 12: Images sampled from Stable Diffusion checkpoints fine-tuned on the SVHN.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 13: Images sampled from Stable Diffusion checkpoints fine-tuned on the Flowers102.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 14: Images sampled from Stable Diffusion checkpoints fine-tuned on the Pets.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 15: Images sampled from Stable Diffusion checkpoints fine-tuned on the DTD.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 16: Images sampled from Stable Diffusion checkpoints fine-tuned on the EuroSAT.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 17: Images sampled from Stable Diffusion checkpoints fine-tuned on the Resisc45.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 18: Images sampled from Stable Diffusion checkpoints fine-tuned on the Patch Camelyon.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 19: Images sampled from Stable Diffusion checkpoints fine-tuned on the Diabetic Retinopa-
thy.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 20: Images sampled from Stable Diffusion checkpoints fine-tuned on the Kitti.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 21: Images sampled from Stable Diffusion checkpoints fine-tuned on the Smallnorb.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 22: Images sampled from Stable Diffusion checkpoints fine-tuned on the Dsprites.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 23: Images sampled from Stable Diffusion checkpoints fine-tuned on the CLEVR.

(a) Original (b) LoRA (c) Ours (d) Full tuning

Figure 24: Images sampled from Stable Diffusion checkpoints fine-tuned on the DMLab.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

LoRA ∆𝑫 ∆𝑫𝟏∆𝜶𝟏Ours OursInput andNo fine-tuning

(a) (b)

(c) (d)

Figure 25: The Grad-CAM heatmap comparisons between our method and LoRA reveal that our ap-
proach exhibits larger active regions. The heatmap is generated from the first block of ResNet50 (He
et al., 2016) utilizing the CUB dataset (Wah et al., 2011). Fine-tuning the model with ∆D1 involves
additional filter atoms, which leads to larger active regions in the heatmap compared to fine-tuning
∆D only. (a) The Grad-CAM from the first block of ResNet50. (b-d) The Grad-CAM from the 2-4
blocks of ResNet50.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a)

Figure 26: Additional Grad-CAM heatmap comparisons between our method and LoRA from the
first block of ResNet50.

above. For our method, we compare the experiment setting with m = 9, which means 9 filter atoms
∆D and the setting with (m,m1) = (9, 4), which means 36 ∆D1.

Based on the Grad-CAM visualization in Figure 25, our method exhibits larger active regions com-
pared with LoRA. This observation indicates that our approach benefits from preserving the spatial
structure of convolutional layers. When utilizing ∆D1, which expands the number of filter atoms,
we observe more active regions in the Grad-CAM heatmap. This suggests that the introduction of
extra filter atoms potentially captures a wider range of feature maps.

We provide more heatmap visualizations of Grad-CAM from the first block of ResNet50 in Fig-
ure 26.

27

	Introduction
	Preliminary
	Low-rank Adaptation for Fine-tuning
	Sparse Coding and Matrix Factorization

	Methods
	Formulation of Filter Decomposition
	Overcomplete Filter Atoms
	Decomposition of Linear Layers
	Parameter Efficient Fine-tuning

	Experiments
	Experimental Settings
	Validation Experiments
	Generative Tasks
	Discriminative Tasks

	Related Works
	Conclusion
	Details of Experiments
	Details of Datasets
	Experimental Settings
	Generative Tasks

	Additional Analysis
	Additional Experimental Results
	Validation Experiments
	Additional Experiments of Discriminative Tasks
	Results of Few-shot Generative Tasks
	Visualization of Generated Images
	Grad-CAM

