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Abstract

This paper proposes a new loss function for ad-
versarial training. Since adversarial training has
difficulties, e.g., necessity of high model capacity,
focusing on important data points by weighting
cross-entropy loss has attracted much attention.
However, they are vulnerable to sophisticated
attacks, e.g., Auto-Attack. This paper experimen-
tally reveals that the cause of their vulnerability
is their small margins between logits for the true
label and the other labels. Since neural networks
classify the data points based on the logits, logit
margins should be large enough to avoid flipping
the largest logit by the attacks. Importance-aware
methods do not increase logit margins of impor-
tant samples but decrease those of less-important
samples compared with cross-entropy loss. To
increase logit margins of important samples, we
propose switching one-vs-the-rest loss (SOVR),
which switches from cross-entropy to one-vs-the-
rest loss for important samples that have small
logit margins. We prove that one-vs-the-rest loss
increases logit margins two times larger than the
weighted cross-entropy loss for a simple problem.
We experimentally confirm that SOVR increases
logit margins of important samples unlike existing
methods and achieves better robustness against
Auto-Attack than importance-aware methods.

1. Introduction

For multi-class classification problems, deep neural net-
works have become the de facto standard method in this
decade. They classify a data point into the label that has
the largest logit, which is the input of a softmax function.
However, the largest logit is easily flipped, and deep neu-
ral networks can misclassify slightly perturbed data points,
which are called adversarial examples (Szegedy et al., 2013).
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Various methods have been presented to search the adversar-
ial examples, and Auto-Attack (Croce & Hein, 2020) is one
of the most successful methods at finding the worst-case
attacks. For trustworthy deep learning applications, clas-
sifiers should be robust against the worst-case attacks. To
improve the robustness, many defense methods have also
been presented (Kurakin et al., 2016; Madry et al., 2018;
Wang et al., 2020b; Cohen et al., 2019). Among them, ad-
versarial training is a promising method, which empirically
achieves good robustness (Carmon et al., 2019; Kurakin
et al., 2016; Madry et al., 2018). However, adversarial train-
ing is more difficult than standard training, e.g., it requires
higher sample complexity (Schmidt et al., 2018; Wang et al.,
2020a) and model capacity (Zhang et al., 2021b).

To address these difficulties, several methods focus on
the difference in importance of data points (Wang et al.,
2020a; Liu et al., 2021; Zhang et al., 2021b). These studies
hypothesize that data points closer to a decision boundary
are more important for adversarial training (Wang et al.,
2020a; Zhang et al., 2021b; Liu et al., 2021). To focus
on such data points, GAIRAT (Zhang et al., 2021b) and
MAIL (Liu et al., 2021) use weighted softmax cross-entropy
loss, which controls weights on the losses on the basis
of the closeness to the boundary. As the measure of the
closeness, GAIRAT uses the least number of steps at which
the iterative attacks make models misclassify the data
point. On the other hand, MAIL uses the measure based
on the softmax outputs. However, these importance-aware
methods tend to be more vulnerable to the robustness
against Auto-Attack than naive adversarial training. Thus,
it is still unclear whether focusing on the important training
data points enhances the robustness in adversarial training.

To answer this question, we investigate the cause of the
vulnerability of importance-aware methods via margins be-
tween logits for the true label and the other labels. Since
neural networks classify the data into the largest logit class,
logit margins should be large enough to avoid the flipping of
the largest logit class by the attacks. Through the histogram
of logit margins, we first confirmed that there is actually
a difference in the data points when using naive adversar-
ial training (AT). AT has two peaks in the histogram, i.e.,
large and small logit margins. This indicates that there are
difficult samples of which logit margins are difficult to be
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increased, and they correspond to important samples since
small logit margins indicate that data points are near the
decision boundary. Next, we found that importance-aware
methods only have one peak of small logit margins near zero
in the histogram. Thus, importance-aware methods do not
increase logit margins of important samples but decrease
the logit margins of easy (less-important) samples. As a
result, importance-aware methods are more vulnerable near
less-important samples than AT. This implies that weighting
cross-entropy used in importance-aware methods is not very
effective strategy for focussing on important samples.

To increase the logit margins of important samples, we pro-
pose switching one-vs-the-rest loss (SOVR), which switches
between cross-entropy and one-vs-the-rest loss (OVR) for
less-important and important samples, instead of weighting
cross-entropy. We prove that OVR is always greater than
or equal to cross-entropy on any logits. Furthermore, we
theoretically derive the trajectories of logit margin losses in
minimizing OVR and cross-entropy by using gradient flow
on a simple problem. These trajectories reveal that OVR
increases logit margins two times larger than weighted cross-
entropy losses after sufficient training time. Thus, SOVR in-
creases logit margins of important samples while it does not
decrease logit margins of less-important, unlike importance-
aware methods. Experiments demonstrate that SOVR
increases logit margins more than AT and outperforms AT,
GAIRAT (Zhang et al., 2021b), MAIL (Liu et al., 2021),
MART (Wang et al., 2020a), MMA (Ding et al., 2020), and
EWAT (Kim et al., 2021) in terms of robustness against
Auto-Attack. In addition, we find that SOVR achieves a
better trade-off than TRADES, and the combination of
SOVR and TRADES achieves the best robustness. Thus,
focusing on important data points improves the robustness
when increasing their logit margins by OVR. Furthermore,
our method improves the performance of other recent op-
timization methods (Wu et al., 2020; Wang & Wang, 2022)
and data augmentation using 1M synthetic data (Rebuffi
etal., 2021; Gowal et al., 2021) for adversarial training.

2. Preliminaries
2.1. Adversarial Training

Given N data points x, € R? and class labels
yn € {1,...,K}, adversarial training (Madry et al.,
2018) attempts to solve the following minimax problem
with respect to the model parameter 8 € R™:

minG‘CAT(O) = ming % 2511 ECE(Z(w;L70)ayn)7 (1)
z, =z, +0,

=Tp+arg max KCE<Z(mn+5n70)>yn)a ()
[671p<e

where z(z,0) = [z1(x,0),..., 2k (x,0)]T and zx(x,0)
is the k-th logit of the model, which is input of

softmax: fi,(z,0) = e*@)/3" %@ fog is a cross-
entropy function, and || - ||, and € are L, norm and the
magnitude of perturbation d,, € RY, respectively. The inner
maximization problem is solved by projected gradient
descent (PGD) (Kurakin et al., 2016; Madry et al., 2018),
which updates the adversarial examples as

6t :HE (5+7751gn (Vtst,lgCE (z(x+6t—la 0)7 y))) ) (3)

for K steps where 7 is a step size. Il. is a projection
operation into the feasible region {8 | § € R, ||d]|, < ¢}.
Note that we focus on p =00 since it is a common setting.
For trustworthy deep learning, we should improve the true
robustness: the robustness against the worst-case attacks
in the feasible region. Thus, the evaluation of robustness
should use crafted attacks, e.g., Auto-Attack (Croce &
Hein, 2020), since PGD often fails to find the adversarial
examples misclassified by models.

2.2. Importance-aware Adversarial Training

GAIRAT (geometry aware instance reweighted adversarial
training) (Zhang et al., 2021b) and MAIL (margin-aware
instance reweighting learning) (Liu et al., 2021) regard data
points closer to the decision boundary of model f as impor-
tant samples and assign higher weights to the loss for them:

Loeight(8) = = SN wlop(z(a),0),y,), (@)

where w,, > 0 is a weight normalized as w,, = Z“”;U ;
1

and > w, = 1. GAIRAT determines the weights

through the w, = 1+ta“h(’\+52(1*2m/’c)) where k,, is

the least steps at which PGD succeeds at attacking
models, and A is a hyperparameter. On the other hand,
MAIL uses w, = sigmoid(—y(PM, — [5)) where
PM, = f,, (], 0)—maxyz,, fr(x),,0). 3 and v are hy-
perparameters. MART (misclassification aware adversarial
training) (Wang et al., 2020a) uses a similar approach. It
regards misclassified samples as important samples and
controls the difference between the loss on less-important
and important samples. MMA (max-margin adversarial
training) (Ding et al., 2020) also adaptively changes the
loss function and ¢ for each data point, and thus, MMA also
has a similar effect to the above methods. We collectively
call the above methods importance-aware methods.

2.3. Vulnerability of Importance-aware Methods

Hitaj et al. (2021); Croce & Hein (2020); Kim et al. (2021)
have reported that the robust accuracies of GAIRAT, MART,
and MMA are lower than naive adversarial training when
using logit scaling attacks or Auto-Attack (Croce & Hein,
2020). Since Auto-Attack searches adversarial examples
by using various attacks, it achieves a larger success attack
rate than using one attack, e.g., PGD. To clarify the vulnera-
bilities, we individually evaluate the robustness against the
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Figure 1: Robustness against PGD and components of Auto-
Attack on CIFARI10 (Krizhevsky & Hinton, 2009) with
PreActResNet18 (RN18). SOVR is our proposed method.

components of Auto-Attack and PGD (K = 20) on CIFAR10
(Fig. 1). The training setup is the same as in Section 6, and
we add the results of our method (SOVR) as a reference.
This figure shows that almost all importance-aware meth-
ods can improve the robustness against PGD and APGD
compared with naive adversarial training (AT (Madry et al.,
2018)). However, they do not improve the true robustness;
i.e., their robust accuracies against the worst-case attack are
lower than that of AT. We investigate the reasons of this
vulnerability in the next section.

3. Evaluation of Robustness via Logit Margin

We investigate the causes of the vulnerabilities of
importance-aware methods by comparing histograms of
logit margin losses. First, we explain that logit margin
losses determine the robustness. Next, we experimentally
reveal that logit margin losses of importance-aware methods
concentrate on zero; i.e., their logit margins are smaller
than AT. We use training data for empirical evaluation in
this section because the goal of this section is to investigate
the effect of importance-aware methods, which modify the
loss function based on training data points. Experimental
setups are provided in Appendix E.6.

3.1. Potentially Misclassified Data Detected by Logit
Margin Loss

To investigate the robustness of models near each data point,
we apply logit margin loss (Ding et al., 2020) to the models
trained by importance-aware methods. Logit margin loss is

ELM (Z(.’Bn, O)a y) = Zk~* (.’B/) - Ry, (iB/)
= maxy.y 2k (') — zy ('), (5)

where k* = argmaxy, 2 (2’). Since the classifier infers
the label of @ as § = argmaxy z (), it correctly classifies
a’ if /< 0. Thus, the logit margin loss on a difficult
sample in adversarial training takes a value near zero. We
refer to the absolute value of a logit margin loss |¢,| as
logit margin. In contrast to PM,, of MAIL, /1 is not
bounded since z;(x) can take an arbitrary value in R.

To explain the effect of logit margins, we assume that
the Lipschitz constant of the k-th logit function is Ly as
|2k (1) — 21 (22)| < Li| |1 — X2]|0o- In this case, we have

the following inequality:

maxy 2, (') — 2z, (') < maxg |2 () — 2y () + (Le+ Ly €]
<2 () — 2y () +(Lj 4 Ly)e, (6)

where k = argmaxy Li. From the above, we define the
potentially misclassified sample:

Definition 3.1. If a data point @ satisfies 2« (&) — 2, () >
—(Lj+Ly)e, we call it a potentially misclassified sample.

By using the above definition, we can derive the following:

Proposition 3.2. If data points are not potentially misclas-
sified samples, models are guaranteed to have the certified
robustness on them as y = argmaxy, zx(x + 8) for any &
satisfying |00 < e.

All proofs are provided in Appendix A. We can estimate the
true robustness of each method by counting the number of
potentially misclassified samples. Definition 3.1 and Propo-
sition 3.2 indicate that large logit margins |[/1,\| or small
Lipschitz constants L are necessary for the robustness.
Thus, the logit margin loss can be the metric of robustness,
and we evaluate it in Section 3.2. In Section 6.2.1, we
provide the estimated number of potentially misclassified
samples for each method.

3.2. Histograms of Logit Margin Loss

Since logit margin losses determine the number of
potentially misclassified samples, we show the histogram
of them for each method on CIFAR10 at the last epoch in
Fig. 2. Comparing AT (Fig. 2(b)) with standard training (ST,
Fig. 2(a)), AT has two peaks in the histogram. This indicates
that the levels of difficulty in increasing the margins in AT
are roughly divided into two: difficult samples (right peak)
and easy samples (left peak). Difficult samples correspond
to the data close to the boundary; i.e., important samples.
Next, comparing AT (Fig. 2(b)) with importance-aware
methods (Figs. 2(c)-(f)), their logit margin losses {1y
concentrate on zero, and their peaks are sharper than that
of AT. This indicates that importance-aware methods fail
to increase the logit margins |¢1,| for not only important
samples but also less-important (easy) samples because
the weights for less-important samples are relatively small.
Thus, it is necessary to increase the small logit margins
for important samples without decreasing those of easy
samples. Appendix F.1 provides results under various
settings, which show similar tendencies.

4. Proposed Method

In Section 3.2, we observe that (a) training samples are
roughly divided into two types via logit margins; difficult
and easy (important and less-important) samples, and (b)
importance-aware methods reduce the logit margins on
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Figure 2: Histogram of ¢1,; for training data of CIFAR10 with RN18 at the best (top) and the last (bottom) epoch. Best
epoch is the epoch when models achieved the best robust accuracy against PGD by early stopping. ST denotes standard
training, i.e., training on clean data. For standard training, we use {1 on clean data x, while we plot that on adversarial
examples ' for the other methods. Blue bins are the correctly classified data points, and red bins are misclassified samples.

less-important samples to focus on important samples.
From these observations, our method is based on two ideas:
(i) we switch from cross-entropy to an alternative loss for
important samples by the criterion of the logit margin loss,
and (ii) the alternative loss increases the logit margins of
important samples more than weighted cross-entropy.

4.1. One-Vs-the-Rest Loss (OVR)

The logit margin |z« () — 2, ()| should be large while
keeping Lipschitz constants of logit functions small values.
To this end, we need a loss function to penalize small logit
margins. The logit margin loss can be an intuitive candidate
as such a loss function. However, the logit margin loss only
considers the pair of the largest logit z;- and the logit for
the true label z,, and this is not sufficient for the robustness
because k* and k in Eq. (6) are not necessarily the same.
Moreover, the logit margin loss does not have the desirable
property for multi-class classification: infinite sample con-
sistent (ISC) (Zhang, 2004; Bartlett et al., 2003; Lin, 2002).
To consider the logits for all classes and satisfy ISC, our
proposed method uses the one-vs-the-rest loss (OVR):

Lovr(z(,0),y) = (2y(®)) + D k2, P(=2k(2)). (7

When ¢ is a differentiable non-negative convex function and
satisfies ¢(z) < ¢(—z) for >0, OVR satisfies ISC (Zhang,
2004). To satisfy ISC, we set ¢(z) =log(1+e~*) and use

Lovr(2(z,0),y) :1og(1+e_zy(”))+z,€¢ylog(1 +e2+(@))
=—2,(2)+ 32 log(1+e*+(*). (8)

We provide explanation of ISC and the detailed reason for
this selection of ¢(z) in Appendix D.

4.2. Behavior of Logit Margin Losses by OVR

To show the effectiveness of OVR in increasing logit
margins, we theoretically discuss the difference between
OVR and cross-entropy. First, OVR has the following
property compared with cross-entropy:

Theorem 4.1. If we use OVR (Egq. (8)) and softmax as
fe(x) = @) /37 (@) we have

0 < log(2(z),y) < lovr(2(z),y), Y(z,y). )

When zy(x) — 400 and zp(x) — —o0 for k #y, we have
lovr(z(z),y) —0and bcp(z(x),y) —0.

Thus, OVR is always larger than or equal to cross-entropy,
and OVR and cross-entropy approach asymptotically to
zero when |£1,\;| grows to infinity. In fact, we observed that
lovr(z,y) is about four times greater than {cg(z,y) for
random logits z ~ A (0, I') and randomly selected y from
{1,...,10}. Thus, we expect OVR to penalize the small
logit margin more strongly than cross-entropy.

Besides this general result, we further investigate the effect
of OVR in logit margin losses by using a simple problem.
To analyze the behavior of logit margins, we formulate the
following problem:

min, wl,(z,y), (10)

where £, is set to £oyr or £og. z € R is a logit vector for
a data point , and we assume that we can directly move it
in this problem. w € R is a weight of the loss, which appears
in Eq. (4). To analyze the dynamics of training on Eq. (10),
we use the following assumption.

Assumption 4.2. A logit vector z follows the following
gradient flow to solve Eq. (10):

dz _

dt — _vzwg*(zay)v (11)

where ¢ is a time step of training. We assume that z is
initialized to zeros z = 0 at ¢ = 0.

Equation (11) is a continuous approximation of gradient
descent 27! = 27—V w/, and matches it in the limit as
1n— 0. It is a commonly used method to analyze the training
dynamics (Kunin et al., 2021; Elkabetz & Cohen, 2021).

Under Assumption 4.2, we have the following lemmas about
the logits in the training of Eq. (10):
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Lemma 4.3. If we use OVR loyr(z,y) in Eq. (10), the
k-th logit zi(t) at time t is

k=y,

12
ety P

wt+ 1 — W (ewtt!
Zk(t) = ( 1)1‘—21
—wt — 1 — W(e¥tt1)

where W is Lambert W function, which is a function satis-
fing x = W (xe®) (Corless et al., 1996).

Lemma 4.4. If we use cross-entropy Lcg(z,y) in Eq. (10),
the k-th logit zy(t) at time t is
) k=y,

Kwitl _ K_lyy( 1
2k (t) = Kw K —-1 Kwt41 (13)
{— srare (1 S gy

Kwt+1

These lemmas give the trajectories of logit vectors in min-
imization of OVR and cross-entropy, respectively. Both
methods increase the logit for the true labels z, and decrease
the others, but their speeds are different. From the above
lemmas, we derive the trajectory of the logit margin loss:

OVR
CE

Theorem 4.5. Logit margin losses for the logit vector z
in the minimization of weighted OVR and logit vector z
in the minimization of weighted cross-entropy at time t are

i (2OVE (1) = —2wit — 2 4+ 2W (w1t (14)

Kwot+1
O (2CF (1) = - Bwatkl 4y (ol oe™wm51), (15)

where w1 € R and wy € R are weights for OVR and cross-
entropy, respectively. For large t, they are approximated by

lin(29V R (1)) = —log(wit + 1)%, (16)
i (2CF (1) ~ — log(Kwat + 1—-log(K —1)KY, (17)

and lim;_, o, % =2 for any fixed w1, wa, and K.

This theorem shows the difference in trajectories of logit
margin losses between OVR and cross-entropy under
Assumption 4.2. Regardless of the values of weights w;
and wo, cross-entropy does not increase the logit margins as
large as OVR for sufficiently large ¢. Thus, OVR increases
the small logit margins more effectively than GAIRAT and
MAIL, which use weighted cross-entropy (Eq. (4)).

Figure 3(a) plots the trajectory of logit margin losses ¢,y
in the minimization of Eq. (10). This figure shows the
solutions in Theorem 4.5 (solid lines): we use Egs. (14) and
(15) unless overflow occurs due to exponential functions
and use Egs. (16) and (17) when it occurs. It also plots
numerical solutions of Eq. (11) by using gradients and
the Runge—Kutta method as a reference (dashed lines).
In Fig. 3(a), Egs. (14)-(17) exactly match the numerical
solutions of RK, and thus, logit margins follow Theorem 4.5.
In addition, Fig. 3(a) shows that OVR decreases logit
margin losses more than cross-entropy against ¢ regardless

of K and w. Thus, using OVR is more suitable for
increasing the logit margin on important samples than
previous weighting approaches like GAIRAT and MAIL.
Figure 3(b) plots trajectories of /1 in adversarial training
(Eq. (1)) on CIFARIO. It shows that the logit margin |¢r|
of OVR is about twice as large as that of cross-entropy

at the last epoch (% = 1.87 for w = 1), like the
case of Theorem 4.5. Thus, problem Eq. (10) is simple but
precise enough to explain the difference in the logit margins

between OVR and cross-entropy on a real dataset. In fact,

f(z7"") ot the last epoch is in [1.5, 2] on other datasets
Tint (zCE) p Dy )

including CIFAR100 (K =100) (Appendix E.3).

As above, we prove that OVR is more effective for increas-
ing logit margins of important samples than weighting cross-
entropy. In the next section, we compose the objective
functions switching between OVR and cross-entropy for
important and less-important samples.

4.3. Proposed Objective Function: SOVR

Our proposed objective function is

Lsovi(8) = & | Lo es lor(z(@,6), 1)
AL @ yeL KOVR(Z(w’,G),y)} , (18)

where S is a set where logit margin losses ¢y, are smaller
than those in the set L, and we have |S|+|L| = N. These
sets correspond to easy and difficult samples in Fig. 2(b). In
our method, we select the top M % data points in minibatch
of SGD as L. A is a hyperparameter to balance the loss,
and ' is an adversarial example generated by Eq. (2). The
proposed algorithm is shown in Appendix B. Since we do
not additionally generate the adversarial examples for {oyR,
the overhead of our method is negligible: O(blog %b)
where b is minibatch size. In the same way to Section 3.2,
we evaluate the histograms of logit margin losses for SOVR
on CIFARI10 in Fig. 4. It shows that SOVR succeeds at
increasing the left peak compared with AT (Fig. 2(b)). This
is because OVR strongly penalizes important samples in the
right peak and moves them into the left peak.

Trade-off between Robustness and Generalization in
SOVR Though OVR increases logit margins as explained
in Section 4.2, we found that OVR (M =100) is inferior to
SOVR because OVR for less-important samples can cause
overfitting. Figure 5 plots the effect of M in terms of {1,
at the last epoch, generalization gap at the last epoch, and
robust accuracy against Auto-Attack on CIFAR10. It shows
that /1,1 monotonically decreases, i.e., robustness improves,
when increasing M. However, the generalization gap
increases at the same time. This is because OVR causes too
high confidence on easy samples, and too high confidence
in neural networks can cause overfitting (Szegedy et al.,
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CIFARI10, and its setup is provided in Appendix F.3
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Figure 5: The effect of rate M of applying OVR. A is set
to 0.4. M =0 corresponds to the result of AT with cross-
entropy. Generalization gap is a gap between training and
test robust accuracies against PGD (K=20) at the last epoch.
Robust Acc. is robust accuracy against Auto-Attack.

2016). Robust accuracy takes the largest value at M = 40.
Thus, it is necessary to focus on important samples by
switching losses, like existing importance-aware methods.
We provide the evaluation of effects of A in Appendix F.4,
which shows the similar tendencies.

4.4. Extension for Other Defense Methods

Since SOVR only modifies the objective function, it can be
used with the optimization algorithms for robustness, e.g.,
adversarial weight perturbation (AWP) (Wu et al., 2020) or
self-ensemble adversarial training (SEAT) (Wang & Wang,
2022), and generative data augmentation (Gowal et al., 2021;
Rebuffi et al., 2021), which improve generalization perfor-
mance in adversarial training. However, SOVR is difficult
to use with TRADES (Zhang et al., 2019) because TRADES
also modifies the objective function. To combine our method
with TRADES, we propose TSOVR, which uses SOVR in-
stead of cross-entropy for clean data:

Lrs(0) =+ [Lsovr+Bry, KL(f(x.0),f(x,,0)] (19)
LIOVR =) (5,y)es Leu(z(, 0),y)

+)\Z(w,y)€]l. KOVR(Z(.’B,O),y) (20)
where A and S are hyperparameters. x, is obtained by
wiz = maXHw;—wHPSEKL(f(:Bn, 0)7 .f(m;w 0)) We evalu-

ate the combinations of SOVR with AWP (Wu et al., 2020),
SEAT (Wang & Wang, 2022), and data augmentation using

0 100 200
Epoch

500

0

(b) CIFAR 10 (RN18) 10 0 0

Figure 4: Histogram of {1,
of SOVR at the best (top)
and the last (bottom) epoch.

synthetic data (Gowal et al., 2021) in the experiments.

5. Related Work

The difference in importance of data points in adversarial
training has been investigated in several studies (Wang et al.,
2020a; Zhang et al., 2020; Sanyal et al., 2021; Dong et al.,
2022). Zhang et al. (2020) investigated the effect of difficult
samples on natural generalization performance, i.e., general-
ization performance on clean data. They presented FAT that
improves the robustness without compromising the natural
generalization performance. Unlike FAT, SOVR focuses
on the robust performance. Sanyal et al. (2021) and Dong
et al. (2022) have investigated the effect of memorization
of difficult samples in the generalization performance of
adversarial training. Whereas they focused on reducing
generalization gap by regularization, our method reduces
robust error on test data by reducing training robust error;
i.e., mitigating underfitting more than overfitting. Studies
of (Hitaj et al., 2021; Croce & Hein, 2020; Kim et al., 2021)
have reported the vulnerabilities of some importance-aware
methods to logit scaling attacks or Auto-Attack but few
studies discuss the causes. Kim et al. (2021) have pointed
out that the cause is high entropy in GAIRAT and MART
and presented EWAT (entropy-weighted adversarial train-
ing), which imposes a higher weight on the higher entropy.
However, the logit margin is more related to robustness than
entropy as discussed in Section 3. Furthermore, weighted
cross-entropy in EWAT is less effective than OVR as shown
Theorem 4.5.

Cisse et al. (2017); Tsuzuku et al. (2018); Zhang et al.
(2021a) have shown the relation between robustness, logit
margins and Lipschitz constants similar to our justification
(Section 3). They used them to present certified defense
methods. However, their empirical robustness is not as well
as that of AT. Though MMA (Ding et al., 2020) is the most
well-known method to increase logit margins empirically,
our experiment shows that MMA does not necessarily in-
crease logit margins.
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OVR has been used as the loss function of multi-class
classification (Zhang, 2004), but there are few studies using
it as a loss function of deep neural networks. Padhy et al.
(2020) and Saito & Saenko (2021) used OVR for OOD
detection and open-set domain adaptations, respectively.
However, they did not discuss the effect of OVR in logit
margins, and our study is the first work to reveal the
effect of OVR in adversarial robustness and logit margins
theoretically and experimentally.

6. Experiments
6.1. Setup

We conducted the experiments for evaluating SOVR. We
first compare SOVR and TSOVR with Madry’s AT (Madry
et al., 2018), MMA (Ding et al., 2020), MART (Wang et al.,
2020a), GAIRAT (Zhang et al., 2021b), MAIL (Liu et al.,
2021), and EWAT (Kim et al., 2021). Additionally, we
evaluated TRADES as another baseline that does not con-
sider the importance of data points. We used three datasets:
CIFAR10, SVHN, and CIFAR100 (Krizhevsky & Hinton,
2009; Netzer et al., 2011). Next, we evaluate the combi-
nation of SOVR and AWP (Wu et al., 2020), SEAT (Wang
& Wang, 2022), and data augmentation using 1M synthetic
data by DDPM (1M DDPM) (Rebuffi et al., 2021; Gowal
et al., 2021). Our experimental codes are based on source
codes provided by (Wu et al., 2020; Wang et al., 2020a;
Ding et al., 2020; Rade, 2021), and 1M synthetic data is
provided in (Gowal et al., 2021). We used PreActResNet-18
(RN18) (He et al., 2016) for all datasets and WideResNet-34-
10 (WRN) (Zagoruyko & Komodakis, 2016) for CIFAR10.
We used PGD (K =10, n=2/255, ¢ =8/255) in training.
We used early stopping by evaluating test robust accura-
cies against PGD with IC = 10. For AWP, SEAT, and 1M
DDPM, we use the original public codes (Wu et al., 2020;
Wang & Wang, 2022; Rebuffi et al., 2021).! For AT+AWP
and SOVR+AWP, we use the training setup that is used for
TRADES+AWP in (Wu et al., 2020) by changing losses
because we found that it achieves a better result. We trained
models three times and show the average and standard devi-
ation of test accuracies. We set (M, A) in SOVR to (40, 0.4)
for CIFAR10 (RN18) and SOVR+AWP, (30, 0.4) for CI-
FARI10 (WRN) and (50, 0.6) for CIFAR100, (20,0.2) for
SVHN, (40, 0.2) for SOVR+1M DDPM. We set (M, \) in
TSOVR to (80,0.8) for CIFARI0 (RN18), (20,0.8) for
CIFAR10 (WRN) and SVHN, (50,0.5) for CIFAR100,
(100, 1.2) for TSOVR+AWP, and (100, 1.6) for SOVR+1M
DDPM. We use Auto-Attack to evaluate the robust accuracy
on test data. In Appendix E and F, we provide the details of

"We could not reproduce the results reported in (Wu et al.,
2020; Wang & Wang, 2022) even though we did not modify their
codes. This might be because we report the averaged values for
reproducibility.

setups and additional results, e.g., evaluation using various
attacks and magnitudes of attacks. To determine the statisti-
cal significant difference, we use t-test with p-value of 0.05.

6.2. Results

We list the robust accuracy against Auto-Attack on all
datasets in Tab. 1. Comparing SOVR with importance-
aware methods and AT, SOVR outperforms them in terms
of the robustness against Auto-Attack and the difference is
statistically significant. This is because SOVR increases the
logit margins |¢1,n| by using OVR. In fact, Fig. 4 shows that
SOVR increases the logit margins |¢1,| for important sam-
ples. MART improved robustness on SVHN and CIFAR100.
This might be because MART does not just impose weights
on the loss. However, its improvement is less than SOVR.
EWAT also achieves higher robust accuracies than AT on
several datasets in Tab. 1. However, EWAT is not as robust
as SOVR because EWAT employs weighted cross-entropy,
which is less effective at increasing logit margins than OVR
(Theorem 4.5). In Tab. 1, SOVR slightly sacrifices clean
accuracies under some settings. We provide the histograms
of logit margin losses on all datasets in Appendix F.1, which
also show SOVR increases margins. Comparing SOVR with
TRADES and TSOVR, SOVR achieves comparable robust
accuracy to TRADES, and TSOVR achieves the best ro-
bust accuracy. In addition, SOVR achieves the largest value
of robust accuracy + clean accuracy in almost all settings,
which is discussed in Section 6.2.3.

6.2.1. EMPIRICAL EVALUATION OF POTENTIALLY
MISCLASSIFIED SAMPLES

As discussed in Section 3.1, we can evaluate the robust-
ness near each data point via logit margins and Lipschitz
constants of the class-wise logit functions. In this section,
we estimate the number of potentially misclassified sam-
ples for each method. Since Lipschitz constants for deep
neural networks are difficult to compute due to the com-
plexity, we compute the gradient norm of the logit function
instead of Lipschitz constants. This is because the gradi-
ent norm satisfies sup,, || Vg2, (x)||1 = Ly for Ly such as
|zk(x1) — 2z (22)| < Lg||®1 — 22||0e (Jordan & Dimakis,
2020), and we have

Proposition 6.1. If a data point x satisfies

2+(®) = 2y (®) > — (maxy ||V o 2k (2)[[1 +][Vazy ()] 1)e,
2

it is a potentially misclassified sample.

Thus, we can empirically estimate the number of potentially
misclassified samples on each method by the gradient norms.
Figure 6 plots the rate of data points that satisfy Eq. (21),
which are potentially misclassified samples. Comparing
Fig. 6 with Tab. 1, when the methods have the large rate
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Table 1: Robust accuracy against Auto-Attack and clean accuracy on test datasets.

Robust Accuracy against Auto-Attack (Lo, € =8/255)

AT MART MMA GAIRAT MAIL EWAT SOVR TRADES TSOVR
CIFARIO (RN18)  48.04+0.2  46.9+0.3 37.2+0.9 377+ 1  39.6+04  48.2+0.7 49.4+0.3 48.8+03 49.84+0.1
CIFARIO (WRN)  51.940.5 50.44+0.09 43.1+1 41.8+0.6 43.310.1 51.6£0.3 53.14+0.2 529+0.3 53.3 £ 0.1
SVHN (RN18) 45.6+04  46.94+0.3 41+£1 37.6+0.6 41.2+0.3 47.6+04 485+0.4 494403 49.87 4+ 0.02
CIFARI00 (RN18) 23.7+0.3  23.940.1 18.440.2 19.8+0.5 16.7+0.3 23.524+0.06 24.3+0.2 2324+0.1 24.6140.07

Clean Accuracy

CIFARIO (RN18)  81.640.5 78.3+1 85.5+ 0.7 787+0.7 79.5+£04  82.840.4 81.9+0.2  82.5+0.2 81.4+0.2
CIFARI0 (WRN)  85.6+0.1 81.5+1 87.8+1 83.0+0.7 822404  86.0+0.5 85.0+0.2  84.24+0.7 83.1+0.2
SVHN (RN18) 89.8+0.6  86.9+0.6 93.94+0.4 89.9+04 89.4+04  90.2+0.6 90.0+1 88.7+1 88.5+0.5
CIFARI00 (RN18) 53.0+0.7 49.24+0.1 60.6 £0.6 52.0+0.5 46.5+0.5 54.2+1 52.1+£0.8  53.840.2 51.6+0.2

Table 2: Robust accuracy against Auto-Attack (L, € = 8/255) on test dataset of CIFAR10. SEAT uses WideResNet32-10
following (Wang & Wang, 2022), and 1M DDPM uses WideResNet28-10 following (Gowal et al., 2021; Rebuffi et al., 2021)

MARY

'S
=
<

AWP (WRN34-10) SEAT +1M DDPM (Gowal et al., 2021; Rebuffi et al., 2021)
AT+AWP SOVR+AWP TRADES+AWP TSOVR+AWP  SEAT  +SOVR AT TRADES  SOVR TSOVR
Robust Acc.  55.0£0.2  56.03+0.07 55.6:+0.4 564402  54940.1 555403  59.3+09  60.13+05  60.9+0.1  60.9+0.2
Clean Acc.  87.8+0.1  86.9+0.4 84.9+0.5 849404 868404 865+0.1 8846+005 86.1404 88.05+0.08 86.08+0.07
SOVR+1M DDPM*
’ __TRADES+IM DDPM* .
" 7 3 59.5 AT+1M DDPM*
0 C10 (RN18) CIRN) CIFAR100 SVHN t-C10 (RN18) |»C|0(RN) |»CFAR100 t-SVHN <:2?T'?NRADES(J}/:6)+A\$;0VR+AWP‘ S.OVR**A P
. . . <90 sovmsmﬂ,x s AT+ AWP
Figure 6: Rate of data satisfying Eq. (21). C10 and t- repre- £s3s TSOVE !
sent CIFAR10 and test data, respectively. < IRADES (570 TRADESUS 31 A
oL / EWAT
<
2
&

on test data, they have low robust accuracies against Auto-
Attack. This indicates that this rate is a reasonable metric
for estimating robustness though it uses gradient norms
instead of Lipschitz constants. Whereas most importance-
aware methods have higher rates than AT due to small logit
margins, SOVR has lower rate. This is because SOVR
increases logit margins without increasing gradient norms
by using OVR, which is more effective in increasing logit
margins than weighted cross-entropy (Section 4.2). In Fig. 6,
EWAT does not necessarily increase the rate because EWAT
uses weighted cross-entropy. We discuss the reason the rate
of AT gets close to SOVR on CIFAR100 in Appendix F.9.

6.2.2. EXTENSION FOR OTHER METHODS

To improve the robust accuracy on test data, our method
mostly focuses on improving the robustness around train-
ing data points rather than regularization. Even so, SOVR
can be used with recent regularization methods (Wu et al.,
2020; Wang & Wang, 2022) and data augmentation (Rebuffi
et al., 2021; Gowal et al., 2021). We evaluated the combina-
tion of SOVR and AWP, SOVR and SEAT, and SOVR and
data augmentation using 1M synthetic data by DDPM (1M
DDPM). Table 2 lists the robust accuracy of the combina-
tions against Auto-Attack and shows that SOVR improved

'
=
<

JRADES (57:3)
45.5
74

76 78 80 82 &4

Clean Acc.

86 88

Figure 7: Trade-off between clean and robust accuracies
(WRN). * use WRN28-10 and T use WRN32-10.

the performance of other recent methods. Thus, SOVR and
these methods complementarily improve the performance.

6.2.3. EVALUATION OF TRADE-OFF

We evaluate the trade-off between robustness and clean
accuracy. Figure 7 plots clean accuracy and robust accuracy
against Auto-Attack when using WRN on CIFAR10. Since
TRADES controls the trade-off by tuning B, we add
the results of TRADES with S = 3 and connect results
of fr =6 and S = 3 by blue lines. Diagonal lines are
lines satisfying CleanAcc.+RobustAcc. = Const through
SOVR, SOVR+AWP, SOVR+SEAT, and SOVR+IM
DDPM. SOVR achieves a good trade-off: Robust Acc. +
Clean Acc. of SOVR, SOVR+AWP, and SOVR+DDPM are
the best values under each condition. If we require the most
robust models with sacrificing clean accuracies, TSOVR
achieves the best robust accuracy against Auto-Attack.
Therefore, SOVR and TSOVR are better objective functions
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than TRADES and cross-entropy in terms of trade-off and
robustness, respectively.

7. Conclusion

We investigated the reason importance-aware methods fail
to improve the robustness against Auto-Attack. Our empiri-
cal results showed the reason to be that they decrease logit
margins of less-important samples besides those of impor-
tant samples. From the observation, we proposed SOVR,
which switches from cross-entropy to OVR in order to focus
on important samples. We proved that OVR increases logit
margins more than cross-entropy for a simple problem and
experimentally showed that SOVR increases the margins of
important samples and improves the robustness.
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A. Proofs
A.1. Proof of Proposition 3.2
Proof. From the definition of Lipschitz constants, we have

|zi(x 4+ 6) — zi(x)| < Lglle + 0 — z||co = Lie, (22)

Thus, we have zi,(x + 8) < zp(x) + Lie if zi(x + 6) > zi(x) and zi(x + 0) > zi(x) — Lie if zp(x + d) < zp(x).
Therefore, the following inequalities hold for the not potentially misclassified samples:

rlgzzxzk(a: +90) —zy(x+6) < zp () + Lie — (zy(x) — Lye)
y

< zpe(x) + Lje — zy(x) + Lye

< 2 (®) = 2y (@) + (L + Ly)e, (23)

where k' =arg maxyz, 2 (@ + ), k* =arg maxy, 2 (x), and k=arg maxy, Ly,. From zj- (z) — z, () < —(Lj + Ly)e
for not potentially misclassified samples and Eq. (23), we have maxy, 2k (€ + 0) — zy(x + ) <0, Vo € {||6]|oc < e}
Thus, models are guaranteed to classify adversarial examples of these data points accurately. O

A.2. Proof of Theorem 4.1

Proof. By using logit functions, {cg can be written as
ler(z(x,0),y) = —2z,(x) +log >, e+(@). (24)

when a model uses a softmax function. Compared with OVR lovr(2(x,0),y) = —z,(x) + 3., log(1 + e**®)), the
difference is only the second term. Thus, {oyr (2(x, 0),y) — Lcr(z(x, 0),y) can be written as

KOVR(z(ma 0); y) - gCE(z(ma 0)7 y) = Zk log(l + €Zk) - IOg Zk eZka (25)
= log [T, (1+ e*) —log 3", e**. (26)

Since a logarithm is a strictly increasing function, we have

[[,(1+e**)—=>",e* >0=1log[[,(1+e*)—log) , e* >0. (27)

Since e** > 0 for any 2 € R, we have
[T(1+e™) = Spe™ =14, % + R(e™) — Ty e = 14 R(e™) > 0 (8)

where R(e**) is the second or higher order terms of e**, and it takes a positive value because e** >0. Thus, the left hand side
of Eq. (27) holds, and we have log [ [, (1+e**)—log Y, e > 0. Therefore, we have lovr(z(x,0),y)—lce(2(x,0),y) >
0:ie.,0 </{lcr(z(x,0),y) < Llovr(z(x,0),y) since Lo (z(x, 0),y) > 0. Next, when zj,(x) — —oo for k # y, we have
e** — (0 and

Zyligrlm) lep(2(2,0),y) = zyglfoo, —zy(x) + logz e @) = _z +log(e™) = 0. (29)
zrp——oo for k#y z——o0 for k#y k

On the other hand, when z, () — 400 and zi(x) — —oo for k # y, we have log(1 + e**) — z, and log(1 + e**) — 0.
Thus, we have

. _ . - zip(x)) — _ —
i lova(2(2,0).y) Jlim =z (@) + > log(1+e*®)) = —z, + 2, =0, (30)
zr——oo for k#y zrp——oo for k#y k
which completes the proof. O
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A.3. Proof of Lemma 4.3

Proof. From the assumption, we consider the following ordinary differential equation (ODE):

de _ 8wEOVR(z, y)

— = 31
dt azk ( )
The initial condition is z(0) = 0. For the correct label y, the gradient of OVR is given by
ot , 2y
ovr(z,Y) - 14 € ' (32)
0zy e?v 4+ 1
Thus, ODE becomes
dzy e*v
Y - 33
dt wl e*v + 1) (33)
(14 €e*)dz, = wdt (34)
Zy+ e =wt+c (35)
ezy-i-ezy — ewt—i—c7 (36)

where c is a constant, which is determined by the initial condition. We apply the Lambert W function (Corless et al., 1996)
for both sides and use log W (x) = logx — W (z) for x > 0 as

e = W(e"'™e), 37)
z, = wt + ¢ — W (e""°). (38)

From the assumption, we have z,,(0) = 0, and thus, ¢ satisfies the following equality:
c—W(e) =0. (39)
From W (ze”) = x, we have ¢ = 1 and the logit of the correct label is given by
2, = wt + 1 — W (). (40)

Next, we consider the logit of another label zj, for k& # y. Since the gradient for the logit of incorrect label is %Vf’%’f‘z’y) =

e“k

g1 We have
dzy, we®k
ok 41
dt 14 e 1)
(e7** + 1)dz, = —wdt. 42)
It is solved in the same way as z,, and we have
2 = —wt — 1+ W (e, (43)
for k # y, which completes the proof. O
A.4. Proof of Lemma 4.4
Proof. We first solve the ODE for the logit of the correct label z,. The gradient of cross-entropy is
a‘€C'E (Z, y) er
— = =) = 44
aZk; ky + Zm e7m ( )
From Eq. (44), we have the following ODE:
d m eznl
zy _ Lmty (45)

T e
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Since z = 0 at t = 0, we have z; = z; for Vi, j # y. In addition, we have ), dzl;‘lft) => wae%i(Z7y) = 0 for V¢. Thus,
logits satisfy the following equality:

zy = —(K — 1)z, (46)
for k # y. From Eq. (46), Eq. (45) becomes
d K-1 —1%v

dzy _,, K —le ™ @7)

dt (K — 1)6 K—1%Y 4 e?y
(K =14 e®7)dz, = w(K — 1)dt (48)

K 1 K K
K-1% = ———wt 49
K—12y+K—1e K_1¥ +c (49)
1 K _, 1 erilzy 1 Lwt-‘rc
K—-1“Yp K—-1 — — pK—1
k-1 ¢ K_1° (50)
1 1
K_leK}ilZy :W(K_leK}ilwt+c) (51)
K 1
ek log {(K — 1)W(K — 1eKK1wt+c)} (52)
K-1 K-1 1 K yite
2y = Wt~ = —— W (e ey (53)
where c is a constant, which is determined by the initial condition. From Assumption, we have
K-1 K-1 1 .
zy(0) = % ‘T % W(K_le)—O (54)
1 o

W(K_le)—c. (55)

Thus, we have ¢ = ﬁ since W (xze®) = x. From Egs. (46) and (53), we have

K—l) (56)

e%wﬂ'ﬁ) for k#y (57)

which completes the proof. O

A.5. Proof of Theorem 4.5

From Lemmas 4.3 and 4.4, we have

Coa(2PVE (1)) = —2wit — 2 4 2W (eWrte), (58)
K 1 1 Kopprois
o (2CE (1)) = _ﬁwﬂ ——t W(K — 16151 2T, (59)
Since W (x) = log(z) — log(log(x)) + O(1) for large & (Hoorfar & Hassani, 2007), we have
Con(2OVE (1) & — 2wt — 2+ 2(wit + 1 — log(wyt + 1)) (60)
= —log(wit +1)? (61)
K 1
CE(\) ~ _ _
Lm(z57(t)) = K 1w2t K_1 (62)
K 1
—log(K — 1) + ——— —
og( )+K_1w2t+K_1 (63)
log(— log(K — 1) + ——wyt + ——) (64)
oslmos K-—1" " K-1
= —log(Kwst +1— (K —1)log(K — 1)). (65)
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Algorithm 1 Switching one-vs-the-rest by the criterion of a logit margin loss

1: Select the minibatch B

2: for x,, € B do

3:  Generate adversarial examples x;, = argmax||q/ g, ||, << LcE(2(2],, 6), yn) by PGD
lim(z(x),, 0), yn) = Maxyey, 2k(x;,) — 2y, (T),)

5: end for

: Select top 4 |B| samples of (/,,y) in terms of (1 (z(],, 0), y») and add them to L

: Lsovr(0) = g [Z(%y)eB\L lep(z(2',0),y) + A Y (4 e Lovr(2(2, 6), y)}
8: Update the parameter 8 + 0 — nVgLsovr(0)

»

~N

From the above, we have

l (zOVE)(t) log(wit +1)2 + O(1)

lim ——— 22 = [j 66
A GO A Tog(Kuwnt + 1 — (K — Dlog(K — 1)) + 0(1)° (66)
— im 2logt + 2log(wy +t~1) +O(1) 67
t—oo logt + log(Kws +t~1(1 — (K — 1)log(K — 1))) + O(1)’
. 2+ @ log(wy +t71) + %St) 9
= log(Kwa+t— 1 (1—(K—1) log(K—1 o)’
t—oo 1 4 log(Kws (lo(gt ) log( )))+%gt)
—2, (69)

which completes the proof.

A.6. Proof of Proposition 6.1

Proof. Since we have sup,, ||Vzz,(x)||q = Ly, for an Lj-Lipschitz function such as |z (1) — zx(@2)| < Li||z1 — 2],
where 1/g+1/p = 1 (Jordan & Dimakis, 2020), the following inequality holds if zy- (x)— 2z, () > —(maxy ||Vz2e(2)||1+
[|Vazy(2)||1)e and p = oo:

2+ () = 2y (@) > —(max |[Ve 2 (@)l +[[Vazy (2)[]1)e

> —(maxsup[[Vazi(2)[[1 +sup |[Vazy (@)[[1)e 2 —(Lg + Ly)e, (70)
because ||Vz2x(x)||1 < Ly for p = oo. Thus, we have zy- (x) — 2, () > —(L;, + Ly )e on this condition, which completes
the proof. O
B. Algorithm

The proposed algorithm is shown in Algorithm 1. We first generate =’ in Line 3 and compute the £, for them in Line
4. In Line 6, we select the top M % samples in minibatch and add them to LL. Finally, we compute the objective Lsovg
and its gradient to update 8. Since we do not additionally generate the adversarial examples for /oyR, the overhead of
our method is O(|B| log % |B|), which is the computation cost of the heap sort for selecting L in Line 6. It is negligible
in the whole computation since deep models have huge parameter-size compared with batch-size |B|.

C. Additional Explanation about Previous Methods
C.1. MART (Wang et al., 2020a)

MART (Wang et al., 2020a) uses a similar approach to importance-aware methods. It regards misclassified samples as
important samples and minimizes

EMART(:L'/7 y>9) = BCE(f((L‘/, 0)73/) + )\KL(f(:B, 0)7 f(wlv 0)) ' (1 - fy(iL', 9>)v (7])

where BCE(f(z', 0),y) =—log(f,(«, 0))—log(1—maxy, fr(x’,0)) and KL is Kullback-Leibler divergence. MART
controls the difference between the loss on less-important and important samples via 1 — f, (x,,, 8): MART tends to ignore
the second term when the model is confident in the true label.
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C.2. MMA (Ding et al., 2020)

MMA (Ding et al., 2020) attempts to maximize the distance’ between data points and the decision boundary for robustness.
MMA regards ming |9, || oo subject to {¢rm(z(x +8,0),y) > 0} as the distance. By using this distance, MMA minimizes
the following loss:

L£(0) = § X0z Lor(2(@n, 0), yn) + FLana (6) (72)
Lana(0) =24 yyes+nu lee(z(@+00ma, 0),y)+D-, yes- ler(z(, 0),y) (73)
OMMA = Arg MiNgg  (2(2+8,60),5)>0 |9]]0o (74)
lsim(z(x,0),y) =log Yo, @ — 2, (x) (75)

where ST is a set of correctly classified data points, and S~ is a set of misclassified samples. H is a set of data points
that have a smaller distance than threshold dyax as H = {(2n, yn)| mins, ||0n||cc < dmax}- Since MMA uses & whose

magnitude ||d]|~ depends on data points as Eq. (74), we consider that it has similar effects to the importance-aware
methods. In MMA, Ding et al. (2020) use ¢si,m(z(, 6), y) as an approximated differentiable logit margin loss by changing
max into differentiable function log >, ,, e (®) Comparing OVR with £spn (2(, 6), y), we have the following:

lsim(2(x,0),y) < Llce(z(x,0),y) < lovr(z(x,0),y). (76)

This is because we have flcp(2(z),y) — flsim(z(z),y) = logd,e*® — log D kty e (@) =
log (1 + 6Zy(w)/zk¢y ezk(w)) > 0 and {cg(z(x),y) < lovr(z(x),y) from Theorem 4.1. Thus, we expect that

OVR more strongly penalizes the small logit margins than ¢sp\ (@, y). Note that training algorithms of MMA is also
different from those of the other importance-aware methods (Ding et al., 2020).

C.3. EWAT (Kim et al., 2021)
EWAT uses a weighted cross-entropy like GAIRAT and MAIL, but it is added to cross-entropy as

£weight (0) = % ZnN:1 (1 + wn) KCE(z(mfme)vyn)v (77)
where w,, > 0 is a weight divided by batch-mean of the weight w,, as w,, = wﬂ#. EWAT determines the weights by
=1 Wi
using entropy as -
wn = = Y1y fu(@),, 0)log(fi(x),, 6)) (78)

where fi(x,, 0) is the k-th softmax output, and thus, it can be regarded as the probability for the k-th class label. EWAT
is based on the observation that importance-aware methods tend to have high entropy, and it causes their vulnerability.
Our theoretical results about logit margins and experiments seem to indicate that a logit margin loss is a more reasonable
criterion to evaluate the robustness and improve the robustness by using it than entropy. Furthermore, Theorem 4.5 shows
that the weighted cross-entropy is less effective than OVR at increasing logit margins.

D. Selection of ¢ in OVR
D.1. Infinite Sample Consistency

Infinite-sample consistency (ISC, also known as classification calibrated or Fisher consistent) is a desirable property for
multi-class classification problems (Zhang, 2004; Bartlett et al., 2003; Lin, 2002). We first introduce ISC in this section.
Let f(x) be a model and c be the classifier ¢(x) = argmaxy, fi(x). The classification error ¢, is

K
Ce(e() = Ba 25y o) arP(Y = klz) (719)
where ay, is a weight for the k-th label and is usually set to one. The optimal classification rule called a Bayes rule is given by
cx (1) = maxpeq1,. kxy axp(y = k|z). (80)

2For clarity, we use the term “margin” only for the distance between logits of the true labels and of the label that has the largest logit
except for the true label, not for the distance between data points and the decision boundary.
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Since Eq. (79) is difficult to minimize directly, we use a surrogate loss function £. In classification problems, we obtain
the model f(-) by the minimization of the empirical risk using ¢ as

F() = argmay() & 3200, U(F (@0),v2). (81)
On the other hand, the true risk using ¢ is written by
W (g, f) == iy arl(f, k) (83)

where p(-|x) = [p(1|x),...,p(K]|x)] and g is a vector in the set A:

Ak = {q € RK . 22{:1 a. =1,qx > 0} . (84)

W (q, f) is the point-wise true loss of model f with the conditional probability g. By using the above, ISC is defined as
the following definition:

Definition D.1. (Zhang, 2004) We say that the formulation is infinite-sample consistent (ISC) on a set Q2 C R¥ with respect
to Eq. (79) if the following condition holds:

» Foreach k, ¢(-, k) : Q — R is bounded below and continuous

* Vg€ Ak and k € {1,..., K} such that arqx < sup, a;q;, we have
W*(q) :==infgco W(q, f) <inf {W(q, f)|f € Q, fi = sup, fi} (85)

This definition indicates that the optimal solution of W (q, -) leads to a Bayes rule with respect to classification error (Zhang,
2004): the minimizer of Eq. (82) becomes the minimizer of classification error £, (Eq. (79)). Thus, surrogate loss functions
¢, e.g., cross-entropy or OVR, should satisfy ISC to minimize the classification error.

D.2. Evaluation of ¢

It is known that ISC is satisfied when ¢ in Eq. (7) is a differentiable non-negative convex function and satisfies ¢(2) < ¢(—z)
for z > 0. Among common nonlinear functions used in deep neural networks, e~ * and log(1 + e~#) satisfy this condition.
We first evaluated e~ and observed that e~* causes numerical unstability. On the other hand, log(1 + e¢~*) tends to be
stable in computation. This is because log(1 4+ e~#) asymptotically closes to max(—z, 0). In addition, let the conditional
probability p(y|x) for the class k given x be

1

p(klz) = 1+ e2r(@) (86)
when we choose ¢(z) = log(1 + e~%). We have
lovr(z(x,8),y) =log(1+e ) + 3 "log(1+e™®) (87)
k#y
= —logp(yl@) + 3, —log(1 — p(k|z)) (88)

and we can regard models as K independent binary classifier (Padhy et al., 2020).

E. Experimental Setups

We conducted the experiments for evaluating our proposed method. We first compared our method with baseline methods;
Madry’s AT (Madry et al., 2018), MMA (Ding et al., 2020), MART (Wang et al., 2020a), GAIRAT (Zhang et al., 2021b),
MAIL (Liu et al., 2021), and EWAT (Kim et al., 2021) on three datasets; CIFAR10, SVHN, and CIFAR100 (Krizhevsky
& Hinton, 2009; Netzer et al., 2011). Next, we evaluated the combination of our method with TRADES (Zhang et al.,
2019), AWP (Wu et al., 2020), and SEAT (Wang & Wang, 2022). Our experimental codes are based on source codes
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provided by (Wu et al., 2020; Wang et al., 2020a; Ding et al., 2020). We used PreActResNet-18 (RN18) (He et al., 2016) and
WideResNet-34-10 (WRN) (Zagoruyko & Komodakis, 2016) following (Wu et al., 2020). The L., norm of the perturbation
was set to € = 8/255, and all elements of z; + 0; were clipped so that they were in [0,1]. We used early stopping by
evaluating test robust accuracies against 20-step PGD. To evaluate TRADES, AWP, and SEAT, we used the original public
code (Wu et al., 2020; Wang & Wang, 2022). We trained models three times and show the average and standard deviation
of test accuracies. We used Auto-Attack to evaluate the robust accuracy on test data. We used one GPU among NVIDIA
®V100 and NVIDIA®A100 for each training in experiments. We trained models three times and show the average and
standard deviation of test accuracies. For MART, we used mart_loss in the original code (Wang et al., 2020a)> as the loss
function. A\ of MART was set to 6.0. For GAIRAT and MAIL, we also used the loss functions in the original codes (Zhang
etal., 2021b; Liu et al., 2021),*> and thus, hyperparameters of their loss functions were based on them. \ of GAIRAT was
set to oo until the 50-th epoch and then set to 3.0. (y, 8) of MAIL was set to (10, 0.5). For all settings, the size of minibatch
was set to 128. The detailed setup for each dataset was as follows.

E.1. MMA

We trained models by using MMA based on the original code (Ding et al., 2020)°. Thus, the learning rate schedules and
hyperparameters of PGD for MMA were different from those for other methods because the training algorithm of MMA is
different from the other methods. The step size of PGD in MMA was set to 215())6 in training by following (Ding et al., 2020).
For AN-PGD in MMA, the maximum perturbation length was 1.05 times the hinge threshold €,,,x = 1.05d 5%, and dpyax
was set to 0.1255. The learning rate of SGD was set to 0.3 at the 0-th parameter update, 0.09 at the 20000-th parameter

update, 0.03 at the 30000-th parameter update, and 0.009 at the 40000-th parameter update.

E.2. CIFAR10

For PreActResNet18, the learning rate of SGD was divided by 10 at the 100-th and 150-th epoch except for EWAT, and the
initial learning rate was set to 0.05 for SOVR and 0.1 for others. We tested the initial learning rate of 0.05 for the other
methods and found that the setting of 0.1 achieved better robust accuracies against Auto-Attack than the setting of 0.05
when using ResNet18. For EWAT, we divided the learning rate of SGD at the 100-th and 105-th epoch following (Kim
et al., 2021) after we found that the division at the 100-th and 150-th epoch was worse than the division at the 100-th and
105-th epoch. When using WideResNet34-10, we set the initial learning rate to 0.1 and divided by 10 at the 100-th and
150-th epoch. We used momentum of 0.9 and weight decay of 0.0005 and early stopping by evaluating test accuracies.
We standardized datasets by using mean = [0.4914, 0.4822, 0.4465] and std = [0.2471, 0.2435, 0.2616] as the pre-process.
(M, \) was tuned by grid search over M € [20,...,80,100] and A € [0.2,...,0.8,1.0] for RN18, and tuned by coarse
tuning for WRN due to high computation cost.

E.3. CIFAR100

We used PreActResNet18 for CIFAR100. The learning rate of SGD was divided by 10 at the 100-th and 150-th epoch
except for EWAT, and the initial learning rate was set to 0.1. Note that we found that the above setting is better than the
initial learning rate of 0.05 for all methods. For EWAT, we divided the learning rate of SGD at the 100-th and 105-th epoch
following (Kim et al., 2021) after we found that the division at the 100-th and 150-th epoch was worse than the division
at the 100-th and 105-th epoch. We randomly initialized the perturbation and updated it for 10 steps with a step size of
2/255 for PGD. We used momentum of 0.9 and weight decay of 0.0005 and early stopping by evaluating test accuracies. We
standardized datasets by using mean = [0.5070751592371323, 0.48654887331495095, 0.4409178433670343], and std =
[0.2673342858792401, 0.2564384629170883, 0.27615047132568404] as the pre-process. (M, A) was set to (50, 0.6) based
on the coarse hyperparameter tuning.

E.4. SVHN

We used PreActResNet18 for SVHN. The learning rate of SGD was divided by 10 at the 100-th and 150-th, and the initial
learning rate was set to 0.05 for SOVR and 0.01 for others. We tested the initial learning rate of 0.05 for the other methods

https://github.com/YisenWang/MART
‘nttps://github.com/zjfheart/Geometry-aware-Instance-reweighted-Adversarial-Training
Shttps://github.com/QizhouWang/MAIL

®https://github.com/BorealisAI/mma_training

17


https://github.com/YisenWang/MART
https://github.com/zjfheart/Geometry-aware-Instance-reweighted-Adversarial-Training
https://github.com/QizhouWang/MAIL
https://github.com/BorealisAI/mma_training

Switching One-vs-the-Rest Loss in Adversarial Training

and found that the setting of 0.01 achieved better robust accuracies against Auto-Attack than the setting of 0.05. For EWAT,
the learning rate of SGD was divided by 10 at the 100-th and 105-th epoch after we found that this setting was better than
the division at 100-th and 105-th epoch. The hyperparameters for PGD were based on (Wu et al., 2020): We randomly
initialized the perturbation and updated it for 10 steps with a step size of 1/255. For the preprocessing, we standardized data
by using the mean of [0.5, 0.5, 0.5], and standard deviations of [0.5, 0.5, 0.5]. (M, \) is set to (20,0.2) on the basis of the
coarse hyperparameter tuning.

E.5. TRADES, AWP, SEAT, and Data augmentation by using synthetic data

For experimental settings of TRADES and AWP, we followed (Wu et al., 2020) and only changed the training loss into
SOVR in the training procedure and in the algorithm for computing the perturbation of AWP for SOVR+AWP, TSOVR,
and TSOVR+AWP. We used the original codes of AWP (Wu et al., 2020)’. For AWP and AWP+SOVR, we found that
models trained under the setup for TRADES+AWP in original codes, where the dataset is not standardized and AWP is
applied after 10 epochs, achieves better robust accuracy than those trained under the setup for cross-entropy+TRADES in
original codes. Thus, we used the code for TRADES+AWP by changing the loss functions. S of TRADES and TSOVR
were set to 6, and v of AWP is set to 0.01 for AWP and AWP+SOVR. ~ of AWP was set to 0.005 for TRADES+AWP and
TSOVR+AWP. AWP is applied after the 10-th epoch. We used WideResNet34-10 following (Wu et al., 2020). We used
SGD with momentum of 0.9 and weight decay of 0.0005 for 200 epochs. The learning rate was set to 0.1 and was divided by
10 at the 100-th and 150-th epoch. For experimental settings of SEAT, we followed (Wang & Wang, 2022) and only changed
the loss into SOVR in the original code (Wang & Wang, 2022).8 We did not evaluate SEAT with CutMix in our experiments,
but we fairly compare SEAT+SOVR with SEAT under the same condition. We used SGD with momentum of 0.9 and weight
decay of 7 x 10~ for 120 epochs. The initial learning rate was set to 0.1 till the 40-th epoch and then linearly reduced to
0.01 and 0.001 at the 60-th epoch and 120-th epoch, respectively. We used WideResNet32-10 following (Wang & Wang,
2022) for SEAT. (M, \) is tuned by grid search over M € [20,...,80,100] and A € [0.2,...,0.8,1.0] for SOVR+AWP,
and (M, )) is tuned by grid search over M € [20,...,80,100] and A € [0.2,...,1.0,1.2] for TSOVR. (M, \) is set to
(50,0.5) for SOVR+SEAT after coarse hyperparameter tuning. For experimental settings of data augmentation using 1M
synthetic data by DDPM, we used the code of (Rade, 2021). We only changed the maximum learning rate for SOVR and set
to 0.2. Following (Rade, 2021), label smoothing with 0.1 is applied to cross-entropy in SOVR and TSOVR.

E.6. Experimental Setups in Section 3

For the experiments in Section 3, we used the models obtained under the above settings, which are the same as models used
in Section 6. To obtain the histograms of logit margins, we used the models and computed logit margin loss on adversarial
examples of training data set for each data point at 200 epochs. We set training mode in pytorch, i.e., we used the batch
statistics for batch normalization, to reproduce the actual behavior of logit margin losses of training samples in training. The
number of data points of CIFAR10 and CIFAR100 is 50,000, and that of SVHN is 73,257.

F. Additional Results
F.1. Histograms of Logit Margin Losses

We show the additional histograms of logit margin losses in this section. First, Fig. 8 plots the result of EWAT on training
samples of CIFAR10 at the last epoch. Compared with SOVR, EWAT does not increase logit margins for important (difficult)
samples (right peak). Figures 9-12 plot the histograms when using WideResNet and other datasets. SOVR tends to increase
the left peak under all conditions, and thus, it decreases logit margin losses £\, and thus, it increases the logit margins
|1m|. Figure 11 shows that AT does not have two peaks on SVHN. To investigate histograms on SVHN in detail, we
additionally evaluate logit margin losses at the 100-th epoch in Fig. 12. This figure shows that the histogram on SVHN has
two peaks at the 100-th epoch, but they became one peak at the 200-th epoch (Fig. 11). This might cause the optimal (M, \)
for SOVR to be smaller than that for other datasets. Figure 13 plots the histograms of TRADES and shows that TRADES
has two peaks but they are close to each other. This might be because the objective functions for adversarial examples and
parameters are different. Table 3 lists the average of logit margin losses. Since the distributions of logit margin losses are
long-tailed as shown in histograms, the difference in average values of logit margin losses among methods is small. Even so,

"https://github.com/csdongxian/AWP
$https://github.com/whij363636/Self-Ensemble-Adversarial-Training
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Figure 8: Histogram of logit margin losses of EWAT for training data on CIFAR10.
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Figure 9: Histogram of logit margin losses for training samples of CIFAR10 with WideResNet34-10 at the last epoch. We
plot those on adversarial data ' for the other methods. Blue bins are the data points that models correctly classify.

SOVR tends to have the lowest logit margin losses under almost all settings.

F.2. Evaluation of Gradient Norms

Even though logit margins of importance-aware methods are very small, they are robust against PGD and some attacks
(Fig. 1). To reveal the cause of this robustness, we additionally evaluate th gradient norms for loss and logit functions
(Fig. 14). In this figure, the gradient norms of cross-entropy ||V, ¢cg(x, y)||1 are relatively small values in all methods.
This indicates that adversarial training essentially attempts to suppress the gradient norms for the cross-entropy. MMA has
the largest gradient norms, and this is the reason MMA is not robust against Auto-Attack except for SQUARE (Fig. 1),
which does not use gradient. GAIRAT and MAIL have the smallest and second smallest ||V, {cr (2, y)||1, and this is the
reason they are robust against PGD despite the small logit margins (Fig. 2). On the other hand, maxy, ||V zk(z)||1 of
importance-aware methods is larger than ||V ¢cg(x, y)||1 of them and that of AT. As a result, they can have larger rate of
potentially misclassified samples (Fig. 6). Gradient norms of cross-entropy for the label that has the largest logit except for

Table 3: Average logit margin losses for training dataset «’ at the last epoch.

Dataset AT MART MMA GAIRAT MAIL EWAT SOVR

CIFAR10 (RN18) -3.66+0.02 -3.46+0.02 0.558+0.1 -0.258+0.02 -0.0293+£0.02 -2.251£0.007 -4.34+ 0.02

CIFAR10 (WRN) -6.96+0.01 -5.65£0.7 -2.73£0.6 -0.717£0.03  -0.203=£ 0.01 -5.69+£0.04  -8.56+ 0.04
CIFAR100 -2.41£0.02 -1.76£0.01 2.07£0.06  -0.68+0.02 0.684+0.1 -1.36+0.02 -2.44£0.1
SVHN -7.55+0.01 -8.08+2 -4.31£0.04  -3.91+0.01 -1.17£0.03 -9.324+0.04 -7.59£0.1
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Figure 10: Histogram of logit margin losses for training samples of CIFAR100 at the last epoch. We plot those on adversarial
data &’ for the other methods. Blue bins are the data points that models correctly classify.
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Figure 11: Histogram of logit margin losses for training samples of SVHN at the last epoch. We plot those on adversarial
data &’ for the other methods. Blue bins are the data points that models correctly classify.
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Figure 12: Histogram of logit margin losses for training samples of SVHN at the 100-th epoch. We plot those on adversarial
data &’ for the other methods. Blue bins are the data points that models correctly classify.
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Figure 15: Trajectories of logit margin losses £, in adversarial training using cross-entropy and OVR. RN18 is used on
CIFAR100 and SVHN.

CIFAR10 (RN18) CIFAR10 (WRN) CIFARIO0 SVHN
1.87 1.78 1.56 1.76

Table 4: fr\(29VF) /i (2CF) with w = 1.0 at the last epoch

the true label ||V ,{cg (e, k*)||1 are smaller than those for the randomly selected labels. This implies &* # k, and we need
to use the loss that depends on the logits for all classes rather than logit margin loss, which only cares 2} and z,. Gradient
norms of EWAT and SOVR are not significantly different from those of AT. Thus, SOVR can reduce the rate of potentially
misclassified samples by large logit margins and not large gradient norm.

F.3. Trajectories of Logit Margin Losses in Adversarial Training with OVR and Cross-entropy

In this section, we evaluate the trajectories of logit margin losses in adversarial training on real data. Experimental setup is
the same with that of Section 6 except for the learning rate on CIFAR10, and thus, we minimize the OVR and cross-entropy
averaged over the dataset, unlike Eq. (10). While the learning rates are set to 0.1 for cross-entropy and 0.05 for SOVR in
Section 6 on CIFAR10, learning rate is set to 0.05 on CIFAR10 for both cross-entropy and OVR to fairly compare their logit
margin losses in this experiment. Since we could not obtain results on SVHN with the weight of w =5 due to unstability, we
used w =2 on SVHN. Fig. 15 plots the logit margin losses averaged over the dataset against epochs in adversarial training
with OVR and cross-entropy on CIFAR10, CIFAR100, and SVHN. In Fig. 15, OVR decreases the logit margin losses more
than cross-entropy on all dataset. We also evaluate £1,,(z°V ) /¢1n(2¢F) at the last epoch, which is expected to be about
two from Theorem 4.5. Table 4 list /1., (29 %) /f101(29F) at the last epoch, and it is about two, and thus, logit margin
losses in adversarial training follow Theorem 4.5 well even though we assume a simple problem that only considers one
data point and assumes that logits are directly moved by the gradient for Theorem 4.5. Since the number of classes K of
CIFAR100 is 100 and larger than other datasets, the logit margins of cross-entropy is larger than OVR at the beginning of
training. This result corresponds to the case of CE (K = 100) in Fig. 3(a), and this phenomenon is also able to be explained
by the simple problem Eq. (10). To the best of our knowledge, this is the first study that explicitly reveals the logit margin of
minimization of cross-entropy depends on the number of classes. Though the logit margin loss of OVR in Theorem 4.5 does
not depend on K, the logit margins of OVR on CIFAR100 is smaller than those on CIFAR10 and SVHN. This is because
CIFARI100 is a more difficult dataset than CIFAR10 and SVHN: robust accuracies of CIFAR100 is about 25 % whereas
those of CIFAR10 and SVHN are about 50 % in Tab. 1.

F.4. Effects of Hyperparameters \

SOVR has hyperparameters (M, A). In this section, we evaluate the effects of A. Figure 16 plots 1,5, on CIFAR10 with
RN18, generalization gap, and robust accuracy against Auto-Attack. We set M to 40. Note that A = 0 corresponds to that
models are trained on only a set of S, i.e., AT only using the 60 percent of the data points in minibatch when M = 40. First,
L1 (') is monotonically decreasing due to increases in A (Fig. 16(a)). However, robust accuracies against Auto-Attack are
not monotonically increasing against A (Fig. 16(c)). This is because generalization gap increases (Fig. 16(b)). Thus, too
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Figure 16: The effect of rate of applying OVR A\. M is set to 40. Generalization gap is a gap between training robust
accuracy and test robust accuracy against PGD (/C=20) at the last epoch. Robust Acc. is robust accuracy against Auto-Attack.
Dashed gray line corresponds to the results of AT using cross-entropy loss.
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Figure 17: The robustness against PGD-20 and Auto-Attack on the test set of CIFAR10. We decompose the robust accuracy
for Auto-Attack into robust accuracy in each phase.

high weights on important samples causes overfitting. SOVR is always superior or comparable to AT in terms of robustness
against Auto-Attack under all tested values of (0 < M < 100,0 < A < 1).

F.5. Individually Test of Auto-Attack

For importance-aware methods, we evaluate the robust accuracies against all components of Auto-Attack in Section 2.3. In
this section, we additionally evaluate EWAT by individually using Auto-Attack and discuss the results of SOVR. Figure 17
plots the results, and SOVR is the most robust against t-APG and t-FABand. In addition, it is more robust against SQUARE
than AT and EWAT. Although the robust accuracy of SOVR against PGD-20 is lower than those of AT and EWAT, SOVR
outperforms other methods in terms of the robustness against the worst-case attacks, which is the goal of this study.

F.6. Evaluation Using Various Attacks

We list robust accuracies against various attacks; FGSM (Goodfellow et al., 2014), 100-step PGD (Madry et al., 2018), 100-
step PGD with CW loss (Madry et al., 2018; Carlini & Wagner, 2017), SPSA (Uesato et al., 2018) in Tab. 5. Hyperparameters
of SPSA are as follows: the number of steps is set to 100, the perturbation size is set to 0.001, learning rate is set to 0.01,
and the number of samples for each gradient estimation is set to 256. In this table, we repeat the clean accuracies and
robust accuracies against Auto-Attack from the table in the main paper. In addition, we list the worst robust accuracies,
which are the least robust accuracy among attacks in the table for each method. In this table, importance-aware methods
tend to fail to improve the robustness against SPSA. Since SPSA does not directly use gradients, this result indicates that
importance-aware methods improve the robustness by obfuscating gradients (Athalye et al., 2018). Against some attacks,
MMA achieves the highest robust accuracy on several datasets. However, our goal is improving the true robustness, i.e.,
robust accuracies against the worst-case attacks in § € {||d||cc < 8/255}. MMA does not improve the robustness against
the worst-case attacks (the columns of Worst). We can see that Auto-Attack always achieves the least robust accuracies, and
SOVR improves them: Robust accuracies against Auto-Attack of SOVR are 5.9-12.2 percent points greater than those of
MMA.

23



Switching One-vs-the-Rest Loss in Adversarial Training

Table 5: Robust Accuracy against various attacks (Lo, € = 8/255). CLN denotes accuracy on clean data, and AA denotes
Auto-Attack. Worst represents the least robust accuracy among attacks in the table for each method.

Method CLN FGSM PGD CwW SPSA AA Worst
AT 81.6+0.5 57.6%0.1 52.5+£0.4 50.0+£0.4 56.8+£0.2 48.04+0.2 48.0£0.2
MART 78.3£1 58.0£0.3 54.0£0.1 48.7£0.2 54.240.1 46.940.3 46.9+0.3
MMA 855+0.7 655+2 51.6£0.2 51.0+0.6 56.3+1 37.2£0.9 37.2+0.9
C10 GAIRAT  78.7+0.7 63.1£0.7 62.0 + 0.4 40.01+1 47.4+1 37.7+1 37.7+£1
(RN18) MAIL 79.54+0.4 57.84+0.1 54.97+0.08 42.14£0.2 49.1+£0.4 39.6+£0.4 39.6+£0.4
EWAT 82.8+0.4 57.7£0.4 52.3+£0.4 50.4+0.7 56.8+£0.2 48.24+0.7 48.240.7
SOVR 81.9+0.2 57.0+0.2 50.91+0.5 51.54+0.2 57.74+0.2 49.44+0.3 49.44+0.3
AT 85.6+0.5 60.9+0.4 55.1£0.4 54.0+0.6 60.8+0.5 51.9+0.5 51.940.5
MART 81.5+1 61.3+0.6 57.2£0.2 52.1+0.3 57.8£0.6  50.44+0.09 50.44+0.09
MMA 87.8+1 68.6 +1 55.7+1 55.4 4+ 0.7 59.6+2 43.1£0.6 43.1£0.6
C10 GAIRAT  83.0+0.7 64.1£0.5 62.9+ 0.4 44.4+0.7 52.1+0.5 41.8+0.6 41.8+0.6
(WRN) MAIL 82.24+0.4 59.3+0.5 56.0+0.5 45.740.2 53.0+0.2 43.3+0.1 43.3+0.1
EWAT 86.0+0.5 60.6+0.4 54.5£0.1 53.8+£0.3 60.7£0.4 51.6£0.3 51.6+0.3
SOVR 85.0+1 60.8+0.1 54.5£0.2 552402 61.6+0.1 53.14+0.2 53.1+0.2
AT 89.84+0.6 30.1+0.4 27.7+0.2 25.6+0.3 29.3+0.3 23.7+0.3 23.740.3
MART 86.9+0.6 31.0+0.2 29.36+£0.06 25.4+0.3 28.5+0.1 23.9+0.3 23.940.3
MMA  93.9+0.4 257403 19.4£0.2 20.5+0.1 24.3£0.3 18.4£0.2 18.44+0.2
C100 GAIRAT  89.9+04 27.940.3 26.0£0.2 21.9+04 25.9£0.1 19.8+0.5 19.8+0.5
MAIL 89.4+04  24.814+0.08 23.29+0.06 18.3£0.5 21.9£0.5 16.7+0.3 16.7£0.3
EWAT 90.2+£0.6  30.07+0.08 27.4£0.3 25.3+0.2 29.3£0.1 23.52+£0.06  23.524+0.06
SOVR 90.0£1 30.24+0.2 27.440.2 26.1+0.1 29.94+0.1 24.3+0.2 24.34+0.2
AT 53.0+0.7 61.1£0.5 50.6+£0.4 47.7£0.8 55.7£0.9 45.6+0.4 45.6+0.4
MART 49.240.1 64.4+0.5 56.5£0.2 49.0+£04  56.69+0.08  46.9+0.3 46.9+0.3
MMA 60.6 = 0.6 79.6+0.8 65.0+1 59.14+2 63.2+2 41.0£0.3 41.0£0.3
SVHN GAIRAT  52.0+0.5 65.8+0.4 60.4£0.6 40.6+0.7 48.84+0.6 37.6£0.6 37.6+0.6
MAIL 46.5+0.5 64.6+0.4 58.2+0.3 44.14+0.7 52.3£0.5 41.240.3 41.240.3
EWAT 54.2+1 61.8+0.5 51.7+0.2 50.2+0.4 57.4+0.4 47.6+£0.4 47.6+0.4
SOVR 52.1+0.8 65.3£2 50.7£0.2 52.5+0.2 60.7+0.4  48.5+0.4 48.51+0.4
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Figure 18: Robust Accuracy against logit scaling attack.

F.7. Evaluation using Logit Scaling Attack

In this section, we evaluate the robustness against the logit scaling attack (Hitaj et al., 2021). (Hitaj et al., 2021) reveals
that GAIRAT tends to be vulnerable to logit scaling attacks. The logit scaling attack multiplies logits by « before applying
softmax when generating PGD attacks. We set o = [0.1, 1.0, 10, 100]. Fig. 18 plots robust accuracy against «. This figure
shows that the robust accuracies of GAIRAT and MAIL tend to decrease when increasing «. Though the robust accuracy of
SOVR is the lowest on CIFAR 10 (RN18), it is higher than the robust accuracy against Auto-Attack. Thus, the logit scaling
attack is not the worst-case attack. Since the robust accuracy of SOVR does not necessarily decrease when increasing «,
the results seem to be caused by high robustness against PGD (Tab. 5) of other methods rather than vulnerability to logit
scaling of SOVR. Previous methods tend to be designed to increase the robustness against PGD since Auto-Attack is a
relatively recent attack. On the other hand, SOVR is designed to increase the robustness against the worst-case attack, which
is Auto-Attack for now.

F.8. Evaluation using Auto-Attack with larger magnitudes

In this section, we evaluate the robustness against Auto-Attack with € = 12/255 and 16/255. These magnitudes are larger
than the magnitude used in adversarial training, and thus, this experiment evaluates the existence of overfitting to the
magnitude used in training. Tab. 6 lists robust accuracies against Auto-Attack with e = 12/255 and 16/255. This table
shows that SOVR outperforms AT, and TSOVR achieves the largest robust accuracies. Thus, our methods do not overfit
to the magnitude of attacks used in training. Interestingly, this table also shows that MART outperforms AT while the
robust accuracies against e =8/255 of MART are not always larger than those of AT (Tab. 1). MART might have better
generalization performance for the magnitudes of attacks.

F.9. Dependence of the Number of Classes

Figure 6 shows that the rate of AT gets close to SOVR on CIFAR100. This is because the number of classes of CIFAR100
(K = 100) is ten times larger than other datasets (KX = 10), and logit margins of cross-entropy depend on the number of
classes K (Eq. (17)). Thus, this result is a piece of evidence that Theorem 4.5 explains the difference of logit margins
between OVR and cross-entropy. In certain finite time step ¢ (not the limit), Egs. (16) and (17) show that the difference
between OVR and cross-entropy depends on the number of classes K. Even so, Fig. 15(b) shows that the increase rate
of logit margins of OVR is larger than that of cross-entropy against epochs. To achieve better performance, we can tune
the hyper-parameter A, which corresponds to w; in Eq. (16) of Theorem 4.5. When using A= 0.6, SOVR achieves better
robustness than A = 0.5 on CIFAR100 (Tab. 7). Cross-entropy also has the weight w» in Eq. (17), and it is automatically
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Table 6: Robust accuracy against Auto-Attack using e = 12/255 and 16/255.

Robust Accuracy against Auto-Attack (L., adversarialy trained by using PGD with £ =8/255)
AT MART MMA GAIRAT MAIL EWAT SOVR  TRADES TSOVR

CIFAR10 (RN18, e =12/255) 28.6+£0.6  29.6+0.8 19.7+0.9 19+1 20.2+£0.5 28.4+0.8 30.3+0.3 30.6+0.5 31.9+0.4
CIFARI10 (RN18, e =16/255) 13.6+0.6 15+1 8.8£0.5 7.8£0.5 7.9+0.5 13.2402 14.3+0.1 16.0+0.8 17.0£0.5

CIFAR10 (WRN, £ =12/255) 31.2+0.2 32+1 25+1 22+1 23.0+0.2 31.14£0.3 32.7£0.3 34.8+02 35.54+0.3
CIFARI10 (WRN, e =16/255) 15.3£0.3 17+1 13+1 9.14+0.7  9.43+04 14.840.1 16.1+04 19.6+0.1 20.4+0.6
SVHN (RN138, £ =12/255) 23.0+0.5 2441 23+1 18.240.7 19+1 25.940.7 25+1 29.0+0.6 29.4+0.5
SVHN (RN18, e =16/255) 10.6£0.5 11.4+0.7 14+1 7.9+0.3 8.1£0.2  12.0+£04 10.5+0.6 15.2+0.7 15.440.7

CIFARI100 (RN18,e=12/255) 13.840.1 152403 10.0£0.3 10.45+0.5 8.5+04 13.4+0.1 14.5+£0.3 13.9+03 16.0+£0.2
CIFARI00 (RN18,£=16/255) 7.53+0.03  9.4+0.1 5.9+0.3 5.1£0.4 4.1+£04  7.1£0.1 8.1£0.1 8.2+0.1 10.0+0.1

Table 7: Robust accuracy against Auto-Attack on CIFAR100 tuning .

Robust Accuracy against Auto-Attack (L., £ =8/255)
AT SOVR (A=0.5) SOVR (A=0.6)
CIFAR100 (RN18)  23.7£0.3 24.3£0.2 24.6 0.1

Clean Accuracy

CIFAR100 (RN18) 53.0£0.7 52.1£0.8 519+ 0.6

tuned in GAIRAT, MAIL, and EWAT. However, this tuning does not achieve comparable performance to SOVR.

F.10. Histogram of Probabilistic Margin Losses

While our study focuses on the logit margin loss, MAIL (Liu et al., 2021) uses the probabilistic margin,
PMn = fyn (m;’m 9) — MaXg=£y, fk (m{m 9)7 (89)

to evaluate the difficulty of data point. In the same way as Fig. 2, Fig. 19 plots the histograms of probabilistic margins on
CIFAR10 with PreActResNet18. Since softmax output is bounded in [0, 1], PM is bounded in [-1,1]. As a result, most
correctly classified data points concentrate near -1. In addition, softmax uses exponential functions, distributions of PM are
similar to the exponential distributions. Due to these effects, histograms of PM make it more difficult to discover the fact
that there are two types of data points (easy samples and difficult samples). Since softmax preserves the order of logit, and a
classifier infers the label by using the largest logit, the analysis by using PM can under-estimate the distribution of difficult
samples. Thus, logit margin losses are more suitable to empirically analyze trained models. Since softmax preserves the
order of logit, the probabilistic margin can be used to determine L. and S in SOVR.
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Figure 19: Histogram of probabilistic margin losses for training data of CIFAR10 with PreActResNet18 at the last epoch.
ST denotes standard training, i.e., training on clean data. For standard training, we use PM on clean data x, while we plot
that on adversarial examples &’ for the other methods. Blue bins correspond to the correctly classified data points, and red
bins are misclassified samples.
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