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Abstract

The modern connectivist framing of neural computation emphasizes the primacy of
synaptic communication at the risk of neglecting the influence of the surrounding
neuromodulatory environment — a neuron’s ’biophysical context.’ Decades of
experimental work has established two views of neuromodulatory (NMs) influence:
1) NMs significantly alter circuit dynamics and 2) NMs gate synaptic plasticity,
acting as a ’third factor’ in learning. Here, we unify these perspectives, proposing
that neuromodulation via volume transmission implements a powerful computa-
tional principle: context factorization. We derive an endogenously neuromodulated
Recurrent Neural Network (e-nmRNN) from a rate reduction of NM release, show-
ing how NM concentrations dynamically factorize network connectivity. This
framework reveals how multiplicative NM gating distinctly influences dynamical
regimes compared to additive input. Crucially, this context factorization enables
targeted online credit assignment: learning rules derived for the e-nmRNN are
naturally gated by NM concentrations, localizing updates to relevant contexts.
We demonstrate that e-nmRNN dynamics can learn to approximate gradient de-
scent, facilitating rapid in-context adaptation akin to meta-learning. Empirically,
e-nmRNNs achieve strong compositional generalization in sequence-to-sequence
tasks, outperforming baselines and exhibiting greater hyperparameter robustness.
Furthermore, when trained on complex multitasking benchmarks, e-nmRNNs
develop emergent properties mirroring biological observations, including modu-
larity, cell-type specialization based on NM release, and distinct neuromodulatory
timescales encoding task context. The model’s interpretability allows us to reverse
engineer these emergent structures. Notably, in reinforcement learning tasks, the
e-nmRNN learns to encode context and signals like Reward Prediction Error (RPE)
within its neuromodulator dynamics, demonstrating a mechanism for RPE-gated
online credit assignment essential for learning how to learn. By bridging biophysi-
cal mechanisms with computational principles and empirical validation, our work
presents e-nmRNNs as a performant, interpretable model for understanding the
computational role of neuromodulation in flexible and compositional learning.
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1 Introduction

The adaptability of biological neural networks relies on neuromodulation [1, 2, 3, 4]. Beyond rapid
synaptic transmission, neuromodulators (NMs) influence computation via slower, diffuse volume
transmission [5, 6, 7] shaping a neuron’s ’biophysical context.’ This influences circuit dynamics [8, 9,
10] and gates synaptic plasticity [4, 11, 12, 13]. We propose that volume transmission implements
context factorization [14], a computational principle unifying these roles by defining the moment to
moment dynamics as a product of the dynamics in different contexts and a belief about which context
is most relevant. We hypothesize neural dynamics decompose into a slowly varying context state
(NM concentrations) and faster neuronal activity [15, 16, 17], providing a parsimonious mechanism
for dynamic network reconfiguration [18, 19, 20].

We formalize this intuition with an endogenously neuromodulated Recurrent Neural Network (e-
nmRNN), derived from a rate reduction of a biophysical model of NM volume transmission. The
"endogenous" nature is its defining feature: the neuromodulatory state is generated by the network’s
own recurrent activity, creating a closed-loop, self-modulating system. This allows the network to
learn to generate its own internal context states, enabling it to autonomously infer context from an
input stream and adapt accordingly. The resulting model is related through a nonlinear transformation
(rate → synaptic drive) to the recent model from Costacurta et al [15]. Direct comparison after
transformation reveals two structural changes: 1) Costacurta et al [15] incorporate low-rank modu-
latation passing through a second nonlinearity and 2) direct coupling of context and neuromodulation.
Our work complements this perspective by directly connecting biophysical parameters to dynamic
connectivity.

We view this alternative derivation, resulting in a closely related but non-identical form, as strong
support for the value of this model family. The e-nmRNN forms a context-factorized hypernetwork
[18], where the NM state modulates effective synaptic weights, linking to attention [21], state-space
models [22], and dynamic networks [23, 19, 24].

Our central claim: context factorization enables targeted online credit assignment and robust com-
positional generalization. e-nmRNN learning rules are gated by NM state, directing updates to
relevant contexts. NM dynamics can converge to approximate gradient descent on effective weights,
facilitating in-context adaptation akin to meta-learning [25, 26, 20]. We conduct two main exper-
iments – one in supervised learning and one in reinforcement learning – to probe the emergence
of credit-assignment-like dynamics in meta-learning environments. We also conduct two further
explorations on the facilitating role such learning-to-learn plays for succeeding in compositionally
structured tasks [27, 28].

Our empirical findings underscore the value of volume transmission implemented context-
factorization. We show that e-nmRNNs achieve strong compositional generalization, outperforming
baselines. On multitasking benchmarks [27], trained networks show adaptive generalization and emer-
gent structures (modularity, cell specialization, timescale separation) mirroring biology. In addition,
the model’s interpretability allows for neurobiology-inspired, reverse engineering, confirming context
encoding in NM dynamics. Furthermore, we demonstrate the framework’s relevance to reinforcement
learning, showing how the model learns to encode critical learning signals like Reward Prediction
Error within its neuromodulatory state, opening the door to RPE-gated online adaptation.

This work bridges neurobiology and machine learning, offering an interpretable architecture with
strong inductive biases for flexible, compositional learning for advancing the two-way conversation
within neuro-AI [29].

2 Endogenously Neuromodulated RNNs as Context-Factorized
Hypernetworks

Here we outline the derivation and connection of these equations to other model classes. For a more
in-depth discussion please see Appendix section 1 and section 2 respectively.

2.1 Derivation from Modulated LIF Neurons

Starting with Leaky Integrate-and-Fire (LIF) neurons where synaptic efficacy is modulated by a
"well-mixed" environment of NMs surrounding all neurons [3, 4]. This well-mixed assumption is a
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Figure 1: Volume transmission implements context factorization. A) The ambition of this work is to
link neurobiological volume transmission of small molecules with a powerful computational primitive:
context factorization – the ability to decompose dynamics and context. This approach unifies both
targeted online credit assignment with neuronal dynamic changes under different conditions. B)
Our tool for connecting substrate with computation is the endogenously neuromodulated RNN
characterized by the reciprocal coupling of neuronal rates r⃗(t) and neuromodulator concentrations
n⃗(t) as a principled ’next leading order contribution’ to RNN dynamics.

principled abstraction, interpreted as a timescale separation where diffuse NM concentrations establish
a stable "context" for faster neural dynamics. We codify this to leading order by its contribution to the
effective synaptic strength W eff

ij . We add a matrix Taylor Expansion around the baseline synaptic
weights (W o

ij) in the form of a learned tensor Tijk. This tensor should be interpreted as how the
effective coupling between neurons i and j changes in the presence of the kth NM nk(t):

W eff
ij (t) = W o

ij +

M∑
k=1

Tijknk(t)

Importantly, NM concentrations follow their own endogenously generated dynamics when spiking
neurons release neuromodulators with each spike. Applying a rate reduction (detailed in Appendix
section 1), we obtain the e-nmRNN rate dynamics, where ϕ and θ are nonlinear activation functions
(e.g., ϕ = tanh and θ=ReLU(tanh))) for the rate and neuromodulator dynamics, respectively:

ṙi = ϕ

∑
j

Wijrj +
∑
j,k

Tijkrjnk +
∑
l

uilIl


ṅk = θ

∑
j

Rkjrj +
∑
l

Zklnl


These equations link biophysical parameters to trainable RNN parameters W,T,R,Z, u. The Zkl

Table 1: Parameter and State Variable Definitions for a e-nmRNN

Parameter Definition State Definition
Wij Synaptic connectivity (i, j). ri Firing rate, neuron i.
Tijk Modulatory effect of kth NM on synapse (i, j). nk Concentration kth NM.
Rik Release of neuromodulator k by neuron i.
Zkl Effect of neuromodulator l on k.
uil Input current to neuron i from stimulus l.

matrix models effective interactions between neuromodulatory systems (e.g., release of one NM influ-
encing another), not literal chemical reactions, and often converges during learning to approximately
diagonal.

Importantly, we can make explicit connections between the notion of "neuron-type" diversity and the
structure of these matrices.

• The sign of the columns of Wij encode Dale’s law enforcing the pre-synaptic neurotransmit-
ter to be either excitatory or inhibitory [30].

• The pre-synaptic partners have also been shown to encode cell type [31].
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• The rows of the T tensor indicate the sensitivity of the post-synaptic neuron to the presence
of a volume transmitted small molecule nk(t).

• The columns of the R matrix indicate how much of each small molecule a neuron’s activity
promotes the release of, with a highly selective column indicating specialization. For in-
stance, a unit whose activity primarily drives one modulator could be functionally described
as a "dopamine-promoting unit".

• The Z matrix defines the amount of small-molecule to small molecule coupling [7] and often
found to be approximately diagonal.

Within the e-nmRNN model class we consider three variants. The first axis of variation is the
definition of the decoder. On one hand, we consider the classic trainable decoder with a linear readout
matrix D, and on the other, we consider a neuromodulated decoder where we put the output decoder
subject to the neuromodulatory state:

Oi(t) =
∑
j

Dijrj(t) or Oi(t) =
∑
j

∑
k

Dijknk(t)rj(t)

We call these two options the "fixed decoder" and the "modulated decoder" respectively.

The second primary axis of variation considered in the work is the presence or absence of spatial
embedding and Dale’s law. Recent work has shown that spatial embedding can improve the conver-
gence on compositional tasks [32], improve interpretability [33], and reduce catastrophic forgetting
through the mathematical connection to learning with preferential attachment [34]. This acts as a
strong, biologically-inspired regularizer, imposing sparsity and encouraging local processing motifs.

To define our spatially embedded networks, we take inspiration from Waxman random graph genera-
tion. We begin by hyper-uniformly placing N neurons into a D dimensional space, x⃗ (here D=2) [35].
Next, we sample each cell randomly as an excitatory or inhibitory neuron denoted by ιi ∈ {0, 1}.
Combining these two terms we generate our network connectivity with:

Wij = Wo(−1)ιje
−|xi−xj |+ωij

ℓ

where Wo and ℓ are the characteristic magnitude and lengthscale respectively. ωij is a trainable
parameter whose update rule is simply propagated through the backward pass to find a power-
propagation-like learning rule [34] which causes large synapses to learn more quickly and maintains
sparsity of neurons which are not connected.

2.2 Multiplicative gating of dynamics

As noted by Costacurta et al [15], the nmRNN and this work’s close cousin, the e-nmRNN, are
special forms of gated RNNs (see also [17]). While an RNN is a universal function approximator, it
carries a very different inductive bias than the gated RNN [36]. To build intuition for the ramifications
of this form of gating on sequence generation, we study the distinguishable signatures of a rank-2
neural network being modulated across a Bifurcation (e.g. Hopf) via multiplicative gating and
additive synaptic drive respectively (see also work from Pellegrino et al [24] on a similarly formulated
pitchfork bifurcation).

We find that for a tanh() nonlinearity, these two mechanisms require very different symmetry
properties and modes of action (e.g. gain modulation versus operating point shift). Further for a broad
class of symmetric nonlinearities, additive synaptic drive from a context neuron is less expressive
than differential gain modulation. For a more in-depth discussion see Appendix section 5.

While this intuition is not essential to understand this work, we believe that the interested reader
will find this discussion insightful as we study training across various forms of Hopf bifurcations in
sections 3, 4, and 5.

2.3 Interpretation as a Context-Factorized Hypernetwork

We define context factorization as the decomposition of a network’s effective connectivity into
a fast-varying neural activity and a slow-varying modulatory state (the ’context’; see figure 1A).
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Mathematically, the effective synaptic weight from neuron j to i is factorized as:

W eff
ij (t) = W 0

ij +

M∑
k=1

Tijknk(t)

This allows the low-dimensional context vector n⃗(t) to dynamically reconfigure the high-dimensional
effective connectivity of the network. This is a context-factorized hypernetwork [15, 19], where the
NM network generates parameters for the main RNN. The term

∑
j,k Tijkrjnk represents tertiary

interactions. Connections to SLDS, attention, and other architectures are detailed in Appendix 2.

3 Context-Targeted Online Credit Assignment

Context factorization enables online, targeted credit assignment, which is ideally local in time and
information [12, 11, 4, 37].

3.1 Deriving Learning Rules

Considering gradient descent on a loss L, we derive learning rules by matching terms order-by-order
[11, 12]. For Tijk, the leading order gradient uses the pre-activation input ("synaptic drive") Ai(t) to
neuron i’s nonlinearity and the instantaneous error signal ϵa(t) = ya(t)− y∗a(t):

∇Tijk
L ∝ nk(t)︸ ︷︷ ︸

context gate

ϵa(t)Daiϕ
′(Ai(t))rj(t)︸ ︷︷ ︸

∇WL, the usual gradient

This 4-factor rule is gated by nk(t), ensuring updates are directed to the relevant context [18] by
the neuromodulator and the transpose of the decoder matrix. D. This rule is a temporally-localized
approximation to the full BPTT/RTRL gradient[12]. The recurrent state r⃗(t) and, critically, the slow
neuromodulatory state n⃗(t) act as eligibility traces, carrying the necessary temporal context from
the past, making the local update effective for tasks requiring credit assignment over intermediate
timescales. Other parameter rules are detailed in the Appendix section 3.

3.2 Connection to Meta-Learning and Gradient Approximation

The e-nmRNN dynamics allow W eff
ij (t) to change via n⃗(t) as:

Ẇ eff
ij = Tijkṅk(t) → Tijkθ

∑
j

Rkjrj +
∑
l

Zklnl


Can Tijkṅk(t) learn to approximate −η∇Wij

L(t)? To study this question: we conduct numerical
experiments in a simple meta-learning sequence learning task where networks are trained to generate
a specific example of the sine family of curves when fed in the amplitude, Ai, the frequency, ωi and
the phase, ϕi (see Figure 2 A). Our results show that trained e-nmRNN dynamics align with gradient
descent on a surrogate network (Figure 2C, D). This alignment (highly statistically significant, see
Appendix section 4) implies ˙⃗n(t) can serve as an error readout, consistent with biological third factor
[12]. This capability enables rapid in-context meta-learning [20, 26].

4 Compositional Generalization via Sequence Mapping

Compositional generalization is crucial for flexible computation. We use a "dictionary mapping" task:
input I(t) and output y∗(t) are linear combinations of basis functions with shared latent coefficients
ak (Figure 3A):

I(t) =

K∑
k=1

akµk(t), y∗(t) =

K∑
k=1

akηk(t)

The network learns fθ(I(t)) ≈ y∗(t), inferring ak to reconstruct y∗(t). As a critical knob to conduct
scaling experiments, we note that task complexity scales with K. In keeping with the theme of
oscillatory signals present broadly in the work, we study a basis set of multi-period oscillatory signals.
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Figure 2: Online and targeted credit assignment arises naturally from context factorization. (A) We
define a simple meta-learning task setup where input-output sequence pairs are generated from a
family of trajectories (here sine). B) e-nmRNN variants converge rapidly even compared to HP
optimized (x100 iterations of TPE) baselines. Spatially embedded networks exploit both power-
propagation [34] and context factorization to learn rapidly. C) To measure the alignment of the
neuromodulator dynamics of the synaptic weights and the updates that follow the gradient, we
develop a surrogate network comparison setup by syncing the nmRNN to an effective RNN. D)
Across training, we observe learned alignment between the neuromodulator dynamics and the
surrogate model’s gradient. After the network undergoes an ’epiphany’ in its learning, we measure
statistically significant alignment. This suggests that the nmRNN has learned to approximate gradient
descent on the parameter updates within its closed loop dynamics (there are no gradient steps executed
on the parameters within these validation trials).

We trained e-nmRNNs and baselines (Transformers, HiPPO-LegT [22], Oscillatory RNNs [38],
GRU, Vanilla RNN) with matched parameter-count and hyperparameter optimization method (TPE
sampling [39]) (Figure 3C). e-nmRNN variants show strong compositional generalization across K,
outperforming vanilla RNNs and matching GRUs (Figure 3D, E). However, the rich multiplicative
dynamics of the e-nmRNN can also make it more prone to overfitting on smaller datasets compared
to a GRU, explaining its performance degradation at high task complexity. Spatially embedded (and
Dale law enforcing) e-nmRNNs perform robustly overcoming common training challenges [37]. The
high coefficient decodability suggests the ability to learn disentangled representations mappable to
ground truth that aid in generalization to never seen before combinations. We study this by uniformly
sampling the hypercube defined by a space and set aside "quadrants" of combinations of bases for our
test set that are not seen during training. It is noteworthy that the nmRNN did suffer from overfitting
on small datasets with high complexity limiting its ability to compete with Attention and State-space
models (see Appendix section 9.2). Future work will seek biophysical inspiration to directly address
this pathology of the model class.

5 RPE Encoding and Learning in Reinforcement Learning

The capacity for online, in-context adaptation is particularly critical in dynamic environments
requiring reinforcement learning [26]. Previous experimental neuroscience studies have found neural
correlates of crucial decision variables in reinforcement learning algorithms. For instance, dopamine
activities are found to correlate with reward prediction errors [40] and prefrontal cortex neural
activities are found to correlate with action values [41]. We explored the e-nmRNN’s capabilities of
adaptation in such dynamic environments and examined the emerged neural representations using a
dynamic foraging task inspired by neuroscience literature. In a block-switched two-armed bandit
task, where reward probabilities invert stochastically (Figure 4A), an agent must learn to track the
hidden block state (i.e. which arm is the high probability) and adapt its actions to maximize reward.
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Figure 3: Meta-learning compositional generalization reveals the power of context factorization. A)
Compositional task structure. B) Models learn to recognize basis functions, infer coefficients, and
generalize to new combinations. C) Training setup with parameter matching and HP optimization
is carried out across 4 steps. D) Performance scaling with task complexity (K) reveals nmRNN
performance exceeding and on par with strong baselines. The model’s higher capacity, however, can
lead to overfitting on smaller datasets. E) Coefficient decodability with a linear probe shows robust
representation encoding in simple environments with a gradual loss as task complexity grows.

Training e-nmRNN agents with Proximal Policy Optimization [42] across vectorized environments of
this dynamic foraging task reveals the emergence of adaptive behaviors, including rapid adjustment
of choices when the task context changes and anticipatory switching reflecting an internal model of
the periodic environment (Figure 4B). Crucially, we find that the neuromodulator dynamics learn to
robustly encode the task context (i.e. which arm has high probability) (Figure 4C, D).

Further analysis shows that the neuromodulator state also learns to encode the Reward Prediction
Error (RPE) signal derived from a fitted Q-learning model (Figure 4E, G). This is a key finding: it
demonstrates how the e-nmRNN can leverage its neuromodulatory system to represent a critical
learning signal. Combined with the 4-factor learning rule (Section 3.1), where learning updates
are gated by neuromodulator concentrations, this provides a concrete mechanism for RPE-gated
online credit assignment. This allows the network to dynamically adjust its effective connectivity
based on surprising reward (RPE), facilitating rapid adaptation to changes in the environment and
contributing to the model’s ability to "learn how to learn" in a reinforcement learning context. Detailed
experimental setup and analysis are provided in the Appendix section 6.

6 Emergent Biological Signatures and Multitasking

This work echoes the promise of a bold hypothesis for grappling with neuro-biological complexity:
optimization of biophysically conforming parameterizations across tasks which prioritize adaptability
can provide a principled lens into the paralyzing complexity of the brain [37, 29, 43]. In humble
support of this perspective, we report that training spatially embedded, e-nmRNNs (Figure 5A) on
the neuroscience-inspired multitasking benchmark from Yang et al. (2019) [27], which covers a
wide array of decision-making cognitive tasks (see description in appendix 7), reveals emergent
properties consistent with coarse-grained, neuro-biological phenomena. While a one-hot task ID is
provided at the start of each trial, the network learns to maintain this information dynamically within
its neuromodulatory state. The emergent properties include (Figure 5B):

• Modularity: Emergence of functionally specialized modules and hierarchical cell clustering
(see Figure 5D). See also complementary findings in Yang et al (2019) [27] and Driscoll et
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Figure 4: Reward Prediction Error (RPE) encoding emerges from RL training the e-nmRNN. A)
Block-switched two-armed bandit task. B) Trained agent actions show adaptive and anticipatory
switching. C) Neuromodulator concentration dynamics learn to encode context. D) NM state in PCA
space reveals a cyclic trajectory linked to context. E) Example RPE trace from MLE fitted Q-learner.
F) Single neuron encoding (via correlation) of behavioral features and RPE. G) Differential NM
encoding (via correlation) of behavioral features, including RPE reveals a learned symmetry breaking
in NM roles in the dynamics.

al (2024) [28]. Experimentally, this modularity is supported in two ways: 1) the formation
of pre-synaptic partners which both form "Sherringtonian circuits" [31, 44] and 2) in
modular brain regions [45]. Furthermore, analysis of the trained network reveals that units
specializing in releasing a specific neuromodulator form no spatial clusters, mirroring the
organization of cell types in the brain (see analysis in Appendix 8.3).

• Cell-Type Specialization: Units specialize in releasing specific NMs [10] (Figure 5E).
Tijk defines cell types by their sensitivity to specific small molecules. Composed together,
we may define the notion of a "dopamine-releasing neuron" as a unit which dominantly
promotes the release of a single small molecule via volume transmission (i.e. approximating
one-hot columns of the R matrix).

• Timescale Separation: NM dynamics learn to evolve on distinct timescales (e.g., 8x factor
separating the fastest and the slowest) [10] (Figure 5F).

• Context Encoding: NM state n⃗(t) learns to represent task context (Figure 5C). A linear
decoder trained on NM concentrations can reliably identify the task long after the initial cue
has passed, whereas a decoder trained on neural activity cannot. This is a testable prediction
for emerging, temporally-resolved neuromodulator imaging technologies.

Through careful, neuroscience inspired reverse engineering of trained networks, these findings
support the biological plausibility and interpretability of the e-nmRNN framework. To contextualize
these results, we trained a parameter-matched standard RNN on the same benchmark. The spatially-
embedded e-nmRNN achieves comparable or superior performance across the 20 tasks, demonstrating
that its inductive biases provide tangible value by yielding these emergent, interpretable structures
that a standard RNN does not as readily admit. Beyond this support for this class of nmRNNs, we
view these results as a small contribution to this greater intellectual landscape attempting to reconcile
the lessons of continual optimization in a dynamic environment with the peculiarities of the brain.
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Figure 5: Multitask learning with spatially embedded nmRNNs generates solutions mirroring neural
data. (A) Spatial embedding neurons connect most strongly over short distances enforcing sparsity in
the trained connectome. (B) Spatially embedded nmRNNs can achieve high performance across all 20
tasks. (C) Training a linear decoder and reporting back the performance on a held-out validation trials,
we find that NM concentrations encode context well after trial start, whereas rate encoding of context
falls off quickly. (D) Emergent modularity and cell clustering suggests the formation of local circuits
within

∑
t

∑
k Tijnk. (E) The resulting R matrix designating small molecule release of the jth

neuron reveals unit specialization in NM release (i.e. many neurons release a single small molecule
dominantly). (F) Using an autocorrelation metric and its connection of Fluctuation-Dissipation
theorem, we find that timescale separation in NM dynamics spans 8x between the fastest and the
slowest. This heterogeneity reflects the value of functional specialization.

7 Discussion

We interpret neuromodulated RNNs through context factorization via volume transmission, unifying
NM roles in dynamics and plasticity. The e-nmRNN, derived from a biophysical model, offers a
novel context-factorized hypernetwork architecture. This enables targeted online credit assignment
and compositional generalization, supported by empirical results. Emergent biological structures in
multitasking networks enhance interpretability. The framework extends to RL, where NM dynamics
encode context and RPE, facilitating RPE-gated online adaptation. As a recurrent architecture,
the e-nmRNN is inherently sequential during inference and less parallelizable than models like
Transformers. This represents a trade-off: we gain powerful inductive biases for online, continuous
adaptation at the cost of the massive parallelizability that makes Transformers scalable for large-batch
offline processing.

7.1 Links between Neuro and AI

This work has significant ramifications for both neurobiology and artificial intelligence. For neu-
robiology, the e-nmRNN provides a computational hypothesis for the role of volume transmission
and neuromodulation in flexible behavior. It suggests that context factorization is a core principle
implemented by these mechanisms to manage complexity and enable rapid adaptation. The emergent
properties observed in trained e-nmRNNs, such as cell-type specialization based on release profiles
and the encoding of context and RPE in NM dynamics, offer experimentally testable predictions about
the organization and function of neuromodulatory systems and computation with diverse neuronal
components [2]. The distinct influence of multiplicative NM gating on network dynamics compared
to additive inputs (see appendix section 5) also provides a specific computational signature that could
be sought in biological recordings. In particular, the Hopf bifurcation for a rank-2 network demands
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differential modulation of the two modes by a single neuro-modulator (i.e. one of the modes needs to
be more or oppositely sensitive relative to the other).

Conversely, insights from neurobiology, particularly the architecture and function of neuromodulatory
systems, provide a powerful source of inspiration for advancing machine learning. The e-nmRNN
demonstrates how biologically inspired mechanisms like volume transmission and context factoriza-
tion can lead to more performant and, crucially, more interpretable AI models. The context-factorized
structure offers a form of dynamic, interpretable control over network behavior, where the influence of
different "context" signals (represented by NMs) on information processing can be directly analyzed.
The emergent modularity and timescale separation suggest principles for designing more efficient and
scalable AI architectures capable of handling complex, multi-tasking environments. By incorporating
biologically plausible inductive biases, we can develop models with enhanced capabilities for online
learning, meta-learning, and compositional generalization, addressing key challenges in current AI.

The concept of "computation with diverse components" is central to both fields. In neurobiology,
different cell types and neuromodulators contribute distinct computational roles. In AI, designing
systems with specialized, interacting modules is a goal. The e-nmRNN framework explicitly models
this by incorporating different neuromodulator types with distinct dynamics and effects, and by
showing how units can specialize in releasing specific modulators. This provides a concrete model
for exploring how diversity in components contributes to overall system function and adaptability.

7.2 Limitations

Our work has two primary limitations. First, the model’s rich, multiplicative dynamics make it more
prone to data-limited overfitting than simpler RNNs when training data is scarce. Future work will
explore biologically-inspired regularization methods to mitigate this. Second, the neuromodulator
dynamics have intrinsic, learned timescales; if a task required extremely rapid context switching
much faster than these timescales, the modulatory state would be unable to keep pace, leading to
performance degradation. This highlights a fundamental trade-off between maintaining a stable
context representation and achieving rapid adaptability. Finally, the hyperparameter search was
extensive but non-exhaustive.

7.3 Broader Impacts

Our work contributes to understanding neural computation by bridging biology and AI. The model’s
interpretability aids in reverse engineering learned solutions and generating biological hypotheses,
offering positive scientific impact with low misuse risk (see checklist).

We envision future value in pursuing the monumental task of translating directly between large
comprehensive data sets such as the Allen Brain Cell Atlas [46] and compressing them through
thoughtful reinterpretation into analogous W , R and T structures which can encode powerful initial
conditions encoding strong evolutionary inductive biases for future application of the e-nmRNNs and
similar model classes. These efforts promise insightful discussion within NeuroAI.

8 Conclusion

By formalizing volume transmission’s role in context factorization, we introduce the e-nmRNN
and join the growing chorus [16, 47, 15, 13, 17], advocating for the unification of NM influence
on dynamics and their role in plasticity gating. This framework enables targeted online credit
assignment and robust compositional generalization, yielding emergent structures consistent with
the rich complexity of neurobiology. The ability of the model’s neuromodulator dynamics to encode
critical learning signals like RPE highlights its potential for understanding and implementing "learning
how to learn" in biological and artificial systems. This work underscores the power of neuro-AI,
where insights from neurobiology inspire novel, interpretable, and performant machine learning
architectures, while computational models provide a framework for understanding complex biological
phenomena like computation with diverse neuromodulatory components. We view e-nmRNNs as a
promising model class that bridges AI and neuroscience, highlighting opportunities to advance our
understanding in both domains.

We make our code available at https://github.com/mstormbull/e-nmRNN_neurips2025
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss analytically and experimentally how volume transmission can im-
plement context-factorization and how this computational primitive enables targeted online
credit assignment. This work views this implementation through the lens of targeted online
credit assignment and learning compositional generalization in carefully designed meta-
learning and multitasking experiments. Importantly, we highlight not just the performance
of the model class but also its ready neurobiological interpretability.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss limitations of model class overfitting and extensive but
non-exhaustive hyperparameter searches for all experiments reports in the "Limitations"
section of our discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are given extensive space in the supplementary informa-
tion documents and appendix including:

• the full derivation of the rate reduction
• the connection to Fast weights and by extension linear transformers
• the derivation from Matrix Taylor expansion grounds the next leading order contribution

to the RNN.
• the connection to state space models

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We make an explicit effort to dedicate substantial space to the methods and
parameters of each experiment in the main text and provide further implementation tables in
the appendix. [See below for code availability].
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the full experiments on github and associated docker instances
hosted on CodeOcean for ready reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: To the fullest extent possible, we provide the workspace of each set of
experiments in the appendix. Large fractions of the selected hyperparameters where chosen
in the work using HP optimization in the form of a TPE sampler (implemented in Optuna).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: To the extent that compute limitations allow on our extensive sweeps, we
represent the variability of our results in the form of error bars reporting the standard
deviation of like-experimental results. These are reported as error bars on the mean result.
For example traces such as in figure 2D and Figure 5, we make every effort to choose
representative samples from the distribution (neither the best experiment we ran nor the
worst).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All compute resources are completed on the cloud within an AWS environment
requiring less than 64 GB of RAM and a CUDA enabled GPU. Each experiment’s compute
resources are provided in the appendix documents under "Experimental details".
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have considered both the consequences of pursuing the research on environ-
mental resources and believe that the work to make learned dynamics readily interpretable
as worth the relatively small costs. We have considered the ethical ramifications of inter-
pretable models inspired by the brain and consider the distribution of uses as acceptable if
not beneficial to the larger community.
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a discussion in the main text of our broader impacts. We welcome
engagement from the community.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not introduce/release models with a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All licensed code is credited in the code base and through explicit citation in
either the paper or the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All assetts generated in the course of this work are in the form of code and
manuscript and will be licensed under a CC-BY 4.0 designation. We inlucde structured
templates in the appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects used in this study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB approvals required for this study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We provide a description in the appendix. For reference, LLMs were not used
for core methods, but did help to structure the logging backbone (with specific focus on
the naming convention) in two of the experiments. These generated results were carefully
checked for accuracy and all changes outside of this purpose to the code were reverted in
using pre-post file diffs. One alternative visualization barplot representation not used in the
final form of the manuscript was generated from code provided by an LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

1 Detailed Derivation of e-nmRNN Dynamics

LIF Neuron Model with Neuromodulation via volume transmission

To capture neurobiological realism, we augment the Leaky Integrate-and-Fire (LIF) neuron model to
include the influence of multiple neuromodulator types. The derivation begins with the assumption
of a "well-mixed" neuromodulatory environment. This is a principled abstraction representing a
timescale separation, where diffuse neuromodulator concentrations establish a stable, slow-varying
"context" for the fast neural dynamics (i.e., τn ≫ τr). This is biologically motivated by two
observations: 1) The integrative nature of NM concentration acts as a low-pass filter on population
activity, which in turn modifies the mean population dynamics, a useful tool for creating multi-
timescale dynamics. 2) The wide cortical projections of single NM-releasing neurons suggest biology
may accelerate the approach to a well-mixed state by increasing release site density. We begin with a
network of N LIF neurons. The subthreshold dynamics of the membrane potential Vi(t) for neuron i
are given by:

Cm
dVi

dt
= −gL(Vi − EL) + Isyn,i(t) + Iext,i(t) (1)

where Cm is membrane capacitance, gL is leak conductance, EL is leak reversal potential, Isyn,i(t)
is the total synaptic current, and Iext,i(t) is external input current. A spike is emitted when Vi(t)
reaches threshold Vth, followed by a reset to Vreset and a refractory period τref .

We introduce M types of neuromodulators with concentrations nk(t), k = 1, . . . ,M .

Each cell will be defined by a cell type zi which controls the distribution of its parameters.

These parameters are a M-dimensional vector (one number for each of the M neuromodulators) which
control:

1. I⃗n the neuromodulator current output with a spike
2. τr the timescale of the release from that single cell

3. I⃗e the eligibility current signaling the sensitivity to each neuromodulator
4. τ⃗e the decay timescale of the eligibility

We constrain these neuromodulator release dynamics such that that shorter acting neuromodulators
have a correspondingly higher release. The idea is that we can normalize the area under the curve
rather than have faster decaying NMs having significantly less potency.

These parameters control both how much each cell contributes to the pool of neuromodulators and
how sensitive they are to that pool via multiplicative gating.

Every cell now has a larger state, the membrane potential plus the eligibility for each of the neuro-
modulatory molecules. There is also a shared state for the whole network interacting through the
well-mixed neuromodulatory pool.

Postsynaptic and Presynaptic Effects on Synaptic Current

Neuromodulators can affect neuronal excitability (postsynaptic) and neurotransmitter release (presy-
naptic). We model these combined effects by modulating the effective synaptic strength. The total
synaptic current is Isyn,i(t) =

∑N
j=1 Iij(t), where Iij(t) is the current from presynaptic neuron j.

Let tfj be the time of the f -th spike from neuron j.

Iij(t) =
∑
f

α(t− tfj ) ·W
eff
ij (t) (2)

Here, α(t) is the postsynaptic current kernel (e.g., α(t) = Qsyn

τsyn
e−t/τsyn for t ≥ 0), and W eff

ij (t) is
the effective synaptic strength. We model the neuromodulatory effect on this strength as:

W eff
ij (t) = W o

ij +

M∑
k=1

TLIF
ijk nk(t) (3)
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where W o
ij is the baseline weight and TLIF

ijk quantifies the sensitivity of the synapse j → i to
modulator k. The superscript ’LIF’ distinguishes this parameter from the final RNN parameter.

Substituting (3) into the expression for Isyn,i(t):

Isyn,i(t) =

N∑
j=1

∑
f

α(t− tfj )

(
W o

ij +

M∑
k=1

TLIF
ijk nk(t)

)
(4)

Neuromodulator Dynamics

The concentration nk(t) evolves based on release, degradation/uptake, and interactions. Let Sj(t) =∑
f δ(t− tfj ) be the spike train of neuron j. We model the dynamics as:

τn,k
dnk

dt
= −nk +

N∑
j=1

(τn,kR
LIF
kj )Sj(t) +

M∑
l=1

(τn,kZ
LIF
kl )nl(t) (5)

Here, τn,k is the time constant for modulator k, RLIF
kj is the amount of modulator k released per spike

from neuron j, and ZLIF
kl represents linear interaction effects between volume-transmitted, small

molecules, including decay modification (via ZLIF
kk ) [7]. The interaction term Z models effective

interactions, not literal chemical reactions. It allows for one neuromodulatory system to influence
another (e.g., release of one NM promoting or inhibiting the release/clearance of another). In practice,
we often find this matrix is learned as approximately diagonal, simplifying to self-decay terms.

Rate Reduction

We transition to a rate-based description by averaging over spike times, replacing detailed dynamics
with average firing rates ri(t).

Approximating Firing Rate

The average firing rate ri(t) is approximated as a non-linear function ϕr (the f-I curve) of the mean
total input current ⟨Itot,i(t)⟩ = ⟨Isyn,i(t)⟩+ ⟨Iext,i(t)⟩:

ri(t) ≈ ϕr(⟨Itot,i(t)⟩) (6)

Defining and Training Excitability

Excitability at the single neuron level is encoded in the nonlinear function ϕ() that translates the
synaptic current into the resulting firing rate. The use of such nonlinearities is standard in rate-based
models to ensure stability and represent the saturating, positive firing rates of biological neurons.
These nonlinearities also provide important numerical stability during training across a much wider
range of hyperparameters.

One way to conceptualize excitability is in terms of a LIF neuron which modulates its excitability by
way of changing the threshold needed to cause a spike, T . The Leaky Integrate and Fire neuron can
be written in a simplified form:

v̇ = −kv + I − s(t)vreset (7)

and is augmented by the fire part of the relationship with the nonlinear spiking function:

s(t) =

{
0 if v(t− 1) < T

1 if v(t− 1) >= T
(8)

To find the resulting steady-state firing rate of a LIF neuron for a given driving current, I, we can
solve this equation in a piecewise linear fashion solving the the differential equation for the time to
reach threshold to find that the firing rate takes the form of:

fLIF (I) = −k

(
ln

∣∣∣∣ kT − I

kVreset − I

∣∣∣∣)−1

(9)
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Figure 6: A critical step in the transformation between the LIF neuron and the rate neuron is the
shape of the nonlinear mapping between DC input current and output firing rate in the limit of firing
rate being fast compared to the dynamics of the input current. We note caution as this assumption
only holds for slow directions in the dynamics space. Under this set of assumptions, we derive a
closed form equation for the firing rate by completing the piecewise integral of the time to achieve
threshold and inverting that to define a firing rate. Notice that this firing rate most closely follows the
logistic or the ReLU-Tanh nonlinearity in that it incorporates both a critical threshold for firing and
a saturation brought about by the refactory period. Colors in the plot indicate the changing of the
threshold of the LIF with direct correspondence to the changes in the slope and the critical current
needed to induce firing.

This equation allows us to map the dynamics of a single neuron into a steady state approximation of
the firing rate as a function of the input current. This also allows us to study the effect of changing
the ’excitability’ of the LIF neuron through a change in its threshold to fire. This can be visualized
following:

There are three noteworthy aspects to a change in excitability through a change in the threshold.

1. With increasing excitability, the threshold from not firing to firing decreases.
2. With increasing excitability, the slope of the characteristic linear regime increases
3. With increasing excitability, the neuron reaches its maximum firing rate at a smaller input

current.

There are then two ways in which we can train the excitability. One, we can directly parameterize our
nonlinearity as the LIF rate and use gradient descent to update the LIF threshold value T.

ϕ() = fLIF (I|Ti) → Ṫ = −∇TL

Or second, parameterize the nonlinearity in terms of two coupled parameters that merge approaches
in the literature for training neural excitability:

ϕi() = EiReLU(tanh() + ei)

where the slope and threshold of the each neuron’s nonlinearity is co-modulated by their gradients on
the loss function:

Ėi = −∇Ei
L (10)

ėi = −∇eiL (11)

The current implementation uses the second form in terms of the ReLU (tanh ()) nonlinearity.

Approximating Average Synaptic Input

We replace spike trains Sj(t) with rates rj(t). From (4), assuming nk(t) and rj(t) change slowly
relative to α(t):

⟨Isyn,i(t)⟩ ≈
N∑
j=1

⟨
∑
f

α(t− tfj )⟩

(
W o

ij +

M∑
k=1

TLIF
ijk nk(t)

)
(12)
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The average current from neuron j is ⟨
∑

f α(t − tfj )⟩ ≈ rj(t) · Qtot, where Qtot =
∫∞
0

α(t′)dt′.
Let’s define the RNN weights by absorbing Qtot: Wij = QtotW

o
ij and Tijk = QtotT

LIF
ijk .

⟨Isyn,i(t)⟩ ≈
N∑
j=1

rj(t)

(
Wij +

M∑
k=1

Tijknk(t)

)
(13)

=

N∑
j=1

Wijrj(t) +

N∑
j=1

M∑
k=1

Tijkrj(t)nk(t) (14)

Approximating External Input

Assume external input Iext,i(t) arises from L signals Il(t) weighted by uil:

⟨Iext,i(t)⟩ ≈
L∑

l=1

uilIl(t) (15)

Rate Dynamics Equation

Standard rate models include a time constant τr for rate dynamics:

τr
dri
dt

= −ri(t) + ϕr(⟨Itot,i(t)⟩) (16)

Substituting (14) and (15):

τr
dri
dt

= −ri(t) + ϕr

 N∑
j=1

Wijrj(t) +

N∑
j=1

M∑
k=1

Tijkrj(t)nk(t) +

L∑
l=1

uilIl(t)

 (17)

Neuromodulator Dynamics in Rate Terms

Replace Sj(t) with rj(t) in (5):

τn,k
dnk

dt
= −nk +

N∑
j=1

(τn,kR
LIF
kj )rj(t) +

M∑
l=1

(τn,kZ
LIF
kl )nl(t) (18)

Define RNN parameters Rkj = τn,kR
LIF
kj and effective interaction/decay term Zkl such that the

equation becomes (after swapping index k → i for the equation, and l → k for the sum):

τn,i
dni

dt
=

N∑
j=1

Rijrj(t) +

M∑
k=1

Z ′
iknk(t) (19)

Note that Z ′
ik combines the original −ni term and the ZLIF

il terms. Explicitly, let Z ′′
ik = τn,iZ

LIF
ik .

Then the right hand side is −ni +
∑

j Rijrj +
∑

k Z
′′
iknk. Grouping terms involving nk, we get∑

j Rijrj +
∑

k(Z
′′
ik − δik)nk. So, Z ′

ik = Z ′′
ik − δik.

Matching the Target Functional Form

We now compare the derived rate equations (17) and (19) with the target RNN forms in the main text:

ṙi = φ

∑
j

Wijrj +
∑
j,k

Tijkrjnk +
∑
l

uilIl

 (20)

ṅi = φn

∑
j

Rijrj +
∑
k

Ziknk

 (21)
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Rate Equation (r)

Derived: τr ṙi = −ri + ϕr(Inputi)
Target: ṙi = ϕ(Inputi)
where Inputi =

∑
j Wijrj +

∑
j,k Tijkrjnk +

∑
l uilIl.

The crucial outcome is that the argument of the non-linear function ϕr (or ϕ) has the structure
Wijrj + Tijkrjnk + uilIl, which directly reflects the baseline synaptic drive, the neuromodulated
synaptic drive (via effective weight modulation W eff

ij ), and external drive derived from the LIF
model.

Obtaining the exact target form ṙi = ϕ(Inputi) requires interpreting it as a specific modeling choice
where the rate dynamics might lack the explicit decay term (−ri) or absorb it and the timescale τr
into the definition of ϕ. The key justification for the target form’s structure comes from the LIF
derivation of the input terms.

Neuromodulator Equation (n)

Derived: τn,iṅi =
∑

j Rijrj +
∑

k Z
′
iknk (a linear system)

Target: ṅi = ϕn(
∑

j Rijrj +
∑

k Ziknk) (a non-linear system)

The derived dynamics for ni are driven by terms related to release (
∑

j Rijrj) and interactions/decay
(
∑

k Z
′
iknk). The target form posits a non-linear function ϕn governing these dynamics, likely

representing saturation effects or more complex regulation not captured in the simple linear model
(5). The structure of the argument inside ϕn, namely

∑
j Rijrj +

∑
k Ziknk, is consistent with

the derived driving terms (where Zik in the target form corresponds conceptually to Z ′
ik from the

derivation, potentially absorbing τn,i). Using the same functional form ϕ as in the rate equation is a
further simplifying assumption of the target model.

Conclusion of Derivation

Starting from a LIF neuron model incorporating synaptic modulation (W eff
ij = W o

ij +
∑

k T
LIF
ijk nk)

and activity-dependent neuromodulator release/dynamics (driven by RLIF
kj , ZLIF

kl ), we performed a
rate reduction. This yielded:

• An average input current to neuron i with terms corresponding to baseline synapses (Wijrj),
modulated synapses (Tijkrjnk), and external inputs (uilIl).

• A dynamic equation for neuromodulator ni driven by release (Rijrj) and interactions/decay
(Z ′

iknk).

The target RNN equations (20) and (21) represent a specific phenomenological model choice for
the rate and modulator dynamics (ṙ = ϕ(. . . ), ṅ = ϕn(. . . )). The essential link provided by this
derivation is the justification for the structure of the arguments within the non-linear functions ϕ
and ϕn. These arguments directly map to the effective inputs and driving forces calculated from the
underlying modulated LIF model. The tensors W,T, u,R, Z of the RNN encapsulate parameters from
the biophysical level (baseline weights, modulation sensitivities, release rates, interaction constants,
etc.), often absorbing scaling factors and timescales during the reduction process. We frame this
model as a proof-of-principle showing how even a very low-dimensional modulatory system can
powerfully gate high-dimensional dynamics. This system likely works in concert with other biological
mechanisms (like thalamocortical gating) to form a richer context space. Our goal is to show how
volume transmission provides a powerful, efficient, and interpretable means of broadcasting context.

2 Connections to Other Architectures

Interpretation as a Context-Factorized Hypernetwork

We define "context factorization" as the decomposition of a network’s effective connectivity into a
fast-varying neural activity and a slow-varying modulatory state (the ’context’). Mathematically, the
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effective synaptic weight from neuron j to i is factorized as:

W eff
ij (t) = W 0

ij +

M∑
k=1

Tijk︸︷︷︸
"dynamics"

nk(t)︸ ︷︷ ︸
"context"

This allows the low-dimensional context vector n⃗(t) to dynamically reconfigure the high-dimensional
effective connectivity of the network. We use the word "factorization" to evoke the mathematical
method of decomposing a function into a product of components—here, the components are "context"
(encoded in neuromodulator concentrations) and "dynamics" (encoded in the resulting synaptic
connectivity patterns).

The derived nmRNN equations (Eq. 20, 21) embody this concept of context factorization[[14, 18].
The effective connectivity W eff

ij (t) = Wij +
∑

k Tijknk(t) dynamically changes based on the
neuromodulator state n⃗(t). This state n⃗(t), evolving on potentially slower timescales (Eq. 21)[15],
acts as the ’context’ that modulates the faster neuronal dynamics governed by r⃗(t) (Eq. 20)[19].

This structure is equivalent to a specific type of hypernetwork[18]. The neuromodulator network (Eq.
21) acts as the hypernetwork, dynamically generating (part of) the parameters (Tijknk) for the main
RNN (Eq. 20). Both the main network and the hypernetwork have recurrent dynamics[23]. A defining
feature of our e-nmRNN is its "endogenous" nature: the neuromodulatory state n⃗(t) is generated by
the network’s own recurrent activity r⃗(t) through the learned projection matrix R. This creates a
closed-loop, self-modulating system. The advantage of this endogenous approach is that it allows the
network to learn to generate its own internal context states directly from its population dynamics,
enabling it to autonomously infer the current context from an input stream and adapt accordingly.
The term Tijkrjnk represents tertiary interactions arising from a low-rank approximation to matrix
Taylor expansion of the dynamics.

This perspective connects nmRNNs to other dynamic network architectures:

• Switching Linear Dynamical Systems (SLDS): Neuromodulation n⃗(t) can be seen as a
continuous version of the discrete latent state Z(t) in switching Linear Dynamical Systems,
smoothly interpolating between different dynamical regimes instead of abruptly switch-
ing[48].

• Fast Weights / Attention: The dynamic modulation Tijknk(t) resembles fast weight pro-
grammers or attention mechanisms, where temporal context dynamically gates or modifies
information flow from input to output[21, 20].

• Hypernetworks: The dynamic modulation Tijknk(t) can be viewed as a linear readout
hypernetwork which uses a context module to generate the weights of the core network.
Here, we note that the nmRNN adopts both recurrent dynamics and the view that the well-
mixed neuromodulatory field is governed by volume transmission and therefore neuronal
firing [18, 19].

• High Dimensional Taylor Expansion: Neuromodulation via volume transmission can be
viewed as the next leading order contribution of a Taylor expansion. Many-body physical
systems with complex interactions rules can be expanded as:

ẋi = f(x⃗) ≈
∑
j

Aijxj︸ ︷︷ ︸
Binary Interactions

+
∑
m

∑
n

Bimnxmxn︸ ︷︷ ︸
Three-body interactions

+O(Higher order)

. The volume transmission equations can be viewed as a low-rank representation of these
three-body interactions proceeding the firing rate nonlinearity and thus represent the next
leading order dynamics of the RNN.

• Koopman operator theory (with a polynomial basis): In the absence of the nonlinearity,
this Taylor expansion can be viewed as a Truncated Koopman linear operator acting over a
polynomial dictionary[49]. A valuable way forward may leverage this powerful toolkit for
fitting nonlinear dynamical systems.

• Continuous logic gates: Gating can be viewed as the continuous "AND" gate where the
corners of the space recreate the truth table for discrete input. Through combination of
careful construction of the A (rank 2- tensor) and the B (rank 3 tensor), we represent "XOR"
gates as well forming the basis of discrete bit universal computation[50]
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We advocate for this model as a tool not only to traverse levels of understanding in neurobiology,
but also as a scaffold to formally connect diverse approaches for learning in dynamical systems.
As a recurrent architecture, the e-nmRNN is inherently sequential during inference, which makes
it less parallelizable than models like Transformers. This represents a trade-off: we gain powerful
inductive biases for online, continuous adaptation within a single data stream at the cost of the massive
parallelizability that makes Transformers so scalable for large-batch offline processing. We position
the e-nmRNN as an architecture well-suited for applications like real-time control, agent-based
learning, and brain-computer interfaces, where online processing is paramount.

Connection to Costacurta et al., NeurIPS 2024

Despite differences in our respective derivations, we observe striking conceptual and experimental
similarities to the valuable contribution by Costacurta et al. [15], which also explores the landscape
of neuromodulation in recurrent neural networks. To clarify the precise connections and highlight
key distinctions, we present a direct comparison of the final functional forms between the two model
classes in Figure 7.

Figure 7: A direct comparison with Costacurta et al. reveals both powerful similarities and key
architectural differences. The most important distinctions between the two model classes include the
low-rank nature of synaptic variability explored in their work, and the absence of direct access to a
context signal for our NM dynamics, which enforces an endogenous, closed-system interpretation of
these dynamics.

We view our work as highly complementary, yet distinctly advancing the field through several
orthogonal contributions:

• Bio-inspired Derivation: Our model emerges from a detailed rate reduction of Lif-neuron
dynamics incorporating neuromodulation via volume transmission, providing a direct link
to established biophysical principles.

• Novel Learning Rules: We expand on the model class by deriving normative leading-
order learning rules that explicitly link dynamics modification with context-targeted credit
assignment, a crucial step for understanding how such systems might learn.

• Approximation of Gradient Descent: Crucially, we demonstrate that our e-nmRNNs can
learn to approximate gradient descent and robustly encode vital learning signals such as
Reward Prediction Error (RPE), providing a computational mechanism for online credit
assignment in biological and artificial systems.

• Dynamic Generalization Tasks: Our work explores performance on neuroscience-inspired
compositional task sets and dynamic generalization tasks, which are distinct in both their
formal structure and biological inspiration, showcasing the model’s adaptive capabilities.

• Strong Baseline Comparison: We conduct rigorous comparisons against strong base-
lines, systematically assessing the e-nmRNN’s capacity and compositional generalization
performance.
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• Reverse Engineering Biological Specialization: The inherent interpretability of the e-
nmRNN allows us to reverse engineer cell-type-specific neuromodulator dynamics and
emergent cell specialization, offering a novel computational lens for probing neural compu-
tation across complex task suites like Yang et al. (2019).

We hope the reader will agree that these contributions are deeply complementary and both serve to
advance an important conversation in neuro-AI with their own strengths.

3 Detailed Learning Rule Derivations

If we assume that it will look like a local version of gradient descent (in synapse and in time), we can
find the gradient of the dynamics that will govern the normative leading order learning rules[11, 37,
12].

Let’s define the task in terms of a simple MSE from a target sequence. This target sequence can be
represented as a multiple timescales signal via the Laplace transform:

y⋆(t) =

∫
dza(z)ezt

This makes our loss function equal to:

L =
∑
t

(y⋆(t)−Dr(t))2

where D is the linear readout matrix that maps neural activity r⃗(t) to the output y(t).

We can expand this to timesteps required to percolate information through the network by expanding:

r(t) = r(t− 1) + dt ∗ ṙ(t− 1)

and
n(t) = n(t− 1) + dt ∗ ṅ(t− 1)

The first step is writing the error function as:

L =
∑
t

ϵ(t)2

where we assume that W 0
ij = 0.

ϵ(t) = y⋆(t)−D

r(t− 1) + dt

−r(t− 1) + ϕ

∑
j

(
∑
k

T k
ijnk(t− 1))rj(t− 1) + UI(t− 1)


Here, ϵ(t) is the instantaneous error signal, and ϕ is the nonlinear activation function for the rate
dynamics (e.g., tanh or ReLU-Tanh).

So then we need to plug in the n(t) as:

ϵ(t) = y⋆(t)−D

(
r(t− 1) + dt

[
− r(t− 1) + ϕ

(∑
j

(∑
k

T k
ij

(
nk(t− 1)

+ dt
(
− n(t− 1) + θ(Rr(t− 1) + Zn(t− 1))

)))
rj

+ UI(t− 1)

)])
where θ is the nonlinear activation function for the neuromodulator dynamics.
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We can expand this out to find:

ϵ(t) =y⋆(t)−Dr(t− 1)

+ dt

−r(t− 1) + ϕ

∑
j

(
∑
k

T k
ijnk(t− 1))rj(t− 1)


+ dt2

(
−n(t− 1) + θ(Rr(t− 1) + Zn(t− 1) + ϕ(UI(t− 2) +−r(t− 2) +

∑
k

T knk(t− 2)r(t− 2)))

)
By plugging these into our dynamics, we can find that our error can be written as an expansion of dt.
Local in time calculations and synapse follow the criteria of being to leading order in O(dt2). This
then allows us to truncate this expansion at leading order.

If we expand this to leading order in dt, we find:

ϵ(t)

O(dt)︷︸︸︷
≈ y⋆(t)−Dr(t− 1) + dt

−r(t− 1) + ϕ

∑
j

(
∑
k

T k
ijnk(t− 1))rj(t− 1)


This normative leading order learning rule will take the form of:

∇TkL
O(dt)︷︸︸︷
≈ DT ϵ(t)ϕ′(A(t))nkr(t)

where A(t) is the pre-activation input or "synaptic drive" to a neuron’s nonlinearity.

Interestingly, the presence of the kth neuromodulator should gate the update of the kth page of the
three-body tensor. The gating via this multiplicative factor puts the neuromodulator on equal footing
to the error.

Next, the gradient of the input sensitivity takes the form of:

∇uL
O(dt)︷︸︸︷
≈ DT ϵ(t)ϕ′(A(t))nkI(t)

Again, the kth neuromodulator gates the input learning as well.

Next, we can study the gradient of the neuromodulator dynamics with respect to the error:

∇RL
O(dt2)︷︸︸︷
≈ DT ϵ(t)ϕ′(A(t))θ′(B(t))r2(t)

and the coupling matrix between neuromodulators to leading order takes the form of:

∇ZL
O(dt2)︷︸︸︷
≈ DT ϵ(t)ϕ′(A(t))θ′(B(t))n(t)r(t)

These leading order learning rules could be sensible hypothesizes for how this joint system would
evolve if it was tuned to solve the problem of error minimization. (There is an analogous learning rule
for minimizing the RL loss derived from Policy Gradients). This update rule is "context-localized" by
nk(t) and "temporally-localized" by using the instantaneous error signal ϵi(t). While this truncates
the full gradient through time, the recurrent state r⃗(t) and, critically, the slow neuromodulatory
state n⃗(t) act as eligibility traces, carrying the necessary temporal context from the past, making the
approximation potent enough to solve complex tasks requiring credit assignment over intermediate
timescales.

4 Statistical Significance of Gradient Alignment

In our analysis, we investigate the relationship between the dynamics carried out by the neuromodu-
lators and the gradient of a surrogate model. A surrogate model allows us to calculate a normative
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learning signal, by way of ideal gradient to improve performance on the task. We accomplish this by
locking the parameters of the e-nmRNN to a coevolving RNN by setting: W eff

ij = Wij + Tijkn̄k

over every window of size T = 100. We then use autodiff to calculate how Ẇ eff
ij = −α∇WL to best

reduce the loss of the surrogate network. For the neuromodulator dynamics to "fall into alignment"
with this surrogate model’s gradient means that the neuromodulator states evolve in a direction that
closely matches the optimal update direction prescribed by the surrogate model or in math:

Tijkṅk(t) →︸︷︷︸
learns to approximate

−α∇WL

Significance of Cosine Similarity in High Dimensions

To understand if the observed alignment is significant, we will study observed cosine similarity of ∼
0.15 between two vectors in a high-dimensional space of D = 1282 = 16384 dimensions. In high-
dimensional spaces, the distribution of cosine similarities between two randomly and independently
drawn vectors tends to concentrate sharply around zero. Specifically, for vectors whose components
are drawn independently from a distribution with zero mean and finite variance, the expected cosine
similarity is 0. The variance of the cosine similarity between two random unit vectors in D dimensions
is approximately 1/D.

Our null hypothesis (H0) is that the observed cosine similarity arises from two randomly and
independently selected vectors, implying no true underlying alignment. Under this null hypothesis,
the distribution of cosine similarities has a mean of 0 and a standard deviation of approximately
σ =

√
1/D =

√
1/16384 ≈ 0.0078. The observed cosine similarity of 0.13 is approximately ∼ 16

standard deviations away from the expected mean of 0 under the null hypothesis. Such a deviation is
extremely improbable under this simple null model. Therefore, the observed and slowly accumulated
cosine similarity of 0.15 constitutes a statistically significant alignment between the gradient of the
surrogate model and the dynamics carried out by the neuromodulators, providing evidence against
the null hypothesis that the vectors are unaligned and randomly oriented in this high-dimensional
space. This combined with the learned nature of this alignment suggests numerically, that e-nmRNNs
not only can, but do learn to approximate gradient descent through gradient descent similar to that
observed in meta-optimizers[25] and transformers[20].

5 Dynamical Regimes and Bifurcations

Traversing Bifurcations: Multiplicative vs. Additive Modulation

Dynamical systems often exhibit bifurcations, where a small parameter change leads to a qualitative
shift in behavior (e.g., from a stable fixed point to oscillations). Context factorization provides a
distinct mechanism for navigating these critical transitions compared to traditional input modulation,
and these mechanisms leave different measurable signatures.

We can illustrate this difference using a simple 2-neuron RNN model:

dr1
dt

= −r1 + tanh(n(W11r1 +W12r2) + r3) (22)

dr2
dt

= −r2 + tanh(n(W21r1 +W22r2) + r3) (23)

Here, n represents multiplicative context factorization (gain modulation), while r3 represents additive
context input (e.g., from a dedicated context neuron). Both can drive bifurcations, but how they do so
differs fundamentally.

Multiplicative Modulation (n): When r3 = 0, the origin (0, 0) is always a fixed point due to
the odd symmetry of tanh. Linearizing around the origin reveals eigenvalues λ = (2n − 1) ± in
for the specific W matrix used in simulations (W11 = W22 = 2,W12 = −1,W21 = 1). A Hopf
bifurcation occurs when Re(λ) = 0, which happens precisely at n = 1/2. As n increases through
1/2, the origin transitions from a stable spiral to an unstable spiral surrounded by a stable limit cycle
(oscillation)[24]. Critically, this bifurcation happens without shifting the fixed point away from the
origin. The bifurcation preserves the system’s symmetry around (0, 0).
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Figure 8: Studying the role of gating in the Hopf bifurcation in tuning and in training. A) We study
these two 3 dimensional dynamical systems. Black text is present in both. Blue represents context
factorization and Red represents the presence of context storing neurons. B) We show the difference
of how nm-like and input tuning across the two Bifurcations looks for the tanh() nonlinearity. Flow
directions are signaled by the color of the streamline denoted in the circular key to the right. C) We
show the evolution of the signal output across training and show that the ’epiphany’ moment in the
validation loss corresponds to the emergence of the oscillations suggesting the dominant challenge is
the formation of the limit cycle.

Additive Modulation (r3): When r3 ̸= 0, the origin is no longer a fixed point (tanh(r3) ̸= 0). The
fixed points (r̄1, r̄2) satisfying r̄i = tanh(n(W r̄)i + r3) shift as r3 changes. Stability is determined
by the Jacobian evaluated at these non-zero fixed points:

J(r̄1, r̄2) = n

(
(1− r̄21)W11 (1− r̄21)W12

(1− r̄22)W21 (1− r̄22)W22

)
− I

Changes in r3 alter (r̄1, r̄2) and thus the Jacobian elements, potentially driving eigenvalues across the
imaginary axis. However, any bifurcation induced by r3 necessarily occurs at a non-zero operating
point (r̄1, r̄2) and breaks the symmetry seen when r3 = 0. Depending on the specific path traced by
(r̄1, r̄2), r3 might induce Hopf or saddle-node bifurcations.

Distinguishing Mechanisms (Measurable Differences): These differences provide experimentally
testable predictions (visualized in Figure 1B):

1. Operating Point Shift: A key distinction is whether the mean activity (average r̄1, r̄2)
shifts significantly as the system crosses a bifurcation. Additive modulation (r3) inherently
involves an operating point shift, while multiplicative modulation (n with r3 = 0) can
induce bifurcations (like the Hopf bifurcation at the origin) without necessarily changing
the mean activity level of that specific fixed point.

2. Symmetry Preservation/Breaking: Bifurcations driven by multiplicative gain modulation
in a system with appropriate symmetries (like r3 = 0 here) tend to preserve those symmetries
(e.g., limit cycle emergence centered around the origin). Additive inputs break this symmetry,
leading to asymmetric dynamics relative to the origin.

Observing whether a qualitative change in network dynamics (e.g., onset of oscillations) is accom-
panied by a shift in the mean firing rates provides a potential signature to distinguish between gain
modulation (context factorization) and direct input modulation as mechanisms for context-dependent
dynamic switching in biological or artificial networks.
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Bifurcation Analysis of a Rank-2 RNN with Multiplicative and Additive Context Modulation

We analyze a 2-neuron Recurrent Neural Network (RNN) whose dynamics are given by the following
system of coupled ordinary differential equations:

dr1
dt

= −r1 + ϕ(n(W11r1 +W12r2) + r3) (24)

dr2
dt

= −r2 + ϕ(n(W21r1 +W22r2) + r3) (25)

where:

• r1(t) and r2(t) are the firing rates of the two neurons.

• ϕ(x) = tanh(x) is the non-linear activation function.

• W =

(
W11 W12

W21 W22

)
=

(
2 −1
1 2

)
is the synaptic weight matrix.

• n is a multiplicative factor representing gain modulation or context factorization. It scales
the synaptic inputs before the nonlinearity.

• r3 is an additive factor representing external input or the influence of a ’context neuron’. It
shifts the input to the nonlinearity.

Both n and r3 act as control parameters that can drive bifurcations in the system’s dynamics. We aim
to understand the distinct effects of varying n versus varying r3.

Fixed Point Analysis

Fixed points (r̄1, r̄2) of the system are solutions to dr1
dt = 0 and dr2

dt = 0. This yields the equations:

r̄1 = ϕ(n(W11r̄1 +W12r̄2) + r3) (26)
r̄2 = ϕ(n(W21r̄1 +W22r̄2) + r3) (27)

Let r =

(
r1
r2

)
and define the input vector x = nWr +

(
r3
r3

)
. Then the fixed point equation is

r̄ = ϕ(x(r̄)).

Symmetry and the Origin

Consider the case when the additive input r3 = 0. The fixed point equations become:

r̄1 = tanh(n(W11r̄1 +W12r̄2))

r̄2 = tanh(n(W21r̄1 +W22r̄2))

Since tanh(0) = 0, the origin (r̄1, r̄2) = (0, 0) is always a fixed point when r3 = 0, regardless of
the value of the multiplicative factor n.

Now consider the case when r3 ̸= 0. The origin (0, 0) is a fixed point only if:

0 = tanh(n(0) + r3) = tanh(r3)

0 = tanh(n(0) + r3) = tanh(r3)

This requires r3 = 0. Therefore, the additive factor r3 breaks the symmetry that keeps the origin
fixed. An additive input r3 ̸= 0 shifts the location of the fixed point(s) away from the origin.

Measurable Difference 1: The mean activity (operating point), corresponding to the fixed point
location (r̄1, r̄2), will generally shift when a bifurcation is induced by changing r3. In contrast, if a
bifurcation is induced by changing n while r3 = 0, the origin (0, 0) remains a fixed point, although
its stability may change and other fixed points may appear/disappear symmetrically around the origin.
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Stability Analysis and Bifurcations

To analyze the stability of a fixed point (r̄1, r̄2), we linearize the system around it by computing the
Jacobian matrix J :

J =

(
∂ṙ1
∂r1

∂ṙ1
∂r2

∂ṙ2
∂r1

∂ṙ2
∂r2

)
(r̄1,r̄2)

Let x1 = n(W11r1 +W12r2) + r3 and x2 = n(W21r1 +W22r2) + r3. Recall ϕ′(x) = sech2(x) =
1− tanh2(x). The partial derivatives are:

∂ṙ1
∂r1

= −1 + ϕ′(x1) · nW11

∂ṙ1
∂r2

= ϕ′(x1) · nW12

∂ṙ2
∂r1

= ϕ′(x2) · nW21

∂ṙ2
∂r2

= −1 + ϕ′(x2) · nW22

At a fixed point (r̄1, r̄2), we have r̄1 = ϕ(x̄1) and r̄2 = ϕ(x̄2). So, ϕ′(x̄i) = 1− ϕ2(x̄i) = 1− r̄2i .
The Jacobian at the fixed point (r̄1, r̄2) is:

J(r̄1, r̄2) =

(
−1 + (1− r̄21)nW11 (1− r̄21)nW12

(1− r̄22)nW21 −1 + (1− r̄22)nW22

)
J(r̄1, r̄2) = n

(
(1− r̄21)W11 (1− r̄21)W12

(1− r̄22)W21 (1− r̄22)W22

)
− I

where I is the identity matrix.

Stability of the Origin (when r3 = 0)

When r3 = 0, the origin (r̄1, r̄2) = (0, 0) is always a fixed point. Its stability is determined by the
Jacobian evaluated at (0, 0):

J(0, 0) = n

(
(1− 02)W11 (1− 02)W12

(1− 02)W21 (1− 02)W22

)
− I = nW − I

Substituting the values for W :

J(0, 0) = n

(
2 −1
1 2

)
−
(
1 0
0 1

)
=

(
2n− 1 −n

n 2n− 1

)
The eigenvalues λ are found from the characteristic equation det(J(0, 0)− λI) = 0:

(2n− 1− λ)2 − (−n)(n) = 0

(2n− 1− λ)2 + n2 = 0

λ− (2n− 1) = ±
√
−n2 = ±in

λ = (2n− 1)± in

A bifurcation occurs when the real part of the eigenvalues crosses zero. Here, Re(λ) = 2n− 1.

• If 2n− 1 < 0 (i.e., n < 1/2), Re(λ) < 0. The origin is a stable fixed point (specifically, a
stable spiral since Im(λ) = ±n ̸= 0 for n ̸= 0).

• If 2n− 1 > 0 (i.e., n > 1/2), Re(λ) > 0. The origin is an unstable fixed point (an unstable
spiral).

• If 2n−1 = 0 (i.e., n = 1/2), Re(λ) = 0. The eigenvalues are purely imaginary (λ = ±i/2).
This indicates a Hopf bifurcation at n = 1/2.

As n increases through 1/2 (with r3 = 0), the stable spiral fixed point at the origin loses stability,
giving rise to a stable limit cycle surrounding the now unstable origin. This bifurcation occurs without
shifting the location of the fixed point itself (it remains at (0, 0)).
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Effect of Additive Input (r3 ̸= 0)

When r3 ̸= 0, the origin is no longer a fixed point. The fixed points (r̄1, r̄2) must be found numerically
or graphically by solving Eqs. 26-27. The Jacobian must be evaluated at these non-zero fixed points:

J(r̄1, r̄2) = n

(
(1− r̄21)W11 (1− r̄21)W12

(1− r̄22)W21 (1− r̄22)W22

)
− I

As r3 is varied (keeping n fixed, e.g., n = 1), the location of the fixed points (r̄1, r̄2) will change.
The terms (1− r̄2i ) in the Jacobian will also change. Bifurcations can occur when the eigenvalues of
J(r̄1, r̄2) cross the imaginary axis.

Consider the trace and determinant of the Jacobian:

Tr(J) = (−1 + (1− r̄21)nW11) + (−1 + (1− r̄22)nW22)

= n((1− r̄21)W11 + (1− r̄22)W22)− 2

det(J) = (−1 + (1− r̄21)nW11)(−1 + (1− r̄22)nW22)− ((1− r̄21)nW12)((1− r̄22)nW21)

A Hopf bifurcation occurs when Tr(J) = 0 and det(J) > 0. A saddle-node bifurcation (where fixed
points appear or disappear) occurs when det(J) = 0.

Varying r3 changes (r̄1, r̄2), which in turn affects both the trace and determinant. This means r3 can
potentially drive both Hopf and saddle-node bifurcations, depending on the value of n and the specific
path taken by (r̄1, r̄2) as r3 changes. Crucially, any bifurcation induced by r3 will be associated with
a fixed point (r̄1, r̄2) ̸= (0, 0).

Measurable Difference 2: Bifurcations driven by the multiplicative factor n (with r3 = 0) preserve
the symmetry around the origin. For instance, the Hopf bifurcation at n = 1/2 happens precisely at
the origin. Bifurcations driven by the additive factor r3 occur at non-zero operating points (r̄1, r̄2) and
generally break the symmetry observed when r3 = 0. The type of bifurcation (Hopf vs. saddle-node)
can also differ depending on whether n or r3 is the control parameter.

Summary of Measurable Differences

To distinguish between bifurcations driven by multiplicative gain modulation (n) versus additive
input (r3):

1. Operating Point / Mean Activity: Monitor the average values of r1 and r2.

• Varying n (with r3 = 0): The origin (0, 0) remains a fixed point. Bifurcations (like
Hopf at n = 1/2) occur centered at the origin. Other fixed points may appear/disappear
symmetrically.

• Varying r3: The fixed point(s) move as r3 changes. Bifurcations occur at non-zero
operating points (r̄1, r̄2). The mean activity changes significantly across the bifurcation.

2. Symmetry: Observe the phase portrait.

• Varying n (with r3 = 0): The dynamics (fixed points, limit cycles) should exhibit
symmetry, e.g., if (r̄1, r̄2) is a fixed point, (−r̄1,−r̄2) might also be (depending on
W , though not guaranteed for non-zero fixed points with this specific W ). The Hopf
bifurcation occurs symmetrically around the origin.

• Varying r3: The symmetry around the origin is broken. Fixed points and limit cycles
will generally not be symmetric.

3. Bifurcation Type at Origin:
• Varying n (with r3 = 0): Specifically leads to a Hopf bifurcation at the origin when
n = 1/2.

• Varying r3: Cannot induce a bifurcation exactly *at* the origin (as it’s not a fixed point
for r3 ̸= 0). Bifurcations occur elsewhere in the phase space.

By measuring the mean activity levels (r̄1, r̄2) and analyzing the symmetry of the dynamics as
the control parameter is varied, one can distinguish whether a bifurcation is primarily driven by a
multiplicative (gain-like) or additive (input-like) contextual factor.
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6 Deep Reinforcement Learning Experiments

For the reinforcement learning tasks, we utilized a block-switched two-armed bandit task where
reward probabilities invert stochastically (Figure 4A). To address the potential confound of periodic
switching, we ran a new experiment where the high-reward arm switched at stochastic, unpredictable
intervals. The agent adapted robustly, confirming it learns a genuine model of the task state and is
not merely entraining to a fixed frequency. The agent must learn to track the hidden block state (i.e.,
which arm has high probability) and adapt its actions to maximize reward. Training e-nmRNN agents
was performed using Proximal Policy Optimization (PPO), a standard deep reinforcement learning
algorithm.

To analyze the RPE encoding, Maximum Likelihood Estimation (MLE) was used to fit a Q-learning
model to the generated action and reward sequences from the trained e-nmRNN agent. The RPE
signal was then extracted directly from this fitted Q-table. Finally, a single degree-of-freedom linear
decoder was trained to map neuromodulator states to various behavioral features, including RPE,
choice, reward, and entropy.

Table 2: Key Hyperparameters for Reinforcement Learning Task

Parameter Value/Range (PPO/TPE) Notes
Batched Environments 16 Fixed
PPO Learning Rate 7x10−5 Fixed
PPO Clip Epsilon 1 Fixed
Discount Factor (γ) 0.95 Fixed
Generalized Advantage Estimation (λ) 0.95 Fixed
Sequence Length 200 Fixed
Hidden Units (RNN/e-nmRNN) 64 Parameter-matched
Number of NMs 4 Fixed
NM time constant (τn) 0.1 Optimized by Hand
Activation Function ReLU-Tanh Fixed

The model fitting uses the public github methods from the Allen Institute for Neural Dynamics to fit
an MLE to the action sequences of the nmRNN agent.

[language=Python, basicstyle=, breaklines=true] forager = ForagerCollection().getpresetforager(”Bari2019”, seed =
42)forager.fit(choicehistory, rewardhistory, fitboundsoverride =
”softmaxinversetemperature” : [0, 100], clampparams = ”biasL” : 0, DEkwargs =
dict(workers = 4, disp = True, seed = np.random.defaultrng(42)), kfoldcrossvalidation =
None, )

7 Multitasking Benchmark Details

Table 4: Summary of Neuroscience-Inspired Cognitive Tasks from Yang
et al. (2019).

Task Name (Abbreviation) One-Sentence Description (Inspira-
tion)

Task Dynamics (Timing)

Go Task Family
Go (Go) A pro-response task requiring a re-

sponse in the direction of a single stim-
ulus (modality 1 or 2) after a go cue.

Stimulus is shown (Tstim1 ∼
U(500, 1500) ms) before the
fixation cue goes off.

Reaction-time Go (RT Go) A pro-response task requiring a re-
sponse in the direction of a single stim-
ulus (modality 1 or 2) as soon as it ap-
pears.

Response is cued
by stimulus onset
(Tstim1 ∼ U(500, 2500)
ms); fixation cue never goes
off.

Continued on next page
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Table 4: Summary of Neuroscience-Inspired Cognitive Tasks from Yang
et al. (2019).

Task Name (Abbreviation) One-Sentence Description (Inspira-
tion)

Task Dynamics (Timing)

Delayed Go (Dly Go) A memory-guided saccade task to re-
member a brief stimulus and respond in
its direction after a delay and a go cue.

A brief stimulus is
followed by a vari-
able delay (Tdelay1 ∼
U({200, 400, 800, 1600})
ms).

Anti Task Family
Anti-response (Anti) An anti-saccade task requiring a re-

sponse in the direction *opposite* to
a single stimulus (modality 1 or 2) after
a go cue.

Same as Go task (Tstim1 ∼
U(500, 1500) ms).

Reaction-time Anti (RT
Anti)

An anti-saccade task requiring a re-
sponse in the direction *opposite* to
a single stimulus (modality 1 or 2) as
soon as it appears.

Same as RT Go task
(Tstim1 ∼ U(500, 2500)
ms).

Delayed Anti (Dly Anti) An anti-saccade task to remember a
brief stimulus and respond in the *oppo-
site* direction after a delay.

Same as Dly Go
task (Tdelay1 ∼
U({200, 400, 800, 1600})
ms).

Decision Making (DM) Family
Decision Making 1 (DM 1) A perceptual decision-making task to

choose the stronger of two simultaneous
stimuli, both in modality 1.

Two stimuli shown simul-
taneously for Tstim1 ∼
U({400, 800, 1600}) ms.

Decision Making 2 (DM 2) A perceptual decision-making task to
choose the stronger of two simultaneous
stimuli, both in modality 2.

Two stimuli shown simul-
taneously for Tstim1 ∼
U({400, 800, 1600}) ms.

Context-dependent DM 1
(Ctx DM 1)

A context-dependent computation task
to choose the stronger stimulus in
modality 1 while *ignoring* modality
2.

Two bi-modal stimuli shown
simultaneously for Tstim1 ∼
U({400, 800, 1600}) ms.

Context-dependent DM 2
(Ctx DM 2)

A context-dependent computation task
to choose the stronger stimulus in
modality 2 while *ignoring* modality
1.

Two bi-modal stimuli shown
simultaneously for Tstim1 ∼
U({400, 800, 1600}) ms.

Multi-sensory DM (Mult-
Sen DM)

A multi-sensory integration task to
choose the stimulus with the stronger
*combined* strength from both modali-
ties.

Two bi-modal stimuli shown
simultaneously for Tstim1 ∼
U({400, 800, 1600}) ms.

Delayed Decision Making (Dly DM) Family
Delayed DM 1 (Dly DM 1) A parametric working memory task to

compare the strength of two sequential,
brief stimuli in modality 1, separated by
a delay.

S1 (300 ms), delay
(Tdelay1 ∼ U({...1600})
ms), then S2 (300 ms) in
mod 1.

Delayed DM 2 (Dly DM 2) A parametric working memory task to
compare the strength of two sequential,
brief stimuli in modality 2, separated by
a delay.

S1 (300 ms), delay
(Tdelay1 ∼ U({...1600})
ms), then S2 (300 ms) in
mod 2.

Ctx Dly DM 1 (Ctx Dly DM
1)

A novel task (working memory + gat-
ing) to compare sequential bi-modal
stimuli based *only* on modality 1.

S1 (300 ms), delay
(Tdelay1 ∼ U({...1600})
ms), then S2 (300 ms); both
bi-modal.

Continued on next page
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Table 4: Summary of Neuroscience-Inspired Cognitive Tasks from Yang
et al. (2019).

Task Name (Abbreviation) One-Sentence Description (Inspira-
tion)

Task Dynamics (Timing)

Ctx Dly DM 2 (Ctx Dly DM
2)

A novel task (working memory + gat-
ing) to compare sequential bi-modal
stimuli based *only* on modality 2.

S1 (300 ms), delay
(Tdelay1 ∼ U({...1600})
ms), then S2 (300 ms); both
bi-modal.

Multi-sensory Dly DM
(MultSen Dly DM)

A novel task (working memory + in-
tegration) to compare the *integrated*
strength of two sequential bi-modal
stimuli.

S1 (300 ms), delay
(Tdelay1 ∼ U({...1600})
ms), then S2 (300 ms); both
bi-modal.

Matching Family
Delayed Match-to-Sample
(DMS)

A visual working memory task to re-
spond to S2 *only if* its direction is the
*same* as S1, regardless of modality.

Brief S1, delay (Tdelay1 ∼
U({...1600}) ms), then brief
S2.

Delayed Non-Match-to-
Sample (DNMS)

A visual working memory task to re-
spond to S2 *only if* its direction
is *different* from S1, regardless of
modality.

Brief S1, delay (Tdelay1 ∼
U({...1600}) ms), then brief
S2.

Delayed Match-to-
Category (DMC)

A visual categorization task to respond
to S2 *only if* its direction belongs to
the *same category* as S1.

Brief S1, delay (Tdelay1 ∼
U({...1600}) ms), then brief
S2.

Delayed Non-Match-to-
Category (DNMC)

A visual categorization task to respond
to S2 *only if* its direction belongs to
a *different category* from S1.

Brief S1, delay (Tdelay1 ∼
U({...1600}) ms), then brief
S2.

We evaluated the e-nmRNN on a suite of 20 neuroscience-inspired multitasking benchmarks from
the established suite by Yang et al. (2019), which covers a wide array of decision-making and
cognitive tasks. This benchmark suite is designed to probe flexible computation and generalization
across diverse cognitive demands. The network is provided a one-hot task ID at the beginning of
each trial. The crucial finding is how the network learns to use and maintain this information. The
architecture’s inductive bias encourages this context to be encoded and dynamically maintained
within the neuromodulatory state n⃗(t). As shown in Figure 5C, a linear decoder trained on these
neuromodulator concentrations can reliably identify the current task long after the initial cue has
passed, whereas a decoder trained on the neural activity r⃗(t) cannot. This demonstrates that the
e-nmRNN learns to represent the task context in its endogenous modulatory state, using it to shape
the circuit dynamics appropriately for the task at hand. A parameter-matched standard RNN was also
trained on the multitasking benchmark. The results show that our spatially-embedded e-nmRNN
achieves comparable or superior performance across the 20 tasks, demonstrating that the inductive
biases of our architecture provide tangible value on this complex benchmark. The specific task
parameters, input/output structures, and success criteria for each individual task in the suite are
detailed in the publicly available code repository (details in Section 10).

8 Detailed Analysis of Emergent Biological Structures

Our analysis of trained e-nmRNNs reveals several emergent properties that mirror observations in
neurobiology, providing insights into the model’s interpretability and biological plausibility.

8.1 Modularity and Cell Clustering

Training on multitasking benchmarks promotes the emergence of functionally specialized modules
within the e-nmRNN, as well as hierarchical cell clustering (Figure 5D). This modularity is supported
by two key observations: 1) the formation of "Sherringtonian circuits" among presynaptic partners[44,
31], and 2) the emergence of distinct, modular brain regions in biological systems. Our clustering
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Table 3: Experiment Parameters for the agents shown in the main text.

Parameter Value Parameter Value
env_name BlockBandit2ArmCoupledEasy-v0 policy_use_gae true
exp_label rl2 policy_lambda 0.95
max_episode_steps 200 policy_algorithm a2c
max_rollouts_per_task 1 policy_critic_loss_coeff 0.01
seed 73 policy_entropy_loss_coeff 0.3
time_as_state false policy_optimizer adam
deterministic_execution false policy_eps 1e-08
results_log_dir /scratch/ policy_lr 0.0007
log_interval 500 policy_anneal_lr false
save_interval 1000 policy_max_grad_norm 0.5
save_intermediate_models false policy_use_activity_l2_regularization true
eval_interval 500 policy_activity_l2_loss_coeff 100
eval_ids [] NMd true
num_eval_envs 300 nNM 4
vis_interval 500 state_dim 1
num_updates 50000.0 input_state_dim_for_policy 0
policy_num_steps_per_update 200 action_space_type Discrete
num_processes 16 action_dim 2
deterministic_policy false reward_dim 1
shared_rnn true device cuda
layers_before_rnn []
rnn_hidden_dim 64
layers_after_rnn []
rnn_cell_type vanilla
action_embed_dim 0
state_embed_dim 0
reward_embed_dim 0
policy_net_activation_function relu-tanh
policy_net_initialization_method normc
action_pred_type bernoulli
hidden_noise_std 0.002
policy_gamma 0.95

methods, detailed in Section 10, group neurons based on their connectivity patterns and activity
profiles, revealing a clear modular organization that aligns with functional specialization.

8.2 Cell-Type Specialization in Neuromodulator Release

We observe a striking specialization where individual units learn to predominantly promote the release
of a single type of neuromodulator (Figure 5E). This differentiation is functional and learned, not
hardcoded. A unit’s activity promotes the release of a specific neuromodulator if the corresponding
column in the learned release matrix R becomes selective for that modulator. For instance, if the j-th
column of R, R:j , becomes approximately a one-hot vector [1, 0, 0, ...]T , then neuron j’s activity
rj primarily drives the dynamics of the first neuromodulator, n1. The functional effects of this
neuromodulator are then determined by how its corresponding entries in the learned tensor T gate
synaptic transmission throughout the network to solve the given tasks. This emergent property
provides a concrete computational model for how diverse neuronal components contribute to overall
system function. We also found that units specializing in releasing a specific neuromodulator form no
notable spatial clusters, providing new evidence strengthening our claims of emergent, biologically-
reminiscent organization.
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8.3 Spatial Autocorrelation Analysis of Neuromodulator Loadings

To quantify the spatial "mixedness" of the four neuromodulator (NM) loadings across the cell grid,
we computed the spatial autocorrelation using Moran’s I. This statistic measures the correlation of a
variable with itself in spatial terms. The global Moran’s I is defined as:

I =
N

S0

∑N
i=1

∑N
j=1 wij(xi − x̄)(xj − x̄)∑N

i=1(xi − x̄)2

where N is the number of cells (256), xi is the NM loading for cell i, x̄ is the mean loading for
that NM, and wij is the spatial weight between cells i and j. The spatial weights matrix W was
constructed from the Delaunay triangulation of the cell centers (r), such that wij = 1 if cells i and j
are neighbors (i.e., connected by an edge in the triangulation) and wij = 0 otherwise. S0 is the sum
of all weights,

∑
i

∑
j wij . A value of I > 0 indicates positive spatial autocorrelation (clustering

or low mixedness), I ≈ 0 indicates no spatial autocorrelation (a random, well-mixed pattern), and
I < 0 indicates negative spatial autocorrelation (a checkerboard-like, dispersed pattern).

Figure 9: Localizied Spatial Autocorrelation cluster maps for the four neuromodulator loadings
(NM 0-3). Global Moran’s I analysis did not reveal significant spatial autocorrelation for any
neuromodulator (NM0: p = 0.437, NM1: p = 0.216, NM2: p = 0.251, NM3: p = 0.465).

To visualize the local spatial structure, we computed the Local Moran’s I (LISA) statistic for each
cell i:

Ii =
xi − x̄

S2
i

∑
j

wij(xj − x̄)

where S2
i is the variance of x (excluding cell i). This analysis identifies spatial clusters and outliers,

as shown in Figure 9. The map categorizes cells based on their Ii value and its statistical significance
(p-value):

• High-High (Hotspot): A cell with a high NM loading surrounded by other cells with high
loadings.

• Low-Low (Coldspot): A cell with a low NM loading surrounded by other cells with low
loadings.

• High-Low / Low-High (Outliers): A cell that is significantly different from its neighbors.
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• Not Significant: A cell whose local pattern is not statistically different from a random
distribution.

8.4 Timescale Separation in Neuromodulator Dynamics

The neuromodulator dynamics within the e-nmRNN spontaneously learn to evolve on distinct,
separated timescales (Figure 5F). Our autocorrelation analysis, performed on the time series of
individual neuromodulator concentrations, reveals a factor of approximately 8x difference between
the fastest and slowest evolving neuromodulators. This heterogeneity in timescales reflects the
value of functional specialization, allowing different neuromodulators to encode information at
different temporal resolutions, which is consistent with biological observations regarding brain state
and behavior. Details of the autocorrelation analysis, including calculation methods and statistical
evaluation, are provided in Section 10.

8.5 Context Encoding within Neuromodulator Dynamics

Beyond compositional generalization, the neuromodulator state n⃗(t) robustly learns to represent
task context (Figure 5C). In experiments involving dynamically changing environments, such as
the block-switched two-armed bandit task (Figure 4A), the NM concentrations dynamically track
the hidden block state (Figure 4C, D). This learned context encoding represents a compelling
computational hypothesis for animals trained across multiple tasks or contexts, especially with
the advent of emerging, temporally-resolved neuromodulator imaging technologies. This makes a
concrete, testable prediction: during multitask learning, ambient NM concentrations in a relevant
cortical area should become decodable for task context, a hypothesis that is becoming directly testable
with new imaging techniques (e.g., GRAB sensors).

8.6 Reward Prediction Error (RPE) Encoding in Reinforcement Learning

In reinforcement learning tasks, specifically the dynamic foraging task, the neuromodulator state not
only encodes task context but also learns to represent critical learning signals such as the Reward
Prediction Error (RPE) (Figure 4E, G). This is a key finding: it demonstrates how the e-nmRNN can
leverage its neuromodulatory system to represent a critical learning signal, consistent with biological
observations of dopamine activity correlating with RPE. This RPE encoding, combined with the
nk(t)-gated 4-factor learning rule (Section 3.1), provides a concrete mechanism for RPE-gated online
credit assignment, facilitating rapid adaptation to changes in the environment and contributing to
the network’s ability to "learn how to learn" in a reinforcement learning context. This also leads to
a testable prediction: in RL settings, some component of the neuromodulatory state space should
explicitly encode RPEs, consistent with known roles for dopamine and norepinephrine.

9 Experimental Details and Hyperparameters

This section details the experimental setups and hyperparameters used for all reported results, includ-
ing compositional generalization, multitasking, and reinforcement learning tasks. All experiments
were conducted in a cloud environment utilizing AWS, requiring less than 64 GB of RAM and a
CUDA-enabled GPU for execution.

9.1 Sine Curve Meta-Learning

To assess the model’s ability to learn and generalize across a family of structured relationships,
we employed a simple meta-learning sequence generation task. Each input-target sequence pair is
sampled from a family of sine curves defined by three parameters: amplitude (Ai), frequency (ωi),
and phase (ϕi). The target sequence is given by:

y⋆(t) = Ai sin (ωit+ ϕi)

The input to the network at each time step is a three-dimensional vector containing these parameters:

I(t) =

(
Ai

ωi

ϕi

)
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Importantly, due to the infinite size of this dataset, we opt to operate in a continual learning regime
for this optimization where each sample is both the first and last time the network sees that exact
sample. For this reason, we report results not in terms of number of times through the dataset, but
instead, number of batched gradient update steps.

The challenge of learning to pair the input parameters with the output sequence should not be
underestimated. Indeed, if we sample from the full, uniform distribution of parameters, the networks
(all model classes) routinely fail to learn to oscillate. Thus, to focus on operating on both sides
of the Hopf Bifurcation, we focused on a fixed distribution on ω and ϕ to sample from Ai =
max(U [−1, 1], 0).

We began our training with a TPEsampler hyperparameter tuning. Our objective function is the
minimization of the held-out loss after 1000 batched gradient update steps.

Next, we applied these locally optimal learning rates to each model class and trained the networks
across samples. Batch sizes are held fixed (B = 16) across all models to ensure that number of
batched gradient updates are compared on equal footing. We find that under these conditions, the
e-nmRNN takes many fewer update steps to achieve high performance across this domain and find
that the exponentially weighted spatially embedded RNN improve batch update efficiently when
paired with the e-nmRNN dynamics. This phenomena, combined with the interpretability advantages
of a spatially-embedded network, motivate our continued use throughout this work.

9.2 Compositional generalization

This task extends the concept of matrix multiplication to a setting where sequences are mapped to the
amplitudes of other sequences. Instead of treating inputs and outputs as static vectors or matrices, we
view them as temporal structures, allowing for:

• Representation Learning: The input sequences encode a structured representation, and the
network must infer a decomposable basis from these representations.

• Function Approximation: The network learns to reconstruct an output sequence from a set
of basis functions.

• Compositional Generalization: If trained correctly, the model should generalize to new
sequence compositions beyond its training set.

Mathematical Formulation of the Task

We define the input-output mapping as:

I(t) =
∑
k

akµk(t)

y∗(t) =
∑
k

akηk(t)

where:

• µk(t) are the input basis functions.
• ηk(t) are the output basis functions.
• ak are the unknown coefficients that we want the model to infer from the input sequence

and use that inference to generate the associated patterns in the corresponding weights.

The model must learn a function fθ that maps input sequences to output sequences by implicitly
recovering ak:

fθ(I(t)) ≈ y∗(t)

Generalization & Zero-Shot Performance

To test generalization, we evaluate the model on unseen compositions of input sequences:

1. Train the model on a fixed set of basis functions.
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2. Introduce new linear combinations of basis functions during testing by holding out com-
binations of samples from training in the coefficient hypercube. We do this using filtered
uniform sampling to split ’quadrants’ of the hypercube into a validation set.

3. Measure validation performance on reconstructing previously unseen compositions.

If the model generalizes well, this suggests it has learned an effective representation space that allows
for compositional inference.

One signature of learning this representation well is the ability to decode (using a weakly expressive
decoder) the actual coefficients of each sequence from the network’s hidden units (or nm fields in
the case of the e-nmRNN). We add this analysis to our study of the capacity to better understand the
failure to generalize with growing dataset complexity.

Two types of scaling

One of the great strengths of this simple task set is that we can scale both the complexity of the data
set and the amount of data with the only cost being compute time. This allows us to ask how do each
of the models selected for baseline characterizations scale with:

1. Scaling with the amount of data available to train the model allows us to test for the
"efficiency" of the representation learning

2. Scaling the complexity (by way the number of basis patterns used in the composition, K)
allows us to measure the practical capacity of the model.

In the work, we explore both of these scaling relationships but only report the results for the capacity
due to lack of space. The e-nmRNN’s higher capacity makes it more prone to overfitting on this
smaller dataset compared to a GRU, which can be seen in the generalization gap between training and
validation loss at high task complexity (K > 15). A future research topic will investigate effective
forms of regularization to avoid this. Future work will explore an analytic explanation of these
numerical experiments.

Reproducibility parameters for compositional generalization

For the multitasking benchmarks, all models were parameter count matched at approximately 50k
trainable parameters and tuned on compositional generalization (K=8). Hyperparameter optimization
was performed using Tree-Structured Parzen Sampling with 100 samples for all models. Models
were trained for 1000 epochs, and the best variance explained on the validation dataset was extracted
for performance evaluation. Performance scaling with "Task complexity" (K ranging from 1 to 20)
was explored.

Table 5: Key Hyperparameters for Compositional Generalization Task

Parameter Value/Range (TPE) Notes

Learning Rate [10−4, 10−2] Optimized via TPE sampler
Optimizer Adam Fixed
Batch Size 16 Fixed across all models
Hidden Units (RNN/GRU) 256/128 Parameter-matched
Neurons (e-nmRNN) 128 Parameter-matched
Number of NMs 4 Fixed
NM time constant (τn) [0.1, 10] Optimized
Weight Regularization (L2) [10−6, 10−4] Optimized
Activity Regularization (L2) 0 Fixed
Activation Function ReLU-Tanh Fixed

9.3 Multitasking Benchmarks

On the 20 Yang19 tasks, we conducted a single study in the manuscript: what does the solution space
high performing e-nmRNN look like? Do we observe biologically aligned phenomena simply by
training the nmRNN on a sufficiently rich set of tasks as was seen in [27, 32, 28]
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Table 6: Key Hyperparameters for Multitasking Benchmarks

Parameter Value/Range (TPE) Notes

Learning Rate [5× 10−5, 5× 10−3] Optimized via TPE sampler
Optimizer Adam Fixed
Batch Size 32 Fixed
Hidden Units 224 Parameter-matched ( 50k parameters total)
Number of Neurons 128 Fixed
Number of NMs 4 Fixed
NM time constant (τn) [0.01, 10] Optimized
Regularization (L2) [10−7, 10−5] Optimized
Activation Function ReLU-Tanh Fixed
Dale’s Law Enabled For spatially embedded networks
Spatial Embedding Lengthscale 10% of domain For spatially embedded networks

10 Reproducibility Details

To ensure full reproducibility of all experimental results presented in this paper, we will provide
access to the codebase, including training scripts, evaluation procedures, and data generation methods.
The code will be made available on a GitHub repository post acceptance, and a link for is provided
for submission review. Additionally, we plan to provide associated Docker instances hosted on
CodeOcean to facilitate ready and consistent reproducibility across different computing environments.

The code repository will include:

• Source Code: All Python scripts for defining the e-nmRNN architecture, baseline models
(Vanilla RNN, GRU, Transformers, HiPPO-LegT, Oscillatory RNNs), training loops, and
evaluation metrics.

• Environment Configuration: We provide a Dockerfile environment specification detail-
ing all required software libraries and their exact versions (e.g., PyTorch, NumPy, Matplotlib,
Optuna, gymnasium).

• Data Access and Generation: Scripts for generating the synthetic datasets used in the com-
positional generalization tasks (sine curves and dictionary mapping). For the multitasking
benchmarks and RL tasks, instructions or links to access the generated datasets are provided,
along with preprocessing scripts.

• Hyperparameter Configurations: Detailed configuration files for the optimal hyperparam-
eters found during the TPE sampler optimization for each experiment, complementing the
tables in Section 9.

• Reproducible Commands: Clear instructions, including exact command-line arguments, to
execute the training and evaluation runs for all results presented in the main text. We present
these with saved output as jupyter notebooks for ready inspection.

• Summary of code structure: please see below for a detailed summary of code structure
focusing on the minimal path toward reproducing notebooks and environment initialization
(denoted by a ⋆)

We commit to releasing the assets under a CC-BY 4.0 license. All aspects related to anonymity, as
per NeurIPS guidelines, will be strictly adhered to in the publicly released version of the repository.

We make our code available at https://github.com/mstormbull/e-nmRNN_neurips2025.
Please note that we highlight only the notebooks to run to access the demos but have attempted to
provide a complete and blinded version of the code needed to run it.

• Final_NeurIPS_submission_repo
⋆ REPRODUCING.md
– Fig2 - Hopf MetaLearning

⋆ Dockerfile
- v3_refactor : The full code needed to reproduce gradient alignment
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⋆ Run the self-contained notebook: Refactor_CosineSimilarityOverTraining.ipynb
• Folder also includes analysis files of pre-trained logs

– Fig3 - Compositional Generalization
⋆ Environment/Dockerfile
⋆ Hyperparameter tuning can be recreated by running
hyperparameter tuning-Demo.ipynb

⋆ To train all models in model.py across the task with as-
cending complexity run [caution: 24 hours execution time]:
GenerateComplexitySweep_MatchedRun.ipynb

– Fig4 - RL Bandit
- PPO_train_nmRNN
⋆ environments/Dockerfile
• Folder provides access to full repo and some trained example networks.
⋆ To train a new e-nmRNN agent please specify local paths and run [warning

execution time 24+ hours]: TrainNotebook.ipynb
⋆ To regenerate the dynamics pictures of figure 4 on a new network, please run:
AnalysisOfTrained_nmRNN.ipynb

- MLE_Fits
⋆ environments/Dockerfile
⋆ To reproduce the MLE fits and correlation analysis on a previously generated

agent sequence please run: Notebooks/Fit_nmRNN_Agent_Analysis.ipynb
– Fig5 - Multitasking

⋆ Yang19MultitaskingAll
⋆ environment/Dockerfile
⋆ To train a new network please run [execution time 48+ hours]
Demo_SpatialNetwork-Copy3.ipynb

⋆ To analyze a new network please run
Analysis_spatialNetwork-Alltasks.ipynb

- AdaptatibilityNeurogym A repo not used in the paper to study the adaptability
of the nmRNN. This repo is in development but welcomes comments, corrections,
and contributions.

Note: The code is provided at publication in its current most robust form. Further code revisions are
underway to merge the numerous environments while avoiding dependency conflicts.
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