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Abstract

The knowledge encapsulated in a model is the001
core factor determining its final performance002
on downstream tasks. Much research in NLP003
has focused on efficient methods for storing004
and adapting different types of knowledge, e.g.,005
in dedicated modularized structures, and on006
how to effectively combine these modules, e.g.,007
via parameter averaging at test time. How-008
ever, given the many possible options in com-009
posing knowledge, a thorough understanding010
of the mechanisms involved is missing, and011
hence it remains unclear which strategies to uti-012
lize. In this work, we address this research gap013
by proposing a novel framework for zero-shot014
module composition, which encompasses ex-015
isting and some novel variations for selecting,016
weighting, and combining parameter modules017
under a single unified notion. Focusing on the018
scenario of domain knowledge and adapter lay-019
ers, our framework provides a systematic unifi-020
cation of concepts, allowing us to conduct the021
first comprehensive benchmarking study on var-022
ious zero-shot knowledge composition strate-023
gies. In particular, we test two module com-024
bination methods (parameter averaging, out-025
put ensembling), and five selection and weight-026
ing strategies (uniform, and based on entropy,027
domain prior, TF–IDF, and semantic similar-028
ity) for their effectiveness and efficiency on 21029
training and 10 evaluation domains across three030
models. Our results highlight the efficacy of031
ensembling, but also hint at the power of sim-032
ple though often-ignored weighting methods.033
We further conduct various in-depth analyses,034
that, for instance, allow us to understand the035
role of weighting vs. top-k selection, and we036
show that, to a certain extent, the performance037
of adapter composition can even be predicted.038

1 Introduction039

Pre-trained language models (PLMs), e.g., the GPT-040

family (Radford et al., 2019; Brown et al., 2020,041

inter alia), determine the current state-of-the-art042
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Figure 1: Our unified framework for on-demand module
composition consisting of three steps: selection, weight-
ing, and final combination. We show the example of
zero-shot domain adaptation with adapter layers.

in Natural Language Processing (NLP), which has 043

often been attributed to the rich knowledge they 044

encapsulate in their parameters (e.g., Tenney et al., 045

2019). Previous research has heavily focused on 046

utilizing the PLMs’ knowledge in various scenarios 047

particularly in a zero-shot setting, e.g., to transfer 048

the knowledge of different source domains to a 049

specific target domain (e.g., Emelin et al., 2022; 050

Hung et al., 2022, inter alia). 051

Besides the numerous practical advantages of 052

knowledge modularization – such as parameter- 053

efficiency (Ponti et al., 2023), avoiding catas- 054

trophic forgetting (Ansell et al., 2021), and reduc- 055

ing negative interference (Sun et al., 2020) – re- 056

searchers have shown the benefits of re-using and 057

re-combining already existing modules (Pfeiffer 058
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et al., 2021).059

Based on this idea, a particularly attractive sce-060

nario is the on-demand selection and combination061

of knowledge modules at inference time. To do so,062

there exist a plethora of potential strategies: mod-063

ules can be selected by computing sentence simi-064

larities and domain clusters (Chronopoulou et al.,065

2023), domain priors (Li et al., 2022), and model066

entropy (Wang et al., 2022). Then, they can be com-067

bined with a weight space averaging, following the068

idea of a “model soup” (Wortsman et al., 2022), or069

output vector ensembling (Li et al., 2022).070

However, despite the existence of a variety of071

knowledge composition methods, there is (a) no072

comprehensive overview and evaluation of those073

methods, and (b) no unified view on knowledge074

composition that could facilitate this process. The075

composition methods introduced for various objec-076

tives have not been tested in a comparable setup077

(e.g., Li et al. (2022), do not focus on zero-shot078

domain adaptation, in contrast to Chronopoulou079

et al. (2023)), and various factors (e.g., the num-080

ber of modules to select, and whether to addition-081

ally weight each module in the composition) have082

not been systematically taken into account. We083

shed light on these, focusing on the specific case084

of zero-shot domain adaptation with adapter lay-085

ers. Given a series of adapters originating from086

domain-specific training, we address the problem087

of how to choose and combine adapters to improve088

the performance on unseen evaluation domains.089

Contributions. Our contributions are three-fold:090

(1) we present a unified framework for zero-shot091

knowledge composition (see Figure 1), which pro-092

vides an interoperable notion on knowledge com-093

position variations proposed for diverse scenarios094

in the literature. Our framework allows us (2) to095

conduct a large evaluation of knowledge composi-096

tion strategies for zero-shot domain adaptation to097

date. Concretely, we test two combination methods098

(averaging and ensembling), and five selection and099

weighting strategies (uniform, and based on model100

entropy, domain prior, semantic sentence similar-101

ity, and TF–IDF (which has been previously ig-102

nored) across three models (gpt2-base, gpt2-large,103

deberta-base) using 21 training and 10 evaluation104

domains. (3) We advance our understanding of105

knowledge composition by proposing and studying106

a meta-regression method applied to the framework,107

aiming to predict the optimal combinatorial setting.108

Our experiments show that w.r.t. combination109

strategies, output vector ensembling is often supe- 110

rior to parameter averaging, supporting findings 111

from recent work (Li et al., 2022). Importantly, 112

we observe that corpus-based weighting and se- 113

lection strategies (TF–IDF and SENTENCE SIMI- 114

LARITY) often outperform more complex model- 115

based approaches, while also being more efficient. 116

Our study on meta-regression shows that zero-shot 117

domain adaptation performance is partially pre- 118

dictable, particularly for specific adapter combina- 119

tions. We hope that our work will advance efficient 120

and effective NLP. For full reproducibility, we re- 121

lease all code publicly under [URL]. 122

2 A Unified Composition Framework 123

In this section, we present our unified framework 124

for knowledge module composition. We base our 125

explanation on the scenario of domain adaptation 126

using adapters as the underlying module. Our 127

framework is, however, generic and can be applied 128

to various composition scenarios. 129

The problem of composing knowledge boils 130

down to the following: let θi be the parameters 131

of n adapters trained via language modeling on 132

n domains D1, ..., Dn while the original model 133

parameters ϕ are kept frozen. Given an unseen 134

evaluation domain Dn+1, the task is to effectively 135

adapt to Dn+1 via an optimal domain composition. 136

As illustrated in Figure 1, our approach to such a 137

composition relies on three steps: (1) identify k 138

suitable adapters; (2) apply a weighting to the se- 139

lected adapters; (3) perform the final combination. 140

In the following, we describe the scoring and the 141

combination strategies, implemented in our frame- 142

work and used for conducting the experiments. 143

2.1 Scoring Strategy 144

We examine five scoring strategies. These strate- 145

gies are utilized for selecting the top-k most suit- 146

able adapters (1), and/or to compute the weights ωi 147

per domain (2) which will later be used in the com- 148

bination. Concretely, our framework consists of 149

uniform, two corpus-based, and two model-based 150

scoring approaches, explained in the following. 151

Uniform. In this simplest method (UNIFORM), 152

the scores follow a uniform distribution with val- 153

ues of ωi = 1/k. This strategy can not be used 154

for selecting the top-k, but it can be paired with 155

other strategies that provide the top-k best domain 156

adapters, by further weighting these uniformly. 157
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Semantic Sentence Similarity. This is a corpus-158

based scoring strategy (SENTSIM). In line with159

Chronopoulou et al. (2023), we compute Sentence-160

BERT (Reimers and Gurevych, 2019) embeddings161

for 100 randomly selected sequences of the de-162

velopment set of each of the training domains163

D1, ..., Dn, and of the unseen evaluation domain164

Dn+1. Next, we compute the averaged cosine sim-165

ilarity for each D1, ..., Dn across the 100 train-166

ing embeddings with each of the 100 embeddings167

from Dn+1. We obtain the final SENTSIM scores168

through normalization, dividing each cosine simi-169

larity by the sum of all similarities. The resulting170

scores are in [0, 1], such that
∑k

i=1 ωi = 1.171

TF–IDF. In contrast to previous work, we also172

examine Term Frequency–Inverse Document Fre-173

quency (TF–IDF), as another simple corpus-based174

scoring strategy. Here, we are motivated by the175

fact that domain differences also manifest in dif-176

ferent lexical choices. As before, we extract 100177

sequences of the development sets of each of the178

training domains and of the novel evaluation do-179

main. We then compute TF–IDF vectors for each180

subset and compute the scores as the normalized181

average cosine similarity (see above). We provide182

the exact TF–IDF formulation in the Appendix B.183

Domain Prior. Following Gururangan et al.184

(2022) and Li et al. (2022), here, we consider score185

estimation as a Bayesian problem (PRIOR): we186

introduce a domain variable D alongside each se-187

quence x of the evaluation set and define p(x|D =188

j) as the conditional probability of the last token189

in the sequence, given the preceding tokens, calcu-190

lated by applying a softmax over the model output191

vector. Applying Bayes’ rule, we estimate the do-192

main posterior p(D = j|x) (the probability of a193

sequence belonging to the domain j) as follows:194

p(D = j|x) = p(x|D = j) · p(D = j)

p(x)

=
p(x|D = j) · p(D = j)∑k

j′=1 p(x|D = j′) · p(D = j′)
.

(1)195

To estimate the domain prior P (D = j), we com-196

pute the exponential moving average (EMA) of the197

posterior probabilities at the end of each sequence198

block. We use N = 100 sequences of the dev sets199

with a sequence length of 1024 and an EMA decay200

of λ = 0.3, which has been found to result in stable201

posterior probabilities (Li et al., 2022).202

p(D = j) =

N∑
i=1

λi · p(D = j|x(i)) , (2) 203

with individual input sequences xi. We then fix the 204

obtained domain priors and use those as scores at 205

inference time. We apply averaging normalization, 206

causing the scores of k adapters to sum up to 1. 207

Entropy. This method leverages model uncer- 208

tainty as a scoring strategy (ENTROPY). Our 209

method has conceptual similarities to the one of 210

Wang et al. (2021b), while in contrast instead of 211

running multiple gradient descent iterations, we 212

opt for a more efficient strategy and measure the 213

uncertainty for each adapter on the development 214

sets X with a single pass. Similar to Lesota et al. 215

(2021), we define model uncertainty as the entropy 216

of the predicted probability distribution: 217

H(X) = −
∑
x∈X

p(x) · log p(x) , (3) 218

with mini-batches x, and p(x) being the mean prob- 219

ability of the next token given the preceding tokens 220

for all sequences in the batch. For each adapter, 221

we then compute the uncertainty of the model on 222

the evaluation set (that is, the data corresponding 223

to the unseen domain). The resulting uncertain- 224

ties are then normalized to obtain certainty scores 225

with values in the range of [0, 1]. This way, the do- 226

main adapter achieving the lowest uncertainty on 227

the evaluation set gets the highest weight assigned. 228

2.2 Combination Method 229

Given the weight vector ω we obtained from steps 230

(1) and (2), we rely on two combination methods 231

to combine the knowledge modules (3). 232

Parameter Averaging. We follow Chronopoulou 233

et al. (2023) and use “model souping” (Wortsman 234

et al., 2022), namely weight space averaging, as 235

our first combination strategy. To ensure consis- 236

tency, we also treat the parameters of the PLM 237

heads of auto-encoding models as parts of θi – the 238

parameters specific to a particular domain Di, as 239

these appear to have a major impact on the down- 240

stream task. Here, we thus average over both the 241

adapter layers and the weight space of the head’s 242

parameters. Expanding on the original proposal by 243

Chronopoulou et al. (2023), we also allow for the 244

weighting of the adapters. In particular, we con- 245

sider f(x, ϕ, θi) as a single model with its original 246

parameters ϕ, and the domain-specific adapter and 247
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head parameters θi operating on the provided tex-248

tual input x. The new model using the parameter249

averaging method is hence formulated as:250

f(x, ϕ,

k∑
i=1

ωi ∗ θi) , (4)251

with ωi as the weight for the domain-specific pa-252

rameters θi, and k the number of selected adapters.253

Ensembling. In this method, we ensemble the254

outputs of k selected models f(x, ϕ, θi), each de-255

fined with the corresponding domain-specific pa-256

rameters. This strategy is similar to the one pro-257

posed in Li et al. (2022).258

k∑
i=1

ωi ∗ f(x, ϕ, θi) . (5)259

Compared to averaging, this strategy requires a260

separate pass through each model of the ensemble.261

3 Benchmarking Composition Strategies262

We use our framework to benchmark module com-263

position strategies for zero-shot domain adaptation.264

3.1 Overall Experimental Setup265

Data. We follow Chronopoulou et al. (2023) and266

resort to defining domains by provenance, i.e., the267

source of a document. Although the notion of a268

domain is fuzzy (Plank, 2016; Saunders, 2021), the269

document sources provide an intuitive segmenta-270

tion of the corpora while also being common prac-271

tice in NLP research. We use the same 21 training272

domains, which correspond to collections of text273

from 21 websites, and 10 evaluation domains as274

in (Chronopoulou et al., 2023). 30 of these con-275

stitute domains from the 100 most high-resource276

internet domains from the C4 dataset (Raffel et al.,277

2020; Dodge et al., 2021). We also add the publicly278

available yelp.com dataset.1 We show all datasets279

along with their train-eval split sizes in Table 1.280

Models. We evaluate one auto-encoding and two281

auto-regressive models. To be able to compare our282

results to Chronopoulou et al. (2023), we use GPT-283

2 (Radford et al., 2019) in the base configuration284

(gpt2-base). Additionally, we evaluate the large285

configuration (gpt2-large) and further train domain286

adapters for the DeBERTa model (He et al., 2021)287

in the base configuration (deberta-base). We ob-288

tain all models from the Huggingface Transformers289

library (Wolf et al., 2020).290

1https://www.yelp.com/dataset

Split Datasets # Tokens

Train

dailymail.co.uk 23M (3M)
wired.com 18M(2M)
express.co.uk 13M (2M)
npr.org 24M (3M)
librarything.com 2M (300K)
instructables.com 24M (3M)
entrepreneur.com 15M (2M)
link.springer.com 23M (3M)
insiderpages.com 6M (700K)
ign.com 9M (1M)
eventbrite.com 6M (800K)
forums.macrumors.com 19M (2M)
androidheadlines.com 14M (2M)
glassdoor.com 2M (200K)
pcworld.com 13M (2M)
csmonitor.com 22M (3M)
lonelyplanet.com 4M (500K)
booking.com 30M (4M)
journals.plos.org 6M (1M)
frontiersin.org 31M (4M)
medium 21M (3M)

Eval

reuters.com 16M (2M)
techcrunch.com 12M (2M)
fastcompany.com 13M (2M)
nme.com 3M (300K)
fool.com 34M (4M)
inquisitr.com 13M (2M)
mashable.com 12M (2M)
tripadvisor.com 5M (1M)
ncbi.nlm.nih.gov 21M (3M)
yelp.com 15M (2M)

Table 1: Datasets used in our study. We show the 21
training and 10 evaluation domains with their sizes mea-
sured in number of tokens (training (eval)).

Adapter Training and Optimization. We train 291

each domain adapter separately via language mod- 292

eling (masked language modeling or causal lan- 293

guage modeling, depending on the model) on a 294

single NVIDIA A6000 GPU with 48 GB RAM. 295

For each adapter, we use a random seed of 5 during 296

training. We train for 20 epochs using the Adam 297

optimizer (Kingma and Ba, 2015) (weight decay = 298

0.01, β1 = 0.9, β2 = 0.999, ϵ = 1 · 10−6, learn- 299

ing rate=1 · 10−4). For deberta-base and gpt2-base, 300

we use an effective batch size of 80, while for 301

the bigger model, gpt2-large, we set the effective 302

batch size to 20. To make the results of gpt2-base 303

comparable to the results of Chronopoulou et al. 304

(2023), we adopt the adapter architecture proposed 305

by Bapna and Firat (2019), that is, we insert an 306

adapter layer after the transformer feed-forward 307

layer. We set the reduction factor to 12, result- 308

ing in a bottleneck size of 64 for gpt2-base and 309

deberta-base, and 107 for gpt2-large. 310

Evaluation. For each evaluation domain, we 311

measure the models’ perplexities obtained after 312
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Figure 2: Comparison between Parameter Averaging
(solid lines) and Ensembling (dashed lines) over differ-
ent numbers of top-k adapters. We show the mean per-
plexity results for (a) gpt2-base, and (b) deberta-base
for each of our scoring strategies (SENTSIM, TF–IDF,
ENTROPY, PRIOR) averaged across four runs.

adapter composition. All evaluations are conducted313

over 4 different random seeds (5, 10, 42, 88) and314

averaged to achieve stable results.315

3.2 Results316

Combination Strategies. We compare the two317

combination strategies, parameter averaging, and318

ensembling, coupled with all four scoring strate-319

gies, applied for adapter selection and adapter320

weighting. The perplexities for gpt2-base and321

deberta-base are depicted in Figure 2. We show re-322

sults for gpt2-large in the Appendix C. Note that for323

k = 0 and k = 1 (no adapter or a single adapter),324

the combination strategies are equivalent, as we325

do not need to merge any adapters. Interestingly,326

deberta-base hugely profits from adding a single327

adapter (improvement of up to -183662.70 in per-328

plexity). Adding a second adapter does, on aver-329

age, when averaging modules, no longer lead to330

an improvement. This warrants further investiga-331

tion on when exactly the knowledge contained in332

an adapter helps (cf. §4). From k = 2 on, en-333

sembling leads to better domain adaptation across334
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Figure 3: Adapter weights for all training domains and
scoring strategies when using all trained adapters. The
light grey shade indicates the uniform weighting.

most model types and scoring strategies, indicated 335

by lower model perplexities. These findings hold 336

when choosing two adapters only (k = 2) and 337

also when increasing k, up to k = 21 (all adapters 338

chosen) and are significant at α = 0.05 using the 339

Wilcoxon Signed Rank test. With larger k the dif- 340

ference between the combination strategies even 341

increases (from -0.08 for k = 2 to -0.41 for k = 21 342

and TF–IDF). The only exception is prior for 343

gpt2-base, where averaging reaches better perfor- 344

mance for smaller k. Overall, we can confirm the 345

recent findings of Li et al. (2022): ensembling typi- 346

cally leads to better performance than module av- 347

eraging. However, we also conclude that adding 348

more adapters can also harm the performance. 349

Scoring Strategies. We evaluate the effective- 350

ness of the scoring strategies for weighting all 351

21 training adapters (see Table 2). Surpris- 352

ingly, we observe that simpler (and previously ig- 353

nored) approaches to determine the weighting, e.g., 354

SENTSIM and TF–IDF, often lead to better results 355

compared to more sophisticated approaches. How- 356

ever, for smaller numbers of adapters, the picture 357

can vary (see again Figure 2). To shed more light 358

on this phenomenon, we show the weights obtained 359

through the different scoring strategies in Figure 3: 360
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Results on the 10 Evaluation Domains (AVG/ENS)
Method reuters techcru fastco nme fool inquisitr mashable tripadv ncbi yelp

♠ 21.5 27.7 27.9 28.2 23.8 22.4 27.1 40.4 20.7 36.2
SENTSIM 17.6 22.0 21.3 20.7 22.2 18.4 22.4 36.2 17.6 35.2

gp
t2

-b
as

e

20.2 27.4 27.1 28.4 22.9 21.9 25.7 38.4 19.7 34.4
UNIFORM 16.9/16.4 23.2/22.6 22.8/21.9 22.8/21.9 21.3/21.3 18.3/17.3 22.2/21.9 34.6/33.8 18.2/18.0 33.3/34.4
SENTSIM 16.5/16.1 22.8/22.3 22.5/21.7 22.3/21.5 21.2/21.2 18.0/17.6 21.9/21.6 33.7/32.4 17.4/17.2 32.9/33.7
TF–IDF 16.5/16.1 22.8/22.3 22.5/21.7 22.2/21.5 21.3/21.2 18.0/17.6 22.1/21.7 34.4/33.4 17.8/17.5 33.2/34.1
ENTROPY 16.8/16.4 23.2/22.6 22.8/21.9 22.8/21.9 21.3/21.3 18.3/17.8 22.3/21.9 34.6/33.8 18.2/18.0 33.3/34.4
PRIOR 17.1/16.6 23.4/22.8 23.1/22.2 23.1/22.3 21.4/21.4 18.4/18.0 22.4/22.1 34.4/33.6 18.2/18.1 33.2/34.2

gp
t2

-l
ar

ge

12.2 17.5 17.1 16.6 15.4 14.0 16.7 26.4 12.6 23.0
UNIFORM 11.2/10.6 16.0/15.3 15.5/14.8 14.6/13.7 14.9/14.4 12.7/12.1 15.3/14.6 24.2/23.2 11.9/11.7 24.0/23.5
SENTSIM 11.1/10.5 15.7/15.0 15.4/14.7 14.3/13.5 14.9/14.4 12.5/12.0 15.1/14.4 23.3/22.2 11.4/11.1 23.3/23.6
TF–IDF 11.1/10.5 15.8/15.1 15.4/14.7 14.3/13.5 14.9/14.4 12.5/12.0 15.2/14.5 24.0/22.9 11.7/11.3 23.8/23.9
ENTROPY 11.2/10.8 16.0/15.5 15.5/15.0 14.6/14.0 14.9/14.6 12.7/12.3 15.3/14.6 24.2/23.2 11.9/11.7 24.0/24.2
PRIOR 11.2/10.7 16.1/15.4 15.6/14.9 14.7/13.9 14.9/14.5 12.7/12.2 15.3/14.7 24.1/23.0 11.9/11.7 23.9/24.1

de
be

rt
a-

ba
se

116975.5 123763.4 122145.2 117231.9 125070.4 118561.9 118559.0 123046.6 110694.9 125107.5
UNIFORM 6.7/4.1 7.1/4.5 6.4/4.1 7.1/4.6 7.1/4.4 5.8/3.7 6.8/4.2 9.8/6.3 8.8/5.8 8.4/5.5
SENTSIM 5.9/3.9 6.3/4.4 5.9/4.1 6.2/4.5 6.4/4.4 5.1/3.5 6.1/4.2 8.7/6.3 7.0/4.6 7.9/5.8
TF–IDF 6.2/4.0 6.6/4.4 6.1/4.1 6.6/4.5 6.8/4.4 5.4/3.6 6.5/4.2 9.4/6.3 8.4/5.2 8.2/5.5
ENTROPY 6.6/4.0 7.1/4.4 6.4/4.1 7.0/4.6 7.0/4.4 5.7/3.6 6.8/4.2 9.8/6.3 8.7/6.3 8.4/5.5
PRIOR 6.6/4.0 6.9/4.4 6.4/4.1 7.0/4.5 7.0/4.4 5.6/3.6 6.7/4.2 9.8/6.3 8.7/5.6 8.4/5.4

Table 2: Perplexity results using all trained adapters for prediction and comparison with recent publications as well
as different scoring strategies averaged over 4 different initializations. The perplexities marked with ♠ represent the
results of Chronopoulou et al. (2023) obtained with gpt2-base.

the model-based scoring strategies produce weight361

distributions closer to the uniform distribution than362

the two corpus-based ones, where domain differ-363

ences are more pronounced. We conclude that364

model-based ones are thus, while providing good365

results in adapter selection (i.e., when a fixed and366

smaller k is chosen), less suitable for fine-grained367

weighting of a larger set of adapters. We are also368

interested in whether the more advanced scoring369

strategies should be used as weighting mechanisms370

or whether uniform weighting leads to superior re-371

sults. To this end, we compute the perplexities on372

all evaluation datasets in two variants: (i) when373

using the different scoring strategies (e.g., TF–IDF)374

for selection and weighting, and (ii) when only us-375

ing them for selection and then uniformly weight-376

ing the selected adapters. As already indicated by377

the weight differences depicted in Figure 3, we do378

not expect big differences for model-based strate-379

gies (e.g., ENTROPY). However, for the corpus-380

based strategies, weighting has a small but visible381

effect (up to 0.3711 for k = 21). We show the av-382

erage scores obtained across all evaluation datasets383

and across these strategies (TF–IDF and SENTSIM)384

in Figure 4: for higher k, weighting generally has385

a positive impact. It can thus be an alternative to386

fixing k – removing this additional hyperparame-387

ter – for the corpus-based scoring strategies. Yet,388
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Figure 4: Comparison between weighting adapters
based on their similarity (blue) and assigning them uni-
form weights (red). We show the mean perplexity results
for (a) deberta-base, and (b) gpt2-base and when using
corpus-based scoring strategies (TF–IDF, SENTSIM) av-
eraged over four runs and both combination strategies.

selecting a good number of adapters still stands out 389

as a more crucial factor for optimal performance. 390

Efficiency. A particular motivation for modular- 391

ization is the re-usability of the individual mod- 392

ules – leading to a reduction of the environmental 393

impact (Strubell et al., 2020; Hershcovich et al., 394

2022). Here, we discuss the efficiency of the com- 395

bination strategies we test within our framework. 396

As pointed out by Li et al. (2022), ensembling is 397

intrinsically more expensive at inference time than 398

averaging – the amount of parameters is linearly 399

increasing with the number of modules added. We 400
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Figure 5: The different scoring and combination strate-
gies with regards to their efficiency. We show the results
for gpt2-base for Parameter Averaging (solid lines) and
Ensembling (dashed lines) paired with each of our four
scoring strategies and averaged across four runs.

now measure the expected CO2 equivalents in our401

concrete experimental setup. This complements402

our understanding of the fine-grained differences403

among the individual scoring strategies. Following404

Hershcovich et al. (2022), we compute the CO2405

equivalents in gram (gCO2eq) as follows:406

gCO2eq =

ComputationTime (hours)×
Power(kW)×

EnergyMix (gCO2eq/kWh)

(6)407

We estimate these by measuring the computation408

time needed for each selection paired with each409

selection strategy. All experiments are carried out410

on a single NVIDIA A6000 GPU (TDP 300W)411

except for the score calculations with TF–IDF and412

SENTSIM. These were run on a single AMD EPYC413

7313 CPU (TDP 155W). We employ a private414

server infrastructure located in [ANONYMIZED]415

with a carbon intensity of 470g.2 We compute the416

mean carbon emission across 4 initialization seeds417

and display the results in Figure 5.418

As expected, we measure a linear increase for419

ensembling, while averaging does not result in420

increased CO2 equivalents. Unsurprisingly, the421

model-based strategies are more expensive than422

the corpus-based ones. Here, ENTROPY-based se-423

lection results in the highest amount of estimated424

carbon emissions (up to 61.17 gCO2 vs. 3.91 for425

TF–IDF and ensembling).426

4 Meta-Regression427

In §3, we have shown that adding more adapters428

(i.e., increasing k) often does not lead to perfor-429

mance gains, and that the effectiveness of the scor-430

2Estimate from https://app.electricitymaps.com/
zone/[ANONYMIZED]

ing strategies varies across models and evaluation 431

domains. Motivated by these results, here, we an- 432

alyze to what extent we are able to predict the 433

expected performance for particular compositions. 434

4.1 Experimental Setup 435

Dataset and Evaluation. We run a meta- 436

regression on our results obtained for each base 437

model in §3. We pre-process the data as follows: 438

to account for variations in the scores, we aver- 439

age over the results obtained from the four random 440

seeds for each evaluation domain. We account for 441

the base differences in perplexity among the evalu- 442

ation domains by computing the delta between the 443

original model performance on this dataset and the 444

perplexity obtained by using the composition, nor- 445

malized by the original perplexity. We use 10-fold 446

cross-validation and report the results in terms of 447

Pearson and Spearman Correlation. 448

Features. Each instance is represented by five 449

feature groups: Adapter – the weights assigned 450

to particular training adapters (0 if not chosen); 451

Number of Adapters – the number of adapters in- 452

volved in the composition; Combination Strategy – 453

one-hot encoding of average or ensembling; Scor- 454

ing Strategy – one-hot encodings of the scoring 455

strategies (e.g., TF–IDF); and Evaluation Dataset – 456

one-hot encodings of the target domain. 457

Models and Baselines. We experiment with Lin- 458

ear and Ridge regression. For Ridge, we perform 459

hyperparameter tuning (α), leading to α = 0 for 460

gpt2-base, α = 0.17 for deberta-base and α = 0.06 461

for gpt2-large. We compare the results with a base- 462

line predicting the mean relative difference per eval- 463

uation dataset. We hypothesize this to be a strong 464

baseline, as the effectiveness of an adapter combi- 465

nation is highly dependent on the target domain. 466

Results. Both models surpass the baseline (see 467

Table 3), which, as expected, already reaches high 468

scores. The highest scores are achieved with Ridge 469

regression on the gpt2-base results (0.9641 Spear- 470

man). The results on deberta-base are the lowest, 471

indicating the model type to be a relevant factor. 472

Overall, we conclude that dependent on the PLM, 473

we are able to predict the effectiveness of domain 474

adaptation with various compositions. We believe 475

that this result warrants new research on selecting 476

an optimal number and combination of modules. 477
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Model Regression PearsonC SpearmanC

gpt2-base

Mean Diff. 0.8247* 0.8152*
Linear 0.9472* 0.9640*
Ridge 0.9472* 0.9641*

deberta-base

Mean Diff. 0.6584* 0.6142*
Linear 0.9127* 0.9151*
Ridge 0.9168* 0.9225*

gpt2-large

Mean Diff. 0.8630* 0.6857*
Linear 0.9636* 0.9526*
Ridge 0.9683* 0.9577*

Table 3: Results of our meta-regression (mean correla-
tion scores (Pearson and Spearman) obtained via 10-fold
cross-validation, *statistically significant at α < 0.05).

5 Related Work478

For a thorough overview of modular deep learning,479

we refer to Pfeiffer et al. (2023).480

Modularizing Knowledge. Famously, Houlsby481

et al. (2019) proposed to use adapter layers (Re-482

buffi et al., 2017) as a more efficient alternative483

to full task-specific fine-tuning. Subsequently, re-484

searchers in NLP explored adapters for various pur-485

poses, e.g., domain adaptation (e.g., Glavaš et al.,486

2021; Cooper Stickland et al., 2021; Hung et al.,487

2022; Malik et al., 2023), bias mitigation (e.g.,488

Lauscher et al., 2021; Holtermann et al., 2022),489

language adaptation (e.g., Philip et al., 2020; Üstün490

et al., 2022), and storage of various other types of491

knowledge, such as common sense (Lauscher et al.,492

2020), factual (Wang et al., 2021a), and sociode-493

mographic knowledge (Hung et al., 2023).494

Similarly, much effort has been spent design-495

ing new adapter variants with the aim of further496

increasing their efficiency or effectiveness (e.g.,497

Pfeiffer et al., 2021; Mahabadi et al., 2021; Zeng498

et al., 2023). Alternatives to adapters that support499

modularity include subnetworks (Guo et al., 2021)500

obtained via sparse fine-tuning, prefix tuning (Li501

and Liang, 2021), and mixture-of-expert (MoE; Ja-502

cobs et al., 1991) models.503

The latter, exemplified by Switch Transform-504

ers (Fedus et al., 2022), integrate a learned gat-505

ing mechanism to channel inputs to appropriate506

expert modules. Like other modularization tech-507

niques, MoEs have been studied extensively for a508

wide range of problems (e.g., Lepikhin et al., 2021;509

Kudugunta et al., 2021; Team et al., 2022; Ponti510

et al., 2023). Most relevant to us, they have also511

been used to modularize different types of domain512

knowledge (Guo et al., 2018; Zhong et al., 2023).513

In this context, recent studies have considered ex-514

perts as entirely autonomous models, challenging 515

prevailing efficiency paradigms (Gururangan et al., 516

2022; Li et al., 2022; Gururangan et al., 2023). 517

Composing Knowledge. The composition of 518

knowledge modules can be conducted via op- 519

timizing additional parameters (e.g., Pfeiffer 520

et al., 2021), or in a zero-shot manner (e.g., 521

Chronopoulou et al., 2023). Falling under the first 522

category of approaches, Pfeiffer et al. (2021) pro- 523

posed the fusion of adapters based on weights ob- 524

tained via learned attention matrices. The same 525

mechanism has been adopted by Lu et al. (2021), 526

dubbed knowledge controller. In a similar vein, 527

Wang et al. (2021b) ensemble the output vectors 528

of multiple language adapters and optimize the re- 529

spective ensemble weights. Wang et al. (2022) and 530

Muqeeth et al. (2023) compose MoE models by 531

learning to route the input to the right modules. 532

Most recently, Frohmann et al. (2023) propose 533

to directly learn scaling parameters for efficient 534

knowledge composition in task transfer. 535

In this work, we are interested in zero- 536

shot knowledge composition. In this realm, 537

Chronopoulou et al. (2023) rely on weight space 538

averaging and simple selection strategies. Li et al. 539

(2022) and Gururangan et al. (2023) compare en- 540

sembling and averaging for composing domain 541

PLMs, relying on domain prior for selection. Until 542

now, a unified view is missing. 543

6 Conclusion 544

We proposed a unified framework providing an 545

interoperable notion of zero-shot knowledge com- 546

position. Using our framework, we analyzed the 547

effectiveness of different module selection, weight- 548

ing, and combination strategies. We studied the 549

problem of domain adaptation with adapters and 550

showed, for instance, that ensembling generally 551

yields better results than parameter averaging. Ex- 552

amining five different scoring strategies, we found 553

that even simple approaches can deliver strong re- 554

sults. Our findings also suggest that the number of 555

adapters selected is generally more important than 556

the weights assigned to them. Overall, our results 557

will fuel future research in effective knowledge 558

composition by providing a consolidated perspec- 559

tive on zero-shot module composition. 560

Limitations 561

Naturally, our work comes with a number of lim- 562

itations. Most importantly, we conducted our ex- 563
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periments on the C4 dataset only. However, we564

strongly believe our main findings to hold also for565

other corpora designed for testing domain adapta-566

tion methods. Related to this aspect, our notion567

of domains follows the one employed in C4 and568

is restricted to source websites as domain repre-569

sentatives. Previous research has shown that this570

definition is not always sufficient to clearly delin-571

eate domain knowledge (e.g., Gururangan et al.,572

2023). Therefore, we advise practitioners to care-573

fully choose the criteria for discriminating among574

domains that are most useful in their particular575

application scenario. Additionally, our validation576

relies primarily on perplexity as a measure for gen-577

eral NLU of PLMs. While perplexity provides a578

robust initial measure, it does not encapsulate all579

facets of language understanding and generation,580

and only serves as a proxy for the final downstream581

performance of the models. Last, we resorted to582

adapters as the, arguably, most popular modular-583

ization technique in our experiments. We did not584

test other modularization approaches (e.g., MoEs)585

due to the large number of additional experiments586

required and related environmental considerations.587

However, our framework is general enough to pro-588

vide useful guidance for the composition of various589

types of modules proposed in the literature.590

Ethical Considerations591

We also like to point to the ethical aspects touched592

by our work. First, as the large body of previous593

work on bias measurement demonstrates, PLMs are594

prone to encode and propagate stereotypical and595

exclusive biases present in their training data (e.g.,596

Bolukbasi et al., 2016; Blodgett et al., 2020). The597

models we used in our experiments are not spared598

from this issue (Tal et al., 2022; Narayanan Venkit599

et al., 2023). We advise practitioners to use these600

models with the appropriate care and we refer to601

existing works (Liang et al., 2021; Lauscher et al.,602

2021) for discussions on bias mitigation. Second,603

central to our work are environmental considera-604

tions: experimentation with deep learning models605

potentially entails large amounts of CO2 emissions606

(Strubell et al., 2020). With our work, we hope607

to encourage further research on efficient NLP, in608

particular on modular learning and module compo-609

sition, and, hence, to contribute to greener AI.610
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Appendix 1005

A Link to Data, Models, Code Bases 1006

In Table 4, we provide all information and links to the data, models, frameworks, and code bases we use 1007

in our work. All artifacts were used according to their intended use, as described in their licenses. Upon 1008

release, we will also release our code publicly under the MIT License. 1009

Purpose Name URL Details

Code Base

Language Modeling MLM https://github.com/adapter-hub/
adapter-transformers/blob/
master/examples/pytorch/
language-modeling/run_mlm.py

Language Modeling CLM https://github.com/adapter-hub/
adapter-transformers/blob/
master/examples/pytorch/
language-modeling/run_clm.py

Models

gpt2-base https://huggingface.co/gpt2 12-layers, 768-hidden, 12-heads, 117M
parameters

gpt2-large https://huggingface.co/
gpt2-large

36-layers, 1280-hidden, 20-heads,
774M parameters

deberta-base https://huggingface.co/
microsoft/deberta-base

12-layers, 768-hidden, 12-heads

SentenceBert https://github.com/UKPLab/
sentence-transformers

Configuration: all-mpnet-base-v2

Frameworks

nltk==3.7 We use NLTK for punctuation removal,
stemming and tokenization before creat-
ing the TF-IDF vectors.

adapter-transformers==3.2.1
huggingface-hub==0.13.4
torch==2.0.0
torchaudio==2.0.1
torchvision==0.15.1
transformers==4.28.1
datasets==2.11.0

Datasets

C4 https://github.com/allenai/
c4-documentation

License: ODC-BY

yelp.com https://www.yelp.com/dataset Licence: https://s3-media0.
fl.yelpcdn.com/assets/srv0/
engineering_pages/f64cb2d3efcc/
assets/vendor/Dataset_User_
Agreement.pdf

Table 4: Links and explanations to code bases, datasets, models and frameworks used in our work.
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B TF–IDF Equation1010

We determine the TF–IDF scores by:1011

tfidf(t, d) = tf(t, d) ∗ idf(t)1012

tf(t, d) =
ft,d∑

t′∈d ft′,d
1013

idf(t) = log

(
1 +N

1 + df(t)
+ 1

)
,1014

1015

where N is the total number of documents.1016

C Comparison of Combination Strategies1017

We evaluate the combination strategies for three1018

different models. In Figure 6, we present the re-1019

sults for ensembling and parameter averaging for1020

gpt2-large. Compared to the results for gpt2-base1021

and deberta-base, which we showed in Figure 2,1022

we did not run the experiments for all values for1023

k between [0,10] because of the size of the model.1024

However, we find very similar patterns in the varia-1025

tion of perplexity across the different strategies and1026

number of adapters added as for gpt2-base. This1027

reinforces the validity of our findings.1028
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Figure 6: Comparison between Parameter Averag-
ing (solid lines) and Ensembling (dashed lines) for
gpt2-large over different numbers of top-k adapters.
We show the mean perplexity results when using each
of our four scoring strategies (SENTSIM, TF–IDF, EN-
TROPY, PRIOR) averaged across four runs.

Figure 7 additionally shows the perplexity differ-1029

ence between parameter averaging and ensembling1030

for the different scoring strategies. A negative value1031

indicates that ensembling provides lower perplexity1032

values than parameter averaging.1033

Interestingly, we can see the same tendency for1034

all three models. With an increasing value of k,1035
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Figure 7: Difference between Ensembling - Parameter
Averaging over different numbers of top-k adapters. We
show the mean perplexity differences for (a) gpt2-base,
and (b) deberta-base (c) gpt2-large when using each
of our four scoring strategies (SENTSIM, TF–IDF, EN-
TROPY, PRIOR) averaged across four runs.

the difference between parameter averaging and 1036

ensembling increases as well, although this effect 1037

flattens for k > 10. For deberta-base, this effect 1038

can be seen more strongly. Interestingly, while 1039

for deberta-base, the difference is larger for model- 1040

based approaches, we see an exact opposite effect 1041

for the GPT-models. 1042
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D Meta Regression1043

We present the coefficients of linear regression for1044

gpt2-base, deberta-base and gpt2-large. We do not1045

include coefficients with an importance value be-1046

tween [-0.1, 0.1].1047
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Figure 8: Heatmap of the coefficients of the Linear
Regression for gpt2-base
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Figure 9: Heatmap of the coefficients of the Linear
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E Further Evaluation of Adapter Scorings1048
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Figure 11: Comparison between weighting the selected adapters based on their similarity (blue) and assigning them
uniform weights (red). We show the mean perplexity results averaged over all evaluation datasets and across four
runs for deberta-base when using different pairings of scoring and combination strategies of our framework.
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Figure 12: Comparison between weighting the selected adapters based on their similarity (blue) and assigning them
uniform weights (red). We show the mean perplexity results averaged over all evaluation datasets and across four
runs for gpt2-base when using different pairings of scoring and combination strategies of our framework.
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F Efficiency of DeBERTa1049

We present the results of the efficiency calculations1050

for deberta-base in Figure 13. As expected, the plot1051

shows the same pattern as for gpt2-base, with a lin-1052

ear increase in CO2Emissions for a higher number1053

of k.1054

0 5 10 15 20

0

50

100

150

200

250

300 Sentence Sim
TF-IDF
Entropy
Prior

#-Adapters

C
O
₂
 E

m
is

si
on

s

Figure 13: Comparison between the different selection
and composition strategies with regards to their effi-
ciency. We present the average CO2Emissions for ex-
periments where we conducted Parameter Averaging
(solid lines) and Ensembling (dashed lines) over differ-
ent numbers of top-k adapters. We show the results
for deberta-base when using each of our four scoring
strategies (SENTSIM, TF–IDF, ENTROPY, PRIOR) aver-
aged across four runs.

G Threshold Tuning via Early Stopping1055

In this additional experiment, we tried to estimate1056

the optimal number of adapters to select by apply-1057

ing an early stopping algorithm, whenever we see1058

a sudden drop in adapter similarity.1059

For this experiment, we use the weighting strate-1060

gies using TF–IDF and SENTSIM, since these ex-1061

hibited the largest variation in similarity weights.1062

We then sort these weights from largest to smallest1063

representing the adapter with the respective impor-1064

tance for the novel evaluation domain. We then1065

iterate over the adapter weights and stop if the dif-1066

ference between the weights is larger than a certain1067

threshold. We illustrate this procedure in Figure 14.1068

We run several experiments with different values1069

set for the stopping threshold (see Table 5) and find1070

that with a threshold of 0.004, we are able to ob-1071

tain on average over all datasets and combination1072

strategies 79% of the optimal model performance.1073
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Figure 14: Visualization of the early stopping approach.
The red vertical line marks the adapter combination
leading to the result with the lowest perplexity. The ver-
tical green line marks the number of adapters that would
be chosen when applying the early stopping mecha-
nism. The orange line shows the perplexity change
when adding more adapters for this strategy. In this case,
we show the results for gpt2-base on the techcrunch do-
main using TF–IDF and ensemble the output.
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Threshold SENTSIM - average TF–IDF - average average SENTSIM - ensemble TF–IDF - ensemble ensemble Total
0.001 0.64 0.84 0.74 0.55 0.73 0.64 0.69
0.002 0.64 0.84 0.74 0.55 0.73 0.64 0.69
0.003 0.67 0.88 0.77 0.57 0.79 0.68 0.73
0.004 0.78 0.88 0.83 0.70 0.80 0.75 0.79
0.005 0.79 0.82 0.80 0.73 0.77 0.75 0.78
0.006 0.74 0.79 0.77 0.69 0.78 0.74 0.75
0.007 0.74 0.74 0.74 0.69 0.73 0.71 0.73
0.008 0.73 0.65 0.69 0.69 0.68 0.69 0.69
0.009 0.73 0.42 0.57 0.69 0.47 0.58 0.58
0.01 0.75 0.42 0.58 0.72 0.47 0.60 0.59

Table 5: Results for threshold tuning for an automatic selection of the best value for k. We show the percentage
of how close we can get to the optimal value of k with the respective threshold. We present the average of
this percentage over each scoring strategy (TF–IDF and SENTSIM) paired with each combination strategy, each
combination strategy alone, and overall (Total).
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