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ABSTRACT

Traditional Graph Neural Networks (GNNs) rely on message passing, which
amounts to permutation-invariant local aggregation of neighbour features. Such a
process is isotropic and there is no notion of ‘direction’ on the graph. We present
a new GNN architecture called Graph Anisotropic Diffusion. Our model alter-
nates between linear diffusion, for which a closed-form solution is available, and
local anisotropic filters to obtain efficient multi-hop anisotropic kernels. We test
our model on two common molecular property prediction benchmarks (ZINC and
QM9) and show its competitive performance.

1 INTRODUCTION

Graphs are a very common mathematical abstraction used to represent complex systems of relations
and interactions. However, they present several challenges for machine learning methods because
they require algorithms to reason about their underlying structure as well as their node and edge fea-
tures. Graph Neural Networks (GNNs) are a popular architecture for learning on graph-structured
data. GNNs have been successfully applied to problems in different domains such as social net-
works, recommendation systems (Ying et al., 2018; Fan et al., 2019), chemistry (Gilmer et al., 2017;
Sanchez-Lengeling et al., 2019), bioinformatics (Lv et al., 2021; Gainza et al., 2020), and drug
discovery (Gaudelet et al., 2021).

The majority of GNNs are based on the message passing mechanism (Gilmer et al., 2017), in which
the features of each node in the graph are updated by aggregating information from its neighbours.
However, recent studies have demonstrated several limitations of message passing, which include
limited expressive power (due to equivalence to the Weisfeiler-Lehman graph isomorphism test) (Xu
et al., 2019; Corso et al., 2020; Bodnar et al., 2021), as well as the oversmoothing (Oono & Suzuki,
2020) and bottleneck phenomena (Alon & Yahav, 2021).

A recent line of works linked GNNs to diffusion processes on graphs. GRAND (Chamberlain et al.,
2021a) and BLEND (Chamberlain et al., 2021b) obtained GNNs from a discretisation of nonlinear
and non-Euclidean diffusion PDEs. A more general version of diffusion based on cellular sheaves
constructed upon graphs was studied by Bodnar et al. (2022). Klicpera et al. (2019) applied diffusion
to the graph structure itself, as a form of graph rewiring that alleviates bottlenecks and improved
learning in homophilic settings. Topping et al. (2022) related bottlenecks to graph curvature and used
a discrete version of Ricci flow (which, in the continuous setting, can be conceptually interpreted as
the ‘diffusion of the metric’) to improve oversquashing in GNNs.

The lack of canonical ordering of graph nodes forces message passing to use permutation-invariant
functions, meaning there is no natural ‘direction’ on graphs. In geometric graphs and meshes where
additional structure is available, learning schemes based on anisotropic diffusion have been studied
(Andreux et al., 2014; Boscaini et al., 2016b;a; Sharp et al., 2021). Attempts to define ‘pseudodirec-
tions’ in GNNs using graph motifs were undertaken by Monti et al. (2018). More recently, (Beaini
et al., 2021) proposed a scheme for adding directionality in message passing using the graph Lapla-
cian eigenvectors.
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Figure 1: Diffusion kernels and anisotropic filters on a molecular graph. (a) Diffusion for different
times t of an initial scalar feature localized at a particular node (the black node in Figures b and
c). (b) Local directional smoothing and directional derivative for the black node. (c) Anisotropic
diffusion kernels for the black node. Diffusion and anisotropic filter have been applied to a one-hot
vector in each node and observed the change in the black node. (The time t is the largest channel
time in the first layer of GAD architecture trained on ZINC).

In this work, we build on the recent works of Sharp et al. (2021) and Beaini et al. (2021) to develop
anisotropic diffusion on graphs as a basis for GNNs. We propose a new way to perform isotropic
diffusion on graphs with learnable kernel size (see Figure 1a) that can be applied efficiently by
either solving a linear system or through spectral expansion. We combine this diffusion with a local
anisotropic filter (see Figure 1b) to obtain a global anisotropic kernel over the graph (see Figure 1c).
This technique is leveraged to propose a novel GNN architecture that we call Graph Anisotropic
Diffusion (GAD). Empirically, we show that GAD improves the performance of competitive GNNs
on two popular molecular property prediction benchmarks: ZINC and QM9.

2 BACKGROUND

Diffusion equation. Diffusion describes the movement of some quantity from regions of high con-
centration to lower concentration over time. A classical example of this phenomenon is the diffusion
of heat on an iron rod – heat diffuses from warmer parts of the rod to colder ones. Given a domain
Ω (e.g., a 1D iron rod), let x(u, t) : Ω × [0,∞) → R be a function representing some quantity
(e.g., temperature) at position u ∈ Ω and time t ≥ 0. The diffusion process is governed by a partial
differential equation (PDE) called the heat equation,

∂

∂t
x(u, t) =

∂2

∂u2
x(u, t) = ∆x(u, t), (1)

where ∆ is the Laplacian operator associated with the domain.1 Assuming initial condition x(u, 0),
the solution of Equation 1 is given by the heat operator x(u, t) = exp(−t∆)x(u, 0), where exp is
the operator exponential.

Diffusion equation on surfaces. In computer graphics applications, it is common to work with
discretisations of continuous domains (manifolds) such as meshes or point clouds. Let us assume
that the domain is sampled at n points, {u1, . . . , un} ⊆ Ω. The sampled function can be represented
as an n-dimensional vector x = (x(u1), . . . , x(un)). The continuous Laplacian operator ∆ is
discretised using finite elements methods giving rise to the (weak) Laplacian matrix L and the mass
matrix M (both of size n× n), such that the diffusion rate is approximated by M−1Lx. Equation 1
becomes

∂

∂t
x(t) = M−1Lx(t), (2)

where x(t) represents the temperature on the nodes of the discretised domain at time t. On meshes,
it is customary to use the cotangent scheme for Laplacian discretisation and lumped (diagonal) mass
matrix, which can be interpreted as a weighted inner product.

1On domains with non-Euclidean geometry, the Laplacian is referred to as the Laplace-Beltrami operator.
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Figure 2: One block of Graph Anisotropic Diffusion.

3 GRAPH ANISOTROPIC DIFFUSION

In this section, we present our Graph Anisotropic Diffusion (GAD) method. First, show how a
closed-form solution to the graph diffusion equation. Then, we describe the local anisotropic ker-
nels used to provide some notion of direction. Finally, we explain how these two components fit
together in GAD. Figure 2 provides a high-level overview of the GAD architecture layer, and Figure
1 provides an intuition behind our construction.

3.1 LEARNABLE DIFFUSION

Let G = (V, E) be an undirected graph with |V| = n nodes and |E| = e edges, A be the n × n
adjacency matrix of G, and D is the node degree matrix. Our method is based on the discretisation
of the diffusion equation (Equation 1) analogous to mesh diffusion equation (Equation 2), where
instead we use the graph Laplacian matrix L = D−A and the degree matrix as the mass matrix to
diffuse the n× d input feature matrix X:

∂

∂t
X(t) = D−1(D−A)X(t), (3)

We use a channel-wise linear diffusion layer ht : Rn → Rn, diffusion each channel (column of X)
by applying Equation 3 for a time t that is also learnable per channel. This enables us to go beyond
traditional message passing mechanisms in GNNs. Instead of a single propagation step or discrete
random walk, we perform a continuous diffusion with control over the parameter t that determines
the kernel size and can be learned end-to-end. As a result, we can optimise the propagation of the
features at each node from purely local to completely global by learning each channel’s appropriate

How to compute the diffusion? Different numerical schemes are available to solve the linear
diffusion equation (Equation 3). To learn and optimise the parameter t via back-propagation, we
should confine ourselves to differentiable schemes. In this regard, two simple schemes are used in
the experiments: implicit timestep and spectral expansion. The implementation of both is simple
using common scientific libraries. Implicit timestep requires solving a large sparse linear system.
In contrast, the spectral expansion scheme has a reduced time complexity and it relies on dense
arithmetic but requires some precomputation. In the following we detail both options.

Direct implicit timestep. Sharp et al. (2021) used a single implicit Euler timestep to approximate
the diffusion, which in our setting amounts to

ht(x) = (D+ tL)−1Dx (4)

This approach requires solving a sparse linear system equations for each diffusion operation using
Cholesky decomposition.

Spectral expansion scheme. Another way to approximate the solution of the diffusion equation is
using spectral (Fourier) expansion. On a graph, an orthogonal Fourier basis is given by the (gener-
alised) eigenvectors of the normalised graph Laplacian, Lϕi = λiDϕi. The solution of the diffusion
equation can be expressed through the spectral expansion of the heat operator,

ht(x) ≈ Φk exp(−tΛk)Φ
⊤
k Dx, (5)
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where Φk = (ϕ1, . . . ,ϕk) is the n×k matrix of the first k eigenvectors and Λk = diag(λ1, . . . , λk)
is the k × k diagonal matrix of the corresponding eigenvalues. This is an approximation due to
dropping higher-frequency components, and k plays the role of bandwidth. The matrices Φk and
Λk can be pre-computed, as they do not depend on the features x nor the learnable parameter t.
Therefore, with a small approximation error, we obtain a significantly more efficient method than
the implicit Euler approach.

3.2 ANISOTROPIC FILTERS

Beaini et al. (2021) proposed the use of anisotropic filters on graphs and defined them as aggregation
matrices that allow directional flows between nodes in the graph. These matrices depend on the
graph structure and are derived from a vector field F (represented as an n×n matrix) that associates
each edge with a scalar weight describing the ‘flow’ from one node to its neighbours. These weights
correspond to the magnitude of the flow in a specific direction.

Following Beaini et al. (2021), we use the gradient of the first non-constant eigenvector of the
normalised graph Laplacian (the Fiedler vector, which we denote here by ϕ ) to define the vector
field

F = A⊙∇ϕ, (6)
where ⊙ is element-wise multiplication and (∇ϕ)ij = ϕi − ϕj is an n × n matrix. Beaini et al.
(2021) employ this vector field to define two aggregation matrices Bav and Bdx as

Bav = |F̂| Bdx = F̂− diag(
∑

j F̂:,j), (7)

where F̂ denotes the vector field F after normalising each row by its L1-norm and | · | denotes
the absolute value. Message passing based on these aggregation schemes enables the messages
to contain a notion of directionality — an indication of where a message comes from. Bav can
intuitively be understood to smooth the signal based on the directions specified by F. In contrast,
the aggregation matrix Bdx computes the discrete derivative of the signal. The visualisation of both
Bav and Bdx for a specific node in the graph is shown in Figure 1b. We use Bav and Bdx to define
the anisotropic filters in our architecture.

3.3 GRAPH ANISOTROPIC DIFFUSION ARCHITECTURE

We combine the diffusion layer in Section 3.1 and the aggregation matrices in Section 3.2 in one
architecture which we call Graph Anisotropic Diffusion (GAD). One block of GAD is shown in
Figure 2. The input node features are passed through a diffusion layer ht. Next, we apply a non-
linearity to the output of the diffusion and then the aggregation matrices (Bav and Bdx). Last,
the output of the diffusion layer is concatenated with the output of these aggregation matrices and
passed through an MLP. We also use a skip connection in every GAD block, as shown in Figure 2.
By combining the linear diffusion and the local anisotropic filters, we can obtain a global anisotropic
diffusion, as shown in Figure 1c.

4 RELATED WORK

Computer graphics and geometry processing. In computer graphics, the heat kernel of the diffu-
sion equation on a surface is related to its Gaussian curvature. This property was exploited by Sun
et al. (2009); Bronstein & Kokkinos (2010) to construct heat kernel signature (HKS) shape descrip-
tors. Andreux et al. (2014) introduced the use of the anisotropic Laplace-Beltrami operator to give a
directional diffusion operation on discrete meshes. Boscaini et al. (2016b) also proposed a convolu-
tional neural network architecture based on anisotropic diffusion kernels to learn an intrinsic dense
correspondence between non-rigid shapes. More recently, Sharp et al. (2021) combined directional
filters with diffusion for learning on meshes and point clouds.

Differential equations on graphs. Diffusion processes and random walks on graphs have long been
exploited, including the classical PageRank algorithm (Page et al., 1999) (steady state of diffusion
on the web graph) that powered the early version of Google search engine ranking, or non-linear
dimensionality reduction by diffusion maps proposed by Coifman & Lafon (2006). In the graph ML
literature, GNNs were formulated as ordinary differential equations (ODEs) by Avelar et al. (2019);
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Poli et al. (2021), continuous diffusion-type processes (Xhonneux et al., 2020; Gu et al., 2020), or
physically-informed architectures (Sanchez-Gonzalez et al., 2019). On the other hand, solving the
non-Euclidean diffusion equations using the Laplacian eigenvectors and eigenvalues was considered
a crucial tool for some early techniques on graph neural networks (Henaff et al., 2015; Kipf &
Welling, 2017; Levie et al., 2018). GRAND (Chamberlain et al., 2021a) formulated attention-type
GNNs as discretisations of the diffusion equation. BLEND (Chamberlain et al., 2021b) proposes a
non-Euclidean extension to GRAND. The key difference of our work from GRAND and BLEND
(Chamberlain et al., 2021a;b) is that we used closed-form solution to graph diffusion, interleaved
with an anisotropic filter, rather than a numerical solver.

5 EXPERIMENTS AND RESULTS

To evaluate our model, we tested it on two popular benchmarks: ZINC (Irwin et al., 2012) and
coordinate-free QM9 (Ramakrishnan et al., 2014). The implementation using PyTorch (Paszke
et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) libraries is publicly available at
https://github.com/Ahmed-A-A-Elhag/GAD. Our results on each dataset are presented with a com-
parison with previous models in Tables 1 and 2. (For QM9, we test our model on the first seven
properties provided by the PyTorch Geometric (Fey & Lenssen, 2019) library). Appendix A con-
tains the implementation details and hyperparameter settings for each dataset.

Table 1: Mean absolute error (MAE) for ZINC.
GAD-i uses the implicit timestep approach and
GAD-s the spectral expansion scheme. *Uses
additional tailored features such as cycles.

Model No edge features Edge features

GCN 0.469± 0.002 -
GIN 0.408± 0.008 -
GraphSage 0.410± 0.005 -
GAT 0.463± 0.002 -
MoNet 0.407± 0.007 -
GatedGCN 0.422± 0.006 0.363 ± 0.009
PNA 0.320± 0.032 0.188± 0.004
DGN 0.219± 0.010 0.168± 0.003
HIMP* - 0.151± 0.006
SMP* 0.219± 0.138±
GSN* 0.140± 0.006 0.115± 0.012

GAD-i 0.181± 0.004 0.139± 0.007
GAD-s 0.194± 0.006 0.140± 0.004

Table 2: Mean absolute error (MAE)
for QM9’s properties.

Unit PNA DGN GAD-s
µ D 0.365 0.354 0.338
α a30 0.255 0.250 0.240
ϵHOMO meV 71.5 71.1 64.3
ϵLUMO meV 70.1 68 63
∆ϵ meV 100.2 99.2 96.8
⟨R2⟩ a0

2 18.3 17.2 16.5
ZPVE meV 6.57 6.03 4.84

Given that DGN (Beaini et al., 2021) is the baseline GNN that our model was constructed upon,
we consider this as the main comparison point to analyse the effectiveness of the diffusion process
presented. On ZINC, the addition of the diffusion layer reduces the MAE by more than 17%, and
on QM9, it improves the performance in every single property. Note that while methods using the
addition of tailored features or message passing structure achieve better performances on ZINC,
these improvements are orthogonal to the ones proposed in this work and could be combined.

6 CONCLUSION

We proposed Graph Anisotropic Diffusion (GAD), a novel method that consists of a new efficient
way of performing isotropic diffusion on graphs combined with local anisotropic kernels. This
approach is used to obtain a global anisotropic diffusion. Empirical results on popular molecular
property prediction benchmarks confirm the improved predictive capacity of our method. We hope
this work spurs future research on alternative methods to obtain anisotropic diffusion on graphs and
theoretical analyses of their expressive power.

5

https://github.com/Ahmed-A-A-Elhag/GAD


Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In ICLR, 2021.

Mathieu Andreux, Emanuele Rodola, Mathieu Aubry, and Daniel Cremers. Anisotropic laplace-
beltrami operators for shape analysis. In ECCV, 2014.

Pedro H. C. Avelar, Anderson R. Tavares, Marco Gori, and Luis C. Lamb. Discrete and continuous
deep residual learning over graphs. arXiv preprint, 2019.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and
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correspondence with anisotropic convolutional neural networks. arXiv preprint, 2016a.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M Bronstein, and Daniel Cremers.
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A IMPLEMENTATION DETAILS AND HYPERPARAMETER SETTINGS

Following Beaini et al. (2021), in our implementation of the local filters use mean, max, and min
aggregators on top of Bav and Bdx, followed by the degree scalers of PNA (Corso et al., 2020).
Below we describe each dataset, including implementation details and hyperparameter settings.

A.1 ZINC

ZINC is a molecule graphs dataset in which the task is to predict the penalised water-octanol partition
coefficient of a certain molecule (formulated as a graph regression task). We use the splits and
evaluation criteria provided by Dwivedi et al. (2020): 10K training, 1K validation, and 1K test,
with a maximum of 100K parameters and mean absolute error (MAE) as evaluation metric. We
compare our model against various GNNs architectures: GCN (Kipf & Welling, 2017), GIN (Xu
et al., 2019), GraphSage (Hamilton et al., 2017), GAT (Velickovic et al., 2018), MoNet (Monti
et al., 2017), GatedGCN (Bresson & Laurent, 2018), PNA (Corso et al., 2020), DGN (Beaini et al.,
2021), HIMP (Fey et al., 2020), SMP (Vignac et al., 2020), and GSN (Bouritsas et al., 2021). We
ran each solving scheme (implicit timestep and spectral expansion) five times to estimate the mean
performance and its standard deviation (Table 1).

Hyperparameter settings. We use the same hyperparameter settings in DGN (Beaini et al., 2021),
and decrease the hidden dimensions to keep the same number of parameters. In the spectral expan-
sion scheme, we use the number of eigenvectors k ∈ {20, 25, 30}.

A.2 QM9

QM9 is a common molecule graph benchmark, which provides different quantum mechanical prop-
erties of small molecules. we test our model on the first seven properties provided by the PyTorch
Geometric (Fey & Lenssen, 2019) library (Table 2) keeping again constant the number of parameters
and removing the 3D coordinates from the model’s inputs. For the data split, we use around 110k
training, 10k validation, and 10k test samples as provided by Brockschmidt (2020). The evaluation
metric is mean absolute error (MAE).

Hyperparameter settings. We fine-tuned GAD over the following hyperparameter settings:

• Weight decay ∈ {3× 10−3, 3× 10−4, 3× 10−5, 3× 10−6, 3× 10−7}.
• Dropout ∈ {0, 0.1, 0.2, 0.3}.
• lr ∈ {1× 10−3}.
• Batch size ∈ {128, 256}.
• Number of layers ∈ {6, 7, 8, 9, 10}.
• Hidden dimensions ∈ {75, 90, 130, 150}.
• Number of eigenvectors k ∈ {15, 20, 25}.
• Aggregators ∈ {(mean, av1, dx1), (mean,max,min, dx1), (mean,max,min, av1, dx1),
(mean, sum,max, dx1)}.

For PNA (Corso et al., 2020) and DGN (Beaini et al., 2021) models, we ran each one with
the hyperparameters obtained from the search above and increased the size of hidden dimen-
sions to have the same number of parameters. Aggregators used in PNA (Corso et al., 2020) are
(mean,max,min, std), and in DGN (Beaini et al., 2021) are (mean, sum,max, dx1).
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