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Abstract

We present SPINBENCH, a cognitively grounded diagnostic benchmark for evaluat-
ing spatial reasoning in vision language models (VLMs). SPINBENCH is designed
around the core challenge of spatial reasoning: perspective taking, the ability to
reason about how scenes and object relations change under viewpoint transfor-
mation. Since perspective taking requires multiple cognitive capabilities, such
as recognizing objects across views, relative positions grounding, and mentally
simulating transformations, SPINBENCH introduces a set of fine-grained diagnostic
categories. Our categories target translation, rotation, object relative pose, and
viewpoint change, and are progressively structured so that single-object simpler
tasks scaffold toward the most demanding multi-object perspective-taking setting.
We evaluate 37 state-of-the-art VLMs, both proprietary and open source. Results
reveal systematic weaknesses: strong egocentric bias, poor rotational understand-
ing, and inconsistencies under symmetrical and syntactic reformulations. Scaling
analysis shows both smooth improvements and emergent capabilities. While hu-
man subjects achieve high accuracy (91.2%), task difficulty as measured by human
response time shows strong correlation with VLM accuracy, indicating that SPIN-
BENCH captures spatial reasoning challenges shared across humans and VLMs.
We believe SPINBENCH provides critical insights into spatial reasoning in VLMs
and highlights key gaps in their ability to reason about physical space. Our website
can be found at https://spinbench25.github.io/|

1 Introduction

Spatial reasoning is a fundamental component of human cognition and a key capability for embodied
agents operating in the physical world [52]. From recognizing object configurations to simulating
motion and perspective changes, spatial understanding enables agents to interpret their environment
and plan actions accordingly.

Multimodal foundation models, particularly vision-language models (VLMs), have recently achieved
impressive progress in visual understanding [26, 50, 140, 48| 25]], however their spatial reasoning
capabilities remain poorly understood and underdiagnosed. The demonstrated utility in downstream
tasks, such as navigation [13}46], manipulation [56}43]], autonomous driving [53} [38]], and physical
commonsense reasoning [[7] primarily reflects end-to-end performance at the application level, where
spatial reasoning is entangled with high-level language and planning objectives. They do not directly
test whether models understand geometric primitives, such as rotation, translation, object-relative
pose, and viewpoint changes and thus can not expose failures underlies spatial intelligence.
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Figure 1: Overview of SPINBENCH task design across seven task groups. Representative subtasks
are illustrated for each group with simplified question wording for clarity. In the released benchmark,
all queries include explicit frame-of-reference definitions to avoid ambiguity. Human face data are
sourced from the Stereo Face Database [[14] and are licensed for research use only.
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As aresult, it remains unclear whether VLMs are genuinely capable of spatial reasoning, or whether
they rely on dataset biases and shallow pattern matching. Recent benchmarks like MindCube [58]]
and Space [42] reveal striking failures in mental modeling and spatial generalization, often exposing
large performance gaps between models and humans. While efforts such as SpaceOm and Space-
thinker [5] explore linguistic training enhancements via reinforcement learning, they still exhibit
limited transfer of these gains to spatial reasoning tasks [38]]. This calls for a structured diagnosis of:
(1) what specifically breaks down in VLMs’ spatial reasoning, and (2) how such reasoning can be
systematically evaluated.

Our approach is inspired by foundational insights in cognitive science. Early behaviorist theories
treated thinking as verbal behavior [45]], but classic mental rotation experiments [44] demonstrated
that spatial cognition often depends on analog, imagery-based processes-continuous, imagistic
simulations that go beyond linguistic representations. These insights motivate the central question:
Can VLMs engage in such imagery-based spatial reasoning, or are they limited to symbolic and
linguistic associations?

To address this, we introduce SPINBENCH, a cognitively grounded, diagnostically structured bench-
mark as shown in Fig.[I] Our design is informed by both psychological paradigms and system-level
considerations. SPINBENCH emphasizes progressive structure, cognitive fidelity, and controlled
variation for diagnostic value. Our progression of tasks reflects increasing spatial complexity and
scale [[17]: At the low level, we assess single-object perception tasks such as object identity matching,
canonical view selection, mental rotation, and dynamic translation/rotation; At the higher level, we
evaluate object-elation grounding and perspective taking in cluttered, multi-object scenes. Our most
challenging task, multi-object cluttered scene perspective taking, requires models to integrate sub-
skills from all prior tasks, making it a holistic probe of spatial cognition. We include both real-world
and photo-realistic synthetic data across diverse domains (e.g., household objects, vehicles, human
faces), ensuring validity while maintaining evaluation rigor. Each task type is carefully designed to
evaluate specific spatial skills and is embedded within a controlled variation regime: we manipulate
frame-of-reference (FoR) [63]], introduce premise-based question structures, apply syntactic and
symmetrical augmentations, and vary the number of visual inputs (e.g., single, triplet, quartet). These
tasks serve as interpretable bridges from raw perceptual features to fundamental spatial concepts and
then to challenging spatial reasoning.

Together, SPINBENCH provides an interpretable and rigorous framework for diagnosing the spatial
reasoning capabilities of modern VLMs and for understanding the role of rotation as a window into
3D spatial understanding. Our empirical analysis reveals key failure modes in VLM spatial reasoning:



persistent egocentric bias, difficulty with rotation and viewpoint changes, inconsistencies in handling
symmetry, and failures in linguistic-only spatial inference. We also observe diverse scaling behaviors
across tasks and limited correlation with existing benchmarks, suggesting that SPINBENCH offers
novel and complementary diagnostic insights into VLM spatial competence.

2 Related Work

Spatial reasoning benchmarks A wide range of benchmarks have been proposed to evaluate the
spatial reasoning abilities. Early diagnostic datasets like CLEVR [20]] introduced synthetic, rendered
scenes with simple 3D shapes. Recent spatial reasoning benchmarks for vision-language models
have explored diverse aspects of spatial cognition. Some, such as MindCube and VSI-Bench [58]155],
emphasize cognitive mapping, how models represent and track spatial information across scenes.
SpaCE-10, SPHERE, and 3DSRBench [16} 62, 31] define a range of atomic spatial skills (e.g.,
counting, height, orientation), yet often lack controlled variation in perspective, reference frame, or
multi-frame reasoning. BLINK [15] highlights perception-level gaps in multimodal models, and
ViewSpatial-Bench [24] focuses on viewpoint-dependent localization. MulSeT [60] covers distance,
occlusion, and viewpoint-dependent localization with synthetic data. Meanwhile, OmniSpatial, 3D-
PC and SPACE [18| 29} 42] draw from cognitive psychology to design spatial tasks, but sometimes
entangle spatial reasoning with functionality and physical commonsense or are limited to abstract
2D plane geometry. Our tasks are carefully designed to isolate spatial reasoning by controlling for
distractors, motion dynamics, reference frame shifts, and multi-image input formats. We incorporate
both real-world and photo-realistic synthetic data to ensure domain diversity and real-world relevance.
Instead of emphasizing task comprehensiveness, SPINBENCH offers diagnostic value by introducing
fine-grained control over key spatial factors such as premise structure, symmetry, and syntactic
variation. As summarized in Tab. [} our benchmark uniquely combines progressive task structure,
cognitive grounding, and controlled variation.

Benchmark Reference Var. Premise Var. Symmetric Var.  Syntactic Var. Domain Multi-Image  Tasks  Size
CLEVR 20 X X X X cubes X 90 853k
BLINK (I3 X X X X mixed 14 38k
SpaCE-10 [1& X X X X indoor X 8 6k

3DSRBench {31 X X X mixed X 12 28k
SPHERE [62 X X X MsCOCO X 9 2.3k
ViewSpatial [24 X X X ScanNET, MsCOCO X 5 5.7k
MindCube {58 X X X indoor/outdoor 4 21k
OmniSpatial {18 X X X web, driving, tests 50 1.5k
SpinBench (Ours) Household, car, face, infinigen [41 51 2.6k

Table 1: Benchmark comparison highlighting the controlled structure and diagnostic focus of SPIN-
BENCH. Our benchmark supports reference frame variations, premise-based variations, symmetric
and syntactic variations, and multi-image spatial reasoning across both real and synthetic domains.

Spatial reasoning models To improve spatial reasoning in VLMs, recent work has explored 3D
abstractions and finetuning. Methods like SpatialReasoner [32], SSR [30] and APC [22]] use explicit
3D representations for perspective-aware reasoning, . Others, such as MetaSpatial [39], Embodied-
R [64]], Spatial VLM [4]], and SVQA-R1 [49], adopt reinforcement learning or large-scale pretraining
to enhance spatial understanding across 2D and video data. Despite progress, purely linguistic
approaches remain limited, humans rely on structured, often non-verbal representations to reason
about space, motivating models that move beyond language-based reasoning alone.

3 Dataset and benchmark recipes

3.1 Diagnostic approach to spatial reasoning

SPINBENCH is designed around the core challenge of perspective taking: reasoning about how scenes
and object relations change under viewpoint transformation. Perspective taking is a highly integrative
ability as it requires recognizing objects across views, grounding their relative positions, and mentally
simulating their transformations. To better diagnose model strengths and weaknesses, SPINBENCH
decomposes this advanced reasoning evaluation into a set of targeted diagnostic categories. Each
category represents a fundamental spatial reasoning ability that supports perspective taking, such
as object identity recognition, relation grounding, translation, and rotation. Together, these tasks
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Figure 2: Distribution of SPINBENCH tasks across seven spatial reasoning categories and four visual
domains. Right: Task breakdown by domain.

allow us to disentangle where current vision language models succeed, where they fail, and how these
skills compose in the perspective taking setting. To minimize confounds, all tasks are defined in a
horizontal 2D plane. Vertical relations (e.g., above/below) and height differences are excluded, and
viewpoint changes are restricted to horizontal orbits around the scene.

3.2 Task categories and design rationale

The seven categories below are organized so that simpler diagnostic abilities scaffold toward the most
demanding task: perspective taking. Representative examples for each category are summarized in
Figure|l] Details in the Appendix

1.

Identity Matching Evaluates whether models can consistently recognize the same object
across different viewpoints. This ability is a prerequisite for cross-view reasoning, ensuring
models can track object identity before more complex spatial inference.

. Object-Relation Grounding Tests understanding of object-relative configurations within

a single static image, including directional relations (left/right, front/behind) or distance
relations (near/far) between two objects. This isolates spatial grounding from temporal or
multi-view demands, providing a controlled measure of static scene interpretation.

. Dynamic Translation Assesses reasoning about linear object displacement over time. Given

two temporally ordered frames of the same object, models must identify whether it moved
left, right, front, or back relative to the viewer. By excluding rotation, this category isolates
translational understanding from other motion cues.

. Dynamic Rotation Focuses specifically on rotational transformations. Models are given

two images of an object before and after in-place rotation and must determine the rotation
direction (e.g., clockwise vs. counterclockwise, defined from a top-down view). Restricting
the task to a single rotated object avoids background or displacement confounds, allowing
fine-grained analysis of rotational reasoning.

. Canonical View Selection Examines whether models can map objects across canonical

viewpoints. Given a reference view (typically the front), models must select the correct
candidate from alternative perspectives (left, right, back). This setting avoid the complexity
of multi-object scenes.

. Mental Rotation Tests whether models can mentally simulate object transformations. Given

an object and specified degree and direction of rotation, models must select the correct
resulting configuration. This requires internal spatial visualization and supports analysis of
whether models can simulate transformations beyond what is directly observed.

. Perspective Taking The centerpiece of SPINBENCH, perspective-taking tasks require

reasoning about entire scenes under viewpoint changes. Two subtypes are included: (S)
selecting the correct scene image from a new perspective, and (T) predicting how object
relations transform under perspective shifts. This category integrates all diagnostic abilities
and probes compositional spatial reasoning in its most demanding form.

3.3 Dataset composition and domain coverage

SPINBENCH combines one simulation-generated synthetic dataset with three real-world datasets,
chosen to test spatial reasoning generalization across diverse visual domains and object categories. A



detailed breakdown of dataset composition, sampling strategies, and annotation pipelines is provided
in the Appendix [A]

* Infinigen Scenes We generate indoor environment table-top multi-object synthetic scenes
using Infinigen [41]] in the Isaac Sim environment [33]], with objects drawn from the YCB
dataset [3, [2]. Randomized object selection, placement, and lighting yield diverse yet
controlled settings. Data are generated for three task categories: object-relation grounding,
dynamic translation, and cluttered scene perspective taking. For the perspective taking, we
provide occlusion and no-occlusion variants to probe reasoning under visual ambiguity.

* ABO Objects We sample household items from the Amazon Berkeley Objects (ABO)
dataset [10]], which provides high-quality 3D models of real commercial products. Objects
include 360° views (72 images at 5° intervals) with diverse geometries and textures. We
select geometrically structured objects and exclude highly symmetrical cases to avoid
ambiguous rotation or relation judgments.

* Cars Vehicle rotation sequences are drawn from the Multi-View Car Dataset [37], which
contains 20 cars imaged every 3—4 degrees during a full 360° rotation. Cars are ideal for
viewpoint-dependent reasoning due to their strong canonical orientations (front, back, side
views). Since degree annotations are not provided, we sample and label images at 45°
intervals to ensure consistent angular coverage.

» Faces Human faces are sourced from the Stereo Face Database [[14], containing 100 individ-
uals captured in 8 distinct poses. Faces pose biologically relevant challenges and require
distinguishing viewer- versus object-centered reference frames. Their natural asymmetry
(left vs. right profiles) enables unambiguous evaluation of perspective-taking.

3.4 Controlled Variations

SPINBENCH is designed with fine-grained, controlled variations to evaluate how models handle
allocentric and egocentric reference, integrate visual and linguistic information, and model reasoning
consistency with symmetric and syntactic variations, providing a diagnostic lens for identifying
systematic biases, inconsistency, or modality-specific weaknesses. Detailed variations and examples
are provided in the Appendix [A.2]and [A.4]

Allocentric and Egocentric Reference Reference frame ambiguity is a common source of error
in pretrained models, arising because natural language often leaves the frame of reference implicit.
Humans flexibly switch between defaults (e.g., egocentric vs. allocentric) depending on context, but
models may struggle without explicit cues. Our face rotation tasks directly test this by presenting
identical transformations under two interpretations: the viewer’s perspective (e.g., “turn left” as seen
by the observer) versus the object’s own perspective (e.g., “turn left” as for the person). This contrast
reveals whether models exhibit systematic biases toward particular frames or can adapt to contextual
cues. In domains where objects lack intrinsic orientation, all relations are defined from the viewer’s
(camera) perspective to ensure consistency.

Consistency via Data Augmentation To probe reasoning stability, we systematically generate
equivalent variants of spatial relation tasks using two augmentation strategies: (i) Symmetrical
augmentation: Logically equivalent variants are created by flipping relations and answers (e.g., from
“Which object is on the left?” to “Which object is on the right?”’). This ensures models maintain
consistent reasoning under symmetrical transformations. (ii) Syntactic augmentation: Questions
are reformulated while preserving meaning (e.g., “Which object is on the left?” — “Is A on the
left or right of B?””). This tests whether models rely on surface phrasing or demonstrate robust
spatial understanding. Augmentations are applied across static (left/right, near/far, front/behind),
with combined variants yielding comprehensive test sets for consistency evaluation.

Visual vs. Linguistic Failures To disentangle sources of error, we introduce premise-based task
variants. In the with-premise condition, the spatial relation (e.g., “A is to the right of B in the front
view”) is explicitly provided in the prompt, while in the without-premise condition, models must infer
relations solely from the image. Comparing performance across conditions reveals whether failures
stem from visual grounding difficulties or from applying geometric reasoning when the premise is
known.



4 Evaluations

4.1 Evaluation setup

Evaluated models We evaluated 37 vision-language models spanning both proprietary and open-
source models to assess spatial reasoning capabilities across diverse model scales and designs. We
included 4 proprietary VLMs: GPT-40, GPT-4.1 [35)], Claude 4 Sonnet, and Claude 3.5 Haiku,
representing the current state-of-the-art. For open-source models, our evaluation covered major
model families, model sizes ranging from 1B to 38B, resulting in 33 models: InternVL2.5 (1B-8B)
[6], InternVL3 (1B-38B) [65], InternVL3.5 (1B-38B) [50], Qwen2-VL (2B-7B) [54], Qwen2.5-
VL (3B-32B) [40], Gemma-3 models (4B—27B) [48], LLaVA-interleave [25]], LLaVA-OneVision
(7B) [23], Molmo-7B [12], MiniCPM-V-2.6 [57], Phi-3.5-vision [[1]]. We also include physical
or spatial domain-specific models, including SpaceQwen2.5-VL [19]], and three spatial reasoning
models: SpaceOm [19], SpaceThinker [4], and Cosmos-Reason1 [34]. We included CoT variants for
3 specialized spatial reasoning models (Cosmos-Reason1 [34], SpaceOm [19], SpaceThinker [4]) to
assess the impact of explicit linguistic reasoning on spatial task performance. Proprietary models
were evaluated via official APIs. Open-source models implementation details are in Appendix

Evaluation metrics We employ three complementary metrics to assess model performance. Raw
accuracy measures the proportion of correctly answered questions in all evaluated questions. Cohen’s
kappa (x) [9}[8] provides a chance-corrected accuracy measure that accounts for varying option
cardinality, enabling fair comparisons across different tasks. To evaluate reasoning stability, we
introduce Pairwise consistency, which calculates the average of symmetric consistency rates across
pairs of questions and their augmentations, measuring whether models produce identical outcomes
(both correct or both incorrect) for logically equivalent questions.

4.2 Results

Overall performance Figure[3] presents the overall performance of 37 VLMs across 23 grouped
task variants, organized under 7 spatial reasoning categories, and reveals a clear performance gradient
across spatial reasoning categories. Object relation grounding emerges as the easiest category,
with many models achieving x > 0.6, indicating reliable extraction of basic spatial relations (e.g.,
left/right, front/behind) from single images. Identity matching displays a bimodal pattern: smaller
models perform near chance, while larger models reach near-perfect accuracy, suggesting an emergent
scaling ability. Dynamic spatial reasoning, especially tasks involving rotation, shows substantial
difficulty. Mental rotation and perspective taking generally yield the near chance overall scores,
with most models performing at or below chance, underscoring the absence of robust internal
representations for rotational transformations. Rankings of model overall accuracy averaged across
tasks and model pair-wise consistency are shown in the left of Figure [ The top five models for
both overall accuracy and consistency are the same five models: InternVL3-38B, InternVL3.5-38B,
InternVL3-14B, InternVL3.5-14B, and GPT-4.1. Notably, the two strongest models (InternVL3-38B
and InternVL3.5-38B) also rank first and second on mental rotation and achieve the second- and
third-best performance on perspective taking. This links overall success to competence on the most
challenging tasks and highlights that models excelling in complex, compositional viewpoint reasoning
also perform strongly on simpler diagnostic tasks. More detailed results, including raw accuracy and

ungrouped performance, are provided in Appendix [B.T} Fig.[31} B2] [33]

Consistency evaluations As shown in Figure ] models exhibit severe inconsistencies in logically
equivalent spatial queries, revealing fundamental gaps in spatial reasoning. While top performers like
InternVL3-38B achieve 95.7% consistency, most models fail dramatically, with bottom performers
below 30% consistency. The strong correlation (r = 0.874, p < 0.05) between overall accuracy and
consistency suggests these failures stem from incompetent spatial reasoning. Models that cannot
maintain "A left of B" equals "B right of A" equivalency lack genuine spatial understanding. Detailed
breakdowns of augmentation strategy analysis, consistency pattern distribution, and comprehensive
performance metrics can be found in Appendix [B.2]

Biased perspective Models exhibit a strong bias toward the viewer’s perspective in dynamic
rotation tasks, even when the question explicitly requires an alternate viewpoint. As shown in Table[3]
the top-performing models on the egocentric task are the worst on the allocentric version. This
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Figure 3: Performance heatmap of 37 VLMs across 23 grouped task variants, organized under 7
spatial reasoning categories. Cohen’s kappa values (x) measure chance-adjusted performance, where
+ = 0 indicates chance-level and x = 1 perfect accuracy. Three chain-of-thought (CoT) variants of
space reasoning models are included for comparison.
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Figure 4: Strong correlation between spatial reasoning accuracy and consistency across vision-
language models. Left: Model rankings by overall accuracy (top) and pair-wise consistency percent-
age (bottom), with colors indicating consistency levels. Right: Scatter plot revealing robust positive
correlation (Pearson r = 0.874, p < 0.05) between the two metrics.

asymmetry suggests an inductive bias toward egocentric interpretation, likely influenced by training
data dominated by first-person visual descriptions. Such bias limits the models’ ability to generalize
across frames of reference and poses challenges for applications like robotics and navigation that
require flexible spatial reasoning.

Visual failures or linguistic failures Perspective-taking (T) tasks test whether models can reason
about how object relations transform under viewpoint shifts. In the premise-based variant, all relevant
spatial relations are explicitly stated in the prompt, so no visual grounding is required. Yet many
models still fail, revealing that errors persist even when the task reduces to purely linguistic reasoning
over spatial abstractions. As shown in Figure|§] (a), four models (InternVL3_5-1B, InternVL2_5-
2B, InternVL3-1B, gemma-3-4b-it) consistently select the wrong answer with accuracy below 0.1,
indicating systematic misinterpretation of reference frames. At the same time, seven models, including
gpt-4o, claude-sonnet-4, and several large InternVL variants, achieve near-perfect accuracy (>95%),



Table 2: Performance improvement from CoT reasoning across models and tasks. Delta reflects the
change in Cohen’s « score. Bolded values indicate the task with the greatest improvement per model,
and gray-highlighted cells indicate negative performance improvement.

Task SpaceOm(3B) | SpaceThinker(3B) |  Cosmos-Reasonl-7B
Baseline  CoT A | Baseline  CoT A | Baseline CoT A
Object-relation grounding 0.332 0.493 +0.162 0.185 0.393  +0.208 0.569 0.649  +0.080
Identity matching 0.103 0.088 -0.015 0.143 0217  +0.074 0.612 0.753  +0.141
Dynamic 0.000 0.064 +0.064 0.000 0.077 +0.077 0.013 0.449 +0.436
Car canonical view selection (back) 0.775 0.700  -0.075 0.625 0.700  +0.075 1.000 1.000 +0.000
ABO canonical view selection (back) 0.000 0.167 +0.167 0.076 0.045 -0.030 0.424 0.273  -0.152

Perspective-taking (T) w/ premise (back) 0.050 0.400 +0.350 0.350 0.450 +0.100 0.000 0.600 +0.600
Perspective-taking (T) w/o premise (back) -0.250  0.000 +0.250 -0.250  -0.550  -0.300 -0.350  0.300 +0.650
Perspective-taking (T) w/ premise (L&R) -0.063  0.102 +0.165 0.075 0.407  +0.331 0.165 0270 +0.105
Perspective-taking (T) w/o premise (L&R) 0.138 0.133  -0.005 0.137 0.066  -0.071 -0.115  0.016 +0.130

Table 3: Cohen’s kappa (k) values for dynamic rotation tasks in the face domain reveal a strong view-
centric bias. Models that perform best on the egocentric task (face_rotation_viewer) perform
worst on the allocentric variant (face_rotation_own)

Model Allocentric (face_rotation_own) Egocentric (face_rotation_viewer)
Molmo-7B-D-0924 -0.66 (worst) 0.94 (best)
InternVL3-38B -0.47 0.31
Qwen2.5-VL-32B-Instruct -0.49 0.29

showing that this reasoning is learnable. Overall, 16 of 39 models (41%) perform below chance,
underscoring that even abstracted at the linguistic level, spatial concepts are not robustly encoded or
manipulated by most VLM:s.

Perspective-taking(T) with premise Accuracy vs Overall Accuracy Subtype Level: Longer Human Time - Lower VLM Accuracy
Pearson r = 0.7889 (p = 0.0000) Spearman p = 0.7746 (p = 0.0000) Pearson r = -0.5399 (p = 0.00004), Spearman p = -0.5082 (p = 0.00014)
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Figure 5: (a) Scatter plot comparing Perspective-taking(T) with premise accuracy against overall
accuracy for each model, demonstrating that linguistic spatial reasoning failures are correlated with
general model competence. Models are color-coded by Perspective-taking(T) with premise accuracy.
(b) Scatter plot showing the relationship between VLM accuracy (x-axis) and human response time
(y-axis) across 51 task subtypes.

Does chain-of-thought reasoning help spatial reasoning? We evaluate the effect of CoT prompt-
ing on three models: SpaceOm, SpaceThinker, and Cosmos-Reason1-7B (Table[2). Results show sub-
stantial but heterogeneous gains. Cosmos-Reason1-7B benefits most, with an average improvement of
+0.221 across tasks and gains in 7 of 9 categories. Its largest boosts occur on perspective-taking tasks,
+0.650 and +-0.650 on perspective-taking with and without premise (back), indicating that CoT is
especially effective for spatial transformations requiring explicit reasoning steps. SpaceOm improves
moderately (+0.118 average), particularly on object-relation grounding (+0.162). SpaceThinker
shows the weakest effect (+0.052 average), including a sharp drop (-0.300) on perspective-taking
without premise (back). Across all models, object-relation grounding consistently benefits from
CoT, while canonical view selection tasks show mixed results. Overall, CoT prompting provides
a more significant advantage for complex, multi-step spatial transformations, with larger models
demonstrating more improvement.



Human response time and VLM accuracy correlation We further validate that SPINBENCH
reflects genuine spatial reasoning difficulty by comparing human and model performance. As shown
in Figure 5] (b), task subtypes that required longer human response times also elicited lower VLM
accuracy, with a significant negative correlation (r = —0.54, p < 0.05). This alignment indicates
that tasks harder for humans are also systematically harder for models, supporting that SPINBENCH
serves as a diagnostic benchmark whose progressively structured tasks reveal core spatial reasoning
challenges. More details on the human evaluations setup and results are provided in Appendix [C]

Scaling laws and emergent capability Overall performance improves with model scale, but scaling
patterns differ sharply across task types (Figure[6). Object relation grounding tasks (e.g., left/right,
front/behind) improve smoothly and monotonically across model families. In contrast, identity
matching exhibits clear emergence: smaller models remain at chance, while larger models (7B—8B+)
achieve near-perfect accuracy. This non-linear jump suggests that cross-image 3D abstraction only
becomes possible once models reach sufficient capacity, consistent with emergent abilities reported
in language models [51]. A similar but more gradual emergent trend appears in dynamic translation
(e.g., object moving left/right). These distinct scaling behaviors highlight the diagnostic value of our
fine-grained benchmark: exposing clear gaps between small and large models and enabling diagnosis
of scaling laws in spatial reasoning.

Overall Accuracy (k)

0.5
8B

148

Cohen's Kappa

0.4

0.3

0.2

0.1

0.0

9B,
4B 8B
78

2B 3B
58 12B

48

388
388

32B

0.8

0.6

0.2

0.0

Object Relation Grounding

2B

48 888 148
7@g

388

148

32B

7B 3B

4B

Gemma-3
InternVL3
InternVL3.5
Qwen2.5-VL

1.0

0.8

0.6

0.4

0.2

0.0

Identity Matching

148
a 785

2B

28/ 3B

4B

128

338 10

0.8

0.6

0.4

0.2

0.0

iB

Dynamic Translation
148

388
148

8B 32B
98

4B 8B

2B 3p,
2B,

48 Y 12B

-0.1

10!
Model Size (B)

10t 10°

Model Size (B)

10t 10°

Model Size (B)

10t 10°

Model Size (B)
Figure 6: Scaling laws across spatial reasoning tasks. Each line shows Cohen’s x (chance-adjusted
accuracy) with respect to model size for four model families. While overall performance increases
gradually with scale, different task types show distinct scaling patterns.

5 Conclusion and Limitations

We present SPINBENCH, a cognitively grounded diagnostic benchmark for evaluating spatial rea-
soning in vision language models through fine-grained, controlled tasks targeting geometric trans-
formations and viewpoint changes. By decomposing complex perspective taking into interpretable
subskills, SPINBENCH facilitates precise diagnosis of model limitations. Our evaluation of 37
VLMs reveals systematic weaknesses, including consistent reference-frame bias, failures in rotation
understanding, and linguistic spatial inference, alongside diverse scaling behaviors and emergent
capabilities. These findings suggest that different aspect of spatial reasoning are not uniformly learned
and often remains underdeveloped even in advanced models. Human evaluation further validates
the benchmark, showing a strong correlation between human response times and VLM accuracy,
suggesting that SPINBENCH captures genuine cognitive difficulty shared across humans and models.
SPINBENCH goes beyond scorekeeping by providing a diagnostic lens on spatial competencies,
offering conceptual clarity about what aspects of spatial reasoning VLMs do and do not master, and
guiding the development of multimodal foundation models. These diagnostic insights are directly
actionable for embodied Al, where failures in reference-frame reasoning or rotation understanding
can lead to breakdowns in navigation, manipulation, and other safety-critical tasks. A key limitation
is that we do not yet cover other important spatial concepts such as containment, support, or vertical

relations (e.g., “in,” “on,” “above”).
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A SpinBench

A.1 Detailed Dataset Collection Process

A.1.0.1 Simulation We adopt a synthetic dataset generation pipeline that integrates Infinigen-
generated indoor environments [41]] with the Isaac Sim simulator [33]. The pipeline is fully automated
through a custom script built on top of the Infinigen SDG (synthetic data generation) framework. The
process can be summarized as follows:

1. Environment loading. A set of nine indoor dining-room scenes are retrieved from the
Infinigen asset library. Each scene is instantiated as a USD stage, with ceiling meshes
optionally hidden for improved lighting and camera coverage. Colliders are added to all
major surfaces (walls, floors, dining table) to enable realistic object—surface interactions.

2. Object assets. Everyday objects are imported from the Yale-CMU-Berkeley (YCB)
dataset [3} 2]. We include 21 distinct items (e.g., banana, soup can, mug, Rubik’s cube),
each automatically labeled by parsing their USD asset names. Gravity and rigid-body
dynamics are attached using PhysX APIs to support physically plausible placement and
falling behavior. Additional assets can be manually labeled with explicit semantic tags.

3. Scene composition. For each scene, objects are sampled and placed in the working area
above the dining table. Object poses are randomized within bounded 3D ranges (position,
orientation, scale). Distractor meshes and primitive shapes are also injected.

4. Lighting. Three movable sphere lights are added per scene and randomized in location,
intensity (500-2500 lumens), and color balance. Dome lights with HDR textures are
randomized per capture to simulate natural variations in sky illumination (clear, cloudy,
evening, night).

5. Cameras. Multiple cameras (default: five per scene) are defined, with randomized intrinsics
and extrinsics. We support both (i) random camera placements on a viewing sphere around
a target object, and (ii) structured camera orbits with fixed angular increments to capture
viewpoint changes.

6. Physics simulation. The scene is stepped forward for several frames to resolve collisions
and allow objects to settle into stable configurations. Captures are taken both after this
settling, producing “dropped” views with objects resting on the table.

7. Data capture. Render products are generated at 480 x 480 resolution using the RTX Path
Tracing renderer. For each environment and camera, both RGB images and corresponding
semantic pose annotations are written to disk through Isaac Replicator writers. On average,
we capture 100 frames per environment (500 frames total per scene when multiplied across
cameras).

In addition to randomized placement, we explicitly manipulate object positions to generate controlled
spatial displacements. Using custom utility functions, each object is sequentially shifted relative to
the initial position:

* Left/Right. Objects are translated along the z-axis by fixed increments (e.g.,
move_left(distance=0.1) and move_right(distance=0.2)). This simulates lateral
displacements in the viewer’s frame of reference.

* Near/Far. Objects are shifted along the y-axis (move_near(distance=0.1),
move_far(distance=0.2)), simulating depth changes toward or away from the cam-
era viewpoint.

This procedure yields a diverse and physically consistent dataset covering static spatial relations,
translational dynamics, and multi-view perspective taking (with and without occlusion). The modular
design of the script enables controlled variation in object placement, illumination, and camera
trajectories, while preserving reproducibility through fixed random seeds.

A.1.0.2 Real-world dataset curation. To unify diverse real-world sources under a common
spatial reasoning framework, we implemented a multi-dataset curator that standardizes input formats,
view sampling, and question generation. Each dataset is wrapped in a dedicated handler class that
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exposes object discovery, available views, and sample generation routines. The curation pipeline
proceeds as follows:

* Object discovery. For each dataset, we enumerate object folders (ABO product IDs, car
object IDs, and face subject IDs). Only objects with complete view coverage are retained
(e.g., 72 views in ABO, consistent rotation sequences in Cars, and multiple head poses in
Faces). This ensures all curated objects can support viewpoint-based reasoning tasks.

* View normalization. Views are mapped to standardized angular indices. For ABO, we
map 72 canonical views to 0°~355° in 5° steps. For Cars and Faces, we parse angles and
normalize them to 0°-359°. This allows cross-dataset comparison of viewpoint-sensitive
tasks.

» Task generation. Each dataset supports three primary families of tasks:

1. Object identity. Odd-one-out tasks (triplets or quartets) where two or three views depict
the same object/person and one depicts a distractor.

2. Rotation classification. Pairwise comparisons where an object rotates by a known
offset (e.g., 45°, 90°), and the model must classify the rotation direction (clock-
wise/counterclockwise). For Faces, we explicitly test both viewer-centric and object-
centric frames of reference.

3. Canonical view selection. Given a front view, models must identify left, right, or back
profiles from among candidate images. This directly probes viewpoint reasoning and
perspective-taking.

* Mental rotation (ABO only). Leveraging ABO’s dense 72-view coverage, we generate
multiple-choice mental rotation tasks where the model must predict the outcome of rotating
an object by 45°—180° in either direction. Distractors are sampled to ensure a minimum
angular separation, preventing trivial cues.

Splitting and statistics. = After sample generation, the curator splits data into
train/validation/test sets with dataset-specific ratios (e.g., ABO: 80/10/10; Faces: 70/10/20;
Cars: test-only). Statistics such as the number of objects, samples per task type, and split
sizes are logged for reproducibility.

* Query variation. To avoid linguistic bias and encourage genuine spatial reasoning, each
task type is associated with multiple natural language templates. For example, an odd-one-
out task may be phrased as “Which of these three images shows a different object?” or
alternatively as “Two of these images show the same object at different views, which one is
different?” During dataset generation, a random template is selected from the available pool
for each sample, ensuring linguistic diversity across training and evaluation.

Answer option randomization. In addition to varying the textual query, we randomize the
ordering of candidate options (A/B/C or A/B/C/D). For odd-one-out tasks, the distractor
image can appear in any position; for rotation classification, the labels “clockwise” and
“counterclockwise” are shuffled; and for canonical view selection, left/right/back views are
permuted across options. This randomization ensures that models cannot exploit positional
biases (e.g., always guessing option C) and must instead rely on actual spatial reasoning to
succeed.

This unified curation procedure ensures that disparate real-world datasets contribute consistently
formatted, balanced tasks, enabling controlled evaluation of spatial reasoning across product-scale
objects (ABO), structured geometric entities (Cars), and biologically stimuli (Faces).

A.2 Data Annotation Protocol

A.2.0.1 General Guidelines All annotations are designed to probe spatial reasoning while mini-
mizing confounds. We adopt the following principles: (i) all questions must be unambiguous under
a specified frame of reference, (ii) tasks must balance object categories and viewpoints, and (iii)
phrasing diversity is required to prevent overfitting to a single query template.

A.2.0.2 Data Format and Structure Each annotated instance is serialized as JSON with four
fields: problem (natural language question), answer (ground truth label, always a single capital
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letter), images (paths to associated views), and metadata (structured fields such as object IDs, view
indices, occlusion condition, task type). This format ensures compatibility with VQA pipelines while
retaining rich metadata for controlled analysis. All datasets are organized by dataset type (ABO, Cars,
Faces, Infinigen), and further by task subtype.

A.2.0.3 Quality Control and Validation We employ both automated and manual checks: for
Infinigen, annotation scripts display candidate images to the curator, who confirms correctness with
keystrokes (e.g., pressing “y” to validate a generated left/right relation). For real-world datasets,
handlers enforce strict view coverage (72 views for ABO, complete rotation for Cars, multi-pose

coverage for Faces). Random seeds are fixed during sampling for reproducibility.

A.2.04 Handling Ambiguities To ensure tasks probe genuine spatial reasoning rather than noise,
we implement explicit constraints to minimize annotation ambiguities:

* Angular separation. In ABO mental rotation tasks, distractor views are required to differ
by at least 30° from the target orientation. This prevents trivial confounds where two options
appear nearly identical. Car and Face rotation classification restricts rotations to canonical
offsets (45°, 90°, 180°) for clearer discriminability.

* Visibility filtering. In Infinigen, only objects with projected visibility above 0.8 are consid-
ered valid. Scenes where occlusion prevents reliable labeling are discarded. For occlusion
tasks, annotators explicitly tag each scene as no, partial, or full occlusion.

* Positional thresholds. Static left/right judgments are computed from object cuboid centers
projected in image space. Objects are required to have distinct x-coordinates to avoid
ambiguous ties. Near/far relations are based on y-coordinates, requiring a minimal vertical
separation. In dynamic relation tasks, movement distances are set to non-trivial shifts (0.2
scene units) to guarantee perceptibility.

e Symmetry control. Centrally symmetric objects (e.g., square stool) are excluded from
ABO to avoid cases where left/right or rotation cannot be distinguished visually.

* Frame-of-reference disambiguation. For face rotation, tasks are duplicated under both
object-centric (“the person turned their own head left”) and viewer-centric (“the person
turned to the viewer’s right”) frames.

These constraints, enforced both in code and manual filtering, ensure that all retained samples are
unambiguous and diagnostic of the intended spatial relation.

A.3 Task Categories and Subtypes
We provide a comprehensive breakdown of the dataset constitution across major task groups, their

subtypes, and the configuration details for each subtype. Table[d]summarizes the complete distribution
across all 51 distinct task subtypes.

Table 4: Full task subtype breakdown with configuration details.

Group Subtype #Queries #Images #Options
car_identity 80 0+3 3
car_identity_quartet_imagefirst 9 0+4 4
car_identity_quartet_interleaved 5 0+4 4
car_identity_quartet_textfirst 6 0+4 4
face_identity 79 0+3 3
face_identity_quartet_imagefirst 7 0+4 4

identity face_identity_quartet_interleaved 8 0+4 4
matching face_identity_quartet_textfirst 4 0+4 4
object_identity_imagefirst 33 0+3 3
object_identity_interleaved 35 0+3 3
object_identity_quartet_imagefirst 42 0+4 4
object_identity_quartet_interleaved 38 0+4 4
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Group Subtype #Queries #Images #Options

object_identity_quartet_textfirst 22 0+4 4
object_identity_textfirst 37 0+3 3
object- infinigen_spatial_relation_grounding_far_near 152 1+0 2
relation infinigen_spatial_relation_grounding_left_right 286 1+0 2
grounding  infinigen_spatial_relationship_front_behind 198 1+0 2
car_rotation_classification 80 2+0 2
face_rotation_classification_own_perspective 94 240 2
dynamic face_rotation_classification_viewer_perspective 70 2+0 2
rotation object_rotation_classification_imagefirst 35 2+0 2
object_rotation_classification_interleaved 47 2+0 2
object_rotation_classification_textfirst 27 2+0 2
dynamic infinigen_spatial_relationship_dynamic_front_back 78 2+0 2
translation  infinigen_spatial_relationship_dynamic_left_right 78 2+0 2
car_canonical_view_selection_back 19 1+3 3
car_canonical_view_selection_left 19 143 3
car_canonical_view_selection_right 20 1+3 3
. face_canonical_view_selection_own_perspective_left 23 142 2
canonical face_canonical_view_selection_own ti ight 19 1+2 2
: X _view_ _own_perspective_rig
view face_canonical_view_selection_viewer_perspective_left 17 1+2 2
selection face_canonical_view_selection_viewer_perspective_right 18 1+2 2
object_canonical_view_selection_back 80 143 3
object_canonical_view_selection_left 86 143 3
object_canonical_view_selection_right 57 143 3
infinigen_rotation_selection_back_full_occlusion 9 1+3 3
infinigen_rotation_selection_back_no_occlusion 49 1+3 3
infinigen_rotation_selection_back_partial_occlusion 47 1+3 3
infinigen_rotation_selection_left_full_occlusion 5 1+3 3
infinigen_rotation_selection_left_no_occlusion 62 1+3 3
infinigen_rotation_selection_left_partial_occlusion 43 1+3 3
perspective %nﬁn% gen_rotat%on_select?on_r% ght_full_occluision 7 1+3 3
taking infinigen_rotation_selection_right_no_occlusion 61 1+3 3
infinigen_rotation_selection_right_partial_occlusion 40 1+3 3
infinigen_spatial_relation_transformation_w_premise_back 33 1+0 2
infinigen_spatial_relation_transformation_w_premise_left 58 1+0 2
infinigen_spatial_relation_transformation_w_premise_right 53 1+0 2
infinigen_spatial_relation_transformation_wo_premise_back 36 1+0 2
infinigen_spatial_relation_transformation_wo_premise_left 58 1+0 2
infinigen_spatial_relation_transformation_wo_premise_right 52 1+0 2
mental object_mental_rotation 78 1+4 4
rotation

Task Group Distribution. The dataset contains a total of 2,599 samples spanning seven major task
groups with varying emphasis: Object-Relation Grounding tasks represent the largest category with
636 samples (24.5%), followed closely by Perspective Taking with 613 samples (23.6%). Identity
Matching contributes 405 samples (15.6%), while Canonical View Selection and Dynamic Rotation
each account for approximately 13—14% of the dataset (358 and 353 samples respectively). The
smaller categories include Dynamic Translation with 156 samples (6.0%) and Mental Rotation with
78 samples (3.0%).

Dataset Source Distribution. Four distinct data sources contribute to the benchmark: Infinigen
provides the majority with 1,405 samples (54.1%), followed by ABO Objects with 617 samples
(23.7%), Faces with 339 samples (13.0%), and Cars with 238 samples (9.2%). Notably, Infinigen
exclusively covers Object-Relation Grounding, Perspective Taking, and Dynamic Translation tasks,
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while the other domains span Identity Matching, Canonical View Selection, and Dynamic Rotation
tasks.

Task Configuration Details. The image structure varies systematically across task types, decomposed
into reference images and candidate option images. Single reference image tasks (1+0 to 1+4 format)
constitute the majority, including spatial relation tasks with text-only options (1+0), canonical view
selection with 2-3 image options (1+2, 1+3), and mental rotation with 4 image options (1+4). Two-
reference image tasks (2+0 format, 509 samples, 19.6%) appear exclusively in rotation classification
and dynamic relationship tasks with text-only options. Identity matching tasks uniquely employ a
no-reference format (0+3, 0+4), where all 3—4 images serve as candidate options for comparison.

The relationship between option images and answer choices follows a consistent pattern: when the
image option count is 0, the task employs text-only multiple choice answers; otherwise, the number
of image options directly corresponds to the number of answer choices.

Answer Choice Distribution. The benchmark employs a balanced choice structure: binary choices
(A/B) represent 42.0% of tasks (1,094 samples), primarily in rotation classification and spatial
transformation tasks. Ternary choices (A/B/C) account for 56.4% (1,463 samples), covering canonical
view selection and most identity matching tasks. Four-way choices (A/B/C/D) constitute only
1.6% (51 samples), exclusively in quartet identity matching and mental rotation tasks. The answer
distribution across options shows a reasonable balance: option A appears in 42.3% of cases (1,100
samples), option B in 42.1% (1,094 samples), option C in 13.6% (354 samples), and option D in
2.0% (51 samples).

A.4 Detailed Task Description with Examples

A.4.0.1 Identity Matching The identity matching tasks evaluate a model’s ability to recognize
whether multiple images depict the same object, person, or vehicle under viewpoint variation. This
capability serves as a foundational prerequisite for more complex spatial reasoning, since robust
object identity recognition must occur before reasoning about spatial transformations. Identity
matching tasks are presented across three domains—cars, faces, and generic objects—with further
subdivisions based on presentation format (triplet vs. quartet, image-first vs. text-first vs. interleaved).
Quartet setting compared to triplet setting tests whether one more image of the same object increases
difficulty by presenting more tokens or decreases difficulty by presenting more views of the same
object.

* Car identity matching(Fig. [7): The model must decide which image shows a different
car, given triplets or quartets of cars photographed from different angles. Subtypes differ
by whether the distractor is presented among three images, or within a quartet with either
images first, text first, or an interleaved format.

* Face identity matching(Fig.[8): Analogous to the car tasks, but using human faces under
pose variation. The distractor is a different individual, while the other images depict the
same person from different viewpoints. This directly probes human face recognition under
multi-view conditions.

* Object identity matching (Fig.[9]and Fig. [I0): For the triplet form, the model receives
three images, two of which depict the same object under viewpoint change, while one shows
a different object. Subtypes vary by whether images are shown first, interleaved with text,
or after text. Quartet form is a variation where the model must select the odd one out from
four candidate images, again with differences in presentation format. This setting tests
whether one more image of the same object increases difficulty by presenting more tokens
or decreases difficulty by presenting more views of the same object.

A.4.0.2 Dynamic Rotation The dynamic rotation tasks evaluate whether models can track the
orientation changes of a single object across sequential frames. Unlike static relation tasks, these
examples isolate rotational transformations with a static camera and a constant background, thereby
requiring models to reason about in-place turning rather than translation.

* Car rotation classification(Fig. [TT): The model sees two sequential views of a car rotating

in place. It must decide whether the rotation was clockwise or counterclockwise, with
reference to a top-down view.
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Task group: identity matching (car)

Task: car_identity

Question:

<image>

<image>

<image>

Two of these images show the same car from different angles. Which one shows a different car?
Only answer with the capital letter from (A, B, C).

Task: car_identity_quartet_imagefirst

Question:

<image>
<image>
<image>
<image>
Which of these four images (A, B, C, D) shows a different car from the other three?
Only answer with the capital letter from (A, B, C, D).
s (4

Task: car_identity_quartet_interleaved

Question:

Look at the following four cars:

A. <image>

B. <image>

C. <image>

D. <image>

Which image shows a different car?

Only answer with the capital letter from (A, B, C, D).

Task: car_identity_quartet_textfirst

Question:

Which of these four images shows a different car from the other three?
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the capital letter from (A, B, C, D).

Figure 7: Examples of car identity matching tasks. Models must detect the odd car out across triplets
and quartets, with different presentation styles (image-first, interleaved, text-first).
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Task group: identity matching (face)

Task: face_identity

Question:

<image>

<image>

<image>

Two of these images show the same person from different angles. Which one shows a different person?
Only answer with the capital letter from (A, B, C).

A 4

Task: face_identity_quartet_imagefirst

Question:

<image>

<image>

<image>

<image>

Three photos show the same person, one shows someone different. Which is different?
Only answer with the capital letter from (A, B, C, D).

A

Task: face_identity_quartet_interleaved

Question:

Compare these individuals:

A. <image>

B. <image>

C. <image>

D. <image>

Which is the different person?

Only answer with the capital letter from (A, B, C, D).

Task: face_identity_quartet_textfirst

Question:

In these four images, three show the same person from different poses, but one shows a different person. Identify the different one.
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the capital letter from (A, B, C, D).

A

Figure 8: Examples of face identity matching tasks. The model must identify which image depicts a
different individual, under both triplet and quartet setups, with varied presentation orders.
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Task: object_identity_imagefirst

Question:

<image>

<image>

<image>

Which of these three images (A, B, C) shows a different object from the other two?
Only answer with the captial letter from (A, B, C).

s 4

Task: object_identity_interleaved

Question:

Look at the following three images:

A. <image>

B. <image>

C. <image>

Which image shows a different object?

Only answer with the captial letter from (A, B, C).

A B
—
w. 7

Task: object_identity_textfirst

Question:

-~

In those three images, two of them show the same object at different views, but the other one show a different object. Identify which show the

different object.

A. <image>

B. <image>

C. <image>

Only answer with the captial letter from (A, B, C).

A B
——— -
B c

Figure 9: Examples of object identity matching with triplets. Each row contains three candidate
images; two show the same object under view change, and one shows a different object.
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Task group: identity matching (object)

Task: object_identity_quartet_imagefirst

Question:

<image>

<image>

<image>

<image>

Three of these images show the same object at different views. Which one shows the different object?
Only answer with the capital letter from (A, B, C, D).

A B (6
! ! D
Task: object_identity_quartet_interleaved

Question:

Look at the following four images:

A. <image>

B. <image>

C. <image>

D. <image>

Which image shows a different object?

Only answer with the capital letter from (A, B, C, D).

A B @ D
- -
/.
7 / | .

Task: object_identity_quartet_textfirst

Question:

Which of these four images shows a different object from the other three?
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the capital letter from (A, B, C, D).

B (4

A

Figure 10: Examples of object identity matching with quartets. Models must identify the one image
depicting a different object, with task variants controlling text-image ordering.
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* Face rotation classification (own perspective vs. viewer perspective) (Fig. [I2): These
subtypes probe perspective-dependent interpretation. From the human in the image’s own
perspective, “left” and “right” correspond to their intrinsic body-centered frame. From the
viewer’s perspective, left/right must be relative to the camera’s position or image frame.

* Object rotation classification(Fig.[T3): Similar to cars, but applied to generic objects (e.g.,
furniture). Variants differ in presentation order (image-first, text-first, interleaved).

Task group: dynamic rotation (car)

Task: car_rotation_classification

Question:

<image>
<image>
The car rotated from the front view to the second view. Was the rotation clockwise or counterclockwise? A. clockwise, |B. counterclockwise|
Only answer with the capital letter from (A, B).

The camera is stationary and the car rotates in place from the front view.
Clockwise and counterclockwise are defined from a top-down view.

Task: car_rotation_classification

Question:

<image> _J

<image>

The first image shows the car from the front. In which direction did the car rotate to reach the second view?|A. clockwise, |B. counterclockwise

Only answer with the capital letter from (A, B).
The camera is stationary and the car rotates in place from the front view.
Clockwise and counterclockwise are defined from a top-down view.

Figure 11: Examples of dynamic rotation (car) tasks. The car is shown rotating in place across two
images, and the model must determine whether the transformation corresponds to a clockwise or
counterclockwise rotation.

A.4.0.3 Dynamic Translation The dynamic translation tasks evaluate whether models can detect
and interpret translational movements of objects across sequential frames. Unlike rotation clas-
sification, the focus here is on linear displacement within the viewer’s frame of reference while
the background and camera remain static. These tasks isolate directional movement (front/back or
left/right) from rotational or other spatial transformations.

* Front-back translation (Fig.[T4): The model observes two frames showing an object (e.g.,
box, canned food) shifted either forward or backward relative to the static camera. It must
classify the displacement as "front" or "back."

* Left-right translation (Fig. [T4): The model observes an object (e.g., scissors, bottle)
moving laterally within the scene. It must determine whether the movement occurred toward
the left or the right, again from the static camera’s viewpoint.
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Task group: dynamic rotation (face)

Task: face_rotation_classification_own_perspective

Question:

<image>

<image>

From the person's own perspective, which way did they turn their head? A. right,
Only answer with the capital letter from (A, B).

Consider the direction from the person's own perspective (their left vs their right).

Task: face_rotation_classification_own_perspective

Question:

<image>

<image>

From the person's own perspective, which way did they turn their head?
Only answer with the capital letter from (A, B).

Consider the direction from the person's own perspective (their left vs their right).

Task: face_rotation_classification_viewer_perspective

Question:

<image>
<image>
From the viewer's perspective, which direction did the person's head turn?
Only answer with the capital letter from (A, B).
Consider the direction from viewer's perspective (viewer's left vs viewer's right).

Task: face_rotation_classification_viewer_perspective

Question:

<image> 4
<image>
Looking at the person from the camera's position, they turned to the A. left,

Only answer with the capital letter from (A, B).
Consider the direction from viewer's perspective (viewer's left vs viewer's right).

Figure 12: Examples of dynamic rotation (face) tasks. The model must classify the direction of
a person’s head turn, either from their own perspective (intrinsic left/right) or from the viewer’s
perspective (extrinsic left/right).
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Task group: dynamic rotation (object)

Task: object_rotation_classification_imagefirst

Question:

<image>

From a stationary viewpoint, in which direction did the object rotate between these two views? A. counterclockwise| B, clockwise
Only answer with the capital letter from (A, B).

The camera is stationary and the object rotate in place.
Clockwise and counterclockwise are defined from a top-down view.

=L}

Task: object_rotation_classification_interleaved

Question:

Looking at the object from a fixed camera positjan
<image>

Which rotation direction does the object show?
Only answer with the capital letter from (A, B).
The camera is stationary and the object rotate in place.

Clockwise and counterclockwise are defined from a top-down view.

Task: object_rotation_classification_textfirst

The viewpoint is stati i did the object turn — clockwise or counterclockwise? <image>
<image>

A. counterclockwise,|B. clockwise

Only answer with the capital letter from (A, B).

The camera is stationary and the object rotate in place.
Clockwise and counterclockwise are defined from a top-down view.

. counterclockwise

Question:

|

AN

Figure 13: Examples of dynamic rotation (object) tasks. Object items are shown before and after
rotation, and the model must classify the direction of turn. Subtypes vary by whether the question is
posed text-first, image-first, or interleaved.
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Task group: dynamic

Task: infinigen_spatial_relationship_d: ic_front_back

P — [t/

Question:

From a static viewer's perspective, which direction did the pudding box change position from the first image <image> to the second image

image>?
B. back
Only answer with a single capital letter from (A, B).
- comey E - oy E
Al -0 -
= ( (

s

Task: infinigen_spatial_relationship_dynamic_front_back

Question:

Only answer with a single capital letter from (A, B).

Task: infinig; patial_relationship_dynamic_left_right

Question:

From a static viewer's perspective, which direction did the bleach cleanser change position from the first image <image> to the second image
——iagey?
Vm 3. right

Only answer with a single capital letter from (A, B).

\B \B

Task: infinigen_spatial_relationship_dynamic_left_right

Question:

From a.static viewers perspective, which direction did the scissors change position from the first image <image> to the second image <image>?
A r

Aol B rght (1]

Only aRSWeTr Wit a single capital letter from (A, B).

Figure 14: Examples of dynamic translation tasks. Objects undergo front—back (top) or left—right
(bottom) displacements while the camera remains fixed. The model must classify the displacement
direction.
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A.4.0.4 Object-Relation Grounding Object-relation grounding tasks assess a model’s ability to
infer object-relative spatial configurations from a single image. Each task involves two target objects
within the same frame, and models must judge directional relations (e.g., left/right, in front of/behind)
or distance-based relations (e.g., near/far). These tasks capture object-relative pose understanding in
static scenes. Unlike dynamic or multi-view reasoning tasks, these examples isolate spatial grounding
from both temporal reasoning and perspective transformations, serving as a controlled evaluation of
whether models can interpret scene-centric spatial layouts from a static visual input. A key difficulty
in these tasks is that the model must correctly identify the correct objects of interest among possibly
multiple distractor objects in the scene. This makes the setup closer to an open-world detection
problem: even if a model has a strong spatial reasoning ability, focusing on the wrong object will
lead to incorrect answers.

For spatial relation tasks with inherent symmetries, we systematically generate equivalent reformula-
tions through two complementary augmentation strategies to test reasoning consistency: Symmetrical
Augmentation: We create logically equivalent variants by swapping spatial relationships and flipping
correct answers. For example, from a base query "Which object is on the left? A or B," we generate
the symmetrical variant "Which object is on the right? A or B," with the corresponding answer flipped.
This transformation preserves the underlying spatial configuration while testing whether models
maintain consistent spatial reasoning across equivalent logical formulations. Syntactic Augmentation:
We reformulate question structures while preserving semantic content, such as transforming "Which
object is on the left? A or B," into "Is A on the left or right of B? A. left B. right." These variations
test whether models rely on specific linguistic patterns or demonstrate robust spatial understanding
independent of question phrasing.

* Left/Right Relations with Augmentations (Fig.[I5): The base task asks whether one object
(e.g., Rubik’s cube) is to the left or right of another (e.g., mustard bottle). Symmetrical
augmentation flips the query to its logical equivalent (“Is the mustard bottle to the left
or right of the Rubik’s cube?”), while syntactic augmentation reformulates the phrasing
into binary comparisons (“Which object is on the left?” vs. “Is A on the left or right of
B?”). Together, these variations test whether models preserve consistent reasoning across
symmetry and linguistic surface changes.

* Near/Far Relations with Symmetry (Fig.[I6): The base task asks which of two objects
(e.g., marker vs. foam brick) is closer to the viewer. Symmetrical augmentation flips the
distance relation by instead asking which object is farther.

* Front/Behind Relations with Augmentations (Fig.[T7): The base task asks which object is
in front of the other (e.g., mug vs. Rubik’s cube) from a front-view image. Symmetrical
augmentation reverses the relation (“Which object is in the back?”’), and syntactic augmenta-
tion reformulates the query into pairwise comparisons (“Is the mug in front of or behind the
Rubik’s cube?”). These augmentations jointly probe whether models generalize depth-order
reasoning across logically equivalent but differently phrased prompts.

A.4.0.5 Canonical View Selection The canonical view selection tasks test whether models can
correctly identify specified viewpoints of objects, cars, or faces. Unlike dynamic tasks, the images are
presented as static alternatives, and the challenge lies in transforming the front-view reference into
another canonical perspective (left, right, or back). These tasks isolate perspective transformation
without involving temporal dynamics or multi-object relationships.

* Car canonical view selection (Fig. : Given a front-view reference image, the model
must identify which candidate view corresponds to the car viewing from left, right, or back
side. This evaluates object-centered perspective reasoning in controlled automotive scenes.

* Face canonical view selection (own vs. viewer perspective) (Fig.[T9): These tasks introduce
ambiguity in reference frames. From the person’s own perspective, left and right correspond
to their intrinsic orientation, whereas from the viewer’s perspective, left/right are defined
relative to the image frame.

* Object canonical view selection (Fig.[20): Similar to cars, but applied to generic objects
such as furniture. Models must map the front view to left, right, or back views, testing their
ability to reason about viewpoint consistency across diverse shapes.
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Task: infinigen_spatial_relation_grounding_left_right

Question:

<image>
i rspective, is rubiks cube on the left or right of mustard bottle in the image?

gie capital letter from (A, B).

Reference Image

Question:

<image>
m.the viewer's perspective, is mustard bottle on the left or right of rubiks cube in the image?

Question:

<image>
om the viewer's perspective, which object is on the left in the image?

"4 A. mustard bottle| B. rubiks cube
O

nly answer with a single capital letter from (A, B).

Question:

<image>
From the viewer's_perspective, \
A. mustard bottle| B. rubiks cube

Only answer with a single capita

hobject is on the right in the image?

4|

etter from (A, B).

Figure 15: Examples of object-relation grounding left/right relation tasks. The base question asks
whether a reference object (e.g., Rubik’s cube) is positioned to the left or right of another object
(e.g., mustard bottle) from the viewer’s perspective. Symmetrical augmentation reverses the relation
(“Is the mustard bottle to the left or right of the Rubik’s cube?”), while syntactic augmentation
reformulates the question style (“Which object is on the left?” vs. “Is object A on the left or right of
object B?”).
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Task: infinigen_spatial_relation_grounding_far_near

Question:
<image>

Nhich object is closer to the viewer in the image?
e marker, B.foam brick

Only answer with a single capital letter from (A, B).

" ymmetrical A I'...-‘i. n:

Question:

<image>
Which object is farther from the viewer in the image?

A. large marker, |B.foam brick {74 |
Only answer with a single capital letter from (A, B).

Figure 16: Examples of object-relation grounding near/far relation tasks. The model must determine
which of two objects (e.g., marker vs. foam brick) is closer to the viewer within a single image.
Symmetrical augmentation inverts the query (“Which object is farther?”’) while keeping the ground-
truth relation consistent. This setup features distance-based reasoning from monocular perspective
cues in static frames.

A.4.0.6 Perspective Taking (S) These tasks evaluate whether models can perform perspective
taking when selecting the correct viewpoint of a scene, even when parts of objects are occluded.
The challenge lies in integrating the reference view with multiple candidate perspectives, reasoning
about hidden surfaces, and maintaining consistent spatial relationships. Variants differ in the extent
of occlusion.

* Full occlusion (Fig. 2T): The model sees a reference front view and must choose among
candidate views taken from back, left, or right perspectives, where large occluders hide
significant portions of the scene. Success requires inferring unseen object sides.

* No occlusion (Fig.[22): Similar setup, but with no major occlusion.

« Partial occlusion (Fig. 23): Candidate views contain moderate occlusion (e.g., objects
partially blocking others). The model must still identify the correct viewpoint, balancing
visible cues with inferred hidden structures.

A.4.0.7 Perspective Taking (T) This task group evaluates whether models can correctly predict
how spatial relationships between objects transform under perspective shifts. Unlike view selection
tasks, where the goal is to choose the correct viewpoint of a scene, these tasks explicitly probe
relational transformations: given a reference view, the model must infer how relative positions (e.g.,
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Task: infinigen_spatial_relationship_front_behind

Question:

e>
[ ge is taken from the front of the scene. Which object is in the front?
. mug

B.rubiks cube
swer with a single capital letter from (A, B).

Reference Image
-

ki

o —

Question:

<image>
The image is taken from the front of the scene. Which object is in the back?
B.rubiks cube |74 |

Only answer with a single capital letter from (A, B).

Question:

. behind
ith a single capital letter from (A, B).

Question:

<image>

The image is n he front of the scene. Is rubiks cube positioned in front of mug or behind?
A. in front of |B. behind {4

Only answer with a single capital letter from (A, B).

Figure 17: Examples of object-relation grounding front/behind relation tasks. Given a front-facing
view, the model must decide which object (e.g., mug vs. Rubik’s cube) is positioned in front or
behind. Symmetrical augmentation flips the depth relation (“Which object is in the back?”’), while
syntactic augmentation reformulates the question (“Is the mug in front of or behind the cube?”).
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Task: car_canonical_view_selection_back

Question:

You are shown four images of a car in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the car from the back side.

Front view: <image>

A: <image>

B: <image>

C: <image>

Only answer with a single capital letter (A, B, or C).

The back side is defined from the viewer's perspective when looking at the front of the car.

A (4

Task: car_canonical_view_selection_left

Question:

You are shown four images of a car in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the car from the left side.

Front view: <image>

A: <image>

B: <image>

C: <image>

Only answer with a single capital letter (A, B, or C).

The left side is defined from the viewer's perspective when looking at the front of the car.

Task: car_canonical_view_selection_right

Question:

YYou are shown four images of a car in order: [1] Front view, [2] View A, [3] View B, [4] View C.
Select the image that best shows the car from the right side.

Front view: <image>

A: <image>

B: <image>

C: <image>

Only answer with a single capital letter (A, B, or C).

The right side is defined from the viewer's perspective when looking at the front of the car.

Figure 18: Examples of canonical view selection with cars. The model must select the correct left,
right, or back view given a front-view reference.
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Task group: canonical view selection (face)

Task: face_i ical_view_selection_own_perspective_left

Question:

You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the left profile (person's own left).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from the person's own perspective (their left vs their right).

Reference

Task: face_canonical_view_selection_own_perspective_right

Question:

You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the right profile (person's own right).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from the person's own perspective (their left vs their right).

Rofore:

A ¥ B
-

lection_viewer_perspective_left

Task: face_canonical_view._:

Question:

You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the left profile (viewer's left).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from your perspective as the viewer (your left vs your right when looking at the person).

s (4

Reference

Task: face_canonical_view_selection_viewer_perspective_right

Question:

‘You are shown three images in order: [1] Front view, [2] View A, [3] View B.

Select the image that best shows the right profile (viewer's right).

Front view: <image>

A: <image>

B: <image>

Only answer with a single capital letter (A or B).

The left/right profile is defined from your perspective as the viewer (your left vs your right when looking at the person).

A B

Figure 19: Examples of canonical view selection with faces. Tasks differ depending on whether
left/right is defined from the subject’s own perspective or from the external viewer’s perspective.
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Task: object_t

view_selection_back

Question:

You are shown four images in order: [1] Front view, [2] View A, [3] View B, [4] View C.

Select the image that best shows the object from the back side.

Front view: <image>

A: <image>

B: <image>

C: <image>Only answer with a single capital letter (A, B, or C).

The back side is defined from the camera/viewer's perspective: 'back side' means the side that appears on the back when looking at the object

from the front view.
Reference A B

Task: object_ view_selection_left

Question:

You are shown four images in order: [1] Front view, [2] View A, [3] View B, [4] View C.

Select the image that best shows the object from the left side.

Front view: <image>

A: <image>

B: <image>

C: <image>Only answer with a single capital letter (A, B, or C).

The left side is defined from the camera/viewer's perspective: 'left side' means the side that appears on the left when looking at the object from

the front view.
2 c

Reference

Task: object_ |_view_selection_right

Question:

You are shown four images in order: [1] Front view, [2] View A, [3] View B, [4] View C.

Select the image that best shows the object from the right side.

Front view: <image>

A: <image>

B: <image>

C: <image>Only answer with a single capital letter (A, B, or C).

The right side is defined from the camera/viewer's perspective: 'right side' means the side that appears on the right when looking at the object
from the front view.

Reference A B c

Figure 20: Examples of canonical view selection with objects. The model must determine left, right,
or back views of generic objects such as furniture, based on a given front view.
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Task group: perspective taking (view selection + full occlusion)

Task: infinigen_rotation_selection_back_full_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the large marker, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the back side of the large marker?

Only answer with a single capital letter from (A, B, C).

Reference

B c 4
B

-

Task: infinigen_rotation_selection_left_full_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the gelatin box, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the left side of the gelatin box?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_right_full_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the bowl, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the right side of the bowl?

Only answer with a single capital letter from (A, B, C).

Reference

Figure 21: Examples of full occlusion perspective taking. Large occluders hide most of the target
object, requiring inference about unseen sides.
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Task group: perspective taking (view selection + no occlusion)

Task: infinigen_rotation_selection_back_no_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the gelatin box, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the back side of the gelatin box?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_left_no_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the large marker, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the left side of the large marker?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_right_no_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the banana, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the right side of the banana?

Only answer with a single capital letter from (A, B, C).

T -V -
- ‘ \ -
.« \

[S=——

B c
- i “F

Reference
———— o W

Figure 22: Examples of perspective taking without occlusion. Models rely solely on spatial consis-
tency across viewpoints.

40



‘Task group: perspective taking (view selection + partial occlusion)

Task: infinigen_rotation_selection_back_partial_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the power drill, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the back side of the power drill?

Only answer with a single capital letter from (A, B, C).

Reference

Task: infinigen_rotation_selection_left_partial_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the banana, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the left side of the banana?

Only answer with a single capital letter from (A, B, C).

Referonce

Task: infinigen_rotation_selection_right_partial_occlusion

Question:

You are shown four images in order: [1] Front reference view containing the potted meat can, [2] View A, [3] View B, [4] View C.

Views A, B, and C show the same scene from three distinct angles, left, right, and back in random order.

From the viewer's perspective in the reference image.

<image>

Which of the three candidate views (A <image>, B <image>, or C <image>) is most likely taken from the right side of the potted meat can?

Only answer with a single capital letter from (A, B, C).

c

Reference

Figure 23: Examples of partial occlusion perspective taking. Candidate views contain moderate
occluders, requiring reasoning across partially visible cues.

41



left/right, near/far) are altered when the viewpoint changes to the back, left, or right side. In other
words, the challenge lies in mentally re-projecting the scene and predicting the new arrangement of
objects from a different vantage point. To diagnose different failure modes in spatial reasoning, we
introduce premise-based variations in spatial transformation tasks. In the with-premise condition, the
relevant spatial relationship (e.g., “A is to the right of B in the front view”) is provided directly in the
prompt along with the corresponding image, allowing the model to reason over an explicit linguistic
premise. In the without-premise condition, no such information is given, and the model must infer
spatial relations from the reference image. This controlled comparison does not assume a specific
order of grounding and reasoning, but instead helps identify whether failures arise from difficulties in
extracting spatial relations from visual input, or from applying geometric reasoning given a known
premise.

* With premise (Figs.[24] 23] [26): The model is given a linguistic statement of the relative
positions (e.g., “X is closer than Y” or “X is to the left of Y’) alongside the image, and must
predict how that relation transforms under a new viewpoint.

* Without premise (Figs.[27] 28] 29): The model only sees the reference image and must infer
the spatial relations itself before applying the geometric transformation to a new viewpoint.

Task group: perspective taking (relative position transformation w/ premise)
Task: infinigen_spatial_relation_transformation_w_premise_back

Question:

<image>

As pudding box is closer and potted meat can is farther from the viewer in the given front view, then when viewed from the back, which object is
now closer to the viewer?

A. potted meat can

B. pudding box

Only answer with a single capital letter from (A, B).

Task: infinigen_spatial_relation_transformation_w_premise_back

Question:

<image>

As mustard bottle is on the left and mug is on the right in the given front view, then when viewed from the back, which object appears on the left
from the new perspective?

A. mustard bottle

B. mug /

Only answer With a single capital letter from (A, B).

Figure 24: Examples of perspective taking with relative position transformation (with premise), back
view.

A.4.0.8 Mental Rotation Mental rotation tasks evaluate a model’s ability to simulate object
transformations by imagining how an object’s orientation changes under specified rotations. Unlike
perspective-taking tasks, which require adopting a different viewpoint, mental rotation requires
reasoning about the intrinsic geometry of a single object as it spins in place. In these tasks, the model
is presented with a reference front view of an object and a description of a rotation (e.g., “rotate 135
degrees clockwise”). It must then select the correct image among several candidates that matches the
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Task group: perspective taking (relative position transformation w/ premise)

Task: infinigen_spatial_relation_transformation_w_premise_left

Question:

<image>

As potted meat can is closer and pudding box is farther from the viewer in the given front view, then when viewed from the viewer's left side,
which object appears on the left from the new perspective?

A. potted meat can__

B. pudding box

Only answer with a single capital letter from (A, B).

P

Task: infinigen_spatial_relation_transformation_w_premise_left

Question:

<image>

As rubiks cube is on the left and mug is on the right in the given front view, then when viewed from the viewer's left side, which object is closer to
the viewer?

A. mug 2

B. rubiks cube _(‘ZI

Only answer with a single capital letter from (A, B).

Wy omp =

Figure 25: Examples of perspective taking with relative position transformation (with premise), left
view.

object’s new orientation. This requires integrating visual recognition with geometric transformation,
a key hallmark of human mental imagery. These tasks are particularly diagnostic because they isolate
the ability to track orientation without introducing multi-object relations or cluttered scene grounding.

* Mental Rotation (Fig.[30): The model is asked to determine the new orientation of a single
object after a specified angular rotation. For example, given a chair in its canonical front-
facing view, the model must predict which candidate corresponds to a 135-degree clockwise
rotation. Success requires both accurate angle-tracking and strong spatial imagination.

B Detailed VLMs Evaluation Results

B.1 Raw accuracy and Cohen’s kappa

In addition to the main grouped heatmap reported in the paper, we provide complementary visu-
alizations to support detailed analysis of model performance. Figure [31]reports raw accuracy for
the grouped 23 task variants, enabling comparison with the chance-adjusted results in the main text.
Figures [32] and [33] further expand to the ungrouped 51 subtype level, presenting both Cohen’s « and
raw accuracy. Together, these heatmaps give a complete view of performance across models, tasks,
and evaluation metrics.

B.2 Detailed Consistency Evaluations

B.2.0.1 Augmentation Types The benchmark employs two systematic augmentation strategies to
probe reasoning consistency:
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Task group: perspective taking (relative position transformation w/ premise)

Task: infinigen_spatial_relation_transformation_w_premise_right

Question:

<image>

As large marker is closer and large clamp is farther from the viewer in the given front view, then when viewed from the viewer's right side, which
object appears on the left from the new perspective?

A.large marker |74

B. large clamp

Only answer with a single capital letter from (A, B).

Task: infinigen_spatial_relation_transformation_w_premise_right

Question:

<image>

As mug is on the left and rubiks cube is on the right in the given front view, then when viewed from the viewer's right side, which object is closer
to the viewer?

A. mug .

B. rubiks cube (/4

Only answer with a single capital letter from (A, B).

ra —

==
|

Figure 26: Examples of perspective taking with relative position transformation (with premise), right
view.

1. Symmetric Augmentation: Logically equivalent transformations that flip spatial relations
while maintaining semantic meaning (e.g., “Which object is on the left?” — “Which object
is on the right?” with corresponding answer adjustments).

2. Syntactic Augmentation: Surface-level reformulations that preserve semantic content
while changing question structure (e.g., “Which object is on the left?” — “Is object A on
the left or right of object B?”).

B.2.0.2 Performance Metrics

Accuracy (%): Overall correctness rate calculated as:

Correct Responses
Total Test Cases

Accuracy = < ) x 100%

Consistency (%): Average of pairwise consistency across task variants, where consistency is
achieved when a pair of question variants yields identical outcomes (both correct or both
incorrect).

Perfect Rate (%): Frequency of achieving complete consistency across all four question variants:

Cases with All-Agree Patterns
Total Four-variant Cases

Perfect Rate = < > x 100%

This includes both CCCC (all correct) and WWWW (all wrong) patterns.

As shown in Table 5] the InternVL model family demonstrates exceptional performance across
all metrics, with InternVL3 variants achieving consistency rates above 90% while maintaining
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Task group: perspective taking (relative position transformation w/o premise)

Task: infini patial_relation_transformation_wo_premise_back

Question:

<image>

The image shows the front view of a scene. Now imagine viewing the same scene from the back. From the new perspective, which object
appears on the left?

A. large marker {

B. large clamp

Only answer with a single capital letter from (A, B).

Task: infinigen_spatial_relation_transformation_wo_premise_back

Question:

<image>
The image shows the front view of a scene. Now imagine viewing the same scene from the back. From the new perspective, which object
is closer to the viewer?

A. large marker [V
B. large clamp _]
Only answer with a single capital letter from (A, B).

<
S~

Figure 27: Examples of perspective taking with relative position transformation (without premise),
back view.

competitive accuracy. Top-tier models (InternVL, GPT-4 variants) exhibit a strong positive correlation
between accuracy and consistency, indicating that spatial reasoning competence and stability are
fundamentally linked. However, notable exceptions exist: GPT-40 achieves 67.8% accuracy but only
79.6% consistency, suggesting brittleness in reasoning processes despite high performance. Mid-tier
models show significant variability in the accuracy-consistency trade-off. Models like Molmo-7B
achieve 73.5% consistency despite only 51.8% accuracy, indicating systematic but often incorrect
reasoning patterns. Conversely, models like Gemma-3-27B maintain 59.8% accuracy but exhibit poor
consistency at 53%, suggesting reliance on surface-level pattern matching rather than robust spatial
understanding. The Perfect Rate metric reveals additional nuances in model behavior. High perfect
rates indicate models that, when consistent, tend to be systematically correct or incorrect across
variants. Lower perfect rates suggest fragmented reasoning where models may correctly answer
some variants while failing others, indicating incomplete spatial representations. The substantial
performance gap between top and bottom models underscores the significant challenges in achieving
stable spatial reasoning.
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Task: infinigen_spatial_relation_transformation_wo_premise_left

Question:

<image>

The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's left side. From the new perspective, which
object is closer to the viewer?

A. pitcher base

B. mustard bottle

Only answer with a single capital letter from (A, B).

Task: infini ial_relation_transformation_wo_premise_left

Question:

<image>

The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's left side. From the new perspective, which
object now appears on the left?

A. potted meat can

B. pudding box

Only answer with ngle capital letter from (A, B).

D)

Figure 28: Examples of perspective taking with relative position transformation (without premise),
left view.

Table 5: Comprehensive performance ranking of 41 vision-language models on spatial reasoning
tasks. Accuracy represents overall correctness across all test cases. Consistency measures reasoning
stability across question variants, and Perfect Rate indicates the frequency of achieving complete
consistency across all four question variants (all correct or all incorrect).

Model Accuracy (%) Consistency (%) Perfect Rate (%)
OpenGVLab_InternVL3_5_38B 71.9 95.3 75.1
OpenGVLab_InternVL3_38B 73.8 95.7 71.1
OpenGVLab_InternVL3_5_14B 69.8 94.6 68.7
OpenGVLab_InternVL3_14B 70.3 91.4 63.7
gpt-4.1 69.8 85.9 59.5
Qwen_Qwen2.5_VL_32B_Instruct 67.3 85.7 62.7
OpenGVLab_InternVL3_9B 65.6 82.4 66.7
OpenGVLab_InternVL3_5_8B 68.6 83.9 59.7
OpenGVLab_InternVL3_8B 66.7 77.4 62.7
OpenGVLab_InternVL3_5_4B 65.8 77.1 61.7
gpt-4o 67.8 79.6 51.2
Qwen_Qwen2.5_VL_7B_Instruct 64.5 63.8 59.2
OpenGVLab_InternVL2_5_8B 61.2 65.9 57.7
claude-sonnet-4-20250514 64.8 71.7 42.8
llava-onevision-qwen2-7b-ov-hf 55.6 67.4 58.2

Continued on next page
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Table 5 continued from previous page

Model Accuracy (%) Consistency (%) Perfect Rate (%)
Cosmos-Reasonl1-cot-7B 64.1 69.5 41.8
openbmb_MiniCPM_V_2_6 62.1 64.2 45.3
Qwen_Qwen2_VL_7B_Instruct 61.8 60.2 44.8
OpenGVLab_InternVL3_2B 55.7 58.4 50.7
allenai_Molmo_7B_D_0924 51.8 73.5 35.8
OpenGVLab_InternVL2_5_4B 55.9 63.4 39.3
OpenGVLab_InternVL3_5_2B 56.3 59.5 42.3
llava_hf_llava_interleave_qwen_7b_hf 58.9 65.2 31.3
Qwen_Qwen2.5_VL_3B_Instruct 55.3 53.4 38.3
google_gemma_3_27b_it 59.8 53 25.4
Cosmos-Reason1-7B 58.8 40.9 433
google_gemma_3_12b_it 54.3 58.4 259
SpaceThinker-Qwen2.5VL-3B-cot 514 53.4 333
SpaceOm-cot 53.2 51.6 31.8
microsoft_Phi_3.5_vision_instruct 57.7 40.5 23.9
OpenGVLab_InternVL2_5_2B 50.5 50.5 21.4
claude-3-5-haiku 57.3 36.9 21.4
google_gemma_3_4b_it 47.8 40.1 159
OpenGVLab_InternVL3_1B 47.2 35.1 22.4
OpenGVLab_InternVL2_5_1B 46.4 37.6 19.9
SpaceQwen2.5-VL-3B-Instruct 494 33.7 16.4
Qwen_Qwen2_VL_2B_Instruct 48.3 29 17.9
OpenGVLab_InternVL3_5_1B 48.8 28.3 16.9
internlm_internlm_xcomposer2d5_7b 433 36.6 13.9
SpaceOm 49.2 17.9 18.4
SpaceThinker-Qwen2.5VL-3B 48.7 11.1 8.5

B.2.0.3 Augmentation Strategy Analysis In Fig. the augmentation comparison reveals simi-
lar consistency rates across different transformation types (66-68%), with symmetric augmentations
performing marginally better. The small performance gaps (less than 3 percentage points) suggest
that current vision-language models exhibit similar levels of sensitivity to symmetric and syntactic
augmentation. The substantial error bars (approximately +8-10%) indicate variance in augmentation
sensitivity across models.

B.2.0.4 Pattern Distribution Analysis The stacked bar chart Fig. [34]reveals several key insights
into model consistency behavior. High-performing models (topmost bars) demonstrate substantially
larger proportions of perfect consistency patterns (CCCC - all four variants correct), with top models
achieving above 60% perfect consistency rates. Conversely, lower-performing models show more
fragmented pattern distributions with higher prevalences of mixed consistency patterns and complete
failure modes (WWWW). The visualization demonstrates a clear correlation between overall accuracy
and consistency stability. Models that perform well on spatial reasoning tasks also maintain more
coherent reasoning across question variants.

B.3 Correlation Analysis

We calculated correlations between our diagnostic benchmark and four established spatial reasoning
benchmarks at both overall and subtask levels (Table[6). Overall correlations between our diagnostic
benchmark and holistic benchmarks were weak and non-significant: MindCube (r =-0.088, p = 0.836),
ViewSpatial-Bench (r = 0.460, p = 0.299), OmniSpatial (r = 0.456, p = 0.137), and SpaCE-10 (r =
0.098, p = 0.803). These results validate that our approach captures distinct foundational capabilities
rather than general spatial intelligence. Subtask correlations revealed targeted diagnostic relationships
(Figure[36). Significant correlations emerged between specific diagnostic and benchmark subtasks:
dynamic rotation abilities strongly predict 3D reasoning performance in MindCube (r = 0.829, p =
0.021), identity matching correlates with person-based perspective taking in ViewSpatial-Bench (r =
0.915, p =0.030), and static reasoning predicts object manipulation capabilities in OmniSpatial (r
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Task: infinigen_spatial_relation_transformation_wo_premise_right
Question:

<image>

The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's right side. From the new perspective, which
object is closer tt viewer?

A. tuna fish can ﬁe

B. pudding box

Only answer with a single capital letter from (A, B).

Roforonce Image

Task: infinigen_spatial_relation_transformation_wo_premise_right

Question:

<image>

The image shows the front view of a scene. Now imagine viewing the same scene from the viewer's right side. From the new perspective, which
object now appears on the left?

A. master chef can

B. sugar box vma

Only answer single capital letter from (A, B).

Reference Image

Figure 29: Examples of perspective taking with relative position transformation (without premise),
right view.

Task: object_mental_rotation
Question:

<image>

From the original viewpoint, the object spins 135 degrees clockwise. Which view shows the new orientation?
A. <image>

B. <image>

C. <image>

D. <image>

Only answer with the captial letter from (A, B, C, D).

Reference Image

X 4

Figure 30: Examples of mental rotation tasks. The task presents a reference object (e.g., sofa with
cushions) and specifies a degree of rotation (e.g., 135° clockwise). The model must identify which of
the candidate views (A-D) corresponds to the rotated orientation.
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VLM Benchmark Results: Raw Accuracy

Identity Matching Dynamic i ic Tr lati Canonical View Selection Object Relation Grounding Perspective Taking Mental Rotation

@033W|Wnb_u t 0.28 0.37 0.51 0.43 0.41 0.54 0.49 0.50 0.35 0.55 0.59 0.49 0.40 0.32 0.67 0.68 0.61 0.31 0.53 E 0.54 0.38 0.24
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InternVL3-1B T 033 0.46 048 051 0.44 0.50 050 0.30 055 0.38 0.52 033 028 0.73 073 0.66 037 oso  [EXEM oss 033 0.22
InternVL3-2B 0.42 0.47 0.49 0.49 0.47 0.41 0.46 0.50 0.32 0.65 0.59 0.49 0.45 0.32 0.93 E 0.81 0.36 0.55 0.40 0.55 0.25 027
InternVL3-8B 0.97 0.93 0.50 0.44 0.49 0.43 0.63 0.74 0.50 1.00 0.64 0.49 0.51 0.68 0.94 X 0.84 0.34 0.58 0.45 0.49 0.17 0.26
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SpinBench Evaluations: Cohen's Kappa (Chance-Adjusted Performance)
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grained spatial reasoning subtypes. This complements Figure [32] by reporting unadjusted accuracy

scores for the same set of subtypes.
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Figure 34: Comprehensive consistency pattern distribution across all 41 vision-language models,
sorted by overall accuracy (top to bottom). Each stacked bar represents the percentage distribution of
all 16 possible consistency patterns (CCCC through WWWW) for 4-variant question sets. Green
shades indicate patterns with more correct responses (C), while red shades represent patterns with
more wrong responses (W). Models with higher accuracy (left) show greater prevalence of all-correct
patterns (CCCC, dark green).
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Consistency by Augmentation Type (n=41 models)
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Figure 35: Average consistency rates by augmentation strategy across 41 vision-language models
with 4-variant question sets. Error bars represent standard deviation across models. Symmetric
augmentations (question reformulations maintaining logical equivalence) achieve slightly higher
consistency than syntactic (surface-level rephrasing) and cross-augmentation (mixed transformations)
approaches.

=0.764, p = 0.006). SpaCE-10 showed no significant correlations, suggesting it evaluates distinct
spatial reasoning components.

These patterns demonstrate that our diagnostic benchmark provides complementary rather than redun-
dant evaluation. While overall performance correlations are minimal, specific subtask relationships
reveal how foundational spatial deficits contribute to failures in complex holistic tasks, enabling
targeted identification of improvement areas.

Table 6: Overall Average Correlation Analysis: Diagnostic Benchmark vs. Holistic Spatial Bench-
marks

Benchmark number of models Pearsonr p-value
MindCube [58]] 8 -0.088 0.836
ViewSpatial-Bench [24] 7 0.460 0.299
OmniSpatial [18]] 12 0.456 0.137
SpaCE-10 [16] 9 0.098 0.803

C Human Evaluations

We conducted human evaluation with twelve subjects to establish performance baselines and validate
task difficulty. One subject completed the full benchmark (2,599 questions), while eleven others
completed balanced samples of 200 questions each, with equal representation across all task subtypes.
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Figure 36: Subtask-level correlation matrix between diagnostic benchmark components and other
spatial benchmarks. Rows represent our six diagnostic subtasks, columns represent subtasks from
MindCube (n=7), ViewSpatial-Bench (n=5), and SpaCE-10 (n=5). Color intensity indicates correla-
tion strength: red denotes positive correlations, blue denotes negative correlations. Notably significant
correlations include dynamic rotation with MindCube’s 3D tasks (r=0.829) and identity matching
with ViewSpatial-Bench’s person-based reasoning (r=0.915).

C.1 Human Evaluation Tool Design

We developed a specialized application for human evaluation. The tool handles diverse question
formats automatically, from single reference images with text options to complex multi-image image
options mental rotation tasks.

C.1.0.1 Question Type Detection and Display The system automatically parses question struc-
ture using pattern matching to distinguish between reference images and selectable options. For
spatial reasoning tasks with text choices (e.g., "A. mug, B. mustard bottle"), it displays the reference
image alongside clearly labeled text options. For mental rotation tasks presenting multiple candidate
views, it identifies the initial reference state and labels the four candidate images as selectable op-
tions. This smart labeling prevents confusion about which elements are answerable choices versus
contextual information.

C.1.0.2 Progress Management and Resumption The tool implements progress tracking with
automatic saving after each response. Subjects can resume interrupted sessions seamlessly. Questions
are grouped and sorted by task type to minimize cognitive switching costs, with pop-up notifications
when transitioning between task categories.

C.1.0.3 Dataset Curation Integration Beyond collecting responses, the tool also supports real-
time dataset quality control. Subjects can flag ambiguous or problematic questions for removal using
a dedicated key. This dual-purpose design allows human evaluation to simultaneously serve as both a
performance benchmark and a dataset refinement process.

C.1.0.4 Response Collection The interface uses numbered keyboard input (1-4 corresponding
to A-D) for efficient response collection, with visual feedback for correctness and validation to
prevent invalid inputs. All responses include precise timestamps for response time analysis, with
automatic filtering of extended intervals (> 180s) that indicate interruptions rather than genuine
decision time. The tool generated detailed logs in JSONL format containing individual responses,
task-specific performance breakdowns, and timing statistics, enabling comprehensive analysis of
human performance patterns across different visual reasoning categories.

C.2 Human Performance
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Table 7: Human Performance Statistics by Task Subtype. Accuracy and response time statistics
averaged across 12 human subjects, organized by task group categories.

Task Subtype Accuracy Response Time
Mean + SD Mean =+ SD (s)
Canonical View Selection
car canonical view selection back 1.000 + 0.000 12.5 £10.7
car canonical view selection left 0.771 £ 0.391 114+ 6.7
car canonical view selection right 0.813 £+ 0.386 6.7 +2.8
face canonical view selection own perspective left 0.750 £ 0.369 17.2 £10.2
face canonical view selection own perspective right 0.833 4+ 0.389 6.2+5.0
face canonical view selection viewer perspective left 0.771 £ 0.391 9.3+£6.5
face canonical view selection viewer perspective right 0.792 + 0.382 53+£39
object canonical view selection back 0.999 + 0.004 85+34
object canonical view selection left 0.957 + 0.097 9.3+£3.7
object canonical view selection right 0.979 £+ 0.072 59+4.0
Identity Matching
car identity 0.999 +£ 0.004 6.7+ 4.1
car identity quartet imagefirst 0.963 + 0.088 59+43
car identity quartet interleaved 0.958 + 0.097 10.0 £52
car identity quartet textfirst 1.000 + 0.000 45+33
face identity 1.000 + 0.000 42+19
face identity quartet imagefirst 1.000 £ 0.000 41+ 1.8
face identity quartet interleaved 1.000 + 0.000 33+ 1.0
face identity quartet textfirst 0.958 £+ 0.097 39+£1.6
object identity imagefirst 1.000 = 0.000 35+ 15
object identity interleaved 0.979 £+ 0.072 45+£25
object identity quartet imagefirst 0.998 + 0.007 2.6 £0.8
object identity quartet interleaved 1.000 + 0.000 33+1.2
object identity quartet textfirst 0.979 + 0.072 2.1+£0.7
object identity textfirst 1.000 + 0.000 25+£0.8
Dynamic Rotation
car rotation classification 0.999 +£ 0.004 19.0+11.1
face rotation classification own perspective 0.806 + 0.220 122 +£6.8
face rotation classification viewer perspective 0.624 4+ 0.390 143+ 124
object rotation classification imagefirst 0.917 + 0.207 124 +£723
object rotation classification interleaved 1.000 £ 0.000 85+£52
object rotation classification textfirst 0.972 £ 0.096 8.0+5.1
Dynamic Translation
infinigen spatial relationship dynamic front back 0.792 + 0.351 174 £12.9
infinigen spatial relationship dynamic left right 0.958 + 0.097 85+4.0
Object Relation Grounding
infinigen spatial relation grounding far near 0.810 + 0.240 10.5 +£3.8
infinigen spatial relation grounding left right 0.956 + 0.097 13.6 £5.3
infinigen spatial relationship front behind 0.998 + 0.007 13.9£7.1
Perspective Taking
infinigen rotation selection back full occlusion 0.813 £ 0.155 33.0£15.0
infinigen rotation selection back no occlusion 0.873 + 0.167 244 £ 145
infinigen rotation selection back partial occlusion 0.825 + 0.225 253+ 12.6
infinigen rotation selection left full occlusion 0.958 + 0.144 204 +£13.2
infinigen rotation selection left no occlusion 0.938 £ 0.113 154+£6.5
infinigen rotation selection left partial occlusion 0.915 +0.122 155+94
infinigen rotation selection right full occlusion 0.938 £ 0.113 159 £6.5
infinigen rotation selection right no occlusion 0.976 + 0.072 15.8 £7.7

Continued on next page
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Table 7 continued from previous page

Task Subtype Accuracy Response Time
Mean = SD  Mean =+ SD (s)
infinigen rotation selection right partial occlusion 0.938 +0.113 13.8 £5.8
infinigen spatial relation transformation w premise back ~ 0.979 £ 0.072 250+ 113
infinigen spatial relation transformation w premise left 0.957 + 0.097 18.6 £ 64
infinigen spatial relation transformation w premise right ~ 0.938 £ 0.113 174 £ 64
infinigen spatial relation transformation wo premise back  0.979 £ 0.072 16.6 £53
infinigen spatial relation transformation wo premise left ~ 0.991 £ 0.021 148 £5.0
infinigen spatial relation transformation wo premise right 0.913 £ 0.161 13.6 £5.8
Mental Rotation
object mental rotation 0.749 + 0.321 17.2 + 8.8
Overall 0.921 + 0.091 11.6 = 6.9

Overall Performance. Human subjects achieved high overall accuracy (0.921 4 0.091) across
the benchmark, as detailed in Tables [7]and [8] demonstrating that while tasks vary significantly
in cognitive difficulty, they remain within human capability. Some task groups showed excellent
accuracy, with Identity Matching achieving the highest performance (0.988 £ 0.052). The primary
exceptions were Mental Rotation (0.749 =+ 0.321), which showed the highest variability and included
some of the most challenging scenarios in the benchmark. Response times varied dramatically across
tasks, ranging from 2.1 seconds for the fastest subtypes to 33.0 seconds for the most challenging,
indicating substantial variation in cognitive difficulty.

Table 8: Human Performance Summary by Task Group. Accuracy and response time statistics
across 7 major task categories. Accuracy and response time means are averaged across 12 human
subjects within each task group. Response time range shows the span of mean response times across
different subtypes within each group (fastest to slowest subtype mean).

Task Group Accuracy Response Time Response Time Tasks
Mean £ SD Mean =+ SD (s) Range (s) (n)
Identity Matching 0.988 £+ 0.052 44426 2.1-10.0 14
Canonical View Selection  0.866 £ 0.301 92+63 53-172 10
Object Relation Grounding  0.921 + 0.149 127+ 5.6 10.5-14.0 3
Dynamic Translation 0.875 £ 0.257 129 +9.6 85-174 2
Dynamic Rotation 0.886 £ 0.205 124 £ 8.5 8.5-19.0 6
Mental Rotation 0.749 £+ 0.321 17.2 + 8.8 17.2-17.2 1
Perspective Taking 0.928 £ 0.128 19.0£94 13.6 - 33.0 15
Overall 0.921 + 0.091 11.6 £ 6.9 2.1-33.0 51

Task Group Difficulty Ranking. Analysis of the full benchmark results reveals clear difficulty
hierarchies across major task groups, as shown in Figure[37] By response time, the most challenging
groups are: (1) Perspective Taking (19.0s), demanding viewpoint reasoning often under occlusion;
(2) Mental Rotation (17.2s), requiring complex 3D spatial transformations; (3) Dynamic Translation
(12.9s), involving spatial movement tracking; (4) Object-Relation Grounding (12.7s), requiring
analysis of spatial relationships between multiple objects; (5) Dynamic Rotation (12.4s), involving
rotational movement classification; (6) Canonical View Selection (9.2s), focusing on optimal viewing
angles; and (7) Identity Matching (4.4s), the fastest category involving object recognition across
viewpoints.

The most demanding individual subtypes, detailed in Figure[38] include perspective-taking tasks under
full occlusion (infinigen rotation selection back full occlusion: 33.0s), complex spatial transformations
(infinigen spatial relation transformation with premise back: 25.0s), and partial occlusion scenarios
(infinigen rotation selection back partial occlusion: 25.3s). Conversely, the fastest responses occur in
identity matching tasks, particularly object identity quartet text-first (2.1s), suggesting these tap into
rapid visual recognition processes that require minimal deliberative reasoning.
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Task Group Performance Ranking
(by Response Time across Subjects)
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Figure 37: Task Group Performance Ranking by Human Response Time. Perspective Taking
emerges as the most cognitively demanding task group (19.0s), followed by Mental Rotation (17.2s)
and Dynamic Translation (12.9s). Identity Matching tasks show the fastest response times (4.4s),
indicating a 4-fold difficulty range across major cognitive categories.

Task Design Implications. The human performance data validates our benchmark’s difficulty
gradient and identifies genuinely challenging spatial reasoning scenarios. Tasks combining multiple
cognitive demands—such as perspective taking under occlusion or spatial transformations requiring
premise integration—emerge as the most demanding, requiring both extended processing time
while generally maintaining high accuracy. The 4.3-fold difference between the easiest (Identity
Matching: 4.4s) and hardest (Perspective Taking: 19.0s) task groups demonstrates that our benchmark
successfully spans a wide range of spatial reasoning difficulties, from rapid visual recognition to
complex 3D transformations requiring nearly half a minute of deliberation.

C.3 Correlation Analysis

Human-VLM Performance Correlation. To validate that our benchmark captures genuine spatial
reasoning difficulty rather than arbitrary task complexity, we analyzed the relationship between
human cognitive load and VLM performance across task subtypes. We calculated the correlation
between mean human response times (averaged across 12 subjects per task) and mean VLM accuracy
(averaged across 37 models per task) for each of the 51 task subtypes in our benchmark.

Our analysis revealed a significant negative correlation between human response times and VLM
accuracy (Pearson r = -0.5399, p < 0.0001; Spearman p = -0.5082, p = 0.0001, n = 51 tasks), as
illustrated in Figure [39] This moderate-to-strong correlation demonstrates that tasks requiring longer
human processing time consistently challenge VLMs more severely, providing empirical evidence that
our benchmark captures fundamental spatial reasoning difficulty shared across human and artificial
intelligence systems.

Cognitive Load. The correlation analysis reveals that human cognitive load, as measured by
response time, systematically predicts VLM performance degradation. Tasks in the upper-left
region of Figure [39 with both long human response times and low VLM accuracy—represent the
most cognitively demanding spatial reasoning scenarios in our benchmark. These include complex
perspective-taking under occlusion (e.g., infinigen rotation selection back full occlusion: 33.0s
response time), spatial transformations with premise integration (e.g., infinigen spatial relation
transformation with premise back: 25.0s), and challenging mental rotation tasks (17.2s). Notably,
while humans maintain high accuracy even on these slow tasks through extended deliberation, VLMs
show systematic accuracy degradation on these same challenging scenarios. This divergence suggests
that humans can leverage additional processing time to overcome spatial reasoning difficulties, while
current VLMs face fundamental limitations .
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Task Subtypes Performance Ranking
(by Response Time across Subjects)
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Figure 38: Detailed Subtype Performance Rankings. The 51 task subtypes ranked by mean
human response time, revealing extreme variation from 2.1s to 33.0s. Perspective-taking tasks under
occlusion (dark teal) dominate the most challenging subtypes, while identity matching tasks (yellow)
cluster among the fastest responses. Color coding indicates task group membership.



Subtype Level: Longer Human Time -~ Lower VLM Accuracy
Pearson r = -0.5399 (p = 0.00004), Spearman p = -0.5082 (p = 0.00014)
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Figure 39: Human-VLM Performance Correlation. Scatter plot showing the relationship between
VLM accuracy (x-axis) and human response time (y-axis) across 51 task subtypes. For each task
subtype, we computed: (1) mean human response time by averaging individual response times
across all 12 human subjects who completed that task, and (2) mean VLM accuracy by averaging
performance across all 37 evaluated vision-language models on that same task. The correlation
analysis treats each of the 51 task subtypes as an independent observation, examining whether
tasks that require more human cognitive effort (longer response times) also prove more challenging
for VLMs (lower accuracy). Color intensity indicates response time difficulty, with annotations
highlighting the most challenging outliers.

Benchmark Validity. The systematic relationship between human cognitive difficulty and VLM
performance provides strong evidence for our benchmark’s construct validity. Rather than testing
arbitrary visual challenges, our tasks appear to probe fundamental spatial reasoning capabilities
that require significant cognitive resources for both human and artificial intelligence systems. The
contrast between human speed-accuracy trade-offs (high accuracy with longer processing) and VLM
limitations (lower accuracy regardless of computation time) highlights important gaps in current
vision-language models’ spatial reasoning abilities. This alignment suggests that improvements in
VLM performance on our benchmark likely reflect genuine advances in spatial reasoning rather than
dataset-specific optimizations.

Benchmark Validity. The systematic relationship between human cognitive difficulty and VLM
performance provides strong evidence for our benchmark’s construct validity. The negative correlation
indicates that our tasks probe fundamental spatial reasoning capabilities that require significant
cognitive resources across both biological and artificial intelligence systems. Rather than testing
arbitrary visual challenges or dataset-specific artifacts, the alignment demonstrates that our benchmark
captures core spatial reasoning demands. The contrast between human adaptive processing (achieving
high accuracy through longer deliberation) and VLM limitations (showing lower accuracy) highlights
important gaps in current vision-language models’ spatial reasoning capabilities. This alignment
suggests that improvements in VLM performance on our benchmark likely reflect genuine advances
in spatial reasoning.
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D Details on the VLM Evaluation Setup

D.1 Evaluation Configuration
All models were evaluated with consistent parameters to ensure fair comparison:

* Temperature: 0.0 (deterministic sampling)

* Top-p: 1.0 (no nucleus sampling restriction)

Image preprocessing: Multi-image inputs were processed by interleaving text and image tokens
according to each model’s expected format.

Answer extraction: We employed robust pattern matching to extract answers (A, B, C, D) from
model responses, checking for structured tags first (<answer>A</answer>) followed by standalone
letters with word boundaries.

Referring to Chow et al. [7], during VLM evaluations, we appended an end prompt to each question-
answer pair. The end prompt is as follows, depending on the actual option number for each task, as in
Tab. [&

Only answer with a single capital letter from (A, B).
Only answer with a single capital letter from (A, B, C).
Only answer with a single capital letter from (A, B, C, D).

D.2 Model Implementations

D.2.1 LMDeploy-Supported Models

For the majority of open-source models, we utilized LMDeploy [11,159], a high-throughput inference
engine optimized for large language models.

Models using LMDeploy:

¢ InternVL series: InternVL2.5 (1B-8B), InternVL3 (1B-38B), InternVL3.5 (1B-38B)

* Qwen-VL series: Qwen2-VL (2B-7B), Qwen2.5-VL (3B-32B)

* Gemma series:gemma-3-4b-it, gemma-3-27b-it, gemma-3-12b-it

¢ Additional models: Phi-3.5-vision-instruct, MiniCPM-V-2.6, Molmo-7B, llava-interleave-
gwen-7b-hf

Configuration: We configured tensor parallelism (TP) settings based on model size: TP=1 for models
less than 8B parameters, TP=2 for models less than 16B parameters, and TP=4 for larger models.
Backend selection was automatically determined based on model compatibility, with TurboMind
preferred for supported architectures and PyTorch as a fallback.

D.2.2 Other Models

For models not supported by LMDeploy or requiring specialized handling, we employed the Hug-
gingFace Transformers library with model-specific processors.

LLaVA-OneVision Model: We used the official LLaVA-OneVision implementation with
LlavaOnevisionForConditionalGeneration and applied the chat template format for multi-
image inputs.

Spatial Reasoning Models: For SpaceOm, SpaceThinker-Qwen2.5VL-3B, and SpaceQwen2.5-VL-
3B-Instruct, we utilized Qwen2_5_VLForConditionalGeneration with specialized chat templates
supporting structured reasoning formats.

Cosmos-Reason1-7B Model: we used the official LLaVA-OneVision implementation with vLLM [21]]
with specialized vision processing utilities to handle multi-modal inputs efficiently.
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D.3 Prompt for Reasoning Models

In section[4.2] we evaluate the impact of CoT prompting across three specialized spatial reasoning
models: Cosmos-Reasonl [34]], SpaceOm [19]], SpaceThinker [4]. We provide the prompts for each
model: The prompt for Cosmos-Reason1 [34]:

You are a helpful assistant.

Answer the question in the following format:
"<think>\nyour reasoning\n</think>
<answer>\nyour answer\n</answer>."

The prompt for SpaceOm [19] and SpaceThinker [4]:

You are VL-Thinking, a helpful assistant with

excellent reasoning ability.

You should first think about the reasoning process and then
provide the answer.

Use <think>...</think> and <answer>...</answer> tags.

E More Related Works

E.1 Spatial reasoning benchmarks

Beyond traditional vision-language datasets, BLINK [15]] introduces tasks that humans can solve
“within a blink,” but which remain challenging for multimodal large language models (MLLMs).
These tasks highlight persistent gaps between human perception and model capabilities—particularly
in spatial reasoning. Recent benchmarks offer complementary perspectives on spatial reasoning:
MindCube [58]], OST-Bench [28]], MulSeT [61]], and VSI-Bench [55] focus on how MLLMs construct
internal representations of space, a process analogous to cognitive mapping. These benchmarks
primarily evaluate advanced, compositional tasks such as object identity tracking across frames,
spatial relation grounding within a frame, and object motion understanding. However, they do not
explicitly isolate or test foundational spatial skills like basic perspective taking or mental rotation.
ViewSpatial-Bench [24] targets perspective-taking by evaluating object localization from different
viewpoints. The core task is determining what is visible from a given perspective, a foundational
problem in spatial understanding. SpaCE-10 [16]] defines a taxonomy of atomic spatial skills for
question answering, including object recognition, localization, spatial relations, size comparison, and
counting. However, its reliance on scanned indoor scenes limits controlled testing of each skill in
isolation. 3DSRBench [31]] centers on spatial reasoning in 3D environments, categorizing tasks into
height, location, orientation, and multi-object reasoning. While comprehensive, its scope excludes key
aspects of human spatial intelligence, such as perspective-taking and mental rotation. SPHERE [62]
proposes a hierarchical evaluation of vision-language models, progressing from single-skill to multi-
skill tasks. Single-skill categories include position, counting, distance, and size. However, SPHERE
primarily uses a single static image as input, limiting its capacity to evaluate dynamic or temporally
grounded spatial understanding.

Several recent efforts draw inspiration from cognitive science: SRBench [47] underscores a notable
constraint of existing VLMs in mental rotation tasks. OmniSpatial [18]] offers tasks rooted in
psychological theory, covering dynamic reasoning, complex spatial logic, spatial interactions, and
perspective-taking. However, many of these tasks involve commonsense reasoning about motion
and function, which are often entangled with spatial cognition, making it difficult to isolate spatial
ability. SPACE [42] categorizes spatial tasks into large-scale and small-scale cognition. Large-scale
tasks assess environment-level spatial understanding, while small-scale tasks involve object-level
reasoning. However, the object-level data is limited to 2D synthetic shapes, lacking real-world 3D
variability and complexity.

In contrast, our benchmark is cognitively grounded and systematically progresses from small-scale
to large-scale spatial reasoning tasks. We start from core perceptual challenges (e.g., object iden-
tity, canonical view recognition(single object), mental rotation(single object), dynamic transla-
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tion/rotation(single object)) and scale up to relational and perspective-taking tasks in complex
multi-object scenes. Our tasks are carefully designed to isolate spatial reasoning by controlling for
distractors, motion, reference frame shifts, and multi-image input. The use of both real-world and
photo-realistic synthetic data enables robust and interpretable evaluations. Our perspective-taking
task serves as the most challenging task, requiring integrating of all subskills, making it a holistic
test of spatial cognition. Existing benchmarks lack this layered structure and often conflate spatial
understanding with unrelated reasoning skills.

E.2 Spatial reasoning models

One line of work enhances VLMSs’ spatial reasoning by leveraging explicit 3D abstractions of scenes.
SpatialReasoner [32] introduces a large vision-language model that incorporates 3D representations
such as object locations and orientations to enable coherent and reliable reasoning. Similarly,
Abstract Perspective Change (APC) [22] constructs perspective-aware scene abstractions using
vision foundation models for object detection, segmentation, and orientation estimation, leading to
significant improvements in perspective reasoning. SSR [30]] transforms raw depth data into structured,
interpretable textual rationales to be integrated in VLMs. Another direction relies on continued pre-
training and reinforcement learning post-training. MetaSpatial [39] adopts a reinforcement learning
framework to iteratively refine scene layouts with physics-aware constraints, generating coherent and
realistic 3D arrangements without supervised annotations. Spatial VLM [4] introduces large-scale
synthetic pre-training data to equip models with quantitative 3D spatial reasoning, enabling accurate
metric distance estimation and downstream improvements in VQA and robotics. Embodied-R [[64]]
combines large-scale VLMs and LMs in an RL framework that integrates embodied reasoning from
video streams, using both fast and slow iterative processes to tackle diverse indoor and outdoor
tasks. vsGRPO-7B [27] employs R1-Zero-like training with GRPO to boost visual-spatial reasoning,
outperforming baselines and even surpassing GPT-4o0 on video-based benchmarks. SpaceR [36]]
proposes the SpaceR-151k dataset alongside a spatially-guided RLVR strategy (SG-RLVR), achieving
state-of-the-art results and surpassing GPT-40 by 11.6% on VSI-Bench. Likewise, SVQA-R1 [49]
extends R1-style reinforcement learning to spatial VQA through Spatial-GRPO, improving accuracy
and interpretability without reliance on supervised fine-tuning. More recent efforts such as SpaceOm
and Spacethinker [5] attempt to enhance spatial reasoning through RL-driven linguistic fine-tuning,
but their improvements exhibit limited generalization [S8], leaving fundamental questions about
VLMs’ spatial cognition unresolved. Ultimately, these works underscore that linguistic reasoning
alone is insufficient [60]; humans understand physical space through structured reasoning that does
not always translate into words, highlighting the need for models that reason beyond language.

F The Use of Large Language Models (LLMs)

Large language models were used only as general-purpose tools to assist with writing clarity and
grammar refinement. All technical contributions, benchmark design, and evaluations were developed
entirely by the authors themselves.
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