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Abstract

While fine-tuning unlocks the potential of a pre-trained model for a specific task,
it compromises the model’s ability to generalize to out-of-distribution (OOD)
datasets. To mitigate this, robust fine-tuning aims to ensure performance on OOD
datasets as well as on an in-distribution (ID) dataset for which the model is being
tuned. However, another criterion for reliable machine learning (ML) – confidence
calibration has been overlooked despite its increasing demand for real-world high-
stakes ML applications (e.g. autonomous driving and medical diagnosis). For the
first time, we raise concerns about the calibration of fine-tuned vision-language
models (VLMs) under distribution shift by showing that naive fine-tuning and
even state-of-the-art robust fine-tuning methods hurt the calibration of pre-trained
VLMs, especially on OOD datasets. To address this issue, we provide a simple
approach, called calibrated robust fine-tuning (CaRot), that incentivizes calibration
and robustness on both ID and OOD datasets. Empirical results on ImageNet-1K
distribution shift evaluation verify the effectiveness of our method.

1 Introduction

Recently, large-scale vision-language pre-training has ushered in a new era of foundation models [1,
2, 3, 4] in computer vision. Due to their unprecedented generalization capability and well-aligned
multimodal embeddings, vision-language models (VLMs) such as CLIP [2] are used in numerous
downstream tasks such as zero-shot classification [2, 5], zero-shot segmentation [6, 7], and cross-
modal generation [8, 3]. However, despite their promising results, the zero-shot performance still
lags behind the fine-tuned performance on a specific downstream task [2, 9, 10].

To this end, there have been numerous lines of work on fine-tuning VLMs [9, 11, 12, 13]. Among
them, robust fine-tuning, which aims to achieve good performance on both out-of-distribution (OOD)
and in-distribution (ID) data, has attracted much attention. After Wortsman et al. [9] and Kumar
et al. [10] started the discussion on the robustness of recent VLMs under distribution shifts, a
wide range of research has followed [14, 15, 16]. However, there is a lack of ongoing studies
investigating confidence calibration, which is a crucial factor in reliable machine learning (ML).
With the increasing development of ML in real-world decision-making systems, the calibration
(matching between the actual correctness and the confidence of their prediction) of neural networks
has been actively studied to achieve reliable ML. It is crucial to avoid making incorrect predictions
with high confidence, especially in high-stakes tasks such as autonomous driving and healthcare
applications. After a seminal work [17] revealed the miscalibration problem of accurate neural
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networks, a plethora of attempts followed to improve the calibration of neural network models
through post-hoc adjustments [18, 17, 19, 20, 21] or train-time regularizations [22, 23, 24, 25, 26].

Recently, Minderer et al. [27] systematically reviewed the calibration of modern vision models
across different model architectures, model sizes, and amounts of pre-training, and LeVine et al. [28]
raised concerns about the calibration of a zero-shot VLM (e.g., CLIP). However, to the best of our
knowledge, no existing work addresses the calibration of fine-tuned VLMs, which is timely to be
questioned. In this work, we initiate the investigation on the calibration of VLMs after fine-tuning
under distribution shifts. We observe that the traditional cross-entropy-based fine-tuning severely
hurts the calibration in terms of expected calibration error (ECE) [29](discussed in Section 2.1) on
OOD datasets as well as on the ID dataset on which the model is fine-tuned. Furthermore, while
a state-of-the-art (SOTA) robust fine-tuning method achieves strong prediction accuracy on OOD
datasets and somewhat convincing ECE on ID, it still struggles with high ECE on OOD datasets. We
argue that current robust fine-tuning methods urgently need more calibration on both ID and OOD
settings, based on our salient observations. In this paper, we introduce simple yet effective solutions,
label smoothing, and its data-dependent variant, to cope with the miscalibration during fine-tuning.

In the experiments on the ImageNet-1K distribution shift benchmark, we show that simply employing
label smoothing [30] with contrastive loss brings remarkable improvement in ID and OOD calibration.
Moreover, using multimodal knowledge distillation as a form of data-dependent label smoothing
further boosts the performance in terms of ID/OOD calibration and ID/OOD generalization.

Contributions. 1) This is the first paper to discuss the calibration of a fine-tuned VLM under a
distribution shift scenario: We show that the standard fine-tuning largely harms the calibration of
pre-trained VLMs on both ID and OOD datasets, and that a SOTA fine-tuning method also induces
unsatisfactory calibration results on OOD datasets; 2) We derive a simple yet intriguing argument
that adopting label smoothing not only increases the generalization capability of the VLM, but also
makes it better calibrated on both ID and OOD datasets; 3) By equipping the multimodal knowledge
distillation term as data-dependent label smoothing, we minimize the drop in calibration compared to
the pre-trained model, while achieving the highest accuracy on both ID and OOD datasets.

2 Calibration of Vision-Language Models in the Wild

2.1 Preliminaries

In a K class classification, let X ∈ Rd and Y ∈ {1, ...,K} be random variables indicating inputs and
labels, respectively. A data set with N independent samples from the joint distribution π(X,Y ) =

π(Y |X)π(X) is denoted by D = {(Xn, Yn)}Nn=1. Let f be a classifier and f(X) = Ẑ be a logit.
We can derive the confidence score P̂ by taking the maximum among the probabilistic masses
softmax(Ẑ). If the confidence score P̂ matches the true probability p, we say the model is calibrated
and it can be written as P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1], where Ŷ denotes the predicted class.
With a simple modification, the calibration error can be derived as EP̂ [|P(Ŷ = Y |P̂ = p) − p|].
However, since the data set size N is finite in practice, the calibration error should be approximated
empirically. In this context, Naeini et al. [29] proposed the expected calibration error (ECE), one of the
most representative metrics for uncertainty calibration. It divides the predictions on each example into
M uniform confidence bins {binm}Mm=1 and takes a weighted average of the gap between accuracy
and confidence of each bin, i.e. ECE =

∑M
m=1

|binm|
N |acc(binm) − conf(binm)|. Meanwhile, as a

popular post-hoc adjustment-based calibration method, temperature scaling [17] divides the logit by
temperature T before applying the softmax function. By scaling the logit, the confidence distribution
of each class becomes more uniform or sharper to mitigate over/under confidence problems.

2.2 Miscalibration of fine-tuned VLMs

As a quick validation, we visualize the calibration of CLIP ViT-B/16 through reliability diagrams
[31] on ImageNet-1K (ID) and ImageNet-R (OOD) after fine-tuning it on ImageNet-1K. As shown
in Figures 1 and 2, (1) the standard fine-tuning significantly hurts the calibration compared to the
pre-trained VLM, especially on the OOD dataset, (2) while the SOTA robust fine-tuning method
achieves relatively better ID calibration, it also suffers to achieve good calibration on the OOD
dataset. These miscalibration issues of fine-tuned VLMs fuel us to devise a new fine-tuning method
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Figure 1: Reliability diagram [31] and confidence histogram of zero-shot CLIP and fine-tuning
methods on ImageNet-1K. Each fine-tuning method is evaluated after fine-tuning on ImageNet-1K.

Figure 2: Reliability diagram [31] and confidence histogram of zero-shot CLIP and fine-tuning
methods on ImageNet-R. Each fine-tuning method is evaluated after fine-tuning on ImageNet-1K.

accomplishing better calibration (rightmost panels of Figure 1 and 2). Please refer to Supplementary
for additional results.

2.3 Towards calibrated robust fine-tuning of VLMs

Recently, Goyal et al. [15] proposed to fine-tune VLMs via contrastive loss, which is the same loss
used for pretraining, and called the proposed approach as FLYP (finetune like you pretrain). By simply
exploiting the pretraining objective for fine-tuning, FLYP showed robust performance both in ID and
OOD settings without any additional techniques such as ensembling. Furthermore, we discovered
that calibration on ID setting is much better when using FLYP than standard fine-tuning with cross-
entropy loss (Section 3). Drawing inspiration from FLYP, we utilize contrastive loss as our fine-tuning
objective. Let our vision-language model parameterized with θ = {θv, θl}, which has image encoder
fθv (·) and text encoder gθl(·). Given a downstream data minibatch B = {(I1, T1), ..., (IB , TB)} size
of B, multimodal contrastive loss LMCL can be written as:

LMCL(B, θ) :=
∑B
i=1− log

exp(fθv (Ii)·gθl (Ti))∑B
j=1 exp(fθv (Ii)·gθl (Tj))

+
∑B
i=1− log

exp(fθv (Ii)·gθl (Ti))∑B
j=1 exp(fθv (Ij)·gθl (Ti))

. (1)

Label smoothing. As one of the representative regularization strategies, label smoothing (LS)
[30] pursues the generalization of a classification model by addressing the issue of overconfident
predictions. To do so, it derives a new target probability distribution by adjusting the ground truth one-
hot vector, i.e., reducing the value of 1 to the target class, and increasing the values of 0 on the other
classes to the amount of smoothing. Mathematically, LS can be represented as yLS = (1− ϵ)y + ϵŷ,
where y is a one-hot vector of a target label, ϵ ∈ (0, 1) is a smoothing parameter, and ŷ = 1

K is
the uniform distribution over the label space. Beyond the generalization, it is also shown that LS is
beneficial for calibration [25], which motivates us to adopt it for VLM fine-tuning.

Knowledge distillation as a data-dependent label smoothing. While the standard form of LS
always produces a fixed target regardless of the input data, one may want to alternatively design
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Figure 3: Method overview. We update the teacher VLM ψ via (a) EMA update. Our proposed
CaRot updates the student VLM θ using (b) multimodal knowledge distillation LMKD (Eq. 2) and
(c) multimodal contrastive LMCL (Eq. 1) losses as fine-tuning objective. Darker and lighter elements
denote values closer to 1 and 0, respectively. The hard and soft labels denote one-hot encoded and
label-smoothed target labels, respectively. While (d) LMCL w/ LS gives the same target labels for every
training instance, LMKD produces data-dependent dynamic target labels.

smoothed labels in a data-dependent manner. Recently, [32, 33] revealed the connection between
knowledge distillation and LS for computer vision models. This motivates us to investigate the
feasibility of utilizing the knowledge distillation strategy as a data-dependent LS to achieve calibration
of fine-tuned VLM. For this, we first set an exponentially moving average (EMA) of learning
parameter θ as a teacher network that has ψ = {ψv, ψl}, which can be written as ψ ← αψ+(1−α)θ,
where α controls the evolution speed of the teacher model. For stability, we update the EMA teacher
model ψ per a certain number of iterations, which we set as 500 instead of updating every step (see
Table 2 for detail). In this work, we employ a self-evolving EMA network as a teacher model rather
than hosting another VLM, in accordance with the emerging evidence of the strong generalization
capability of weight space ensembling approaches [34, 9, 35]. By interpolating the weight of a
pre-trained VLM with that of a dynamically fine-tuned one, we can view our teacher model as an
ensemble of multi-domain calibrated predictor (pre-trained VLM) and in-domain calibrated predictor
(fine-tuning VLM), which is an analogy to the recently proposed ensemble approach in-distribution
calibrated ensembles [36]. With the EMA teacher ψ and the learning student θ, we construct a
multimodal knowledge distillation loss term for a minibatch B as:

LMKD(B, θ) :=
B∑
i=1

[KL(q̃Ii ||qIi ))) +KL(q̃Ti ||qTi )))], (2)

where q̃Ii = softmax({fψv
(Ii) · gψl

(Tj)}Bj=1) and qIi = softmax({fθv (Ii) · gθl(Tj)}Bj=1). Here,
q̃Tj and qTj are similarly defined by exchanging the index i with j. As depicted in Figure 3, we finalize
our learning objective as a sum of LMCL and LMKD with hyperparameter λ that controls the magnitude
of distillation, i.e., L = LMCL + λLMKD. While this induces the same objective as Cheng et al. [37],
we propose this from a fine-tuning context with consideration of robustness and calibration, which is
different from data-efficient supervision during pre-training in terms of motivation and aim.

3 Experiments

Setup. We adopt CLIP ViT-B/16 as our VLM backbone and validate its calibration and robustness
under distribution shift. We choose the ImageNet-1K classification under the distribution shift
scenario as our testbed. Following previous robust fine-tuning literature [9, 10, 15], we fine-tune
CLIP on ImageNet-1K [38], and then evaluate the ID accuracy and OOD accuracy. Moreover, to
investigate the calibration of fine-tuned VLMs, we compute ECE [29] on ID and OOD settings. Here,
the number of confidence bins as set to 10 following the previous work [28]. As baselines, we consider
zero-shot inference with pre-trained CLIP (ZS) with the following adaptation methods: standard fine-
tuning (FT), WiSE-FT [9], FLYP [15], and our proposal. For each method, we additionally conduct
the post-hoc calibration strategy temperature scaling (TS). More details are in the Supplementary.

Main results. Table 1 shows that: 1) During adaptation on the ID dataset, FT somewhat sacrifices
the OOD generalization capacity of ZS as well as ID/OOD calibration; 2) While WiSE-FT finds
a better trade-off between ID Acc. and OOD Acc., it significantly degrades the calibration of a
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Table 1: Fine-tuning of CLIP-ViT-B/16 on ImageNet-1K and evaluation on its ID testset and five
OOD variants (ImageNet-V2 [39], ImageNet-R [40], ImageNet-A [41], ImageNet-Sketch [42], and
ObjectNet [43]). Here, OOD performances are averaged over the five variants. We denote label
smoothing as LS, temperature scaling as TS, zero-shot as ZS, and fine-tuned as FT.

w/o TS w/ TS
Method ID Acc. (↑) OOD Acc. (↑) ID ECE (↓) OOD ECE (↓) ID ECE (↓) OOD ECE (↓)
ZS 0.6832 0.5840 0.0571 0.0836 0.0561 0.0748

FT 0.8153 0.5750 0.0884 0.2186 0.0629 0.1629
FT w/ LS 0.8223 0.5833 0.0460 0.1147 0.0481 0.1282
WiSE-FT 0.8043 0.6350 0.2129 0.1764 0.0872 0.1533
WiSE-FT w/ LS 0.8068 0.6405 0.5231 0.3601 0.3382 0.2425
FLYP 0.8258 0.5946 0.0643 0.1831 0.0392 0.1217
FLYP w/ LS 0.8271 0.5975 0.0459 0.1295 0.0427 0.1145
CaRot 0.8319 0.6197 0.0395 0.1093 0.0380 0.0980

pre-trained model; 3) FLYP achieves strong generalization on ID and OOD, and ID calibration, but
lacks the OOD calibration; 4) TS helps calibration somewhat, but the gap between ZS OOD and
fine-tuned ones still non-negligible; 5) LS remarkably improves the calibration on both ID and OOD
datasets; 6) CaRot gets superior results overall metrics ID/OOD generalization and calibration which
verify the effectiveness of data-dependent label smoothing coupled with contrastive loss.

Ablation study. This section provides an ablation study on the frequency of EMA updates for the
teacher model as we discussed in Section 2.3. In Table 2, we see that updating the teacher model for
every single iteration does not bring meaningful improvement on both ID/OOD accuracy and ECE
compared to FLYP (refer Table 1). While a slowly updated teacher model (i.e., single update per 1000
iterations) induces a slightly lower ID accuracy and higher ECE and our default update frequency
(i.e., 500), it largely improves OOD accuracy and ECE, implying that the blending frequency (and
ratio) between a pre-trained checkpoint and fine-tuning ones make a huge influence on the trade-off
between ID/OOD calibration as well as generalization.

Table 2: Ablation on EMA teacher update frequency. ✗ denotes pre-trained weights without updates.

EMA update freq. ID Acc. (↑) OOD Acc. (↑) ID ECE (↓) OOD ECE (↓)
1 0.8261 0.5956 0.0630 0.1824
500 (default) 0.8319 0.6197 0.0395 0.1093
1000 0.8303 0.6266 0.0511 0.0781
✗ 0.7848 0.6199 0.1257 0.0936

4 Conclusion

In this paper, we pave the way for robust fine-tuning of visual foundation models with consideration
of confidence calibration. Specifically, we reveal that naive fine-tuning and even SOTA robust
fine-tuning methods struggle with achieving satisfactory confidence calibration on both ID and OOD
datasets for the first time. By adopting a simple regularization technique (i.e., label smoothing), we
show that the calibration issue on ID and OOD datasets is easily addressed. From these findings, we
further propose the utilization of multimodal knowledge distillation as a form of data-dependent label
smoothing (so-called CaRot), resulting in promising results in terms of generalization and calibration.
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A Supplementary Material

A.1 Implementation details

To conduct ZS, FT, WiSE-FT, and FLYP, we follow the official protocol of previous works [9, 15].
We use the default configuration, hyperparameter, and prompt template proposed by the authors [15].
For all adaptation methods (FT and FLYP), we train the model using AdamW [44] with a learning
rate 1e-5 (for FLYP and CaRot) and 3e-5 (for FT) and weight decay 0.1 during 10 epochs with batch
size 512, resulting in about 25K training iterations. The ensemble coefficient of WiSE-FT is simply
set as 0.5, which works well, as shown in the original paper. The linear classification head of FT
was initialized with the text representation vectors for each class from pre-trained CLIP for stable
fine-tuning.

We select the temperature scaling parameter based on ID validation set ECE over range [0.5, 10.0],
and label smoothing parameter over {0.01, 0.03, 0.05, 0.1, 0.2}. For CaRot, the distillation loss
coefficient lambda and EMA momentum parameter are set to 0.75 and 0.9, respectively. When
performing the EMA update, we linearly increased the momentum coefficient from a small value
(0.05) to a final target value (0.9) during the first 20% of iterations and kept it constant for the
remaining iterations by following [45].

A.2 Additional results

We provide reliability diagrams and confidence histograms of four methods (ZS, FT, FLYP, and
CaRot) on ImageNet-1K (ID) and its four variants (-V2, -A, -R, -SKetch) without (Fig. 4) and
with (Fig. 5) temperature scaling. While standard fine-tuning and state-of-the-art method (FLYP)
significantly hurt the calibration of a pre-trained visual foundation model, especially on OOD datasets
(second to fifth rows), our proposed CaRot robustly protects or even improves (second and fourth
rows in Fig. 5, and the fourth row in Fig. 4) the calibration of a pre-trained model.
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Figure 4: Reliability diagram [31] and confidence histogram of zero-shot CLIP and fine-tuning
methods without temperature scaling. From top to bottom rows, ImageNet, -V2, -A, -R, and -Sketch
were reported. From left to right columns, ZS, FT, FLYP, and CaRot were reported.
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Figure 5: Reliability diagram [31] and confidence histogram of zero-shot CLIP and fine-tuning
methods after applying temperature scaling. From top to bottom rows, ImageNet, -V2, -A, -R, and
-Sketch were reported. From left to right columns, ZS, FT, FLYP, and CaRot were reported.
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