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Abstract

Large Language Models (LLMs), combined with
program-based solving techniques, are increas-
ingly demonstrating proficiency in mathematical
reasoning. For example, closed-source models
such as OpenAI GPT-4 and Claude show excellent
results in solving math word problems. However,
progress in math word problem-solving for open-
source LLMs is limited, and the challenges these
models face are not well-studied. In this paper,
we study the performance of strong open-source
LLMs, including Llama 2 (7B), Code Llama (7B),
and Mistral (7B) on math word problems using
program-based solving techniques. Specifically,
we analyze the outputs of these models when
applied to math word problems and identify a
category of problems that pose a significant chal-
lenge, particularly those involving quantities span-
ning multiple units. To address this issue, we
propose a systematic approach by defining the
units for each quantity and ensuring the consis-
tency of these units during mathematical opera-
tions. We developed Unit Consistency Programs
(UCPs), an annotated dataset of math word prob-
lems, each paired with programs containing unit
specifications and unit verification routines. We
fine-tuned Llama 2 (7B), Code Llama (7B), and
Mistral (7B) models with UCPs to produce their
VerityMath variants. Our findings indicate that our
approach, which incorporates unit consistency,
currently slightly underperforms compared to an
approach that does not. To understand the reasons
behind this, we conduct an in-depth error analy-
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sis and suggest options for future improvements.
Our code and dataset are available at https://
github.com/vernontoh/VerityMath.

1. Introduction
The ability to reason during the process of thinking and
decision-making is a fundamental aspect of human intel-
ligence. Replicating this ability in machines has been an
objective in the field of Natural Language Processing. Large
language models (LLMs) (OpenAI, 2023; Anil et al., 2023)
mark significant progress toward this goal, demonstrating
remarkable proficiency across a range of tasks, including
mathematical reasoning (Zhou et al., 2023; Zhao et al., 2023;
Zheng et al., 2023). Specifically, methods like Program
Aided Language Model (PAL) (Gao et al., 2023) as well as
Program of Thoughts (PoT) (Chen et al., 2023) have demon-
strated improvements in LLMs’ ability to solve complex
mathematical problems. These methodologies empower
LLMs to formulate programs as intermediate reasoning
steps and delegate the execution of these steps to a Python
interpreter, thereby enhancing computational accuracy.

However, open-source LLMs like those referenced in (Tou-
vron et al., 2023; Rozière et al., 2023; Jiang et al., 2023)
demonstrate limited success in math reasoning tasks. For
example, after fine-tuning on the GSM8K-PAL dataset pro-
vided by Jie & Lu (2023), Mistral (7B) achieves just 70.4%
accuracy on GSM8K (Cobbe et al., 2021) (Ref Table 4). Our
analysis of the fine-tuned Llama 2 (7B), Code Llama (7B)
and Mistral (7B) reveals challenges in solving math word
problems with multi-unit quantities. These issues are more
pronounced in multi-step reasoning, where early errors can
lead to incorrect final solutions. Our study thus identifies
specific challenges the model faces.

We propose a methodological framework to enhance the
reasoning capabilities of LLMs by introducing a unit system
for quantities and enforcing unit consistency. Ensuring unit
consistency is crucial for accurate solutions in the context of
mathematical word problems. To achieve this, we introduce
Unit Consistency Programs (UCPs) (Figure 1) designed to
enhance LLMs’ reasoning abilities by enabling them to self-
verify unit consistency within equations. UCPs consist of
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Figure 1: Comparison between PAL-based Programs and Unit Consistency Programs. Unit Consistency Programs contain
unit specifications using Counter objects and unit verification routines using assert statements.

Counter objects responsible for tracking variable units
and assert statements generated following each equation
involving an operation. These assert statements verify
the consistency of units within the equation and can trigger
an assert error when inconsistent units are detected.

We have developed a dataset that pairs math word prob-
lems with unit consistency programs containing unit spec-
ifications and verification routines. Our preliminary study
presents the outcomes of fine-tuning Llama 2 (7B), Code
Llama (7B) , and Mistral (7B) using these programs. Al-
though our approach, which incorporates unit consistency,
currently slightly underperforms compared to a non-unit-
consistent approach, we conducted an in-depth error anal-
ysis to understand the reasons behind this discrepancy and
proposed several options for future improvements.

2. Motivating Analysis
Recent studies have utilized the concept of program-based
prompting to generate pseudo-gold programs as an interme-
diary step for training smaller models (Jie & Lu, 2023; Zhu
et al., 2023). Notably, this approach has shown promising
outcomes, although these results still fall short of the per-
formance achieved by larger models like GPT-4 (OpenAI,
2023). To better comprehend the gaps in the mathematical
reasoning abilities of smaller models, we fine-tuned Llama
2 (7B) (Touvron et al., 2023), Code Llama (7B) (Rozière
et al., 2023), and Mistral (7B) (Jiang et al., 2023) using
the GSM8K-PAL dataset provided by Jie & Lu (2023), and
conducted a comprehensive analysis of the fine-tuned mod-
els. The GSM8K-PAL dataset contains approximately 6.8k

word problems paired with their PAL annotations in the
training dataset as shown in Table 1.

After fine-tuning these models on GSM8K-PAL, we ob-
served that they struggle with math word problems involving
multiple different units. As illustrated in Figure 1 (top), the
example illustrates a unit mismatch in the model trained on
the PAL-based approach. Specifically, the subtraction opera-
tion between variables shirt cost× num shirts and
discount amount is incorrect. The units are incompati-
ble: the former is in dollar, and the latter is in dollar/shirt.

To support our observation that the model struggles with
problems containing multiple units, we employed GPT-3.5
Turbo1 to categorize the examples from both the train and
test splits into two distinct groups. The first group comprises
of questions involving a single unit, while the second group
comprises of questions with multiple units. This classifica-
tion was achieved using few-shot prompting, with GPT-3.5
Turbo serving as the backend engine. The specifics of the
few-shot prompt utilized are detailed in Appendix A.2, and
the distribution of these categories is presented in Table 2.
Our analysis reveals that approximately 40% of the prob-
lems in both training and test splits involve multiple units.

To further evaluate the accuracy of GPT-3.5 Turbo in identi-
fying questions with multiple units, we conducted a small-
scale human assessment, detailed in Table 3. The first author
manually annotated 100 randomly selected test examples
from GSM8K and compared the annotations with the classi-
fications made by GPT-3.5 Turbo. The results demonstrated

1GPT-3.5 Turbo annotations were obtained in September 2023.
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Dataset #Train #Program #Valid #Test

GSM8K-PAL 07,473 6,877 (92.0%) - 1,319
UCPs 07,473 4,480 (59.9%) - 1,319

Table 1: Comparison of dataset size of GSM8K-PAL by (Jie
& Lu, 2023) and UCPs.

Train Dataset (7473) Test Dataset (1319)

Single Multiple Single Multiple

4479 2994 755 564
(59.9%) (40.1%) (57.2%) (42.8%)

Table 2: Classification of GSM8K into two categories: sin-
gle unit and multiple units.

a precision of 80.4%, indicating that GPT-3.5 Turbo gener-
ally excels in predicting questions involving multiple units.
We have extended this analysis to the SVAMP (Patel et al.,
2021), as presented in Appendix A.3, to demonstrate that
this phenomenon is not exclusive to GSM8K.

Based on the test dataset split we collected, we divided the
accuracy of the fine-tuned models into two categories: one
for questions with a single unit and another for questions
with multiple units. This categorization is shown in Table 4.
A detailed examination of Table 4 reveals that our observa-
tions remained consistent across all three fine-tuned models,
indicating superior performance on single-unit problems
compared to those with multiple units. Motivated by these
findings, we developed Unit Consistency Programs (UCPs)
aimed at addressing the limitations inherent in PAL-based
solutions.

3. Methodology
3.1. Unit Consistency Programs

Unit consistency checks are essential safeguards, helping
to identify and prevent errors from inconsistent units in
mathematical equations. In contrast to PAL/PoT approaches
that directly generate programs to solve math word prob-
lems, our method enhances these programs by integrating
specialized Counter objects. These objects are respon-
sible for tracking variable units and ensuring the correct
handling of operations with differing units. Additionally,
we incorporate assert statements after each equation, as
illustrated in Figure 1 (bottom). These assert statements
verify unit consistency within equations, triggering an error
if unit mismatches are detected.

Consider the example in Figure 1 (bottom), illustrating a
multiplication operation between shirts count (mea-
sured in ‘shirts’) and cost per shirt (measured in ‘dol-
lars per shirt’). In this operation, the units of ‘shirts’ from

Positive Predicted Negative Predicted

Actual Positive 37 16
Actual Negative 9 38

Precision Recall Accuracy
80.4% 69.8% 75.0%

Table 3: Small human evaluation compared on GPT-3.5
Turbo classification on 100 randomly sampled test examples
from GSM8K. Human annotations were done by the first
author.

shirts count and ‘per shirt’ from cost per shirt
naturally cancel each other out, resulting in a unit of ‘dol-
lars’. An assert statement is used to verify this expected
cancellation of units. In our notation, the exponent of a unit
in the numerator is represented as +1, and in the denominator
as -1. Therefore, in this multiplication, the positive exponent
of ‘shirts’ in shirts count cancels with the negative ex-
ponent of ‘per shirt’ in cost per shirt, aligning the
product’s right-hand side (RHS) with the expected left-hand
side (LHS) unit of total cost before discount,
confirming it is in ‘dollars’. The example also illustrates
a unitless quantity, specifically a percentage. In this case,
there won’t be any units specified in the Counter initial-
ization. Our methodology requires the development of a
specialized Counter class, details of which are elaborated
in the Appendix A.4.2.

3.2. Training Data Annotations

Adopting the methodology used in PAL/PoT, we sampled
programs for each math word problem, adding them to
our training data when their execution yielded the correct
answer. For each math word problem x in the training
dataset D, we performed greedy decoding at temperature
T = 0 to synthesize program Pucp. Upon executing the
program Pucp, if the predicted answer ŷ matched the ground-
truth answer y and Pucp consists of Counter objects and
assert statements, we included the tuple (x, Pucp, y) in
our new training dataset Ducp. Any math word problem
x for which a matching program couldn’t be obtained was
discarded.

3.3. Fine-tuning Small Models

We fine-tuned smaller models with our annotated dataset
Ducp through standard causal language modeling tech-
niques. The objective is to generate a corresponding Python
program P for a given math word problem x. After fine-
tuning, the model was used to generate Python programs,
which were then executed using a Python interpreter to ob-
tain the final answer. We employed strong open-source
LLMs such as Llama 2 (7B), Code Llama (7B), and Mistral
(7B) as our models to fine-tune.
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Model Single Multiple Overall

Closed-Source Models

GPT-4 - - 92.0
GPT-3.5-Turbo - - 80.8

Open-Source Models 7B

Llama-2 (PAL)† 58.5 ↑3.1 51.2 ↓4.2 55.4
Code-Llama (PAL)† 65.6 ↑2.5 59.8 ↓3.3 63.1
Mistral (PAL)† 72.2 ↑1.8 68.1 ↓2.3 70.4
VerityMath-Llama-2 51.9 ↑5.7 38.7 ↓7.5 46.2
VerityMath-Code-Llama 58.4 ↑4.2 48.6 ↓5.6 54.2
VerityMath-Mistral 71.5 ↑3.3 63.7 ↓4.5 68.2

Table 4: Comparison of test accuracy on GSM8K of differ-
ent 7B open-source models fine-tuned on PAL and UCP. The
green and red boxes represent the increase and decrease

in accuracy compared to its overall score. †We fine-tune the
model using GSM8K-PAL by Jie & Lu (2023).

4. Experiments
4.1. Dataset

We conducted our experiments primarily on GSM8K, em-
ploying few-shot prompting with GPT-4 for the first 1,000
examples2 and GPT-4 Turbo for the remaining 6,473 exam-
ples3 in the GSM8K train dataset. We used six manually
crafted Unit Consistency Programs (UCPs) samples, as de-
tailed in Appendix A.1. We successfully annotated 59.9%
of the GSM8K train dataset, creating our annotated UCPs
dataset, Ducp. Table 1 presents the statistics of our UCPs
dataset.

4.2. Baseline

Our baseline models consist of different models such as
Llama 2 (7B), Code Llama (7B), and Mistral (7B) fine-tuned
on GSM8K-PAL. We use this as a direct baseline to our
method as it provides a more effective comparison between
our method UCPs and existing methods like PAL/POT since
our UCPs serve as extensions to typical Python programs
used for solving mathematical problems, as demonstrated
in PAL/POT.

4.3. Implementation

We conducted fine-tuning experiments on GSM8K-PAL and
UCPs, details of both datasets can be found in Table 1. In our
fine-tuning experiments, we utilized the QLoRA technique
(Dettmers et al., 2023) for enabling efficient fine-tuning. All
QLoRA hyper-parameters were set as presented in Dettmers
et al. (2023). In all our experiments we use NF4 with double
quantization and bf16 computation datatype. We set LoRA

2GPT-4 annotations obtained in September 2023.
3GPT-4 Turbo annotations obtained in December 2023.

Figure 2: Error analysis of VerityMath-Mistral (7B). Correct
Answer: The program compiles and produces the correct
answer. Wrong Answer: The program compiles but pro-
duces an incorrect answer. Wrong Counter or assert
: After removing Counter and assert statements, the
program produces the correct answer. Compilation Error:
The program is unable to compile.

r=64, α=16, and add LoRA modules on all linear layers
of the base model. We also use max grad norm of 0.3 and
LoRA dropout of 0.1. We use AdamW optimizer and set
the learning rate to 2e−4, with a batch size of 32 and a
maximum context length of 1024. We trained the model for
20 epochs using 4 A100 40 GB GPUs which took roughly
14 hours and evaluated it on the test dataset.

4.4. Main Results

Our model, VerityMath-Mistral (7B), fine-tuned on UCPs
achieved an overall accuracy of 68.2% on the GSM8K test
dataset. Specifically, it attained 71.5% accuracy for prob-
lems involving a single unit and 63.7% accuracy for those
with multiple units, as detailed in Table 4. When compared
to the Mistral (7B) (PAL) baseline, VerityMath-Mistral (7B)
exhibits a slight overall accuracy decrease of 2.2%. Mean-
while, VerityMath-Code Llama (7B) and VerityMath-Llama
2 (7B) experienced more significant declines in their over-
all accuracy, approximately 9% lower than their respective
PAL counterparts. Specifically, VerityMath-Code-Llama
achieved 54.2% overall accuracy, with 58.4% for single unit
problems and 48.6% for multiple units, while VerityMath-
Llama-2 achieved an overall accuracy of 46.2%, with 51.9%
for single unit and 38.7% for multiple units.

4.5. Analysis

In this section, we conducted an in-depth analysis of the
potential causes for the decline in overall accuracy in the
GSM8K test dataset. We focused on VerityMath-Mistral
(7B) for all of our analysis.
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Figure 3: Performance of VerityMath-Mistral (7B) on the
GSM8K test dataset based on the number of assert state-
ments in the code solution. The percentage shown in each
bar represents the percentage of correct answers given the
number of assert statements in the code solution.

Correctness of Counter and assert statements In
an error analysis of VerityMath-Mistral (7B) outputs from
the test dataset, we observed some challenges that led
to decreased performance, specifically, the correctness of
Counter and assert statements. We reran the whole
evaluation but this time, when we were met with a program
that raised an assertion error, we removed the Counter and
assert statements and executed the programs again. If the
program compiles and produces the correct answer after this
modification, it indicates that the program was originally in-
correct due to incorrect Counter or assert statements.
Referring to Figure 2, we observed a notable percentage
of output programs that contained incorrect Counter or
assert statements in VerityMath-Mistral (7B) outputs.
Specifically, 2.3% of the problems with single units and
8.0% of the problems with multiple units have incorrect
Counter and assert which caused correct programs
that would have resulted in the correct answer to have a
false assertion error resulting in the wrong answer. Exam-
ples of such cases with incorrect Counter and assert
are shown in Appendix A.5.2.

Performance based on number of assert statements
We further conducted a detailed analysis of code solutions
categorized by the number of assert statements, as shown in
Figure 3. Each bar represents the total number of code solu-
tion that consists of a specific number of assert statements.
The green segments of the bars indicate the count of code
solutions that resulted in the correct answer, while the red
segments represent those that resulted in an incorrect answer.
The percentage of correct answers is annotated on each bar
for clarity. It is evident from the plot that the percentage of
correct answers generally decreases as the number of assert

Figure 4: Performance of VerityMath-Mistral (7B) as we
scale the number of training examples of GSM8K-PAL and
UCPs. GSM8K-PAL has a total of 6877 annotated training
examples whereas UCPs have 4480 annotated training ex-
amples.

statements increases, from code solutions with 2 to 4 as-
sert statements having approximately 70% accuracy to code
solutions with 5, 6, and 7 assert statements having 55.7%,
62.5%, and 40.9% respectively. Highlighting a trend where
more complex code solutions with more assert statements
are more likely to result in incorrect answers. This aligns
with the earlier observations regarding the correctness of
assert statements, and suggests that with more assert
statements in the code solution, it is more prone to having
errors due to the incorrect assert statements which would
then result in a wrong answer.

Impact of training annotations Due to the difference
in the number of training examples between GSM8k-PAL
and UCPs of 2397 as shown in Table 1. It is crucial to
also understand the implications of the number of training
examples with respect to the performance. We fine-tuned
Mistral (7B) on both GSM8k-PAL and UCPs with an in-
terval of 1000 training examples and showed the results
in Figure 4. The performance of Mistral (7B) when fine-
tuned on GSM8k-PAL or UCPs demonstrates a clear trend
of improvement with the increase in the number of train-
ing examples. For GSM8k-PAL, the test accuracy starts at
63.8% with 1,000 training examples and steadily increases
to 70.4% with 6,877 examples. On the other hand, The
UCPs exhibit a more pronounced improvement curve, start-
ing at 56.0% accuracy with 1,000 training examples, the
performance increases significantly to 68.2% with 4,480 ex-
amples. This rate of improvement indicates that with limited
examples, the concept of UCPs is harder to grasp for Mistral
(7B) as compared to PAL. The difference in performance
gains suggests that UCPs might have untapped potential that
could be realized with an increased number of training ex-

5



VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency

amples and it implies that with sufficient training examples,
UCPs could potentially surpass PAL in performance.

In our in-depth anaysis, we identified a notable bottleneck in
our current method, which is the correctness of Counter
and assert statements. This issue led to a slight decrease
in performance. Our method, UCPs, is a relatively more
complex method for existing 7B LLMs to learn, but with a
significant increase in dataset annotations, it is highly possi-
ble that our method will outshine the existing PAL method.
Another approach could involve data augmentation using
synthetic examples (Wu et al., 2021). Examples showcasing
the efficacy of UCPs are available in Appendix A.5.1.

5. Related Work
Our research builds upon the Program of Thoughts (PoT)
approach (Chen et al., 2023) and the Program Aided Lan-
guage Model (PAL) (Gao et al., 2023) methodologies, which
have shown effectiveness in solving mathematical prob-
lems. These approaches have outperformed techniques like
the Chain-of-Thought (CoT) (Wei et al., 2022), which can
struggle with computational inaccuracies (Lewkowycz et al.,
2022). We extend their work by focusing on the use of pro-
grams for solving math word problems and the concept of
self-verification to improve LLMs’ reasoning capabilities.

The advancement of GPT models (Brown et al., 2020) has
inspired various studies (Ho et al., 2023; Fu et al., 2023;
Magister et al., 2023; Shridhar et al., 2023) on creating syn-
thetic datasets for fine-tuning smaller models (Hinton et al.,
2015). Notably, Zhu et al. (2023) used PAL annotations in
this context, (Magister et al., 2023; Ho et al., 2023; Yu et al.,
2023) employed CoT annotations, and Yue et al. (2023)
used a hybrid of CoT and PoT rationales.

In mathematical problem-solving, ensuring solution valid-
ity is crucial due to hallucinations in LLMs (Bubeck et al.,
2023) and challenges in executing multiplications (Dziri
et al., 2023). Prior research has focused on training addi-
tional verifiers for answer accuracy (Cobbe et al., 2021),
providing feedback for each intermediate reasoning step
(Lightman et al., 2023), and integrating tools to agents(Gou
et al., 2024). However, Weng et al. (2023) and Miao et al.
(2023) have shown potential for LLMs to self-verify solu-
tions. Our approach builds on these insights, incorporating
programs for solving math word problems and leveraging
self-verification to enhance LLM reasoning.

6. Conclusion and Future Work
In this study, we analyzed open-source Large Language
Models (LLMs) and pinpointed their struggle with math
problems involving multiple units, highlighting a key im-
provement area. We introduced Unit Consistency Programs

(UCPs) as a novel method to address LLMs’ reasoning and
verification abilities, especially in complex math problems.
We identified some limitations in our current approach. Fu-
ture work will focus on advancing unit check methodologies
in UCPs to address these limitations.

Limitations
Recent creations of synthetic datasets for math problem-
solving often rely on prompting large language models
(LLMs), such as GPT-4. However, this approach can be
costly, and on a large scale, the expenses escalate. Our
dataset creation incurred a total cost of approximately $350
USD. Due to budget constraints, we couldn’t sample multi-
ple reasoning paths per question, as presented in Wang et al.
(2023), limiting the potential for increased annotations.

Impact Statement
This paper presents work whose goal is to advance the field
of math problem-solving using LLMs. However, it is also
crucial to be aware of the potential risks associated with
VerityMath. Due to the current challenges of VerityMath,
the units initialized by Counter and assert statements
may not always be accurate. Consequently, it is strongly rec-
ommended to exercise caution when relying on VerityMath
outputs for any use.
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A. Appendix
A.1. Manually constructed context samples for program synthesis

A.1.1. 6-SHOT PROMPT

Q u e s t i o n : Ashley bough t a b i g bag of 96 c a n d i e s . Yes t e rday , she a t e 15 c a n d i e s and today , she a t e t w i c e as much
c a n d i e s a s y e s t e r d a y . How many c a n d i e s were l e f t ?

Python s o l u t i o n :
d e f s o l u t i o n ( ) :

””” Ashley bough t a b i g bag of 96 c a n d i e s . Yes t e rday , she a t e 15 c a n d i e s and today , she a t e t w i c e as much c a n d i e s
a s y e s t e r d a y . How many c a n d i e s were l e f t ? ”””

c a n d i e s i n i t i a l = 96
c a n d i e s i n i t i a l u n i t = Coun te r ({” c a n d i e s ” : 1})
c a n d i e s a t e y e s t e r d a y = 15
c a n d i e s a t e y e s t e r d a y u n i t = Coun te r ({” c a n d i e s ” : 1})
c a n d i e s a t e t o d a y = c a n d i e s a t e y e s t e r d a y * 2
c a n d i e s a t e t o d a y u n i t = Coun te r ({” c a n d i e s ” : 1})
a s s e r t c a n d i e s a t e t o d a y u n i t == c a n d i e s a t e y e s t e r d a y u n i t
t o t a l c a n d i e s e a t e n = c a n d i e s a t e y e s t e r d a y + c a n d i e s a t e t o d a y
t o t a l c a n d i e s e a t e n u n i t = Coun te r ({” c a n d i e s ” : 1})
r e m a i n i n g c a n d i e s = c a n d i e s i n i t i a l − t o t a l c a n d i e s e a t e n
r e m a i n i n g c a n d i e s u n i t = Coun te r ({” c a n d i e s ” : 1})
a s s e r t r e m a i n i n g c a n d i e s u n i t == c a n d i e s i n i t i a l u n i t == t o t a l c a n d i e s e a t e n u n i t
r e s u l t = r e m a i n i n g c a n d i e s
r e t u r n r e s u l t

Q u e s t i o n : There a r e 235 books i n t h e l i b r a r y . On Monday , 122 books were t a k e n o u t . On Tuesday , h a l f o f t h e books
t a k e n on Monday were b r o u g h t back . How many books a r e t h e r e now?

Python s o l u t i o n :
d e f s o l u t i o n ( ) :

””” There a r e 235 books i n t h e l i b r a r y . On Monday , 122 books were t a k e n o u t . On Tuesday , h a l f o f t h e books t a k e n
on Monday were b r o u g h t back . How many books a r e t h e r e now ?”””

b o o k s i n i t i a l = 235
b o o k s i n i t i a l u n i t = Coun te r ({” books ” : 1})
books t aken monday = 122
b o o k s t a k e n m o n d a y u n i t = Coun te r ({” books ” : 1})
b o o k s r e m a i n i n g a f t e r m o n d a y = b o o k s i n i t i a l − books t aken monday
b o o k s r e m a i n i n g a f t e r m o n d a y u n i t = Coun te r ({” books ” : 1})
a s s e r t b o o k s r e m a i n i n g a f t e r m o n d a y u n i t == b o o k s i n i t i a l u n i t == b o o k s t a k e n m o n d a y u n i t
b o o k s b r o u g h t b a c k t u e s d a y = books t aken monday / 2
b o o k s b r o u g h t b a c k t u e s d a y u n i t = Coun te r ({” books ” : 1})
a s s e r t b o o k s b r o u g h t b a c k t u e s d a y u n i t == b o o k s t a k e n m o n d a y u n i t
b o o k s r e m a i n i n g a f t e r t u e s d a y = b o o k s r e m a i n i n g a f t e r m o n d a y + b o o k s b r o u g h t b a c k t u e s d a y
b o o k s r e m a i n i n g a f t e r t u e s d a y u n i t = Coun te r ({” books ” : 1})
a s s e r t b o o k s r e m a i n i n g a f t e r t u e s d a y u n i t == b o o k s r e m a i n i n g a f t e r m o n d a y u n i t ==

b o o k s b r o u g h t b a c k t u e s d a y u n i t
r e s u l t = b o o k s r e m a i n i n g a f t e r t u e s d a y
r e t u r n r e s u l t

Q u e s t i o n : There i s a group of 10 p e o p l e who a r e o r d e r i n g p i z z a . I f each p e r s o n g e t s 2 s l i c e s and each p i z z a has 4
s l i c e s , how many p i z z a s s h o u l d t h e y o r d e r ?

d e f s o l u t i o n ( ) :
””” There i s a group of 10 p e o p l e who a r e o r d e r i n g p i z z a . I f each p e r s o n g e t s 2 s l i c e s and each p i z z a has 4

s l i c e s , how many p i z z a s s h o u l d t h e y o r d e r ?”””
p e o p l e t o t a l = 10
p e o p l e t o t a l u n i t = Coun te r ({” p e o p l e ” : 1})
p i z z a s l i c e s p e r p e r s o n = 2
p i z z a s l i c e s p e r p e r s o n u n i t = Coun te r ({” s l i c e s ” : 1 , ” p e o p l e ” : −1})
p i z z a s l i c e s t o t a l = p e o p l e t o t a l * p i z z a s l i c e s p e r p e r s o n
p i z z a s l i c e s t o t a l u n i t = Coun te r ({” s l i c e s ” : 1})
a s s e r t p i z z a s l i c e s t o t a l u n i t == p e o p l e t o t a l u n i t + p i z z a s l i c e s p e r p e r s o n u n i t
s l i c e s p e r p i z z a = 4
s l i c e s p e r p i z z a u n i t = Coun te r ({” s l i c e s ” : 1 , ” p i z z a ” : −1})
p i z z a t o t a l = p i z z a s l i c e s t o t a l / s l i c e s p e r p i z z a
p i z z a t o t a l u n i t = Coun te r ({” p i z z a ” : 1})
a s s e r t p i z z a t o t a l u n i t == p i z z a s l i c e s t o t a l u n i t − s l i c e s p e r p i z z a u n i t
r e s u l t = p i z z a t o t a l
r e t u r n r e s u l t

Q u e s t i o n : Lana has 2 bags wi th 2 m a r b l e s i n each bag . Markus has 2 bags wi th 3 m a r b l e s i n each bag . How many more
m a r b l e s does Markus have ?

Python s o l u t i o n :
d e f s o l u t i o n ( ) :

””” Lana has 2 bags wi th 2 m a r b l e s i n each bag . Markus has 2 bags wi th 3 m a r b l e s i n each bag . How many more
m a r b l e s does Markus have ?”””
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b a g s l a n a = 2
b a g s l a n a u n i t = Coun te r ({” bags ” : 1})
m a r b l e s p e r b a g l a n a = 2
m a r b l e s p e r b a g l a n a u n i t = Coun te r ({” m a r b l e s ” : 1 , ” bags ” : −1})
m a r b l e s t o t a l l a n a = b a g s l a n a * m a r b l e s p e r b a g l a n a
m a r b l e s t o t a l l a n a u n i t = Coun te r ({” m a r b l e s ” : 1})
a s s e r t m a r b l e s t o t a l l a n a u n i t == m a r b l e s p e r b a g l a n a u n i t + b a g s l a n a u n i t
bags markus = 2
b a g s m a r k u s u n i t = Coun te r ({” bags ” : 1})
m a r b l e s p e r b a g m a r k u s = 3
m a r b l e s p e r b a g m a r k u s u n i t = Coun te r ({” m a r b l e s ” : 1 , ” bags ” : −1})
m a r b l e s t o t a l m a r k u s = bags markus * m a r b l e s p e r b a g m a r k u s
m a r b l e s t o t a l m a r k u s u n i t = Coun te r ({” m a r b l e s ” : 1})
a s s e r t m a r b l e s t o t a l m a r k u s u n i t == m a r b l e s p e r b a g m a r k u s u n i t + b a g s m a r k u s u n i t
m a r b l e s m or e m a rk u s = m a r b l e s t o t a l m a r k u s − m a r b l e s t o t a l l a n a
m a r b l e s m o r e m a r k u s u n i t = Coun te r ({” m a r b l e s ” : 1})
a s s e r t m a r b l e s m o r e m a r k u s u n i t == m a r b l e s m o r e m a r k u s u n i t == m a r b l e s t o t a l l a n a u n i t
r e s u l t = m ar b l e s m or e m ar k u s
r e t u r n r e s u l t

Q u e s t i o n : S a l l y has 4 c o n t a i n e r s wi th t h e same amount o f c o o k i e s i n them , t o t a l i n g 12 c o o k i e s . John has 4 c o n t a i n e r s
wi th t h e same amount o f c o o k i e s i n them , t o t a l i n g 24 c o o k i e s . How many more c o o k i e s does John have i n each

c o n t a i n e r ?

Python s o l u t i o n :
d e f s o l u t i o n ( ) :

””” S a l l y has 4 c o n t a i n e r s wi th t h e same amount o f c o o k i e s i n them , t o t a l i n g 12 c o o k i e s . John has 4 c o n t a i n e r s
wi th t h e same amount o f c o o k i e s i n them , t o t a l i n g 24 c o o k i e s . How many more c o o k i e s does John have i n each
c o n t a i n e r ?”””

c o n t a i n e r s s a l l y = 4
c o n t a i n e r s s a l l y u n i t = Coun te r ({” c o n t a i n e r s ” : 1})
t o t a l c o o k i e s s a l l y = 12
t o t a l c o o k i e s s a l l y u n i t = Coun te r ({” c o o k i e s ” : 1})
c o o k i e s p e r c o n t a i n e r s a l l y = t o t a l c o o k i e s s a l l y / c o n t a i n e r s s a l l y
c o o k i e s p e r c o n t a i n e r s a l l y u n i t = Coun te r ({” c o o k i e s ” : 1 , ” c o n t a i n e r s ” : −1})
a s s e r t c o o k i e s p e r c o n t a i n e r s a l l y u n i t == t o t a l c o o k i e s s a l l y u n i t − c o n t a i n e r s s a l l y u n i t
c o n t a i n e r s j o h n = 4
c o n t a i n e r s j o h n u n i t = Coun te r ({” c o n t a i n e r s ” : 1})
t o t a l c o o k i e s j o h n = 24
t o t a l c o o k i e s j o h n u n i t = Coun te r ({” c o o k i e s ” : 1})
c o o k i e s p e r c o n t a i n e r j o h n = t o t a l c o o k i e s j o h n / c o n t a i n e r s j o h n
c o o k i e s p e r c o n t a i n e r j o h n u n i t = Coun te r ({” c o o k i e s ” : 1 , ” c o n t a i n e r s ” : −1})
a s s e r t c o o k i e s p e r c o n t a i n e r j o h n u n i t == t o t a l c o o k i e s j o h n u n i t − c o n t a i n e r s j o h n u n i t
m o r e c o o k i e s p e r c o n t a i n e r j o h n = c o o k i e s p e r c o n t a i n e r j o h n − c o o k i e s p e r c o n t a i n e r s a l l y
m o r e c o o k i e s p e r c o n t a i n e r j o h n u n i t = Coun te r ({” c o o k i e s ” : 1 , ” c o n t a i n e r s ” : −1})
a s s e r t m o r e c o o k i e s p e r c o n t a i n e r j o h n u n i t == c o o k i e s p e r c o n t a i n e r j o h n u n i t ==

c o o k i e s p e r c o n t a i n e r s a l l y u n i t
r e s u l t = m o r e c o o k i e s p e r c o n t a i n e r j o h n
r e t u r n r e s u l t

Q u e s t i o n : I t t a k e s P e t e r 4 h o u r s t o f i x h i s f e n c e . He sp en ds 20 m i n u t e s e v e r y d a y f i x i n g t h e fence , how many days
w i l l i t t a k e f o r P e t e r t o f i n i s h f i x i n g t h e f e n c e ?

Python s o l u t i o n :
d e f s o l u t i o n ( ) :

””” I t t a k e s P e t e r 4 h o u r s t o f i x h i s f e n c e . He sp en ds 20 m i n u t e s e v e r y d a y f i x i n g t h e fence , how many days w i l l
i t t a k e f o r P e t e r t o f i n i s h f i x i n g t h e f e n c e ?”””

h o u r s t o f i x f e n c e = 4
h o u r s t o f i x f e n c e u n i t = Coun te r ({” h o u r s ” : 1})
m i n u t e s p e r h o u r = 60
m i n u t e s p e r h o u r u n i t = Coun te r ({” m i n u t e s ” : 1 , ” h o u r s ” : −1})
m i n u t e s t o f i x f e n c e = h o u r s t o f i x f e n c e * m i n u t e s p e r h o u r
m i n u t e s t o f i x f e n c e u n i t = Coun te r ({” m i n u t e s ” : 1})
a s s e r t m i n u t e s t o f i x f e n c e u n i t == h o u r s t o f i x f e n c e u n i t + m i n u t e s p e r h o u r u n i t
m i n u t e s p e r d a y t o f i x f e n c e = 20
m i n u t e s p e r d a y t o f i x f e n c e u n i t = Coun te r ({” m i n u t e s ” : 1 , ” days ” : −1})
t o t a l d a y s t o f i x f e n c e = m i n u t e s t o f i x f e n c e / m i n u t e s p e r d a y t o f i x f e n c e
t o t a l d a y s t o f i x f e n c e u n i t = Coun te r ({” days ” : 1})
a s s e r t t o t a l d a y s t o f i x f e n c e u n i t == m i n u t e s t o f i x f e n c e u n i t − m i n u t e s p e r d a y t o f i x f e n c e u n i t
r e s u l t = t o t a l d a y s t o f i x f e n c e
r e t u r n r e s u l t

A.1.2. SYSTEM PROMPT

You are an experienced professional skilled in using python programs to solve math problems and enhancing code robustness
through the strategic implementation of unit counters and assert statements to ensure flawless unit-level consistency checks.
You will only write code blocks.
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A.2. Manually constructed context samples for Classification (Single Unit/ Multiple Units)

A.2.1. 8-SHOT PROMPT

Question: In ten years, Samantha will be three times as old as Alex is today. If Alex is currently 14 years old, how old is
Samantha now?

Explanation:

In this problem, a unit consistency check is not required to ensure the accuracy of measurements and calculations. We are
dealing with a single unit - age (years). The calculations involve simple addition, subtraction, and multiplication of the same
unit, so there is no need for unit conversions or comparisons between different units. In this case, all the quantities are given
in terms of years, and there are no conflicting units or measurements that would require a unit consistency check. Answer: No.

Question: Sarah has a collection of stickers. Every alternate day, she adds 3 new stickers to her collection for 4 weeks. For
each sticker, she spends 5 minutes sticking it onto her collection book. How many minutes did she spend sticking stickers?

Explanation:

In this problem, a unit consistency check is required to ensure the accuracy of measurements and calculations. We are
dealing with different units - the number of days, the number of stickers, and the time spent sticking each sticker (minutes).
By performing a unit consistency check, we can ensure that the conversions between different units are accurate and that the
final result makes sense in the context of the problem. In this case, we can calculate the total number of stickers added by
multiplying the number of stickers added per day by the number of days, and then calculate the total time spent sticking
stickers by multiplying the number of stickers by the time spent sticking each sticker. Answer: Yes.

Question: Suzie practices piano every weekday for 3 weeks. Each day, she practices 2 songs that are 4 minutes long and 1
song that is 3 times longer than the other two songs combined. How many minutes does Suzie practice in total during these
3 weeks?

Explanation:

In this problem, a unit consistency check is required to ensure the accuracy of measurements and calculations. We are
dealing with different units - the number of days, the number of songs, and the time spent practicing each song (minutes).
By performing a unit consistency check, we can ensure that the conversions between different units are accurate and that the
final result makes sense in the context of the problem. In this case, we can calculate the total time spent practicing each
day by adding the time spent practicing the two shorter songs and the longer song, and then calculate the total time spent
practicing over the three weeks by multiplying the daily practice time by the number of days. Answer: Yes.

Question: A girl rabbit hops along a garden path and picks 8 carrots. She places them in a basket with 16 other carrots she
has already collected. While on her way home, the girl rabbit accidentally drops 2 carrots. How many carrots are left in the
basket?

Explanation:

In this problem, a unit consistency check is not required to ensure the accuracy of measurements and calculations. We are
dealing with a single unit - the number of carrots. The calculations involve simple addition and subtraction of the same unit,
so there is no need for unit conversions or comparisons between different units. In this case, all the quantities are given in
terms of the number of carrots, and there are no conflicting units or measurements that would require a unit consistency
check. Answer: No.

Question: A bottle of shampoo is 500ml and each hair wash uses 20 ml of shampoo. Each salon charges $3.00 for one hair
wash. How much money does a salon make on a bottle of shampoo?

Explanation:

In this problem, a unit consistency check is required to ensure the accuracy of measurements and calculations. We are
dealing with different units - the volume of shampoo (milliliters), the volume of shampoo used per wash (milliliters), and
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the cost of each wash (dollars). By performing a unit consistency check, we can ensure that the conversions between
different units are accurate and that the final result makes sense in the context of the problem. In this case, we can calculate
the total number of hair washes per bottle by dividing the total volume of the bottle by the volume used per hair wash,
and then calculate the total money made by multiplying the number of hair washes by the cost of each hair wash. Answer: Yes.

Question: Natalie and Liam have a total of 72 stickers. However, Natalie has half the number of stickers as compared to
Liam. How many stickers does Liam have?

Explanation:

In this problem, a unit consistency check is not required to ensure the accuracy of measurements and calculations. We are
dealing with a single unit - the number of stickers. The calculations involve simple addition, subtraction, multiplication, and
division of the same unit, so there is no need for unit conversions or comparisons between different units. In this case, all the
quantities are given in terms of the number of stickers, and there are no conflicting units or measurements that would require
a unit consistency check. Answer: No.

Question: Emma makes $35,000 a year. She spends $12,000 on rent every year, $3,000 on groceries every year, and $4,500
on gas every year. If she wants to have at least $15,000 left, how much more money must she make each year?

Explanation:

In this problem, a unit consistency check is not required to ensure the accuracy of measurements and calculations. We are
dealing with a single unit - money (dollars). The calculations involve simple addition and subtraction of the same unit, so
there is no need for unit conversions or comparisons between different units. In this case, all the quantities are given in
terms of dollars, and there are no conflicting units or measurements that would require a unit consistency check. Answer: No.

Question: Maria pays $35/hour for 4 hours per week of flute lessons and $22/hour for 6 hours a week of guitar lessons.
How much more does she spend on guitar lessons than flute lessons in a year?

Explanation:

In this problem, a unit consistency check is required to ensure the accuracy of measurements and calculations. We are
dealing with different units - the cost per hour (dollars/hour) and the number of hours per week. By performing a unit
consistency check, we can ensure that the conversions between different units are accurate and that the final result makes
sense in the context of the problem. In this case, we can calculate the total cost of flute lessons per week by multiplying the
cost per hour by the number of hours, and then calculate the total cost of guitar lessons per week by multiplying the cost per
hour by the number of hours. Finally, we can calculate the difference in cost between guitar and flute lessons in a year by
subtracting the total cost of flute lessons from the total cost of guitar lessons and multiplying it by the number of weeks in a
year. Answer: Yes.

A.2.2. SYSTEM PROMPT

Create a coherent explanation for the importance of performing unit consistency checks in various mathematical problems
and identify whether a question requires verification of unit consistency. Be as detailed as possible and write your explanation
in 1 paragraph and end with Answer: Yes / No.

A.3. Breakdown of SVAMP dataset

Train Dataset (192) Test Dataset (81)

Single Multiple Single Multiple

102 90 34 47
(53.1%) (46.9%) (42.0%) (58.0%)

Table 5: SVAMP Dataset split. We only considered the portion which has type Multiplication or Common-Division.
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The SVAMP dataset comprises a total of 1000 examples, with 700 allocated to the train dataset and 300 to the test dataset.
The dataset encompasses four problem types: subtraction, addition, common-division, and multiplication. However, our
analysis focuses solely on multiplication and common-division, as problems involving only addition or subtraction are
defined to only consist of a single unit. We can observe from 5 that 46.9% and 58% of the problems are classified as multiple
units in the train and test dataset respectively.

A.4. Details on Unit Consistency Programs

A.4.1. USAGE OF COUNTER CLASS

Coun te r ({” m a r b l e s ” : 1 , ” bags ”: −1} # m a r b l e s p e r bag

Coun te r ({” s l i c e s ” : 1 , ” p i z z a ”: −1} # s l i c e s p e r p i z z a

Coun te r ({” books ”} : 1 ) # books

Coun te r ( ) # p e r c e n t a g e ( u n i t l e s s )

A.4.2. UNDESIRABLE BEHAVIOR OF COLLECTIONS COUNTER

Our work necessitated the creation of a custom Counter class. In programming, a ‘class’ is a blueprint for creating objects
with specific attributes and behaviors. The standard Counter class, part of Python’s collections module-a collection
of specialized data types-was not fully suitable for our needs. It had the limitation of only counting positive values, meaning
it would not accurately reflect counts when dealing with negative or zero values. Therefore, we had to create our own custom
Counter class to handle this limitation.
from c o l l e c t i o n s import Coun te r

Coun te r ({ ” m i l e s ” : 1}) − Coun te r ({ ” hour ” : 1})
>>> Coun te r ({’miles’: 1} )

D e s i r e d Outpu t >>> Coun te r ({’miles’: 1, "hour": -1} )

A.4.3. ASSERT STATEMENT FORMULATION

F o r m u l a t i o n o f a s s e r t s t a t e m e n t f o r e q u a t i o n s wi th m u l t i p l i c a t i o n :
p i z z a s l i c e s t o t a l = p e o p l e t o t a l * p i z z a s l i c e s p e r p e r s o n
a s s e r t p i z z a s l i c e s t o t a l u n i t == p e o p l e t o t a l u n i t + p i z z a s l i c e s p e r p e r s o n u n i t

F o r m u l a t i o n o f a s s e r t s t a t e m e n t f o r e q u a t i o n s wi th d i v i s i o n :
t o t a l c u p s s u g a r = t o t a l t e a s p o o n s s u g a r / t e a s p o o n s p e r c u p s u g a r
a s s e r t t o t a l c u p s s u g a r u n i t == t o t a l t e a s p o o n s s u g a r u n i t − t e a s p o o n s p e r c u p s u g a r u n i t

F o r m u l a t i o n o f a s s e r t s t a t e m e n t f o r e q u a t i o n s wi th a d d i t i o n :
t o t a l m o n e y = a l l o w a n c e + e x t r a m o n e y
a s s e r t t o t a l m o n e y u n i t == a l l o w a n c e u n i t == e x t r a m o n e y u n i t

F o r m u l a t i o n o f a s s e r t s t a t e m e n t f o r e q u a t i o n s wi th s u b t r a c t i o n :
a p p s r e m a i n i n g a f t e r d e l e t i o n = a p p s i n i t i a l − a p p s d e l e t e d
a s s e r t a p p s r e m a i n i n g a f t e r d e l e t i o n u n i t == a p p s i n i t i a l u n i t == a p p s d e l e t e d u n i t

A.5. Outputs from VerityMath

A.5.1. CORRECT OUTPUTS

d e f s o l u t i o n ( ) :
””” K e l l y has 5 q u a r t e r s and 2 dimes . I f she buys a can of pop f o r 55 c e n t s , how many c e n t s w i l l she have l e f t

? ”””
q u a r t e r s = 5
q u a r t e r s u n i t = Coun te r ({” q u a r t e r s ” : 1})
dimes = 2
d i m e s u n i t = Coun te r ({” dimes ” : 1})
c e n t s p e r q u a r t e r = 25
c e n t s p e r q u a r t e r u n i t = Coun te r ({” c e n t s ” : 1 , ” q u a r t e r s ” : −1})
c e n t s p e r d i m e = 10
c e n t s p e r d i m e u n i t = Coun te r ({” c e n t s ” : 1 , ” dimes ” : −1})
t o t a l c e n t s q u a r t e r s = q u a r t e r s * c e n t s p e r q u a r t e r
t o t a l c e n t s q u a r t e r s u n i t = Coun te r ({” c e n t s ” : 1})
a s s e r t t o t a l c e n t s q u a r t e r s u n i t == q u a r t e r s u n i t + c e n t s p e r q u a r t e r u n i t
t o t a l c e n t s d i m e s = dimes * c e n t s p e r d i m e
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t o t a l c e n t s d i m e s u n i t = Coun te r ({” c e n t s ” : 1})
a s s e r t t o t a l c e n t s d i m e s u n i t == d i m e s u n i t + c e n t s p e r d i m e u n i t
t o t a l c e n t s = t o t a l c e n t s q u a r t e r s + t o t a l c e n t s d i m e s
t o t a l c e n t s u n i t = Coun te r ({” c e n t s ” : 1})
a s s e r t t o t a l c e n t s u n i t == t o t a l c e n t s q u a r t e r s u n i t == t o t a l c e n t s d i m e s u n i t
c e n t s n e e d e d f o r p o p = 55
c e n t s n e e d e d f o r p o p u n i t = Coun te r ({” c e n t s ” : 1})
c e n t s l e f t = t o t a l c e n t s − c e n t s n e e d e d f o r p o p
c e n t s l e f t u n i t = Coun te r ({” c e n t s ” : 1})
a s s e r t c e n t s l e f t u n i t == t o t a l c e n t s u n i t == c e n t s n e e d e d f o r p o p u n i t
r e s u l t = c e n t s l e f t
r e t u r n r e s u l t

=> Example 287 i n t h e t e s t d a t a s e t .

d e f s o l u t i o n ( ) :
””” Every day , Wendi f e e d s each of h e r c h i c k e n s t h r e e cups o f mixed c h i c k e n feed , c o n t a i n i n g seeds , mealworms and

v e g e t a b l e s t o h e l p keep them h e a l t h y . She g i v e s t h e c h i c k e n s t h e i r f e e d i n t h r e e s e p a r a t e meals . In t h e
morning , she g i v e s h e r f l o c k of c h i c k e n s 15 cups o f f e e d . In t h e a f t e r n o o n , she g i v e s h e r c h i c k e n s a n o t h e r
25 cups o f f e e d . How many cups o f f e e d does she need t o g i v e h e r c h i c k e n s i n t h e f i n a l meal o f t h e day i f
t h e s i z e o f Wendi ’ s f l o c k i s 20 c h i c k e n s ?”””

c u p s o f f e e d p e r c h i c k e n = 3
c u p s o f f e e d p e r c h i c k e n u n i t = Coun te r ({” cups ” : 1 , ” c h i c k e n s ” : −1})
c h i c k e n s f l o c k s i z e = 20
c h i c k e n s f l o c k s i z e u n i t = Coun te r ({” c h i c k e n s ” : 1})
t o t a l c u p s o f f e e d f i r s t m e a l = 15
t o t a l c u p s o f f e e d f i r s t m e a l u n i t = Coun te r ({” cups ” : 1})
t o t a l c u p s o f f e e d s e c o n d m e a l = 25
t o t a l c u p s o f f e e d s e c o n d m e a l u n i t = Coun te r ({” cups ” : 1})
t o t a l c u p s o f f e e d g i v e n = t o t a l c u p s o f f e e d f i r s t m e a l + t o t a l c u p s o f f e e d s e c o n d m e a l
t o t a l c u p s o f f e e d g i v e n u n i t = Coun te r ({” cups ” : 1})
a s s e r t t o t a l c u p s o f f e e d g i v e n u n i t == t o t a l c u p s o f f e e d f i r s t m e a l u n i t ==

t o t a l c u p s o f f e e d s e c o n d m e a l u n i t
r e m a i n i n g c u p s o f f e e d = ( c h i c k e n s f l o c k s i z e * c u p s o f f e e d p e r c h i c k e n ) − t o t a l c u p s o f f e e d g i v e n
r e m a i n i n g c u p s o f f e e d u n i t = Coun te r ({” cups ” : 1})
a s s e r t r e m a i n i n g c u p s o f f e e d u n i t == c h i c k e n s f l o c k s i z e u n i t + c u p s o f f e e d p e r c h i c k e n u n i t
r e s u l t = r e m a i n i n g c u p s o f f e e d
r e t u r n r e s u l t

=> Example 5 i n t e s t d a t a s e t .

d e f s o l u t i o n ( ) :
”””Tom’ s s h i p can t r a v e l a t 10 m i l e s p e r hour . He i s s a i l i n g from 1 t o 4 PM. He t h e n t r a v e l s back a t a r a t e o f 6

mph . How long does i t t a k e him t o g e t back ?”””
t r a v e l r a t e f o r w a r d = 10
t r a v e l r a t e f o r w a r d u n i t = Coun te r ({” m i l e s ” : 1 , ” h o u r s ” : −1})
t i m e f o r w a r d = 4 − 1
t i m e f o r w a r d u n i t = Coun te r ({” h o u r s ” : 1})
d i s t a n c e f o r w a r d = t r a v e l r a t e f o r w a r d * t i m e f o r w a r d
d i s t a n c e f o r w a r d u n i t = Coun te r ({” m i l e s ” : 1})
a s s e r t d i s t a n c e f o r w a r d u n i t == t r a v e l r a t e f o r w a r d u n i t + t i m e f o r w a r d u n i t
t r a v e l r a t e b a c k w a r d = 6
t r a v e l r a t e b a c k w a r d u n i t = Coun te r ({” m i l e s ” : 1 , ” h o u r s ” : −1})
t i m e b a c k w a r d = d i s t a n c e f o r w a r d / t r a v e l r a t e b a c k w a r d
t i m e b a c k w a r d u n i t = Coun te r ({” h o u r s ” : 1})
a s s e r t t i m e b a c k w a r d u n i t == d i s t a n c e f o r w a r d u n i t − t r a v e l r a t e b a c k w a r d u n i t
r e s u l t = t i m e b a c k w a r d
r e t u r n r e s u l t

=> Example 52 i n t e s t d a t a s e t .

A.5.2. INCORRECT OUTPUTS

The challenge of UCPs lies in the requirement to generate accurate Counter and assert statements. Any program with
incorrect Counter or assert statements is immediately deemed incorrect due to the assertion errors that are raised,
leading to decreased performance.
d e f s o l u t i o n ( ) :

”””Two cups o f f l o u r a r e needed t o make a dozen c o o k i e s . C a r l a i s making 36 c o o k i e s t o d a y and 30 c o o k i e s
tomorrow . How many cups o f f l o u r w i l l C a r l a need t o bake t h e c o o k i e s t o d a y and tomorrow ?”””

c u p s p e r d o z e n c o o k i e s = 2
c u p s p e r d o z e n c o o k i e s u n i t = Counter(”cups”: 1, ”dozen”: -1)
c o o k i e s t o d a y = 36
c o o k i e s t o d a y u n i t = Coun te r ({” c o o k i e s ” : 1})
c o o k i e s t o m o r r o w = 30
c o o k i e s t o m o r r o w u n i t = Coun te r ({” c o o k i e s ” : 1})
t o t a l c o o k i e s = c o o k i e s t o d a y + c o o k i e s t o m o r r o w
t o t a l c o o k i e s u n i t = Coun te r ({” c o o k i e s ” : 1})
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a s s e r t t o t a l c o o k i e s u n i t == c o o k i e s t o d a y u n i t == c o o k i e s t o m o r r o w u n i t
d o z e n s o f c o o k i e s = t o t a l c o o k i e s / 12
d o z e n s o f c o o k i e s u n i t = Coun te r ({” dozens ” : 1})
a s s e r t d o z e n s o f c o o k i e s u n i t == t o t a l c o o k i e s u n i t − Coun te r ({” c o o k i e s ” : 1 , ” dozens ” : −1})
t o t a l c u p s n e e d e d = d o z e n s o f c o o k i e s * c u p s p e r d o z e n c o o k i e s
t o t a l c u p s n e e d e d u n i t = Coun te r ({” cups ” : 1})
a s s e r t t o t a l c u p s n e e d e d u n i t == d o z e n s o f c o o k i e s u n i t + c u p s p e r d o z e n c o o k i e s u n i t
r e s u l t = t o t a l c u p s n e e d e d
r e t u r n r e s u l t

=> Example 261 i n t e s t d a t a s e t . In t h i s c a s e t h e v a r i a b l e c u p s p e r d o z e n c o o k i e s u n i t s h o u l d have a Coun te r ({” cups ” :
1 , ” dozens ” : −1}) .

d e f s o l u t i o n ( ) :
””” Ashley has an i n t e r n e t c o n n e c t i o n speed of 20 kb p e r second . Knowing t h a t 1 Mb has 1000 kb , she wants t o know

h e r i n t e r n e t c o n n e c t i o n speed i n MB p e r hour . What i s Ashley ’ s i n t e r n e t c o n n e c t i o n speed i n Mb p e r hour ?”””
s p e e d k b p e r s e c o n d = 20
s p e e d k b p e r s e c o n d u n i t = Coun te r ({” kb ” : 1 , ” s e c o n d s ” : −1})
k b p e r s e c o n d t o k b p e r h o u r = 3600
k b p e r s e c o n d t o k b p e r h o u r u n i t = Counter(”kb”: 1, ”seconds”: -1, ”hours”: -1)
s p e e d k b p e r h o u r = s p e e d k b p e r s e c o n d * k b p e r s e c o n d t o k b p e r h o u r
s p e e d k b p e r h o u r u n i t = Coun te r ({” kb ” : 1 , ” h o u r s ” : −1})
a s s e r t s p e e d k b p e r h o u r u n i t == s p e e d k b p e r s e c o n d u n i t + k b p e r s e c o n d t o k b p e r h o u r u n i t
kb per mb = 1000
k b p e r m b u n i t = Coun te r ({” kb ” : 1 , ”mb ” : −1})
s p e e d m b p e r h o u r = s p e e d k b p e r h o u r / kb per mb
s p e e d m b p e r h o u r u n i t = Coun te r ({”mb ” : 1 , ” h o u r s ” : −1})
a s s e r t s p e e d m b p e r h o u r u n i t == s p e e d k b p e r h o u r u n i t − k b p e r m b u n i t
r e s u l t = s p e e d m b p e r h o u r
r e t u r n r e s u l t

=> Example 627 i n t e s t d a t a s e t . In t h i s c a s e t h e v a r i a b l e k b p e r s e c o n d t o k b p e r h o u r u n i t s h o u l d have a Coun te r ({”
s e c o n d s ” : 1 , ” h o u r s ” : −1}) .

d e f s o l u t i o n ( ) :
””” Milo i s making a mosaic wi th c h i p s o f g l a s s . I t t a k e s t w e l v e g l a s s c h i p s t o make e v e r y s q u a r e i n c h o f t h e

mosaic . A bag of g l a s s c h i p s h o l d s 72 c h i p s . Milo wants h i s mosa ic t o be t h r e e i n c h e s t a l l . I f he has two
bags o f g l a s s c h i p s , how many i n c h e s long can he make h i s mosa ic ?”””

c h i p s p e r s q u a r e i n c h = 12
c h i p s p e r s q u a r e i n c h u n i t = Counter(”chips”: 1, ”square inches”: -1)
c h i p s p e r b a g = 72
c h i p s p e r b a g u n i t = Coun te r ({” c h i p s ” : 1 , ” bags ” : −1})
b a g c o u n t = 2
b a g c o u n t u n i t = Coun te r ({” bags ” : 1})
t o t a l c h i p s = c h i p s p e r b a g * b a g c o u n t
t o t a l c h i p s u n i t = Coun te r ({” c h i p s ” : 1})
a s s e r t t o t a l c h i p s u n i t == c h i p s p e r b a g u n i t + b a g c o u n t u n i t
t o t a l s q u a r e i n c h e s = t o t a l c h i p s / c h i p s p e r s q u a r e i n c h
t o t a l s q u a r e i n c h e s u n i t = Counter(”square inches”: 1)
a s s e r t t o t a l s q u a r e i n c h e s u n i t == t o t a l c h i p s u n i t − c h i p s p e r s q u a r e i n c h u n i t
m o s a i c h e i g h t i n c h e s = 3
m o s a i c h e i g h t i n c h e s u n i t = Coun te r ({” i n c h e s ” : 1})
m o s a i c w i d t h i n c h e s = t o t a l s q u a r e i n c h e s / m o s a i c h e i g h t i n c h e s
m o s a i c w i d t h i n c h e s u n i t = Coun te r ({” i n c h e s ” : 1})
a s s e r t m o s a i c w i d t h i n c h e s u n i t == t o t a l s q u a r e i n c h e s u n i t − m o s a i c h e i g h t i n c h e s u n i t
r e s u l t = m o s a i c w i d t h i n c h e s
r e t u r n r e s u l t

=> Example 808 i n t h e t e s t d a t a s e t . In t h i s c a s e t h e v a r i a b l e c h i p s p e r s q u a r e i n c h u n i t s h o u l d have a Coun te r ({”
c h i p s ” : 1 , ” i n c h e s ” : −2}) and t o t a l s q u a r e i n c h e s u n i t s h o u l d have a Coun te r ({” i n c h e s ” : 2}) .
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