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Abstract

Neural surface representation has demonstrated remarkable
success in the areas of novel view synthesis and 3D recon-
struction. However, assessing the geometric quality of 3D re-
constructions in the absence of ground truth mesh remains
a significant challenge, due to its rendering-based optimiza-
tion process and entangled learning of appearance and ge-
ometry with photometric losses. In this paper, we present a
novel framework, i.e, GURecon, which establishes a geomet-
ric uncertainty field for the neural surface based on geomet-
ric consistency. Different from existing methods that rely on
rendering-based measurement, GURecon models a continu-
ous 3D uncertainty field for the reconstructed surface, and is
learned by an online distillation approach without introducing
real geometric information for supervision. Moreover, in or-
der to mitigate the interference of illumination on geometric
consistency, a decoupled field is learned and exploited to fine-
tune the uncertainty field. Experiments on various datasets
demonstrate the superiority of GURecon in modeling 3D ge-
ometric uncertainty, as well as its plug-and-play extension to
various neural surface representations and improvement on
downstream tasks such as incremental reconstruction.

1 Introduction

Image-based 3D reconstruction is a long-standing problem
in computer vision with a wide range of applications like
AR/VR, autonomous driving, digital heritage preservation,
etc. Recently, learning-based methods have attracted much
attention with the development of neural radiance repre-
sentations like Neural Radiance Fields (NeRF) (Mildenhall
et al. 2021). Unlike traditional methods, NeRF and its vari-
ants (e.g, NSVF (Liu et al. 2020), NeuS (Wang et al. 2021))
encode scene geometry and appearance with neural net-
works, which can be optimized by leveraging the differen-
tiable rendering given a set of calibrated images.

Although the neural representations demonstrate remark-
able performance in novel view synthesis and surface recon-
struction with high levels of detail and photorealism, assess-
ing the reconstruction quality remains challenging. Some

*Contribute equally to this work.

Corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Geo. Model o

5 [Cyoe %‘F
r—l> Elool —> &
2 = loAe] PN »
% sy ” V‘E&
4 v R How to quantify the
j » i . Q geometric uncertainty?
2 o 3
b # P gy y———

}r MultiZView %] Distill from the
; T\ A Consistency! g o=

i Consistency
D
o e =0 /] 5 > &
Sparse Views & 7 3 ¢ W
& Poses U Unc. Model s,

Figure 1: A brief overview. By leveraging multi-view con-
sistency as guidance, GURecon learns detailed 3D geomet-
ric uncertainties for neural surface reconstruction.

existing work incorporates uncertainty estimation into NeRF
models to identify areas with poor rendering quality. NeRF-
W (Martin-Brualla et al. 2021) and its following works
(Pan et al. 2022; Ran et al. 2023) take the radiance field
as Gaussian distributions to model the uncertainty of ren-
dered RGB. Some other works model uncertainty as the en-
tropy of the weight distribution along rays in NeRF models
(Zhan et al. 2022; Lee et al. 2022). Besides, the deep learn-
ing techniques are also applied to NeRF to quantify the un-
certainty via ensemble learning (Siinderhauf, Abou-Chakra,
and Miller 2023) or variational inference (Shen et al. 2021,
2022). However, all these methods evaluate the uncertainty
of the neural fields in a single-view pixel-wise manner via
volumetric rendering, which does not support direct evalua-
tion of 3D geometry accurately, and the uncertainty for the
same surface point may vary across different views due to
the multi-view inconsistencies in images caused by vary-
ing lighting and observation angles, disobeying the view-
independent nature of 3D geometric uncertainties.

In this paper, we present a novel framework, i.e, GURe-
con, which is able to learn detailed 3D geometric uncertainty
for neural surface reconstruction as shown in Fig. 1. Differ-
ent from existing methods relying on rendering-based pixel-
wise uncertainty measurement, GURecon directly models
the 3D uncertainty for surface points and ensures consis-
tency over viewpoints. However, designing such a system is



nontrivial. Without ground truth geometric supervision (e.g,
input depth), it is difficult to model the geometric uncer-
tainty just based on photometric error between the rendered
and input images. This is because, as with previous methods,
the neural radiance field tends to overfit the input images in
sparse viewpoint settings, resulting in minor photometric er-
rors but significant geometric errors, just as the ambiguity
problem highlighted in NeRF++ (Zhang et al. 2020).

Motivated by the traditional multi-view stereo (Hu and
Mordohai 2012; Schonberger et al. 2016) where photometric
consistency is widely used to assess the confidence of recon-
structed geometry, we employ the multi-view consistency as
a cue to quantify the quality of reconstruction. We compute
the patch-based warping consistency of surface points pro-
jected onto the input images, and utilize it as a pseudo la-
bel of geometric accuracy to supervise a continuous geomet-
ric uncertainty field based on a novel online distillation ap-
proach. We consider the estimated uncertainty derived from
such pseudo label as epistemic uncertainty, which reflects
the geometric confidence of the model per-scene trained
with given images (i.e, reconstruction error), and serves as
a reference identifying areas where reconstruction is inade-
quate and unreliable.

Besides, inevitable illumination in real-world scenes
poses a challenge to modeling geometric uncertainty based
on inconsistent color observations. To handle this problem,
we propose to learn additional decoupled fields and further
fine-tune the uncertainty field by removing view-dependent
factors from each image. Our method can be extended to
various neural surface representations. With accurate 3D ge-
ometric uncertainty estimation, GURecon can be integrated
into tasks like incremental reconstruction to boost the qual-
ity of surface reconstruction.

Our main contributions are summarized as follows:

* We present a novel framework, i.e, GURecon, to quantify
geometric uncertainty for neural surface reconstruction.

* We proposed a new strategy to distill geometric uncer-
tainty based on multi-view consistency, thus decoupling
geometric uncertainty with rendering-related uncertainty.

* Additional decoupled fields are learned and exploited to
eliminate view-dependent factors for robust estimation.

» Extensive experiments on diverse datasets demonstrate
the superior performance of our framework in modeling
geometric uncertainty and the potential for application in
downstream tasks such as incremental reconstruction.

2 Related Work

Neural Surface Reconstruction. Neural representations
have achieved great success in various tasks such as
multi-view 3D reconstructions and novel view synthesis.
Among them, NeRF (Mildenhall et al. 2021) encodes scenes
within an MLP through differentiable volume rendering, en-
abling high-quality novel view synthesis. SDF-based vari-
ants (Wang et al. 2021; Yariv et al. 2021) constrain the scene
as an SDF field and achieve smooth surface reconstruction.
Subsequent works utilize monocular geometric priors (Yu
et al. 2022; Xiao et al. 2024) and geometric consistency to

enhance the quality of reconstruction. (Fu et al. 2022; Dar-
mon et al. 2022) utilize the homography warp as a constraint,
while (Ge et al. 2023; Wang et al. 2022) use multi-view con-
sistency to filter the interferences in input data. In this pa-
per, we use a hash-based NeuS (Zhao et al. 2022) as the
scene representation and first utilize multi-view consistency
as guidance for uncertainty quantification.

Uncertainty Modeling in NeRF. Considering the various
interferences such as dynamic objects and limited observa-
tions present in input data, integrating uncertainty model-
ing becomes crucial for achieving robust reconstructions.
Uncertainty estimation in NeRF can be divided into epis-
temic uncertainty and aleatoric uncertainty. The former typ-
ically arises from data limitations, while the latter is gener-
ally associated with the inherent randomness of data. NeRF-
Wild (Martin-Brualla et al. 2021) mitigate the interference
of transient objects by modeling rendered colors as Gaus-
sian distributions. Subsequent works build upon it to address
the Next Best View (NBV) problem (Pan et al. 2022; Chen
et al. 2023). Other approaches tackle uncertainty through
sampling techniques to establish a probability model, such
as ensemble learning (Siinderhauf, Abou-Chakra, and Miller
2023) or variational inference (Shen et al. 2021, 2022), the
former is time and memory-consuming, while the latter in-
volves major network architecture modifications. In contrast
to predicting probability, (Lee et al. 2022) computes uncer-
tainty as the entropy of weight distribution along the rays.
All these methods utilize probabilistic models to model un-
certainty, focusing on network convergence rather than con-
structing uncertainty from a geometric perspective. Bayes’
Rays (Goli et al. 2023) simulates spatially parameterized
perturbation of the radiance field and uses a Laplace approx-
imation to produce a volumetric uncertainty field. Another
work, FisherRF (Jiang, Lei, and Daniilidis 2023), introduces
fisher information for uncertainty modeling. However, they
still model uncertainty in a pixel-wise manner based on ren-
dering RGB values and need to measure uncertainty by ren-
dering at a pixel level, not approaching the problem from
a 3D geometric perspective. All existing methods are de-
signed for uncertainty estimation in NeRF, considering only
the rendering perspective, with no work addressing geomet-
ric uncertainty estimation for neural surface representation.
In contrast, we introduce GURecon, the first framework that
models geometric uncertainty for the neural surface from the
perspective of multi-view geometric consistency.

3 Method

In this paper, we introduce a novel framework, i.e, GURe-
con, which enables accurate geometric uncertainty estima-
tion for various neural surface representations without GT
geometric information for supervision. As shown in Fig. 2,
with given posed images, we learn a render field and an
SDF field through differentiable rendering. As the train-
ing progresses, with the currently learned geometry field,
we first utilize a root-finding method to identify the zero-
crossing points intersected with the implicit surface and cal-
culate the multi-view consistency of these points as pseudo
supervision to guide the learning of geometric uncertainty
(Sec. 3.2). Then we present a novel online distillation



Render RGB

Input RGB

Frames at time t
(RGB + Pose)

%pled Ray
‘ é é

All Frames
(Pose)

Ny

Render Field

Decoupled Field

@ 7 O-O ® OO L’y RayTracing Rendering
OO 2 O-O
ic Uncertainty Prediction
Multi-View Uncertainty Image i ield I ; ioldi
Geo. Uncertainty inty Imag Uncertainty Field 3 Uncertainty Field )
- @ DI, 880 g 880
A istill g E Reycasing. 3
cyjt:sg OOO OOO
SDF Field SDF Field
2 =
( Ray & SDF S (0
Intersect. E § ) =
A P selocted
; =" selecte
ﬁ\}:f? Frames

Add

Figure 2: System Overview. The proposed GURecon models a geometric uncertainty field supervised by the pseudo labels
computed based on the multi-view geometry consistency. To deal with the view-dependent factors, additional decoupled fields
are also learned and exploited to fine-tune the uncertainty field. With the predicted uncertainty fields, GURecon can boost the

downstream tasks such as incremental reconstruction.

method that simultaneously learns a spatially continuous un-
certainty field with other fields in a self-supervised manner
by utilizing the multi-view consistency as pseudo ground
truth labels (Sec. 3.3). In order to overcome the interfer-
ence caused by view-dependent factors in the calculation of
multi-view consistency, we propose to simultaneously learn
additional decoupled fields and exploit them to fine-tune the
geometric uncertainty field (Sec. 3.4).

3.1 Neural Surface Representation

Taking NeuS (Wang et al. 2021) as a representative, we de-
note each pixel by casting aray as p(¢) = o+tv, where o is
the camera origin and v is the view direction. We define the
surface as the zero-level set S = {z € R3|fs(z) = 0} us-
ing a geometry encoder f,(z; @), which predicts the signed
distance field (SDF) value s and a hidden geometric feature
h at point z. Additionally, we employ a radiance encoder
fe(z,v,n, h; ®.) to predict the color ¢ based on the view
direction v, where n is the normal at point & computed from
the gradient of the SDF. The color of each pixel is computed
by accumulating colors of sampled points along the ray:

N i—1
C(p) =) Tiici, T = [[(1 — o),
i=1 j=1 )

&%} —max<
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where T; is accumulated transmittance at p(¢;), 15 is the sig-
moid function, and «; is the opacity of the ¢-th ray segment.
Similar neural surface representations can also be adopted
as long as the geometric surface can be computed on the fly.

3.2 Patch-based Multi-view Consistency

Motivated by the traditional MVS works (Stereopsis 2010;
Schonberger et al. 2016) that leverage photometric consis-
tency among different views as a geometric constraint, we
exploit it as a cue to guide the learning of geometric uncer-
tainty in the neural surface.

Surface Interaction Retrieval. The primary step is to iden-
tify the surface points of the neural representation. Follow-
ing the existing works (Fu et al. 2022; Oechsle, Peng, and
Geiger 2021), root finding is a widely used method to locate
the intersection with the neural surface. As our approach is
based on SDF representation, and the SDF values of sam-
pling points along the ray are precomputed for volume ren-
dering, we employ linear interpolation to locate the zero-
crossing points 7 as follows:

7={p(e) 11 -

t;, = argmin {t; | s; - s;+1 <0},
i
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where s; is the SDF value of p(t;), i.e, fs(p(t;)), and £; is
the ray segment of the zero-crossing point.

Patch-based Multi-view Photometric Consistency. With
the intersected points 7 of the neural surface, we acquire
the multi-view photometric information by projecting these
points onto visible views following (Fu et al. 2022; Dar-
mon et al. 2022). For robustness, we consider the consis-
tency of the pixel patches around the projection of surface
points rather than a single pixel. We approximate the small
region around the point as a local plane and use the homog-
raphy warp to compute the patch-based multi-view photo-
metric consistency for computational efficiency. The tangent
plane (Stereopsis 2010; Schonberger et al. 2016) at the sur-
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Figure 3: Visualization of the learned fields. Our method
presents accurate decoupled results for view-dependent fac-
tors, and the learned geometric uncertainties are well aligned
with the GT geometric error.

face point p’ can be modeled as follows:

O={n,p |0’ p +d=0}, wherep' € T, (3)

where n’ is the normal computed from the gradient of the
SDF values, i.e, V fs(p’), and d is the distance to the ori-
gin of the coordinate system. Then, the homography warp-
ing matrix H can be constructed based on the local plane
and enables the mutual projection of image patches between
viewpoints as the following:

)T

n _
H; o = Kgre | Ryper — trel? Kref7

P; = H;;P;,(4)
where K corresponds to the camera’s intrinsic matrix,
[R;¢i,tr¢;] corresponds to the relative transformation matrix
from the reference view 4 to the source view j, P; and P;
represent the corresponding patch coordinates of the local
plane projected on reference and source view respectively.
Finally, we convert the color images I; into gray im-
ages I/, and utilize the Structural Similarity Index Mea-
sure (SSIM) (Campbell et al. 2008) to measure the corre-
lation coefficient C between pairs of projected patches as:

CE =1 — SSIM(I}(PF), T, (P4)), ®)

As the similarity between I/(P¥) and I;(Pf) increases, the
score of (ij decreases and the corresponding geometric
quality reconstructs better. Considering the potential occlu-
sion and large deviations in projection viewing angles, for
robustness we ultimately select the four patch pairs with the
lowest computed scores CX* and compute the average score
to represent the final geometric consistency Gy, of pg:
4
Gy = (Zizl CF*)/4, where Ci* € argmin {C};}. (6)
]
We utilize the computed consistency as pseudo-ground-truth
labels to guide the learning of geometric uncertainty.
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Figure 4: Uncertainty finetuning with the decoupled
fields. Even if the geometry has been well reconstructed,
the uncertainty field still erroneously estimates it with high
uncertainty caused by light interference across different
views. We employ the decoupled fields to remove the view-
dependent factor from the training images.

3.3 Distillation of Geometric Uncertainty Field

Considering it is impractical and inefficient to perform such
consistency calculations for each pixel during inference due
to its high computational cost, we propose to learn a geomet-
ric uncertainty field distilled from the above geometric con-
sistency, which is conducted simultaneously with the learn-
ing process of geometric and radiance fields.

Specifically, considering that geometric uncertainty is a
view-independent factor which only related to the position
x of points, we use an uncertainty field f,,(x; ®,) with po-
sition input and learn the geometric uncertainty solely for
surface points p’ € 7T corresponding to the current SDF
field during training process.

As described in Sec 3.2, we firstly use the root-finding
method to locate the surface point corresponding to the cur-
rent iteration at each training step, and then take the multi-
view patch-based consistency of the point as a pseudo label
to supervise a continuous and accurate uncertainty field us-
ing online distillation with the following loss:

> fulpr’) = Gl (7

reRr’

Liistin = —;

where R’ corresponds to the set of rays intersected with the
surface, and p,’ is the intersection sampled on ray 7.

3.4 Finetuning with Decoupled Fields

Variations in light across different views can lead to incon-
sistent observations and subsequently impact the computa-
tion of multi-view consistency as Fig. 4 shows. For more
accurate modeling of the geometric uncertainty, inspired by
prior works for radiance decomposition (Verbin et al. 2022;
Fan et al. 2023; Tang et al. 2023), we further introduce an
additional branch to decouple view-dependent factors as:

C = Cvi(n/7 p/a h/) + Cvd(n/7 p/a w'f/a hl)) (8)

where C,4 and C,,; correspond to view-dependent and view-
independent components respectively. As the same with un-
certainty field, we only decouple the points on the surface,
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Figure 5: Sparsification curves of different methods. The
dashed and solid lines correspond to the average error
of the remaining pixels filtered using GT-error-based and
uncertainty-based criteria, the area between them is AUSE.
Bayes’ Rays and Lee et al. (Lee et al. 2022) share the same
GT curve with ours as post-hoc frameworks.

and w,’ is the reflection of the view direction around the
normal n’. We model view-dependent components using the
reflection direction rather than the view direction as it allows
for better interpolation of factors like specular following (Ge
et al. 2023; Fan et al. 2023; Verbin et al. 2022). The decouple
fields are trained with surface rendering as follows:

T T
,m > 10 -cg ©)
rerR’

Once the fields are decoupled, we eliminate lighting, re-
flections, and other interferences by subtracting the rendered
view-dependent factor I,; from the true RGB image as
shown in Fig. 3, and then use the processed image to recom-
pute the multi-view consistency as the same in Sec. 3.2, thus
fine-tuning the uncertainty field. We divided our pipeline
into two stages. In the first stage we sample on the ground-
truth image to generate pseudo labels and supervise the geo-
metric uncertainty while simultaneously learning the decou-
pled fields, and in the second stage, our method initially ren-
ders the view-dependent component for each training view-
point and processes the ground-truth image, then freezes
other fields and uses the processed image for IV, iterations
to finetune the uncertainty field as shown in Fig. 4.

Edecouple =

3.5 Loss Function and Implementation Details
Loss Function. Our total loss is defined as the following:
L :['color + al»creg + a2£mask+
a3£decouple + Oé4£distill'
Following the definition in NeuS (Wang et al. 2021), L.oor
is the rgb loss between the ground truth pixel colors and the
rendered colors, and L, is the eikonal loss to regularize
the gradients of SDF. Since we only focus on the geometric
quality of the target to be reconstructed, we use the mask to
filter irrelevant regions and L,,,4s; corresponds to the con-
straint. We set oy = 0.1, s = 1.0, a3 = 0.1 and a4y = 0.1.
Implementation Details. The GURecon serves as a plug-
and-play module applicable to various neural surface rep-
resentations. Our preference for the fundamental 3D repre-
sentation leans towards the hash-based variant (Zhao et al.

(10)

W ActiveNeRF” Bayes’ Rays Ours

Scenes AUSEsp(l) CD(]) AUSEsp(}) CD(}) AUSEs;p(}) CD(])
TNT-Barn (100 images) 1.076 1.079 0.438 0.994 0.327 0.994
TNT-Truck (65 images) 0.989 3.082 0.289 2.965 0.243 2.965
TNT-Caterpillar (100 images) 1.247 0.808 0.346 0.747 0.198 0.747

Table 1: Uncertainty Quantification for TNT dataset.

Bayes Rays Ours Pred.
Pred. Unc. Unc.

GT RGB GTNoal Pred. Normal GT. Unc

Figure 6: Geometric uncertainty in TNT dataset. We
present the reconstruction results and the corresponding GT
3D error. GURecon predicts more accurate uncertainty than
Bayes’ Rays (Goli et al. 2023), especially in areas with tex-
ture repetition and reflection.

2022) due to its time efficiency. For each scene, we sam-
ple 1024 rays per batch and train for 50k iterations, which
takes nearly 30 minutes on an NVIDIA RTX 3090. After
completing the training stage, we run an additional 10k iter-
ations to finetune the uncertainty field while keeping other
fields frozen. Since the geometry is fixed, we utilize sphere
tracing instead of inefficient sampling to locate the intersec-
tion points with the neural surface, and the fine-tuning stage
takes approximately 5 minutes. Please refer to the supple-
mentary materials for more details.

4 Experiment

In this section, we first assess the efficacy of GURecon in un-
certainty quantification. Then we perform ablation studies to
validate each component within our framework, demonstrat-
ing its versatility across different numbers of training im-
ages and various neural surface models. Lastly, we demon-
strate our plug-and-play capability of GURecon by applying
it to the task of incremental reconstruction and comparing it
against other NeRF-based NBYV selection methods.

4.1 Uncertainty Quantification

Datasets. We evaluate our method over three widely used
benchmark datasets: the DTU dataset (Jensen et al. 2014),
the BlendedMVS dataset (Yao et al. 2020), and the Tank
and Template (TNT) dataset (Knapitsch et al. 2017). These
datasets offer calibrated multi-view images, along with ob-
ject masks and high-fidelity 3D models serving as the
ground truth. The DTU dataset comprises object scans, with
each scene containing 49 or 64 views from concentrated
perspectives. We selected eight scenes with diverse materi-
als, all exposed to challenging ambient lighting conditions.
The BlendedMVS dataset contains a large collection of in-
door and outdoor scenes, each featuring 360-degree sur-
round view captures with varying scales and numbers of im-



Scenes BMVS-Angel BMVS-Dog BMVS-Egg BMVS-Jade
o Metrics AUSE(]) cp(l) AUSE(]) cp() AUSE(]) cp() AUSE(]) cp(l)
AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D
CFNeRF* 0384 0318 ~ 1324 0354 0287 ~ 1904 0337 0306 ~ 1841 0335 0291 ~ 1433
ActiveNeRF* 1425 1158 1471 0385 0796 0686 0786 0.632 0608 0631 0606 1548 1513 0946 1067 0912
Leeetal.” 1945 1380 ~— 1929 1599 ~~ 2644 1500 1782 1615  ~~
Bayes’ Rays 0.521 0469 0201 03657 0258 0225 0.157 0469" 0.147 0172 0.078 0875 0233 0238 0.143 0.904f
Ours 0295 0271 0.111 0.112  0.114 0.115 0224 0206  0.069 0.130 0207 0.129
Scenes BMYVS-Sculpture BMYVS-Soilder BMYVS-Stonelion BMYVS-Toylion
Methods e AUSEL) cn() AUSEW) (D)) AUSEW) ) AUSEW) D)
AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D
CFNeRF* 0348 0399 ~ 1346 0395 0406 ~ 2053 0463 0495 ~_ 1712 0372 0315 ~ 1987
ActiveNeRF" 1270 1.056 1279 0572 0704 1103 1.196 0569 1.237 1085 1.158 | 0493 0926 1.172 0.852  0.462
Leeetal.” 2129 1988  ~— 1.696 1.070 ~ 2282 1.640 ~— 2329 1720
Bayes’ Rays 0720  0.564 0259 0.560f 0.147  0.195 0.081 0.541f 0296 0357 0223 0477 0345 | 0227 0.175 0265
Ours 0.167 0205 0212 0.093  0.146  0.079 0226 0232  0.192 0299 0275 0272
Scenes DTU-scan55 DTU-scan63 DTU-scan83 DTU-scan105
Metri AUSE AUSE AUSE AUSE
M USE(}) D)) USE(}) D)) USE(}) W USE() o
AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D
CFNeRF* 0367 0463  ~ 4205 0385 0426 ~_ 4357 0370 0465 <~ 4409 0585 0624 ~. 3978
ActiveNeRF" 0.634 0671 0781 [0:630 0512 0502 0923 1458 1352 1407 1006 0961 1491 1132 0754  0.849
Leeetal” 1274 1297 ~ 1375 1697  ~ 1.941 1449 ~— 2096 1219  ~—
Bayes’ Rays 0348 0290 0313 0.6757 0252 0402 0499 1.154F 0934 0878 0.609 1.035f 2.136  1.440  0.547 0.839f
Ours 0231 0253 0.192 0207 0256 0.284 0232 0249 0303 0208 0328 0.363
Scenes DTU-scan106 DTU-scan114 DTU-scan118 DTU-scan122
Metri AUSE AUSE AUSE AUSE
M USE() by USE() D) USE() o) USE() o0
AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D AMSE AMAE 3D
CFNeRF* 0462 0437 ~ 3530 0366 0419 ~_ 3879 0390 0387 ~ 3914 0398 0381 ~.  3.750
ActiveNeRF" 1222 1253 1.049 0778 1489  1.167 1.160 = 0706 0470 0583 1312 0910 0438 0551 0923 0.907
Leeetal” 2177 1515  ~ 1.898  1.633  ~— 1341 1504  ~— 1.846 1816  ~—
Bayes’ Rays 0.181 0246 0356 0.656T 0204 0341 0312 0519F 0267 0355 0393 0.824f 0330 0291 0290 0.864F
Ours 0.150 0204 0213 0.171 0319 0.188 0217  0.188 0214 0233 0252 0.205

Table 2: Uncertainty Quantification for the BlendedMVS and DTU datasets. Best results are highlighted as  first , second .
1 Bayes’ Rays and Unc-NeRF evaluate our trained model as post-hoc frameworks and share the same CD metric.
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Figure 7: Qualitative comparison of the uncertainty estimation with 2D depth. Our estimated uncertainties are more closely
aligned with the error between the GT and predicted geometry than other baselines (Pan et al. 2022; Shen et al. 2022; Goli et al.
2023; Lee et al. 2022). Following (Goli et al. 2023), uncertainties are colored based on the ranking order of uncertainty scores.



Scheme AUSEMSE AUSEMAE AUSE:;D
w/o decouple finetune 0.104 0.137 0.125
with pixel-based consistency 0.675 0.713 0.792
with smaller patch size 7 0.135 0.254 0.179
with larger patch size 15 0.207 0.195 0.214
Full Model 0.058 0.094 0.091

Table 3: Ablation studies on BlendedMVS dataset.

ages. Additionally, we conduct experiments on 3 large-scale
outdoor scenes from the TNT dataset with more randomized
viewpoints and biased captures. As discussed in (Shen et al.
2022), training with sparse images can ensure variations in
the reconstruction quality, providing an ideal setup to evalu-
ate the uncertainty modeling ability. Therefore, based on the
spatial distribution within each scene, we uniformly sam-
ple a sparse number of views for the training (~6) and test
(~3) sets in the DTU dataset, for the BlendedMVS and TNT
datasets, we uniformly sample 25% images for the training
set and choose 4 adjacent images as the test set.

Metrics. In the experiment for uncertainty quantification,
following previous methods (Shen et al. 2022; Goli et al.
2023), we calculate the Area Under Sparsification Er-
ror (AUSE), a widely used metric to assess the quality of
model uncertainty. Given the predicted depth error and pre-
dicted uncertainty of each pixel in the test image, we grad-
ually remove the top t%(t = 1 ~ 100) pixels accord-
ing to two criteria: once based on GT depth error, once
based on predicted uncertainty, and compute the average
depth error for the remaining pixels. The area between the
curves obtained from the two criteria is the AUSE, which re-
flects the correlation between predicted uncertainty and ac-
tual depth error. In addition to calculating AUSE based on
the Mean Absolute depth Error (AMAE) and Mean Squared
Error (AMSE), we also compute the AUSE based on the
closest distance of each point to the ground truth geome-
try as the 3D geometric error, i.e, AUSE3p, which reflects
geometric uncertainty from a 3D perspective. Finally, we
evaluate the accuracy of surfaces reconstructed by differ-
ent methods using the Chamfer Distance (CD). Since the
scales among scenes are inconsistent in both BlendedMVS
and TNT datasets, we uniformly normalize the scenes to fit
within the unit sphere to compute geometric metrics.

Baselines. We compare ours with previous works designed
for uncertainty estimation in NeRF: CFNeRF (Shen et al.
2022), ActiveNeRF (Pan et al. 2022), Bayes’ Rays (Goli
etal. 2023), and Uncertainty-Guided NeRF (Lee et al. 2022).
Although the ability to model uncertainty should be inde-
pendent of reconstruction quality, considering they are all
designed based on NeRF (Mildenhall et al. 2021), while
ours is designed for the SDF backend, to avoid differences
in geometric errors caused by representation affecting the
assessment of uncertainty modeling capabilities, we make
structural modifications to each method (labeled with ™),
making them applicable to neural surface representation.
Please refer to the Supp. Mat. for details. To be noted,
for Bayes’ Rays (Goli et al. 2023) and Uncertainty-Guided
NeRF (Lee et al. 2022), we directly migrate them as post-
hoc frameworks to evaluate the model (fs(®Ps), fo(P.))

_; Extracted Mesh

¢
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Figure 8: Extension to 2DGS. Our uncertainty distillation
can be migrated to various neural surface representations.
We show the extension to 2DGS (Huang et al. 2024).

trained by our method. From the geometric perspective,
although ActiveNeRF" and Bayes’ Rays cannot directly
model the uncertainty of 3D points since they rely on the
pixel-level volumetric rendering process, we feed the sur-
face points into their uncertainty model as a rough estima-
tion and compare them in terms of AUSE3p as a reference
for better understanding.

Results. As illustrated in Fig. 7 and Table 2, under sparse-
view setting, CFNeRF" exhibits severe degradation in recon-
struction quality and inadequate predictive capabilities for
uncertainty, particularly evident in the DTU datasets where
training is conducted with only six views. Considering the
uncertainty prediction of ActiveNeRF" is based on model-
ing the predicted RGB, which is vulnerable to significant
disruption when substantial color variations exist across dif-
ferent viewpoints, it does not adequately reflect geometric
uncertainty. As NeuS (Wang et al. 2021) is designed under
the assumption of an ideal impulse function distribution, the
estimation of uncertainty based on the entropy of the weight
distribution on sampled rays in Uncertainty-Guided NeRF"
becomes ineffective. Bayes’ Rays has a relatively reason-
able performance of modeling uncertainty among existing
approaches. However, it still models the uncertainty from
the perspective of RGB rendering by perturbing sampling
points and tends to predict high uncertainty for regions with
abundant repetitive textures regardless of the reconstruction,
such as the case of Angel and Sculpture shown in Fig. 7.
Compared to other methods, as our approach leverages the
advantages of multi-view geometric consistency and decou-
pling view-dependent factors, GURecon achieves a signif-
icant improvement. Even facing scenes with texture repe-
titions, lighting interferences, and sparse training views as
shown in Fig. 7, our method accurately distinguishes unre-
liable regions and quantitatively evaluates the uncertainty.
As the AUSE curves shown in Fig. 5, the depth error identi-
fied by ours closely approximates the actual variation curve.
From Fig. 3 and Fig. 6, we can also see that our learned 3D
geometric uncertainties align well with the real 3D geomet-
ric error in both indoor and outdoor large-scale scenes.

4.2 Ablation Study

We conduct an ablation study to demonstrate the effective-
ness of each module in the proposed method.

Fine-tuning with Decoupling Modules. As shown in the
Fig. 4 and Table 3, fine-tuning with decoupling modules
effectively addresses the misclassification issue wherein re-
gions with good reconstruction quality are erroneously clas-
sified as reconstruction failures due to lighting interference
in the calculation of geometric consistency.
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Figure 9: Incremental results on TNT dataset. Our scheme reconstructs more details while ensuring a smoother surface.

W Barn Caterpillar Truck
Methods CD) PSNR(1) CD() PSNR(1) CD() PSNR(1)
Random 1.033  22.69 0809 19.71 2248 20.89

ActiveNeRF* (Pan et al. 2022) 1.002 22.72 0.733 19.24 2.123 20.73
Lee et al.* (Lee et al. 2022) 0983 2202 0.778 19.24 2212 2040
Ours 0.947 2321 0.705 20.06 2.059 21.49

Table 4: Quantitative comparison of NBV strategies on
TNT dataset. The best results are highlighted in bold.

Different Sizes of Patches in Consistency. As shown in
Table 3, the utilization of pixel-based and small patch-based
consistency fails to accurately reflect geometric uncertainty
due to their sensitivity to view-dependent factors such as
lighting. Large patches fail to capture geometric consistency
in detailed areas such as edges and corners. The patch size
used is 11x11. Please refer to more ablation in Supp. Mat.

Plug-and-play extension to 2DGS. Our proposed uncer-
tainty distillation can be migrated to various neural surface
representations. We extend it to the latest surface reconstruc-
tion work 2DGS (Huang et al. 2024). We utilize the GS cor-
responding to the median depth of each pixel as the intersec-
tion with the surface and employ the direction of its shortest
axis as the normal for homography warping. With the pro-
posed distillation method, we can supervise an additional at-
tribute of uncertainty for the GS located on the surface, as
shown in Fig. 8. Please refer to more details in Supp. Mat.

4.3 Evaluation on Incremental Reconstruction

Datasets and Metrics. We select the same large-scale sce-
narios from the TNT dataset as used in Sec. 4.1 to measure
the effectiveness of the incremental reconstruction strategy.
We report Chamfer Distance for surface evaluation and peak
signal-to-noise ratio (PSNR) for image synthesis qualities.

Baselines. We compare ours with two representative NeRF-
based NBV methods: Uncertainty-Guided NeRF (Lee et al.
2022) and ActiveNeRF (Pan et al. 2022) discussed in

Sec. 4.1, alongside a completely randomized NBV strategy.
Considering the substantial differences in geometric quality
between NeRF and NeusS representations, we adopt the same
strategy described in Sec. 4.1.

Implementation Details. We follow the initialization strat-
egy in (Lee et al. 2022) to divide the space into several re-
gions uniformly and select one viewpoint from each region
for both the initial training set and the test set. During each
selection for Next Best View (NBV), we assess the uncer-
tainty of the remaining viewpoints in each region and select
the one with the highest score to augment the training set.
As our method directly models the uncertainty of surface
points, we utilize sphere tracing for root-finding and achieve
rapid surface rendering of uncertainty for new viewpoints.
Results. As shown in Fig. 9 and Table 4, the NBV strategy
with our geometric uncertainty achieves the best reconstruc-
tion results under the same limited number of views (30% of
the total image). Compared to other methods, our approach
reconstructs more details while ensuring a smoother surface.
Please refer to Supp. Mat. for a more qualitative comparison.

5 Conclusion

In this paper, we introduce GURecon, a novel approach for
learning a 3D geometric uncertainty field for neural sur-
face models. Unlike existing methods that model rendering-
based pixel-wise uncertainty, the proposed GURecon ex-
ploits the multi-view consistency to accurately model the ge-
ometric uncertainty. Moreover, additional decoupled fields
are learned for robust uncertainty estimation. Comprehen-
sive experiments have demonstrated our superior perfor-
mance compared to existing methods. While our approach
works well in small-scale textureless regions, its perfor-
mance is limited in extreme scenarios with large textureless
areas (e.g, white walls), where high-level semantic informa-
tion can be incorporated in future work.
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