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ABSTRACT

Chaos is a fundamental feature of many complex dynamical systems, including
weather systems and fluid turbulence. These systems are inherently difficult to
predict due to their extreme sensitivity to initial conditions. Many chaotic sys-
tems are dissipative and ergodic, motivating data-driven models that aim to learn
invariant statistical properties over long time horizons. While recent models have
shown empirical success in preserving invariant statistics, they are prone to gener-
ating unbounded predictions, which prevent meaningful statistics evaluation. To
overcome this, we introduce the Energy-Constrained Operator (ECO) that si-
multaneously learns the system dynamics while enforcing boundedness in predic-
tions. We leverage concepts from control theory to develop algebraic conditions
based on a learnable energy function, ensuring the learned dynamics is dissipa-
tive. ECO enforces these algebraic conditions through an efficient closed-form
quadratic projection layer, which provides provable trajectory boundedness. To
our knowledge, this is the first work establishing such formal guarantees for data-
driven chaotic dynamics models. Additionally, the learned invariant level set pro-
vides an outer estimate for the strange attractor, a complex structure that is compu-
tationally intractable to characterize. We demonstrate empirical success in ECO’s
ability to generate stable long-horizon forecasts, capturing invariant statistics on
systems governed by chaotic PDEs, including the Kuramoto–Sivashinsky and the
Navier–Stokes equations.

1 INTRODUCTION

Chaotic dynamical systems. Chaos arises in a wide range of physical systems, including weather
models (Lorenz, 1963) and fluid dynamics (Kuramoto, 1978; Sivashinsky, 1988). A hallmark of
chaotic systems is their sensitivity to initial conditions. That is, small perturbations can cause ex-
ponential divergence between trajectories, making precise long-term prediction intractable. De-
spite this unpredictability, many chaotic physical systems are dissipative, meaning their trajectories
converge to a lower-dimensional invariant set, often referred to as the strange attractor (Stuart &
Humphries, 1998). Once in this attractor, the system exhibits ergodicity, where the trajectory will
eventually visit every state on the attractor (Guckenheimer & Holmes, 2013). The ergodic behavior
of dissipative chaotic systems, coupled with the intractability in predicting exact pointwise trajecto-
ries, makes capturing the statistical behavior of a system on the attractor a natural goal.

Recent data-driven methods have achieved impressive empirical success in constructing models that
both speed up inference and capture the long-term invariant statistics of dissipative chaotic systems.
These approaches vary widely in terms of structural assumptions and model complexity. At one end
of the spectrum, structured nonlinear regression techniques employ physically motivated multi-level
models to efficiently fit time series data (Majda et al., 2001; Majda & Harlim, 2012; Goyal et al.,
2023). At the other end, deep learning methods use the expressive capabilities of neural networks
to directly learn complex chaotic dynamics from raw data, often embedding physical system knowl-
edge into the architecture or regularization strategies (Li et al., 2020; Tang et al., 2024; Raissi et al.,
2019; Brunton & Kutz, 2022; Lu et al., 2021; Kochkov et al., 2021; Page et al., 2024). Hybrid
models bridge these approaches by using autoencoder architectures to project data into latent spaces
where the dynamics become simpler—drawing inspiration from Koopman theory (Koopman, 1931),
Dynamic mode decomposition (Kutz et al., 2016), PCA (Pearson, 1901), etc. Recurrent sequential

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

models have been developed to enhance stability and accuracy by incorporating more input history
beyond a single time step (Mikhaeil et al., 2022; Vlachas et al., 2018; Sangiorgio & Dercole, 2020).
Among these, a specific recurrent architecture designed for time series prediction, called reservoir
computing, has shown strong performance in capturing invariant statistics and reconstructing attrac-
tors (Lu et al., 2018; Vlachas et al., 2020; Bollt, 2021).

Data-driven methods for modeling chaotic systems often adopt an autoregressive framework, where
a model predicts the next time step based on the current state to generate long-term trajectories and
capture statistical properties. However, this approach can suffer from accumulated errors, causing
trajectories to drift away from the training distribution. In chaotic settings, such drift can result
in unbounded or nonphysical predictions, ultimately corrupting statistical estimates derived from
the generated trajectories. Structured models, such as multi-level quadratic regression, have been
theoretically shown to exhibit pathological instability in their statistical behavior (Majda & Yuan,
2012). In the context of recurrent neural networks (RNNs), Mikhaeil et al. (2022) demonstrated that
training such models on chaotic systems leads to gradient divergence, highlighting a fundamental
limitation. While the theoretical understanding of machine learning models remains limited, empir-
ical evidence shows that these models often produce divergent trajectories, ultimately resulting in
unreliable statistical predictions. This issue has also been observed in advanced time-series mod-
eling techniques, including Reservoir Computing and Fourier Neural Operators (Lu et al., 2018;
Pathak et al., 2017; Li et al., 2022). As such, a central challenge across both physics-informed and
purely data-driven approaches is the difficulty of maintaining stable long-term forecasts.

Learning with hard constraints. Recent efforts in machine learning have explored hard-
constrained neural networks as a means to enforce physical or structural constraints on model pre-
dictions. These methods can guarantee satisfaction of linear equality constraints (Chen et al., 2024;
Balestriero & LeCun, 2023) or combinations of linear equality and inequality constraints (Min et al.,
2024; Flores et al., 2025). Often, these approaches employ either a specific parameterization of a
given network or a network-agnostic, closed-form projection layer that maps neural network outputs
to a feasible set. Such constraints have been successfully applied to enforce physical constraints
such as conservation laws (Chen et al., 2024) as well as stability objectives in learned dynamics
(Min et al., 2023). However, these methods are limited to affine constraints. (Tordesillas et al.,
2023) introduce a network parameterization method to enforce certain convex constraints, but is
limited to input-independent constraints. Other methods (Lastrucci & Schweidtmann, 2025) use
iterative Newton-like approaches to push model outputs towards satisfaction of nonlinear equality
constraints but can be expensive and are not guaranteed to converge under certain conditions. There
remains a gap in the existing literature for closed-form guaranteed satisfaction of nonlinear con-
straints, which are of particular interest for physical systems. In the context of chaotic systems,
enforcing boundedness in predictions can be useful for avoiding trajectory blow-up.

Our contributions. We introduce the Energy-Constrained Operator (ECO), a framework for learn-
ing chaotic dynamics that guarantees long-term stability by construction. By integrating control-
theoretic principles, ECO simultaneously learns the dynamics and a stabilizing energy function. To
our knowledge, this is the first work to provide explicit formal guarantees on the boundedness of
predicted trajectories for such systems. Our key contributions include1:

• A Learnable Energy-Based Constraint: We derive computationally efficient, algebraic
dissipative conditions based on a learnable quadratic Lyapunov function. This allows the
model to discover a stabilizing invariant set from data without requiring prior knowledge
of the system, which is an outer-estimate for the attractor.

• A Convex Quadratic Projection Layer: We design a projection layer that enforces a
general convex quadratic constraint, including the dissipativity condition. The layer is
network-agnostic, computationally efficient, and fully differentiable.

• Theoretical Boundedness Guarantees: We provide a formal proof that our learned model
is globally asymptotically stable, ensuring all prediction trajectories remain bounded and
converge to the learned invariant set.

• Empirical Results: We validate ECO on challenging chaotic benchmarks, including the
Kuramoto–Sivashinsky and Navier–Stokes equations. Our model produces stable long-
horizon forecasts that accurately reconstruct statistical properties of the strange attractors.

1For reproducibility, our source code is available at https://anonymous.4open.science/r/
eco_pde-2655/
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2 PROBLEM FORMULATION

Consider a chaotic dynamical system described with a PDE of the form,

∂tw = F (x,w, ∂xw, ∂xxw, ...) , (t, x) ∈ [0, T ]× X
w(0, x) = w0(x), x ∈ X
B [w] (t, x) = 0, (t, x) ∈ [0, T ]× ∂X

(1)

Here, w(t, x) represents the n-dimensional state of the dynamical system at any time t ∈ [0, T ] and
position x ∈ X ⊆ Rd, w0(x) is the initial condition defined on the full spatial domain x ∈ X, and
B [w] (t, x) is the boundary condition defined on the spatial boundary ∂X. We adopt a discrete-time
formulation of this problem, and consider PDEs with solutions in L2 space, i.e., X ⊂ L2,

wt+1(x) = G(wt(x), x), (t, x) ∈ {0, 1, 2, ...N} × X (2)

where wt = w(t, ·) : X → R represents the state of the dynamical system at any position x ∈ X at
time step t. We focus on PDEs that govern dissipative chaotic systems, as many physically relevant
chaotic systems inherently exhibit dissipative behavior.

The primary goal is to learn a neural operator G∗(θ) that emulates the true dynamics G. For the
chaotic systems we study, long-term pointwise prediction is intractable due to sensitive dependence
on initial conditions. While individual trajectories are unpredictable, these dissipative chaotic sys-
tem’s trajectories converge to a statistically invariant strange attractor. Consequently, a more feasible
and meaningful objective is to learn an operator that preserves the statistical properties of the true
dynamics over long horizons.

A significant challenge to achieving this objective is model stability. When an approximate operator
G∗(θ) is applied iteratively to generate long-horizon trajectory forecasts, small prediction errors
can be amplified exponentially, which accumulates and eventually causes predicted trajectories to
diverge to unbounded values. This failure mode, also known as “finite-time blowup”, prevents the
model from capturing any meaningful long-term behavior Li et al. (2020); Lu et al. (2018).

To address this issue, our solution is to construct a model architecture that is dissipative by design.
Since dissipativity is a fundamental property of the physical system, incorporating it as an inductive
bias ensures trajectory boundedness without sacrificing expressivity. To achieve this rigorously, we
first formalize the concept:

Definition 1. We say that the system in (2) is dissipative if there exists a bounded (with respect to
L2 norm) and positively invariant set M ⊂ L2 such that

lim
t→∞

dist(wt,M) = 0, dist(wt,M) = inf
y∈M

∥wt − y∥

In other words, every trajectory of the system will converge to M asymptotically, and stays within
M once it enters. M is said to be globally asymptotically stable.

Intuitively, a dissipative system loses energy until its trajectories enter and remain within a bounded
region M , which for chaotic PDEs is their strange attractor. However, Definition 1 is descriptive in
the desired property of M , without providing a practical mechanism to verify or enforce it. Further-
more, the strange attractor M itself is highly system-dependent and has been known computationally
intractable to characterize (Stuart & Humphries, 1998; Milnor, 1985).

3 DISSIPATIVE DYNAMICS: A CONTROL-THEORETIC PERSPECTIVE

Our objective is to design a neural operator architecture that enforces dissipativity by construction.
The first challenge is that Definition 1 is non-constructive, as it relies on the strange attractor M ,
which is computationally intractable to characterize. Therefore, we must establish an alternative,
computationally efficient condition that can be directly enforced during training and inference.

For this purpose, we turn to a control-theoretic perspective and the concept of Lyapunov functions.
These “energy-like” functions are extensively used to establish asymptotic stability of dynamical
systems (Khalil, 2002) and naturally connect with the behavior of dissipative systems. Instead of
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analyzing the complex attractor M , we can use a level set of a Lyapunov function as a tractable
proxy for the bounded region.

We adapt this strategy in the following proposition, which generalizes the concept of asymptotic
stability from a single equilibrium point to an entire level set, providing the practical conditions
needed for our model design.
Proposition 1 (set asymptotic stability). For an infinite-dimensional dynamical system in (2), sup-
pose there exists a non-negative-valued continuously differentiable function V : L2 → R+ and a
constant c > 0, such that

(i) ∀wt /∈ M(c) = {w ∈ L2 : V (w) ≤ c}, V (wt+1) ≤ αV (wt), 0 < α < 1

(ii) ∀wt ∈ M(c) = {w ∈ L2 : V (w) ≤ c}, V (wt+1) ≤ c

(iii) V is radially unbounded, i.e., V (w) → ∞ as ∥w∥ → ∞

Then the system (2) is dissipative, where the level set M(c) is globally asymptotically stable.

Figure 1: (A) An illustration of the conditions in Proposition 1, where the trajectory loses energy
over time and enters an invariant level set. (B) Illustration of the fact that an inherently dissipative
model would have an effectively smaller search space for parameters.

As illustrated in Figure 1(A), the conditions in Proposition 1 guide any solution starting outside the
level set M(c) to lose energy exponentially due to the α factor, entering the level set in finite time
and remaining inside thereafter. A detailed proof for Proposition 1 is included in Appendix A.

Despite the simplicity of the algebraic conditions derived in Proposition 1, overall the conditions still
obtain a form of “if-else” condition, which might not be straightforward to enforce in a neural net-
work that requires differentiability for backpropagation. To resolve this issue, we unify conditions
(i) and (ii) in the above proposition into the following single inequality constraint, which involves a
ReLU activation and the α ∈ (0, 1) used in condition (3):

V (wt+1)− α [V (wt) + ReLU (c− V (wt))] ≤ 0 (3)

Note that the reformulation here is equivalent, up to scaling the level set constant by α. More specif-
ically, the inequality (3) reduces to V (wt+1) ≤ αV (wt) when V (wt) /∈ M(c), and reduces to
V (wt+1) ≤ αc when V (wt) ∈ M(c). As a result, under the assumption for V made in Proposi-
tion 1, the reformulated constraint ensures that the system is dissipative and the level set M(c) is
globally asymptotically stable.

4 METHODOLOGY

To achieve the goal of building a neural network prediction model that ensures the trajectory it
generates always stays bounded, we now introduce a framework that learns dissipative dynamics by
design, based on the control-theoretic conditions derived in Section 3. As illustrated in Figure 1(B),
learning an inherently dissipative prediction model conceptually limits the parameter search to a
smaller space that is always aligned with physical properties of the true dynamics. Compared to
unconstrained models, which might search over parameters that lead to unstable behaviors, our
approach makes the training process more efficient.
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Our methodology is built on two key components: 1) a learnable Lyapunov functional V (w) that
represents the system’s energy, and 2) a custom dissipative projection layer that strictly enforces the
constraint in (3). In addition to the learned model being dissipative, our framework is also able to
produce an outer-estimate (the level set M(c)) for the complex strange attractor without any prior
knowledge of the system’s invariant statistics, which is known to be difficult to characterize. In what
follows, we discuss the details of our architecture design and training procedure.

4.1 ARCHITECTURE DESIGN WITH BOUNDEDNESS GUARANTEES

We propose a neural network architecture that simultaneously learns the dynamics operator in Equa-
tion (2) and an energy-like Lyapunov functional V =

∫
D
(
Q ◦ (w − wc)

2
)
(x)dx, which together

guarantee the dissipativity conditions in Proposition 1 through the construction of a dissipative pro-
jection layer. Following common practices in learning operators in function spaces (Lu et al., 2021;
Kovachki et al., 2023; Li et al., 2022), we consider a discretized spatial domain where the queried
spatial location x ∈ X is sampled from a finite set Xd consisting of n grid points, i.e., x ∈ Xd ⊂ X
and the cardinality of Xd is n. As an example, if the spatial domain X = [0, 2π], a fixed grid on
X can be n evenly sampled points, Xd = {k 2π

n−1 : k = 0, 1, ..., n − 1}. Under the grid setting,
the function wt ∈ L2 can be effectively represented as an n–dimensional vector, which is a col-
lection of solution values at every grid point wt := {w(t, x) : x ∈ Xd} ∈ Rn. Consequently, the
L2 norm of wt is reduced to a standard 2–norm in Rn, and the Lyapunov functional is reduced to
V (w) = (w − wc)

TQ(w − wc) where Q ∈ S++.

As illustrated in Figure 2(A), our model is composed of two learnable components:

1. An unconstrained dynamics emulator Ĝ, which approximates the true dynamics operator
G. The backbone model for the emulator Ĝ can be any neural operator that maps between
function spaces. Here we choose to use DeepONet proposed in (Lu et al., 2021).

2. A quadratic Lyapunov functional V (w) = (w−wc)
TQ(w−wc), which serves as the energy

function. The learnable parameters include a positive definite matrix Q of size n–by–n and
a center vector wc ∈ Rn.

Dissipative Neural Operator Model 
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Parameter 

Closed Form Convex Quadratic Constraint Enforcement 

Inequality projection Equality projection 
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(A) (B)

Energy
Functional

 

Figure 2: (A) An overview of the proposed model architecture. The input, current time solution wt,
is fed into an unconstrained neural operator (NO) emulator Ĝ to produce a preliminary prediction
ŵt+1 and a learned energy functional V to compute its energy V (wt). The dissipative projection
layer modifies ŵt+1 to produce a final output w∗

t+1 that satisfies the dissipative energy constraint in
(3). (B) Illustration of the convex quadratic projection for a constraint in the form of V (w) ≤ b. The
equality projection maps any point not on the ellipsoid boundary w to a boundary point w̄ in closed
form (for both w1, w2). The quadratic projection is only active for when the constraint is violated,
so w2 is projected while w1 is left unchanged.

These components are integrated into a dissipative projection layer, which modifies the output of the
unconstrained emulator Ĝ to produce an operator G∗ that maps the current solution wt to the pre-
dicted solution at the next time step w∗

t+1. By construction, the dissipative projection layer ensures
the condition in (3) is satisfied, which guarantees the predicted dynamical system w∗

t+1 = G∗(wt)
is dissipative. As a direct consequence of Definition 1, all trajectories generated by the operator G∗

in an autoregressive manner are guaranteed to be bounded. For a high dimensional output space, we
elect to use a diagonal Q matrix such that the projection can be computed efficiently.
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4.2 CONVEX QUADRATIC PROJECTION LAYER

The quadratic form of the Lyapunov functional V (w) motivates the development of a convex
quadratic projection layer that projects the model predictions onto a feasible set of trajectories where
the dynamics are dissipative. We introduce a differentiable convex quadratic projection layer shown
in Figure 2(B) that can handle constraints of the form (w − wc)

TQ(w − wc) ≤ b, where b can
be a constant or an arbitrary function of the model input. This form is equivalent to (3), with
b = α [V (wt) + ReLU(c− V (wt))].

The convex quadratic constraint projection is illustrated in Figure 2. The general strategy is to
define a projection w̄ of the model output ŵ onto the equality constraint V (w̄) = b and selectively
project points that violate the constraint V (ŵ) ≤ b onto their respective equality projection. For
positive definite Q, there exists an explicit form for the projection of ŵ onto the equality constraint
V (w̄) = b. That is, for the quadratic Lyapunov function described in Section 4.1, the projection w̄ =

wc+
√
b
(
LT

)−1 ŵ−wc

||ŵ−wc||2 satisfies the equation V (w̄) = b, where L is the Cholesky decomposition
of Q such that LLT = Q. To ensure that this equality projection is only active when the constraint
is violated, the final output w∗ is calculated as an interpolation between the projected (w̄) and non-
projected (ŵ) outputs.

w∗(x) = γ(b, V (ŵ))ŵ(x) + [1− γ(b, V (ŵ))] w̄(x) (4)

Ideally, γ(b, V (ŵ)) is an indicator function that is 1 when V (ŵt) ≤ b and 0 when V (ŵt) > b.
However, using an indicator function leads to non-differentiability, which prevents the model from
learning a good energy functional V effectively. Instead, we replace the indicator function with
sigmoid as a smooth alternative γ(b, V (ŵ)) = sigmoid [k(b− V (ŵ)].

4.3 THEORETICAL GUARANTEES

Our framework is designed to provide formal guarantees of stability and boundedness by construc-
tion. These guarantees stem from the convex quadratic projection layer. While this layer utilizes a
sigmoid function as a continuous and differentiable relaxation of a strict indicator function, it main-
tains rigorous theoretical properties. The core idea is that this principled relaxation enforces the
constraint on a controllably enlarged invariant set, whose size is governed by the sigmoid’s steep-
ness parameter. This is formalized in the following lemma.

Lemma 1. For a quadratic positive definite Lyapunov function, the sigmoid relaxation of the projec-
tion in (4) maintains the boundedness of the projection output w∗(x), with its energy upper bounded
by V (w∗(x)) ≤ (1 + δ)2b, where δ = (2kb+ 2

√
2kb)−1 and k is the sigmoid function parameter.

The factor δ provides an explicit, non-asymptotic bound on the relaxation’s cost as in the enlarge-
ment of the projected ellipsoid for any finite sigmoid function steepness k. This quantifiable en-
largement allows us to enforce the conditions stated in Proposition 1 by choosing a contractivity
factor α only marginally smaller than 1, preserving the model’s expressiveness. This guarantee is
formalized in the following theorem.

Theorem 1. Let the learned dynamics be defined by the operator w∗
t+1 = G∗(w∗

t ), which is com-
posed of an unconstrained neural operator emulator Ĝ and a dissipative projection layer. Let the
learned energy-like function be a quadratic Lyapunov functional V (w) = (w − wc)

TQ(w − wc)
with learnable center wc ∈ Rn and a symmetric positive definite matrix Q ∈ Sn++. For a choice
of c > 1/α and 0 < α < [1 + (2k + 2

√
2k)−1]−2, the learned dynamical system is dissipative by

construction, i.e., the level set M(c) is globally asymptotically stable, and all trajectories generated
by the learned dynamics are guaranteed to be bounded.

Practical Implications. The condition in Theorem 1 is non-restrictive and is satisfied using fixed
hyperparameters, obviating the need for extensive tuning. For all experiments, we fix the level-set
scaling c ≫ 1 and set k = 100, which yields the requirement α < 0.9913. Our chosen value of
α = 0.99 comfortably satisfies this bound. Thus, our framework pairs a rigorous stability guarantee
with the flexibility to learn nearly energy-preserving dynamics with a sufficiently large k (α → 1 as
k → ∞), which is crucial for high-fidelity physical simulations.

Due to space constraints, the proofs for Lemma 1 and Theorem 1 are provided in Appendix A.
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4.4 TRAINING WITH INVARIANT SET VOLUME REGULARIZATION

We construct the training dataset as a collection of N input-output pairs, denoted as
{(wi, wnext,i)}Ni=1, where the input wi is the current time step solution and the output wnext,i is the
next time step solution based on the true dynamics. During training, each input wi is mapped to a
predicted output w∗

next,i, and the loss is computed relative to the true next state wnext,i. The dynamic
loss is defined as the average mean squared error (MSE) between the predicted outputs {w∗

next,i}Ni=1

and the ground-truth future states {wnext,i}Ni=1.

While the convex quadratic projection layer enforces dissipativity and convergence to a level set
M(c), it does not inform how to choose an appropriate level set that characterizes the attractor. The
goal is to learn the energy functional V (w) such that the resulting ellipsoid is a tight outer estimate
of the attractor. To this end, we include a regularization loss in the loss function that penalizes large
ellipsoid volumes using Q (defined in Section 4.1) and a hyperparameter λ > 0.

Loss =
1

N

N∑
i=1

∥w∗
next,i − wnext,i∥22 + λ

1√
det(Q)

, (5)

5 NUMERICAL EXPERIMENTS

5.1 LORENZ 63

We first apply our methodology to the Lorenz 63 system (Lorenz, 1963), a classic low-dimensional
model for visualizing chaotic dynamics and strange attractors. As shown in Figure 3a, our model
generates a stable, 40,000-step trajectory from an unseen initial condition that accurately recovers
the geometry of the true attractor. The learned ellipsoid provides a tight outer-estimate of this at-
tractor, validating the effectiveness of volume regularization in learning a meaningful invariant set.

(a) Long-term trajectory rollout. (b) Learned energy level V (wt). (c) Learned flow field dynamics.

Figure 3: Lorenz 63 prediction results. (a) A 40,000-step trajectory generated by the model from
an unseen initial condition (orange) compared to the ground-truth attractor (blue). The learned in-
variant ellipsoid (red) is a tight outer-estimate of the strange attractor. (b) The energy of the predicted
trajectory quickly drops below the energy level c, and remains bounded by c. (c) The learned flow
field on the w1-w2 plane, showing that vectors correctly point inwards across the ellipsoid boundary.

The learned energy function evaluations on both prediction and true trajectories are visualized in
Figure 3b, which validates that the energy level of the true system is indeed bounded by the level set
parameter c, and that the learned model is dissipative as it quickly loses energy and remains in the
invariant set. Figure 3c further visualizes this dissipative behavior by showing the learned flow field
on the w1−w2 plane. The vector fields along the boundary of the learned ellipsoid all point inwards,
ensuring that the set is positively invariant. Together, these results show that our framework success-
fully enforces long-term stability while learning an energy function that characterizes the system’s
attractor. The governing equations and implementation details are provided in Appendix C.1.
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5.2 KURAMOTO–SIVASHINSKY

We next validate our framework on the chaotic one-dimensional Kuramoto–Sivashinsky (KS) equa-
tion (Kuramoto, 1978), a more challenging PDE benchmark. We compare our model (ECO), which
adds the dissipative projection layer to a DeepONet backbone, against an unconstrained vanilla
DeepONet. The results in Figure 4 highlight the critical role of the projection layer. When rolled
out for 2000 time steps from an unseen initial condition, the unconstrained DeepONet quickly be-
comes unstable and its predictions blow up. In contrast, our projected model remains bounded and
successfully recovers the complex spatio-temporal flow patterns of the true dynamics (Figure 4a).

Our method not only ensures boundedness but also successfully recovers the system’s invariant
statistics. By projecting the trajectories onto their first two principal components, Figure 4b shows
that our model’s predictions exhibit a similar distribution as the ground-truth data, demonstrating
our model’s capability to reconstruct invariant statistics on the strange attractor. The unconstrained
model, prior to divergence, samples a sparse and unstructured distribution. Furthermore, the learned
energy level (red ellipse) effectively bounds the attractor. We provide additional statistical property
evaluations in Appendix C.2 to further validate these findings, along with implementation details.
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(a) Spatio-temporal plots of trajectory rollout.
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Figure 4: KS prediction results. (a) Comparison of ground-truth trajectory with predictions from
vanilla and projected model. Trajectories are visualized for 1000 seconds after a 500-second tran-
sition. The vanilla model blows up, while the projected model stays bounded. (b) Projection of
trajectories onto the first two PCA modes. The projected model and ground-truth sample the strange
attractor. The red line represents the learned invariant set projected onto the first two PCA modes.

5.3 NAVIER–STOKES

Finally, we test our framework on the two-dimensional Navier–Stokes equations (Temam, 2024)
with Kolmogorov forcing, a challenging benchmark for chaotic, high-dimensional PDEs. We com-
pare the long-term statistical properties of our model (ECO), against an unconstrained baseline
DeepONet and the ground truth.

When rolled out autoregressively from an unseen initial condition for 10,000 time steps, the base-
line DeepONet quickly grows to large values deviating from the attractor, as shown in Figure 5a.
In contrast, our model (ECO) ensures trajectory boundedness near the attractor, hence generates a
flow profile that closely resembles the patterns seen in the snapshots of the ground-truth trajectory.
Furthermore, the stability allows our model to accurately capture the system’s underlying statistical
structure. As shown in Figure 5b, when trajectories are projected onto the first two principal com-
ponents, our model’s predictions correctly reproduce the distinct ring-shaped geometry of the true
attractor, while the unconstrained model fails to do so. Implementation details and further statis-
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tical analyses, including comparisons of the learned energy behavior, Fourier spectrum and spatial
correlations, are provided in Appendix C.3.
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Figure 5: NS prediction results. (a) Snapshots of the flow at various time steps for the model-
predicted and ground-truth Navier–Stokes trajectories. The ground-truth and model-predicted dy-
namics exhibit similar patterns. (b) Projection of trajectories onto the first two PCA modes. The
predicted dynamics capture the ring-shaped structure of the attractor.

Table 1: Quantitative comparison of long-term statistical accuracy. ECO with a dissipative projec-
tion layer consistently outperforms the unconstrained baseline across both dynamical systems.

System Approach KL Divergence
(physical)

KL Divergence
(PCA)

Log-Spectral
Distance

Kuramoto–
Sivashinsky

DeepONet (Baseline) 0.6268 11.88 33.14
ECO (Projected) 0.0208 1.268 0.0186

Navier–Stokes DeepONet (Baseline) 0.141 5.298 11.79
ECO (Projected) 0.06221 0.9877 0.3689

To quantitatively validate our approach, we compare the statistical accuracy of ECO against the un-
constrained baseline on the two PDE benchmarks. As shown in Table 1, our method significantly
improves key statistical metrics like the KL divergence and log-spectral distance (detailed in Ap-
pendix B). It is noteworthy that these gains are achieved without providing any prior information
about the system’s dynamics or its attractor, as our model learns the stabilizing energy function and
the dynamics purely from data.

6 CONCLUSION

To address the fundamental challenge of long-term stability in data-driven chaotic dynamics mod-
els, we introduced ECO, an energy-constrained operator design. Our framework jointly learns the
system dynamics and a quadratic energy functional, and proposes a novel convex quadratic pro-
jection layer to enforce a computationally efficient dissipativity condition. This approach, to our
knowledge, is the first to provide explicit theoretical guarantees on the long-term boundedness of a
learned chaotic emulator. We demonstrated ECO’s effectiveness on benchmarks including Lorenz
63, Kuramoto–Sivashinsky, and Navier–Stokes, where it produced stable, long-horizon forecasts
that accurately reproduced the systems’ invariant statistics while unconstrained baselines failed.
This work demonstrates the value of building physically constrained models, marking a step toward
more reliable and robust scientific machine learning.
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A PROOF FOR THEORETICAL RESULTS

Proof for Proposition 1. By definition, condition (ii) implies that M(c) is indeed a positively invari-
ant set. Since V is radially unbounded, for any α > 0, we can find rα such that V (w) > α for all
∥w∥ > rα. Therefore, any level set of V is bounded as {x : V (w) ≤ α} ⊂ B(rα). Thus, M(c) is
both positively invariant and bounded.

Based on the positive invariance property, any trajectory starting with w0 ∈ M(c) will always stay
within M(c), meaning that limt→∞ dist(wt,M(c)) = 0 is satisfied.

Consider a trajectory {w′
t}t∈N that starts outside of the level set, i.e. w′

0 /∈ M(c) and V (w′
0) > c >

0. Suppose the trajectory never enters M(c), i.e., ∀t ∈ N, V (w′
t) > c. Using condition (i), we have

V (w′
t+1) ≤ αV (w′

t), which implies V (w′
t) ≤ αtV (w′

0). For any t ≥ logα

(
c

V (w′
0)

)
, V (w′

t) ≤ c

which contradicts the prior assumption. In fact, the trajectory {w′
t}t∈N will enter M(c) in finite time

at most logα
(

c
V (w′

0)

)
steps.

Proof for Lemma 1. Let ⟨u, v⟩Q := u⊤Qv and ∥u∥Q :=
√

u⊤Qu so that V (w) = ∥w −wc∥2Q. By
construction,

w̄ − wc =
√
b (L⊤)−1 ŵ − wc

∥ŵ − wc∥2
=⇒ V (w̄) = ∥w̄ − wc∥2Q = b

Define v̂ := ŵ − wc, v̄ := w̄ − wc, and γ := σ(k(b− V (ŵ))) ∈ (0, 1). Then

w∗ − wc = γv̂ + (1− γ)v̄.

By Minkowski’s inequality for the Q-norm,

∥w∗ − wc∥Q ≤ γ∥v̂∥Q + (1− γ)∥v̄∥Q = γ
√
V (ŵ) + (1− γ)

√
b.

Hence
V (w∗) ≤

(√
b+ γ(

√
V (ŵ)−

√
b)
)2
. (6)

If V (ŵ) ≤ b, then the right-hand side of (6) is at most b. So it suffices to consider V (ŵ) ≥ b.

Let s =
√
V (ŵ) ≥

√
b and t = s−

√
b ≥ 0. Then

γ =
1

1 + ek(s2−b)
≤ 1

2 + k(s2 − b)

since ex ≥ 1 + x for all x ≥ 0. Note that s2 − b = t(t+ 2
√
b), so

γt ≤ h(t) :=
t

2 + k(t2 + 2
√
b t)

.

Since the derivative vanishes at t⋆ =
√
2/k, let δ = (2kb+ 2

√
2kb)−1.

h′(t) =
2− kt2

(2 + k(t2 + 2
√
b t))2

, =⇒ max
t≥0

h(t) =

√
2/k

4 + 2
√
2kb

=

√
b

2kb+ 2
√
2kb

= δ
√
b.

Thus, for all s ≥
√
b,

γ(
√
V (ŵ)−

√
b) ≤ δ

√
b. (7)

Combining (6) and (7),
V (w∗) ≤

(√
b+ δ

√
b
)2

= (1 + δ)2b.
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Proof for Theorem 1. Let b = α[V (wt) + ReLU(c − V (wt))], it directly follows from c > 1/α
that b ≥ αc > 1. The inequality constraint in (3) states that V (wt+1) ≤ b. Since b > 1, we have
(2kb+ 2

√
2kb)−1 < (2k+ 2

√
2k)−1. Using Lemma 1, the final output of our model w∗

t+1 satisfies
that V (w∗

t+1) ≤ (1 + (2k + 2
√
2k)−1)2b. Since α < [1 + (2k + 2

√
2k)−1]−2, we can always

find some 0 < α0 < 1 such that [1 + (2k + 2
√
2k)−1]2α ≤ α0 < 1. Consequently, the inequality

constraint in (3) is satisfied:

V (w∗
t+1) ≤ (1 + (2k + 2

√
2k)−1)2α[V (wt) + ReLU(c− V (wt))] ≤ α0[V (wt) + ReLU(c− V (wt))]

Given the equivalency between the constraint (3) and the conditions in Proposition 1, we have now
shown the learned dynamics w∗

t+1 = G∗(w∗
t ) is indeed dissipative.

Note that for the predicted trajectory under the learned dynamics, at any time t > 0, V (w∗
t ) is strictly

bounded by max{V (w0), c}, which implies V (w∗
t ) ≤ V (w0). Let z = w∗

t − wc, the constraint can
be rewritten as zTQz ≤ V (w0). Since Q is positive definite, we have λmin(Q)∥z∥2 ≤ zTQz ≤
V (w0). Thus w∗

t will always be bounded with respect to its L2 norm.

B METRICS FOR STATISTICAL PROPERTY EVALUATION

We use three statistical metrics to evaluate the effectiveness of our model in capturing statistical
properties.

KL Divergence (physical): We compare the pixel-wise distribution of velocity (Kuramoto–
Sivashinsky) or vorticity (Navier–Stokes) between the ground-truth data and the model-predicted
trajectories. We evaluate the distance between distributions with the Kullback–Leibler divergence:

DKL(P ||Q) =
∑
x∈X

P (x)log
P (x)

Q(x)
(8)

In this case, x ∈ X ⊂ R is the support of the physical quantity (velocity or vorticity) across all
pixels in space and time. That is, a single grid point on the spatial domain at a single snapshot in
time represents one sample from the distribution. We use P (x) as the ground-truth distribution and
Q(x) as the predicted distribution.

KL Divergence (PCA): We also compare the Kullback–Leibler divergence between the distribu-
tions of the physical quantities onto their two PCA modes. Projecting every snapshot in time onto
the first two PCA modes gives a 2D distribution of the trajectories in PCA space, as seen in Figures 4
and 5b. We then compute the KL divergence from Equation 8, where x ∈ X ⊂ R2 is the support of
the projected snapshot onto a 2D point across all snapshots in time. We use P (x) as the ground-truth
distribution and Q(x) as the predicted distribution.

Log-Spectral Distance: We create energy spectra for predicted trajectories by performing a discrete
Fourier transform in the spatial domain of each snapshot in time. The energy of a given Fourier mode
is computed by taking the average in time of the square signal. The Log-Spectral Distance between
the ground-truth spectrum and the predicted spectrum is defined as

DLS =

{
1

N

N∑
n=1

[
logP (n)− logP̂ (n)

]p}1/p

(9)

Here, P (n) is the ground-truth energy of the nth Fourier mode and P̂ (n) is the predicted energy of
the nth Fourier mode. We use p = 2 for the results reported in Table 1.
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C IMPLEMENTATION DETAILS AND ADDITIONAL NUMERICAL RESULTS

C.1 LORENZ 63

Governing Equations. The Lorenz 63 system is described by the following ordinary differential
equations (ODEs):

ẇ1 = σ(w2 − w1), ẇ2 = w1(ρ− w3)− w2, ẇ3 = w1w2 − βw3.

where w ∈ R3 is the system state. We use parameters σ = 10.0, ρ = 28.0, β = 8/3 which generate
chaotic behaviors.

Dataset Generation. The training data was generated from a single long trajectory integrated for
10,000 seconds with a sampling interval of 0.05 seconds. The trajectory was initialized at a random
state outside the strange attractor to ensure the model learns the dissipative flow. For evaluation, we
generated a test trajectory by starting from a new, unseen initial condition for 2,000 seconds.

Model Architecture. This system can be viewed as a special case of an infinite-dimensional dy-
namical system where the spatial domain consists of just three discrete points. In this simplified
context, backbone neural operators like the Fourier Neural Operator (Kovachki et al., 2023) and
DeepONet (Lu et al., 2021) reduce to a simple multilayer perceptron (MLP). Accordingly, we con-
structed our unconstrained neural operator emulator, Ĝ, as a feedforward neural network with 6
hidden layers, each containing 150 neurons.

C.2 KURAMOTO–SIVASHINSKY

Governing Equations.

wt + wxx + wxxxx +
1

2
(w2)x = 0, (t, x) ∈ [0,∞)× [0, L]

w(0, x) = w0(x), x ∈ [0, L]
(10)

We use a domain length L = 32π to generate chaotic behavior.

Dataset Generation. The training dataset consists of six trajectories simulated for 500 seconds,
with snapshots saved every 1 second at a spatial resolution of 512 points. The validation set con-
tains two trajectories with the same discretization. All trajectories were initialized with random
conditions.

Model Architecture. We construct two models based on DeepONet backbones, one with the
added projection layer discussed in Section 4.2 and one vanilla model without. For both models, the
DeepONet branch network consists of three convolutional layers of output dimension 32, 64, 128,
and two fully connected layers, each with 256 neurons. The trunk network consists of four fully
connected layers, each with 256 neurons.

Additional Results. To further validate our approach, we provide a detailed comparison of the
learned dynamics. Figure 7 visualizes the learned energy function behavior and Fourier spectrum
of the predicted trajectories, while Figure 6 examines the statistical distribution constructed by the
predicted trajectories. Both figures confirm that our projected model (ECO) remains bounded and
accurately captures the invariant statistics of the true system.

C.3 NAVIER–STOKES

Governing Equations. The 2D Navier–Stokes equations in vorticity form with Kolmogorov forc-
ing are given by:

wt = −u · ∇w +
1

Re
∇2w − ncos(ny), (t, x, y) ∈ [0,∞)× [0, 2π]× [0, 2π]

w(0, x, y) = w0(x, y), (x, y) ∈ [0, 2π]× [0, 2π]
(11)

We use a wave number of the forcing function n = 4 and a Reynolds number of Re = 40.
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Figure 6: KS: State-space and statistical distribution analysis. (a) The probability distribution
of the physical state variable for our projected model closely matches the ground truth, while the
unconstrained model’s distribution is nearly flat due to its divergence. (b) Trajectories projected onto
the first two PCA modes confirm that ECO’s predictions correctly sample the attractor’s geometry
and the learned invariant ellipsoid (red) provides a tight outer-estimate of the true attractor.
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(a) Energy blowup (Unconstrained DeepONet)
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(b) Bounded energy in our approach (ECO)
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(c) Spectrum blowup (Unconstrained DeepONet)
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Figure 7: KS: Energy and Fourier spectrum comparison. The top row shows the learned energy
V (w) over time, with the unconstrained model energy growing unbounded in a zoomed-out plot (a),
while our model remains bounded and produces the same energy level as the ground truth (b). The
bottom row shows the Fourier power spectrum, the instability of the baseline (c) versus the accurate
spectrum reconstruction of our model with projection (d).

Dataset Generation. The training dataset consists of 160 trajectories, each simulated for 500
seconds with snapshots saved every 1 second. Each snapshot has a spatial resolution of 64 × 64.
The validation set contains 40 trajectories with the same discretization.
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Model Architecture. The DeepONet backbone consists of a branch network with four convolu-
tional layers (output dimensions 64, 128, 256, 512) and two fully connected layers (1024 neurons
each). The trunk network consists of five fully connected layers (1024 neurons each).

Additional Results. To further validate our approach, we provide a detailed comparison of the
learned dynamics. The results confirm that our projected model (ECO) remains bounded and accu-
rately captures the invariant statistics of the true system, in contrast to the unconstrained baseline.

Figure 8 shows that while the unconstrained model’s energy and Fourier spectrum blow up, ECO’s
predictions remain bounded and track the ground truth. This stability allows our model to learn the
correct underlying statistics while the unconstrained model produces a sparse distribution, as shown
in Figure 9. The probability distribution of the predicted state matches the true dynamics, and the
trajectories correctly sample the attractor’s geometry within the learned invariant ellipsoid. Finally,
qualitative comparisons in Figure 10 show that ECOreproduces the correct large-scale spatial struc-
tures induced by the system’s forcing.
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(b) Bounded energy (ECO)
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(c) Spectrum blowup (Unconstrained)
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Figure 8: NS: Energy and Fourier spectrum comparison. The top row shows the learned energy
over time, with the unconstrained model blowing up (a) while our model remains bounded (b). The
bottom row shows the energy spectrum, highlighting the instability of the baseline (c) versus the
accuracy of our model (d).

D FUTURE WORK

Future work could explore more expressive non-quadratic energy functionals, potentially even pa-
rameterized by another neural network, and extend the projection framework to enforce other non-
linear physical constraints. Investigating the computational scaling of this approach to even larger-
scale and realistic systems also remains a promising direction for building reliable and physically
consistent dynamics emulators.
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(a) State Probability Distribution
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Figure 9: NS: State-space and statistical distribution analysis. (a) The probability distribution of
the state variable for our projected model matches the ground truth. (b) Trajectories projected onto
the first two PCA modes confirm that ECO’s predictions correctly sample the attractor’s geometry
within the learned invariant ellipsoid (red).
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Figure 10: NS: Spatial correlation of the ground-truth and predicted trajectories averaged in
time. The ground-truth and predicted dynamics show patterns consistent with the sinusoidal forcing
with frequency 4.
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