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ABSTRACT

We introduce Purrception, a variational flow matching approach for vector-
quantized image generation that provides explicit categorical supervision while
maintaining continuous transport dynamics. Our method adapts Variational Flow
Matching to vector-quantized latents by learning categorical posteriors over code-
book indices while computing velocity fields in the continuous embedding space.
This combines the geometric awareness of continuous methods with the discrete
supervision of categorical approaches, enabling uncertainty quantification over
plausible codes and temperature-controlled generation. We evaluate Purrception on
ImageNet-1k 256×256 generation. Training converges faster than both continuous
flow matching and discrete flow matching baselines while achieving competitive
FID scores with state-of-the-art models. This demonstrates that Variational Flow
Matching can effectively bridge continuous transport and discrete supervision for
improved training efficiency in image generation.

Figure 1: Purrception generates high-resolution images in vector-quantized latent spaces, sampled as
continuous transport learned through discrete supervision.

1 INTRODUCTION

The task of generative modeling is to approximate a data distribution to enable sampling of new in-
stances. Beyond high-fidelity synthesis in images, audio, and text, generative models are increasingly
used for augmentation, restoration, simulation, and in-silico design (e.g., de novo molecules and
proteins). Flow Matching (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2023) has emerged as
an extremely effective approach for the generation of a variety of data modalities. In Flow Matching,
one first defines an interpolation between a source (noise) and a target (data) distribution, and then
approximate the velocity field of a continuous normalizing flow that transports samples between the
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two. As the target velocity can be understood as the expected time-derivative of the interpolation,
it can be learned in a self-supervised manner by averaging over samples from the source and target
distribution. The Flow Matching framework has been extended to general geometries (Chen &
Lipman, 2024), discrete data (Gat et al., 2024), and has seen many applications (Wildberger et al.,
2024; Dao et al., 2023; Hu et al., 2024; Kohler et al., 2023).

Variational Flow Matching (VFM) (Eijkelboom et al., 2024) reframes Flow Matching as inference.
Since the Flow Matching velocity field is the expectation of a conditional velocity, it can be approxi-
mated via a variational posterior over endpoints (target samples) given the current interpolation point.
Standard Flow Matching is recovered when this posterior is Gaussian, while other choices extend
naturally to different modalities. Applied to discrete data, VFM yields CatFlow, previously used
for graph generation and related to continuous diffusion for categorical data (Dieleman et al., 2022).
More broadly, VFM has been applied to mixed modalities (Guzmán-Cordero et al., 2025), molecular
generation (Eijkelboom et al., 2025; Sakalyan et al.), and general geometries (Zaghen et al., 2025).
The variational view also enables problem-specific constraints, e.g., for sea-ice forecasting, where
bounds like non-negative thickness are enforced through the loss (Finn et al., 2025).

This paper leverages VFM in the context of image generation. We consider vector-quantized (VQ)
latents, which map images into grids of discrete indices with associated embeddings, yielding compact
representations that preserve perceptual fidelity at far lower dimensionality than pixels. However,
their dual discrete–continuous nature poses a modeling challenge not addressed by purely continuous
or discrete methods. Continuous methods (latent diffusion, flow matching) generate in the embedding
space, enabling smooth transport and efficient high-resolution synthesis (Rombach et al., 2022; Dao
et al., 2023). Yet they must discretize vectors back to indices: geometry is preserved, but categorical
structure is ignored – the model never learns which index to choose or how to represent uncertainty
across codes. Conversely, fully discrete approaches (VQ-Diffusion (Gu et al., 2022), discrete flow
matching (DFM) (Gat et al., 2024)) treat related embeddings as unrelated tokens, discarding geometry.
While DFM could use temperature-based sampling, this only produces stochastic “hops” between
indices – each step commits to a single code – whereas continuous flow matching (CFM) cannot use
temperature at all, since it lacks logits.

To resolve this tradeoff, we introduce Purrception, an adaptation of VFM to vector-quantized latents.
By using a categorical posterior over indices while transporting probability in the continuous em-
bedding space, Purrception provides a categorical learning signal while still leveraging geometry.
This means the model can express uncertainty across plausible codes and translate it into smooth,
geometry-aware transport rather than discrete jumps. Logits further enable temperature scaling:
lowering temperature sharpens predictions, while raising temperature spreads probability across
nearby embeddings, producing smoother generations and samples with more details. Empirically, this
hybrid approach converges faster than both CFM and DFM on ImageNet-1k, achieving competitive
or superior FID while retaining the efficiency of flow matching.

2 BACKGROUND

2.1 FLOW MATCHING

Flow matching (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023) learns a velocity field
vθt : RD × [0, 1]→ RD – parameterized by a network with parameters θ – which induces a transport
of samples x0 ∼ p0 from a prior (e.g., standard noise) to D-dimensional points x1 that should
approximate the data distribution. This is done by integrating the ordinary differential equation

dx

dt
= vθt (x) with x0 ∼ p0, (1)

which is equivalent to learning a velocity field that satisfies the continuity equation, also known as a
continuous normalizing flow,

∂tpt(x) = −∇ ·
(
vθt (x)pt(x)

)
. (2)

Flow matching starts from the observation that, given a choice of interpolation between noise and data
– e.g., linear, where xt = tx1 + (1− t)x0 – we can derive a conditional velocity field ut(x | x1) that
satisfies the continuity equation towards (i.e., conditional on) a specific endpoint. A corresponding
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velocity field ut(x), which satisfies the continuity equation for the (marginal) probability path, can
be expressed in terms of an (intractable) expectation with respect to the posterior

ut(x) =

∫
ut(x | x1) pt(x1 | x) dx1 = Ept(x1|x) [ut(x | x1)] . (3)

The goal of flow matching is therefore to learn a velocity field vθt (x) that approximates ut(x), i.e., to
minimize the flow matching objective

LFM(θ) = Et,x

[
||vθt (x)− ut(x)||2

]
, (4)

which can be made tractable by optimizing

LCFM(θ) = Et,x1,x

[
||vθt (x)− ut(x | x1)||2

]
, (5)

i.e., a Monte-Carlo estimate of the marginal objective through our conditional objective. As shown
in Lipman et al. (2023), indeed these two objectives have the same gradients w.r.t. θ. This can
equivalently be understood as trying to regress towards the expected time-derivative of the interpolant.

2.2 VARIATIONAL FLOW MATCHING

Variational Flow Matching (VFM) (Eijkelboom et al., 2024) treats Flow Matching as a variational
inference problem. By realizing (through Equation (3)) the target marginal velocity field ut can be
expressed as an expectation of the conditional field w.r.t. the posterior distribution pt(x1 | x), the
authors propose to learn this posterior directly, i.e., learn

LVFM(θ) := Et

[
KL(pt(x1, x) || qθt (x1, x))] = −Et,x1,x[log q

θ
t (x1 | x)

]
+ const., (6)

where qθt (x1 | x) is the variational posterior approximating the posterior probability path pt(x1 | x).
The resulting learning velocity field is thus given by

vθt (x) := Eqθt (x1|x) [ut(x | x1)]
OT
=

µθ
t (x)− x

1− t
, (7)

where µθ
t (x) := Eqθt

[x1 | x] and the conditional field is the linear (or optimal transport) interpolation.
Though this objective initially looks intractable, we authors show that the task of learning the
variational approximation only needs to be learned dimension-wise in the mean, as Eqθt (x1|x)[x

d
1 | x]

only depends on the marginal qθt (x
d | x) – an approach called mean-field VFM.

VFM is flexible in choosing the variational distribution qθt , which makes it a general framework for
different data types. In Eijkelboom et al. (2024), the authors show significant improvement over
CFM when the data is discrete and the variational approximation is chosen to be categorical, a model
coined CatFlow. VFM has also obtained strong performance in tabular data (Guzmán-Cordero et al.,
2025), molecular generation tasks (Eijkelboom et al., 2025; Sakalyan et al.), general geometries
(Zaghen et al., 2025), and sea-ice modeling (Finn et al., 2025).

2.3 VECTOR-QUANTIZED AND LATENT GENERATIVE MODELS

High-resolution image modeling in pixel space is computationally prohibitive; a common remedy is to
learn a lower-dimensional latent space with an autoencoder. Vector-Quantized VAEs (Van Den Oord
et al., 2017) and VQ-GANs (Esser et al., 2021) use a discrete codebook C = {ek}Kk=1 ⊆ RD. By
mapping images into a compact set of discrete tokens, vector-quantized latents provide an efficient
and stable representation: they alleviate posterior collapse and often yield sharper, higher-fidelity
reconstructions than pixel-space models at comparable compute.

Given an image x, the encoder output is quantized to its nearest code:

z(x) = Quantize(Encoder(x)) = argmin
ek∈C

∥∥Encoder(x)− ek
∥∥2
2
. (8)

Equivalently, one can store the index

c(x) = argmin
k∈[K]

∥∥Encoder(x)− ek
∥∥2
2
, [K] := {1, . . . ,K}. (9)
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After training the encoder, decoder, and codebook, a generative model is learned in latent space and
samples are decoded to pixels. For a grid of D discrete latents c ∈ [K]D, a common choice is an
autoregressive model:

p(c) =

D∏
d=1

p (cd | c<d) . (10)

While this formulation provides a powerful and efficient representation, it also introduces a funda-
mental modeling tension: each latent is at once a discrete code index and a continuous embedding
vector. Existing generative methods resolve this tension by making a trade-off – either operating in
the continuous embedding space and ignoring the categorical structure, or modeling indices directly
while discarding geometric information. This limitation motivates the hybrid perspective developed
in Section 3.

3 PURRCEPTION: VQ-VFM FOR IMAGES

3.1 MOTIVATION: A HYBRID APPROACH TO VQ-LATENT FLOWS

Vector-quantized (VQ) latents encode data in two ways simultaneously: as discrete indices drawn
from a finite codebook and as continuous embeddings that capture geometric relations such as
proximity and direction. Existing generative models are typically forced into one of two degenerate
extremes, each of which breaks part of this dual structure:

• Continuous flow models (e.g., latent diffusion and flow matching) operate in RD, treating
codebook vectors as continuous. From the perspective of Variational Flow Matching
(VFM), this corresponds to a Gaussian relaxation: endpoints are approximated as continuous
samples rather than categorical indices. Geometry is preserved, but discreteness is lost – the
model never receives a categorical learning signal, cannot express uncertainty over multiple
plausible codes, and has no logits from which to derive controls such as temperature scaling.

• Fully discrete flow models instead predict categorical indices directly. While this aligns
with the quantized structure, it collapses geometry: once reduced to raw indices, semantically
related codes are treated as unrelated tokens. Predictions degenerate into discrete “teleports”
between indices, eliminating interpolation and making both uncertainty modeling and
temperature scaling meaningless.

An ideal solution should combine the strengths of both worlds: exploit the smooth geometry of
embeddings and provide categorical supervision over indices. Our approach adapts VFM with a
categorical variational posterior, so that the velocity field evolves in continuous space while learning
is driven by cross-entropy over codebook entries. This hybridization allows the model to receive a
categorical learning signal, to reason over multiple plausible indices, and to convert that uncertainty
into geometry-aware transport rather than discrete jumps. Crucially, working with logits also unlocks
a temperature knob: lowering τ enforces stronger commitments, which improves global fidelity but
oversimplifies samples, while raising τ redistributes probability more broadly, adding detail and
variety at the cost of overall quality.

3.2 THE VQ-VFM OBJECTIVE

We begin from the key observation underlying VFM and CatFlow: the velocity at time t can be
expressed as an expectation over conditional continuations weighted by a posterior over endpoints
(Eijkelboom et al., 2024):

ut(zt) = Ept(z1|zt)
[
ut(zt | z1)

]
. (11)

This perspective reframes the learning problem: rather than predicting the vector field directly, we
may approximate the posterior pt(z1 | zt) with a variational distribution qθt (z1 | zt) and compute the
velocity as its expectation.

In the case of VQ-latents, this insight becomes particularly powerful. Each endpoint z1 must be one
of the finite codebook embeddings {ek}Kk=1, so the posterior is categorical over the discrete latent
codes. That is, our variational posterior should be given by

qθt (c | zt) = Cat(c | πθ
t (zt)). (12)

4
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Figure 2: Purrception approach. Purrception generates high-resolution images in a vector quantized
latent space. For training, we use a pretrained encoder E and a codebook vector of size K to encode
and quantize an image in latent space to obtain z1. Then, we train a diffusion transformer that predicts,
given a linear interpolant zt, a categorical distribution over the codebook vectors for each patch of
the target z1 via a cross-entropy objective. For sampling, we generate a quantized latent which we
further pass through the decoder G to obtain the image in pixel-space.

where πθ
t (zt) is the probability distribution over the codebook vectors outputted by a neural network

(e.g., Diffusion Transformer (Peebles & Xie, 2023)). Conditioning this posterior on the noisy latent
zt yields a distribution over discrete indices while still defining transport in continuous embedding
space, as we can compute

vθt (zt) =

K∑
k=1

πθ,k
t (zt)

(
ek − zt
1− t

)
=

µt(zt)− zt
1− t

, (13)

where µt(zt) :=
∑K

k=1 π
θ,k
t (zt)ek and πθ,k

t (zt) is the probability to have as endpoint the codebook
vector ek given the time-dependent interpolant zt. This ensures that uncertainty over multiple
plausible codes is translated into smooth, geometry-aware motion, rather than discrete “teleports”
between unrelated indices.

Training follows from the VFM objective, which in this case reduces to the cross-entropy loss between
the predicted posterior and the ground-truth code indices:

LPurr(θ) = −Et,x,zt

[
log qθ(c | zt)

]
, (14)

where x ∼ D is sampled from the data, z1 and c is the corresponding quantized image and latent
code respectively, and zt is obtained through zt := tz1 + (1− t)z0 for z0 ∼ p0 and t ∼ U(0, 1).

Softmax temperature. Because πθ
t (zt) is obtained from logits π̃θ

t (zt) via a softmax with tempera-
ture τ ,

πθ,k
t (zt) =

exp(π̃θ,k
t (zt)/τ)∑K

i=1 exp(π̃
θ,i
t (zt)/τ)

, (15)

our framework naturally inherits an inference-time degree of freedom that regulates how categorical
uncertainty is expressed in the velocity field. When τ is small, the posterior distribution collapses
toward the most likely index, enforcing early commitments and producing sharp, high-fidelity outputs
that may, however, become overly simplistic as alternative hypotheses are ignored. Conversely, large
τ values flatten the distribution, assigning non-negligible weight to multiple neighboring codes. This
broadening injects more detail and variability into the generated samples, but can reduce overall
fidelity as the barycenter drifts away from the most plausible embedding. Intermediate τ values often
strike the best balance, echoing the bias–variance trade-off familiar from other generative frameworks.
Such controllability is absent in continuous FM, where no categorical logits exist, and meaningless
in fully discrete FM, where indices are collapsed immediately; it arises directly from the hybrid
VQ–VFM formulation, turning temperature into a principled knob for task-adaptive inference.
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Figure 3: Convergence speed comparison on ImageNet-1k. FID-10k scores are plotted against
training iterations for Purrception, two CFM variants, and DFM. Results are shown for two DiT
backbones: (a) DiT-L/2 and (b) DiT-XL/2. We train Purrception using the default τ = 1.0 softmax
temperature, while using τ = 0.9 during inference. The plots show that Purrception achieves lower
final FID scores and converges significantly faster, matching the final performance of CFM and DFM
in fewer training iterations. Here we used Stable Diffusion’s vq-f8 tokenizer. Full training details
are provided in Appendix C.

4 EXPERIMENTS AND RESULTS

We validate the performance of Purrception through a series of experiments. In our experiments, we
evaluate on ImageNet-1k (Deng et al., 2009) on 256×256 resolution, using both the Stable Diffusion’s
vq-f8 (Esser et al., 2021) and LlamaGen’s vq-ds8-c2i (Sun et al., 2024a) tokenizers, as well as
the DiT-L/2 and DiT-XL/2 backbones (Peebles & Xie, 2023). We provide a full description of the
implementation details in Appendix C. First, we perform a comparative study between Purrception,
continuous flow matching (Lipman et al., 2023), and discrete flow matching (DFM) (Gat et al.,
2024). For continuous flow matching, we consider two objectives: the classical regression task
of predicting the velocity field (denoted simply as CFM) and the task of predicting the endpoint
(denoted as CFM-endpoint), as seen in Ma et al. (2024), allowing us to measure the effects of both
(1) switching to endpoint prediction, and (2) using our discrete objective compared to the continuous
baseline. We show that Purrception converges faster (i.e., in fewer training iterations) to a low FID,
hence reducing computational resources. Then, we show that Purrception generates high-fidelity
and high-quality samples when trained at scale, achieving a competitive FID against a variety of
state-of-the-art autoregressive, diffusion, and masked generative baselines. Finally, we show that the
softmax temperature parameter can be used to control the image sharpness and quality at inference
time, a property unique to hybrid discrete-continuous models.

4.1 CONVERGENCE SPEED

A key requirement for practical generative modeling is the ability to reach high sample quality quickly,
since faster convergence directly reduces training cost and compute requirements. To evaluate this,
we compare the convergence speed of Purrception against two strong baselines: the continuous flow
model (CFM) (Lipman et al., 2023) and the fully discrete flow model (DFM) (Gat et al., 2024).
Given the great performance of Scalable Interpolant Transformers (SiT) Ma et al. (2024), we include
an additional baseline (denoted as CFM-endpoint) where the task is to predict via mean-squared
error (similar to CFM) the endpoint z1 given the interpolant zt (similar to Purrception). For a fair
comparison, we used the same training configurations, and we sample all images using Euler with
100 integration steps as ODE solver. We provide all implementation details in Appendix C.

Figure 3 reports FID-10k scores for both DiT-L/2 and DiT-XL/2 backbones. Across settings, Purrcep-
tion not only achieves lower final FID but also reaches baseline performance substantially earlier.
With DiT-L/2, Purrception checkpoint at 2M iterations matches CFM’s and CFM-endpoint’s scores
after ∼1.2M iterations (1.65× faster), while Purrception checkpoint at 1M iterations matches DFM’s
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final score after ∼325k iterations (3.0× faster). With the larger DiT-XL/2 backbone, the gap grows
further: Purrception converges 2.3× faster than both CFM baselines and 3.5× faster than DFM.

These results underscore the advantage of Purrception’s hybrid formulation. By receiving direct
categorical supervision (unlike CFM), the model learns discrete structure more efficiently, while
its use of continuous embedding space (unlike DFM) enables smooth geometry-aware transport
rather than slow, discrete jumps. This combination accelerates optimization, leading to both faster
convergence and stronger sample quality.

4.2 OPTIMIZING SAMPLE QUALITY VIA SOFTMAX TEMPERATURE SCALING

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5 τ

Figure 4: Generated samples at different softmax temperatures. We can control the output
of Purrception by changing the softmax temperature. A low temperature creates simpler, cleaner
samples, while a high temperature adds more fine-grained details but can sometimes introduce flaws
and reduce the image quality. Here we vary τ from 0.1 to 1.5.

0.3 0.5 0.7 0.9 1.2 1.5

15

20

30

50

Softmax Temperature (τ )

FI
D

-5
0k

(↓
)

Purrception
CFM

Figure 5: The effect of the softmax temper-
ature on FID score. The plot depicts a U-
shape relationship between τ parameter used
in Purrception and the FID score. This param-
eter is not present in CFM. Both models have
been trained for 1M iterations and under the
same training conditions. Here we used the
Stable Diffusion’s vq-f8 autoencoder.

Temperature scaling is a long-standing technique in
language modeling, used to balance coherence and
diversity during sampling. In the context of VQ im-
age synthesis, continuous flow methods (e.g., CFM)
cannot exploit this mechanism at all, since they lack
categorical logits. Fully discrete models (e.g., DFM)
can in principle apply temperature scaling to their log-
its, but because they commit to hard index selections
at each step, adjusting τ has little practical effect –
the sampling collapses to discrete jumps regardless
of the distribution’s softness. In contrast, Purrcep-
tion retains uncertainty in the logits while transport-
ing through the continuous embedding space, which
means temperature scaling can be naturally used.

To test the effect of the softmax temperature dur-
ing inference, we conduct an ablation study with a
DiT-XL/2 backbone trained for one million iterations.
During training, we keep τ to the default 1.0, vary-
ing the temperature only at inference. Figures 4 and
5 show the effect on sample quality and FID-50k
scores, respectively. We observe a clear U-shaped
curve: performance improves as τ increases from

very low values, reaches an optimum around τ ≈ 0.8–0.9, and then degrades as τ becomes larger.
Qualitatively, low τ values produce overly deterministic and simplistic images, while high τ values
lead to noisy and incoherent generations.
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These findings highlight that: (1) even though Purrception has been trained with a constant τ = 1.0,
the data distribution is best approximated for lower softmax temperatures, and (2) adjusting τ is a
simple, training-free approach to improve the sample quality. Future work could consist of developing
principled softmax temperature schedules during inference or varying τ during training.

4.3 QUALITATIVE AND QUANTITATIVE RESULTS

To test how well Purrception performs against similar methods, we train Purrception at scale for 3.5M
iterations with a DiT-XL/2 backbone, and report quantitative results on class-conditional ImageNet-1k
generation at 256× 256 resolution.

Table 1 highlights a comparison with popular image generation methods, similar to Purrception in
model size and methodology, including autoregressive methods (Esser et al., 2021; Yu et al., 2021; Lee
et al., 2022; Sun et al., 2024a), discrete diffusion and masked generative models (Chang et al., 2022;
Gu et al., 2022; Hu & Ommer, 2024), as well as continuous diffusion models (Dhariwal & Nichol,
2021; Ho et al., 2022; Rombach et al., 2022; Peebles & Xie, 2023; Ma et al., 2024). Purrception
is competitive in FID score. Notably, Purrception outperforms all discrete diffusion and masked
generative models. It also shows stronger performance against most autoregressive methods while
having less parameters and/or benefiting from natively faster decoding than large-token autoregressive
models (which often rely on inference optimizers such as vLLM Sun et al. (2024a)). This firmly
establishes Purrception as a novel, state-of-the-art approach, among VQ-based latent generative
models, demonstrating that our hybrid discrete-continuous formulation can surpass traditional VQ
approaches in fidelity.

Against strong continuous diffusion baselines, Purrception falls short on important baselines like
DiT-XL/2 and SiT-XL/2 baselines. We believe this is mainly due to two reasons: (1) the use of
high-quality VAE autoencoders in those models, which are known to produce lower FID scores than
VQ tokenizers at equivalent scales, and (2) their considerably longer training schedules (twice as
many iterations as used for Purrception). Despite this gap, Purrception’s strong results highlight
that our hybrid design can approach the performance of top-tier diffusion models. This underscores
that Purrception effectively bridges the fidelity of continuous diffusion with the categorical training
objective suitable for VQ latent spaces, positioning it as a promising direction for future generative
modeling.

5 RELATED WORK

Diffusion, flow matching, and latent spaces. Diffusion and score-based models synthesize data
via iterative denoising (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), while Flow
Matching learns a time-dependent velocity field that transports a source distribution to the data
distribution, yielding continuous normalizing flows with strong empirical results (Lipman et al., 2023;
Liu et al., 2023; Albergo et al., 2023). Moreover, alternative parameterizations of flow matching exist,
e.g. endpoint prediction shows improved performance in tasks like image generation and molecular
generation (Ma et al., 2024; Eijkelboom et al., 2024). To reduce cost without sacrificing quality, many
works apply these dynamics in vector-quantized latent spaces, where autoencoders provide compact
discrete indices with associated embeddings (Van Den Oord et al., 2017; Razavi et al., 2019). Such
latents underlie VQ-GAN and large-scale generative systems (Esser et al., 2021; Ramesh et al., 2021;
2022), and running diffusion/flows on them enables efficient high-fidelity synthesis (Vahdat et al.,
2021; Rombach et al., 2022; Dao et al., 2023), with recent work scaling to stronger backbones and
resolutions (Ma et al., 2024; Esser et al.).

Discrete dynamics and relaxations. Beyond continuous latents, discrete diffusion and flow models
operate directly on tokens or pixels (Hoogeboom et al., 2021a;b; Austin et al., 2021; Gat et al., 2024;
Stark et al., 2024; Davis et al., 2024). Closer to our setting, discrete latent diffusion denoises over
VQ indices (Gu et al., 2022; Tang et al., 2022), making the indices explicit but typically discarding
the geometry of their embeddings. A complementary approach is to embed categorical data into a
continuous space and run diffusion there, as in Continuous Diffusion for Categorical Data (CDCD)
(Dieleman et al., 2022), developed primarily for language modelling. CDCD preserves the continuous-
time formulation by operating on noisy embeddings while training with cross-entropy over token
predictions, thereby capturing uncertainty and retaining guidance mechanisms. However, because the
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Table 1: Class-conditional generation on ImageNet-1k 256×256. We compare Purrception against
various autoregressive, diffusion, and masked generative models. We report the number of parameters
in millions (M) or billions (B), as well as the FID scores for each model. Purrception achieves a
competitive FID of 3.88, showcasing the effectiveness of our hybrid discrete-continuous approach
against strong baselines, particularly the VQ image generation methods. Here we use the LlamaGen’s
vq-ds8-c2i (Sun et al., 2024a) tokenizer and Euler with 250 integration steps as ODE solver for
FID computation.

Model #Parameters FID ↓
Autoregressive & Masked Generative Models

VQGAN (Esser et al., 2021) 1.4B 5.20
ViT-VQGAN (Yu et al., 2021) 1.7B 3.04
RQTransformer (Lee et al., 2022) 3.8B 3.80
LlamaGen-XL (Sun et al., 2024a) 775M 3.39
MaskGIT (Chang et al., 2022) 227M 6.18
Open-MAGVIT2-L (Luo et al., 2024) 804M 2.51

Continuous Diffusion
ADM (Dhariwal & Nichol, 2021) 554M 10.94
CDM (Ho et al., 2022) - 4.88
LDM-4 Rombach et al. (2022) 400M 3.60
DiT-XL/2 (Peebles & Xie, 2023) 675M 2.27
SiT-XL/2 (Ma et al., 2024) 675M 2.06

Discrete Diffusion & Masked Generative Models
VQ-Diffusion (Gu et al., 2022) - 5.84
Implicit Timestep Model Hu & Ommer (2024) 546M 5.30

Hybrid Discrete-Continuous Models
Purrception (τ = 0.9, cfg = 1.3) 750M 3.88

embeddings are learned jointly, the approach relies on continuous relaxations and may diverge from
the true categorical structure. Our approach follows the same general spirit of combining categorical
supervision with continuous transport.

6 CONCLUSIONS

We introduced Purrception, an adaptation of VFM to vector-quantized image generation. The method
retains continuous transport in the embedding space while supervising with a categorical posterior
over codebook indices. This coupling addresses the core trade-off of existing approaches: unlike
CFM, Purrception benefits from categorical supervision, and unlike DFM, it avoids collapsing
geometry into hard index jumps. The result is a model that learns, broadly speaking, what to choose
and where to go, expressing uncertainty over plausible codes in a geometry-aware way. Empirically,
Purrception outperforms both CFM and DFM on ImageNet-1k 256× 256 benchmark, converging
faster and achieving superior FID while preserving the efficiency of flow matching. Further ablations
confirm that logits provide a controllable quality–diversity knob through temperature scaling.

Limitations and Future Work. Our approach is currently limited by its reliance on a fixed,
pretrained VQ autoencoder, which makes performance dependent on the initial tokenization quality.
While the model is competitive on 256 × 256 ImageNet-1k, its generalization to other datasets or
higher resolutions needs validation, and it does not yet match the performance of top-tier continuous
diffusion models. Future work could directly address these limitations by exploring different VQ
models or jointly training the autoencoder with the flow model. Broader research directions include
extending this hybrid perspective to domains like audio, video, and 3D shapes, as well as developing
principled temperature schedules and a stronger theory for categorical objectives. Finally, because
the model remains a continuous flow, it supports distillation into highly efficient, few-step samplers
and can incorporate guidance, paving the way for practical generative pipelines.

Ethics Statement. All experiments in this work rely exclusively on publicly available datasets (i.e.,
ImageNet) used under their original licenses. We do not collect or annotate any new human data.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

As with other generative models, there exists a risk of misuse in privacy-invasive or unauthorized
applications. We strongly caution against such uses and emphasize the importance of adhering to
license terms, governance standards, and applicable legal requirements, though, as our approach is
primarily methodological, we do not see immediate risks.

Reproducibility Statement. We aim to ensure the full reproducibility of our results. All datasets,
baselines, and model architectures will be made publicly available. We provide pseudocode for
training and sampling Purrception (Appendix B) as well as detailed implementation specifics in
Appendix C, which covers optimization settings and evaluation protocols. To facilitate replication,
we will release the full codebase.
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A USAGE OF LARGE LANGUAGE MODELS

During the preparation of this submission, Large Language Models (LLMs) were utilized as a
tool to enhance the quality and presentation of our work. Specifically, we employed LLMs for
text refinement, including improving grammar, syntax, and clarity to ensure the readability of our
research. Additionally, these models assisted in refining the aesthetic and structural layout of our data
visualizations and plots, providing suggestions for more effective data presentation. It is important to
note that the LLMs served solely as an assistive tool. The authors retained full responsibility for all
intellectual content, including the underlying research, data analysis, interpretation of results, and the
final articulation of all arguments and conclusions presented in this paper.

B ALGORITHMS

TRAINING

for x ∼ D do
z1 ← Quantize(Encoder(x));
c← LatentCode(z1);
z0 ∼ p0;
t ∼ U(0, 1) ;
zt ← tz1 + (1− t)z0;
L(θ) = CrossEntropy(c, πθ

t (zt));
Backprop and update θ;

end

SAMPLING (EULER INTEGRATION)

z0 ∼ p0;
for s ∈ {0, · · · , T − 1} do

t← s/T ;
πt ← softmax(π̃θ

t (zs), τ);

vs ←
∑K

k=1 π
k
t · ek − zs

1− t
;

zs+1 ← zs + (1/T )vs;
end
x← Decoder(Quantize(zT ));
Return x;

Figure 6: Training and sampling algorithms for Purrception.

C IMPLEMENTATION DETAILS

Training specifications. We use DiT architectures of different sizes as backbones for all models
(i.e., Purrception, CFM, DFM). To train them, we mostly use the specifications from the original
paper (Peebles & Xie, 2023): we initialize the final linear layer of DiT with zeros and otherwise we
use the initialization techniques from the ViT (Dosovitskiy et al., 2020). We optimize our models
using AdamW (Kingma & Ba, 2016; Loshchilov et al., 2017) with a constant learning rate 1e− 4, a
weight decay 0.01, (β1, β2) = (0.9, 0.999). For Purrception, we use eps = 1e − 6. We also use a
global batch size 256. Based on the training details of prior image generation methods, we compute
the exponential moving average (EMA) of the backbone parameters over training using a decay rate
of 0.9999, and we do inference using solely the EMA model.

Additionally, we use two tokenizers: (1) the Stable Diffusion’s tokenizer vq-f8with a downsampling
factor f = 8 and a codebook C of shape 16, 384 × 4 (Esser et al., 2021) and (2) the LlamaGen’s
tokenizer vq-ds8-c2i with a downsampling factor f = 8 and a codebook C of shape 16, 384× 8
(Sun et al., 2024a). This means that for a given RGB image x of 256 × 256 resolution, the shape
of the latent z = E(x) is 32 × 32 × d (d = 4 for vq-f8 and d = 8 for vq-ds8-c2i), which is
further quantized according to C. During sampling, we use the decoder G to map the generated latent
back into pixel space. The encoder, decoder, and codebook are kept frozen during training.

Sampling and FID score computation. Flow models need to simulate an ODE to solve the
generative modeling task. We use the torchdiffeq library in PyTorch and (unless otherwise
specified) the usual Euler method with 100 steps when generating samples.

For computing the FID scores, we first generate 10,000 samples for computing FID-10k scores and
50,000 samples for the FID-50k. Then, we use the torch-fidelity PyTorch library (Obukhov
et al., 2020) to compute the FID score. For both FID-10k and FID-50k, we use 50k real samples (i.e.,
the entire validation set with 256 × 256 resolution) to compute the statistics for the target dataset.
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Unless otherwise specified, we do not use classifier-free guidance for the models trained conditionally
on ImageNet-1k.

Computational resources. All methods were trained in a distributed way, using a total of 16 AMD
MI250x GPUs, each GPU having 128GB of HBM2e memory.

D TRAINING STABILITY

Architecturally, we use a diffusion transformer (DiT) Peebles & Xie (2023) as a backbone to
predict the codebook indices that compound the target datapoint. One of the biggest challenges
we encountered was maintaining a stable training for larger DiT variants (i.e., DiT-L/2, DiT-XL/2),
especially because such training instabilities occurred in the later stages of the training phase.

30k 60k 90k 120k 150k
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Figure 7: Training loss curves with and
without z-loss. An additional z-loss avoids
training divergence. Raw data is shown in
lighter colors, while exponentially smoothed
curves (EMA) are shown in bold. We used
the same hyperparameters for both runs and a
DiT-XL/2 backbone. EMA smoothing factor
is α = 0.9.

Since the major difference between training Flow
Matching and Purrception is the training objective
(i.e., mean-squared error for the former one, cross-
entropy for the latter one) and Flow Matching does
not have such training instabilities, we hypothesize
that the cause might be the final softmax operation.
Indeed, this divergence in the output logits from the
log probabilities has been reported often as an insta-
bility issue by the research community when training
large models at scale (Chowdhery et al., 2023; Worts-
man et al., 2023). In their paper, Wortsman et al.
(2023) name this issue the logit drift problem. To mit-
igate this issue, they propose regularizing the train-
ing using an additional z-loss which proved effective
in training recent state-of-the-art, billion-parameter
models such as Chameleon (Chameleon Team, 2024).

Inspired by its success, we apply z-loss regulariza-
tion as well. Similar to Chameleon Team (2024),
we add 10−5 log2 Z to Purrception’s loss function,
where Z =

∑K
i=1 e

xi and {xi}Ki=1 are the logits out-
putted by the backbone. Figure 7 shows Purrception
achieves stability when z-loss is integrated. Thus, we
used the z-loss by default when training Purrception.

E THE EFFECT OF VQ AUTOENCODERS

Table 2: Quantitative comparison of Purrception trained with different VQ tokenizers. Evalua-
tion on ImageNet-1k 256× 256 shows that the choice of tokenizer significantly influences generation
quality, with vq-ds8-c2i outperforming vq-f8 across all FID thresholds.

vq-f8 vq-ds8-c2i

rFID 1.19 0.59

FID (τ = 0.7) 11.80 7.44
FID (τ = 0.8) 10.85 6.46
FID (τ = 0.9) 10.82 7.03
FID (τ = 1.0) 12.33 9.60

When we train Purrception, we train exclusively the DiT backbone while keeping the encoder,
decoder, and codebook vectors frozen. To test how much the performance of Purrception relies
on the VQ tokenizer, we train two DiT-XL/2 models on ImageNet-1k 256 × 256 with the same
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training configurations, for 3.5M iterations each, using two different VQ autoencoders: (1) the
Stable Diffusion’s vq-f8 tokenizer (Rombach et al., 2022) and (2) the LlamaGen’s vq-ds8-c2i
tokenizer (Sun et al., 2024b).

The results in Table 2 show that Purrception’s performance is tightly coupled to the quality and
design of the underlying VQ autoencoder used to produce the latent tokens. We can observe that for
LlamaGen’s tokenizer (which has a better rFID score as compared to Stable Diffusion’s one), we
obtain better FID-50k scores in class-conditional ImageNet-1k 256× 256. This indicates that even
when the DiT backbone is trained identically, the representational granularity and perceptual fidelity
of the VQ tokenizer have a decisive impact on downstream generation quality.

Overall, the experiment highlights that the performance of Purrception is not tokenizer-agnostic: its
effectiveness depends on the inductive biases and compression characteristics of the VQ autoencoder
used. Future work could explore training custom VQ models co-optimized with the DiT backbone or
investigating hybrid tokenizers that balance perceptual fidelity and codebook compactness.
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