

000 001 002 003 004 005 PURCEPTION: VARIATIONAL FLOW MATCHING 006 FOR VECTOR-QUANTIZED IMAGE GENERATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024

Paper under double-blind review

ABSTRACT

011 We introduce Purrception, a variational flow matching approach for vector-
012 quantized image generation that provides explicit categorical supervision while
013 maintaining continuous transport dynamics. Our method adapts Variational Flow
014 Matching to vector-quantized latents by learning categorical posteriors over code-
015 book indices while computing velocity fields in the continuous embedding space.
016 This combines the geometric awareness of continuous methods with the discrete
017 supervision of categorical approaches, enabling uncertainty quantification over
018 plausible codes and temperature-controlled generation. We evaluate Purrception on
019 ImageNet-1k 256×256 generation. Training converges faster than both continuous
020 flow matching and discrete flow matching baselines while achieving competitive
021 FID scores with state-of-the-art models. This demonstrates that Variational Flow
022 Matching can effectively bridge continuous transport and discrete supervision for
023 improved training efficiency in image generation.

025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: Purrception generates high-resolution images in vector-quantized latent spaces, sampled as
continuous transport learned through discrete supervision.

1 INTRODUCTION

The task of generative modeling is to approximate a data distribution to enable sampling of new instances. Beyond high-fidelity synthesis in images, audio, and text, generative models are increasingly used for augmentation, restoration, simulation, and in-silico design (e.g., de novo molecules and proteins). Flow Matching (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2023) has emerged as an extremely effective approach for the generation of a variety of data modalities. In Flow Matching, one first defines an interpolation between a source (noise) and a target (data) distribution, and then approximate the velocity field of a continuous normalizing flow that transports samples between the

054 two. As the target velocity can be understood as the expected time-derivative of the interpolation,
 055 it can be learned in a self-supervised manner by averaging over samples from the source and target
 056 distribution. The Flow Matching framework has been extended to general geometries (Chen &
 057 Lipman, 2024), discrete data (Gat et al., 2024), and has seen many applications (Wildberger et al.,
 058 2024; Dao et al., 2023; Hu et al., 2024; Kohler et al., 2023).

059 Variational Flow Matching (VFM) (Eijkelboom et al., 2024) reframes Flow Matching as inference.
 060 Since the Flow Matching velocity field is the expectation of a conditional velocity, it can be approxi-
 061 mated via a variational posterior over endpoints (target samples) given the current interpolation point.
 062 Standard Flow Matching is recovered when this posterior is Gaussian, while other choices extend
 063 naturally to different modalities. Applied to discrete data, VFM yields *CatFlow*, previously used
 064 for graph generation and related to continuous diffusion for categorical data (Dieleman et al., 2022).
 065 More broadly, VFM has been applied to mixed modalities (Guzmán-Cordero et al., 2025), molecular
 066 generation (Eijkelboom et al., 2025; Sakalyan et al.), and general geometries (Zagheni et al., 2025).
 067 The variational view also enables problem-specific constraints, e.g., for sea-ice forecasting, where
 068 bounds like non-negative thickness are enforced through the loss (Finn et al., 2025).

069 This paper leverages VFM in the context of image generation. We consider vector-quantized (VQ)
 070 latents, which map images into grids of discrete indices with associated embeddings, yielding compact
 071 representations that preserve perceptual fidelity at far lower dimensionality than pixels. However,
 072 their dual discrete–continuous nature poses a modeling challenge not addressed by purely continuous
 073 or discrete methods. Continuous methods (latent diffusion, flow matching) generate in the embedding
 074 space, enabling smooth transport and efficient high-resolution synthesis (Rombach et al., 2022; Dao
 075 et al., 2023). Yet they must discretize vectors back to indices: geometry is preserved, but categorical
 076 structure is ignored – the model never learns which index to choose or how to represent uncertainty
 077 across codes. Conversely, fully discrete approaches (VQ-Diffusion (Gu et al., 2022), discrete flow
 078 matching (DFM) (Gat et al., 2024)) treat related embeddings as unrelated tokens, discarding geometry.
 079 While DFM could use temperature-based sampling, this only produces stochastic “hops” between
 080 indices – each step commits to a single code – whereas continuous flow matching (CFM) cannot use
 081 temperature at all, since it lacks logits.

082 To resolve this tradeoff, we introduce Purception, an adaptation of VFM to vector-quantized latents.
 083 By using a categorical posterior over indices while transporting probability in the continuous em-
 084 bedding space, Purception provides a categorical learning signal while still leveraging geometry.
 085 This means the model can express uncertainty across plausible codes and translate it into smooth,
 086 geometry-aware transport rather than discrete jumps. Logits further enable temperature scaling:
 087 lowering temperature sharpens predictions, while raising temperature spreads probability across
 088 nearby embeddings, producing smoother generations and samples with more details. Empirically, this
 089 hybrid approach converges faster than both CFM and DFM on ImageNet-1k, achieving competitive
 090 or superior FID while retaining the efficiency of flow matching.

091 2 BACKGROUND

092 2.1 FLOW MATCHING

093 Flow matching (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023) learns a velocity field
 094 $v_t^\theta : \mathbb{R}^D \times [0, 1] \rightarrow \mathbb{R}^D$ – parameterized by a network with parameters θ – which induces a transport
 095 of samples $x_0 \sim p_0$ from a prior (e.g., standard noise) to D -dimensional points x_1 that should
 096 approximate the data distribution. This is done by integrating the ordinary differential equation

$$097 \frac{dx}{dt} = v_t^\theta(x) \quad \text{with } x_0 \sim p_0, \quad (1)$$

100 which is equivalent to learning a velocity field that satisfies the continuity equation, also known as a
 101 continuous normalizing flow,

$$102 \partial_t p_t(x) = -\nabla \cdot (v_t^\theta(x) p_t(x)). \quad (2)$$

103 Flow matching starts from the observation that, given a choice of interpolation between noise and data
 104 – e.g., linear, where $x_t = tx_1 + (1 - t)x_0$ – we can derive a conditional velocity field $u_t(x | x_1)$ that
 105 satisfies the continuity equation towards (i.e., conditional on) a specific endpoint. A corresponding

108 velocity field $u_t(x)$, which satisfies the continuity equation for the (marginal) probability path, can
 109 be expressed in terms of an (intractable) expectation with respect to the posterior
 110

$$111 \quad u_t(x) = \int u_t(x \mid x_1) p_t(x_1 \mid x) dx_1 = \mathbb{E}_{p_t(x_1 \mid x)} [u_t(x \mid x_1)]. \quad (3)$$

113 The goal of flow matching is therefore to learn a velocity field $v_t^\theta(x)$ that approximates $u_t(x)$, i.e., to
 114 minimize the flow matching objective
 115

$$116 \quad \mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t,x} [||v_t^\theta(x) - u_t(x)||^2], \quad (4)$$

117 which can be made tractable by optimizing
 118

$$119 \quad \mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,x_1,x} [||v_t^\theta(x) - u_t(x \mid x_1)||^2], \quad (5)$$

120 i.e., a Monte-Carlo estimate of the marginal objective through our conditional objective. As shown
 121 in Lipman et al. (2023), indeed these two objectives have the same gradients w.r.t. θ . This can
 122 equivalently be understood as trying to regress towards the expected time-derivative of the interpolant.
 123

124 2.2 VARIATIONAL FLOW MATCHING

126 Variational Flow Matching (VFM) (Eijkelboom et al., 2024) treats Flow Matching as a variational
 127 inference problem. By realizing (through Equation (3)) the target marginal velocity field u_t can be
 128 expressed as an expectation of the conditional field w.r.t. the posterior distribution $p_t(x_1 \mid x)$, the
 129 authors propose to learn this posterior directly, i.e., learn

$$130 \quad \mathcal{L}_{\text{VFM}}(\theta) := \mathbb{E}_t [\text{KL}(p_t(x_1, x) \parallel q_t^\theta(x_1, x))] = -\mathbb{E}_{t,x_1,x} [\log q_t^\theta(x_1 \mid x)] + \text{const.}, \quad (6)$$

132 where $q_t^\theta(x_1 \mid x)$ is the *variational posterior* approximating the posterior probability path $p_t(x_1 \mid x)$.
 133 The resulting learning velocity field is thus given by

$$134 \quad v_t^\theta(x) := \mathbb{E}_{q_t^\theta(x_1 \mid x)} [u_t(x \mid x_1)] \stackrel{\text{OT}}{=} \frac{\mu_t^\theta(x) - x}{1 - t}, \quad (7)$$

137 where $\mu_t^\theta(x) := \mathbb{E}_{q_t^\theta} [x_1 \mid x]$ and the conditional field is the linear (or optimal transport) interpolation.
 138 Though this objective initially looks intractable, we authors show that the task of learning the
 139 variational approximation only needs to be learned dimension-wise in the mean, as $\mathbb{E}_{q_t^\theta(x_1 \mid x)} [x_1^d \mid x]$
 140 only depends on the marginal $q_t^\theta(x^d \mid x)$ – an approach called *mean-field VFM*.

141 VFM is flexible in choosing the variational distribution q_t^θ , which makes it a general framework for
 142 different data types. In Eijkelboom et al. (2024), the authors show significant improvement over
 143 CFM when the data is discrete and the variational approximation is chosen to be categorical, a model
 144 coined *CatFlow*. VFM has also obtained strong performance in tabular data (Guzmán-Cordero et al.,
 145 2025), molecular generation tasks (Eijkelboom et al., 2025; Sakalyan et al.), general geometries
 146 (Zagheni et al., 2025), and sea-ice modeling (Finn et al., 2025).

148 2.3 VECTOR-QUANTIZED AND LATENT GENERATIVE MODELS

150 High-resolution image modeling in pixel space is computationally prohibitive; a common remedy is to
 151 learn a lower-dimensional latent space with an autoencoder. Vector-Quantized VAEs (Van Den Oord
 152 et al., 2017) and VQ-GANs (Esser et al., 2021) use a discrete codebook $\mathcal{C} = \{e_k\}_{k=1}^K \subseteq \mathbb{R}^D$. By
 153 mapping images into a compact set of discrete tokens, vector-quantized latents provide an efficient
 154 and stable representation: they alleviate posterior collapse and often yield sharper, higher-fidelity
 155 reconstructions than pixel-space models at comparable compute.

156 Given an image x , the encoder output is *quantized* to its nearest code:

$$157 \quad z(x) = \text{Quantize}(\text{Encoder}(x)) = \arg \min_{e_k \in \mathcal{C}} \|\text{Encoder}(x) - e_k\|_2^2. \quad (8)$$

159 Equivalently, one can store the index
 160

$$161 \quad c(x) = \arg \min_{k \in [K]} \|\text{Encoder}(x) - e_k\|_2^2, \quad [K] := \{1, \dots, K\}. \quad (9)$$

162 After training the encoder, decoder, and codebook, a generative model is learned *in latent space* and
 163 samples are decoded to pixels. For a grid of D discrete latents $c \in [K]^D$, a common choice is an
 164 autoregressive model:

$$165 \quad 166 \quad 167 \quad p(c) = \prod_{d=1}^D p(c_d | c_{<d}). \quad (10)$$

168 While this formulation provides a powerful and efficient representation, it also introduces a fundamental
 169 modeling tension: each latent is at once a discrete code index and a continuous embedding
 170 vector. Existing generative methods resolve this tension by making a trade-off – either operating in
 171 the continuous embedding space and ignoring the categorical structure, or modeling indices directly
 172 while discarding geometric information. This limitation motivates the hybrid perspective developed
 173 in Section 3.

174 3 PURRCEPTION: VQ-VFM FOR IMAGES

175 3.1 MOTIVATION: A HYBRID APPROACH TO VQ-LATENT FLOWS

176 Vector-quantized (VQ) latents encode data in two ways simultaneously: as discrete indices drawn
 177 from a finite codebook and as continuous embeddings that capture geometric relations such as
 178 proximity and direction. Existing generative models are typically forced into one of two degenerate
 179 extremes, each of which breaks part of this dual structure:

- 180 • **Continuous flow models** (e.g., latent diffusion and flow matching) operate in \mathbb{R}^D , treating
 181 codebook vectors as continuous. From the perspective of Variational Flow Matching
 182 (VFM), this corresponds to a Gaussian relaxation: endpoints are approximated as continuous
 183 samples rather than categorical indices. Geometry is preserved, but discreteness is lost – the
 184 model never receives a categorical learning signal, cannot express uncertainty over multiple
 185 plausible codes, and has no logits from which to derive controls such as temperature scaling.
- 186 • **Fully discrete flow models** instead predict categorical indices directly. While this aligns
 187 with the quantized structure, it collapses geometry: once reduced to raw indices, semantically
 188 related codes are treated as unrelated tokens. Predictions degenerate into discrete “teleports”
 189 between indices, eliminating interpolation and making both uncertainty modeling and
 190 temperature scaling meaningless.

191 An ideal solution should combine the strengths of both worlds: exploit the smooth geometry of
 192 embeddings *and* provide categorical supervision over indices. Our approach adapts VFM with a
 193 *categorical variational posterior*, so that the velocity field evolves in continuous space while learning
 194 is driven by cross-entropy over codebook entries. This hybridization allows the model to receive a
 195 categorical learning signal, to reason over multiple plausible indices, and to convert that uncertainty
 196 into geometry-aware transport rather than discrete jumps. Crucially, working with logits also unlocks
 197 a temperature knob: lowering τ enforces stronger commitments, which improves global fidelity but
 198 oversimplifies samples, while raising τ redistributes probability more broadly, adding detail and
 199 variety at the cost of overall quality.

200 3.2 THE VQ-VFM OBJECTIVE

201 We begin from the key observation underlying VFM and CatFlow: the velocity at time t can be
 202 expressed as an expectation over conditional continuations weighted by a posterior over endpoints
 203 (Eijkelboom et al., 2024):

$$204 \quad 205 \quad 206 \quad u_t(z_t) = \mathbb{E}_{p_t(z_1 | z_t)} [u_t(z_t | z_1)]. \quad (11)$$

207 This perspective reframes the learning problem: rather than predicting the vector field directly, we
 208 may approximate the posterior $p_t(z_1 | z_t)$ with a variational distribution $q_t^\theta(z_1 | z_t)$ and compute the
 209 velocity as its expectation.

210 In the case of VQ-latents, this insight becomes particularly powerful. Each endpoint z_1 must be one
 211 of the finite codebook embeddings $\{e_k\}_{k=1}^K$, so the posterior *is* categorical over the discrete latent
 212 codes. That is, our variational posterior should be given by

$$213 \quad 214 \quad 215 \quad q_t^\theta(c | z_t) = \text{Cat}(c | \pi_t^\theta(z_t)). \quad (12)$$

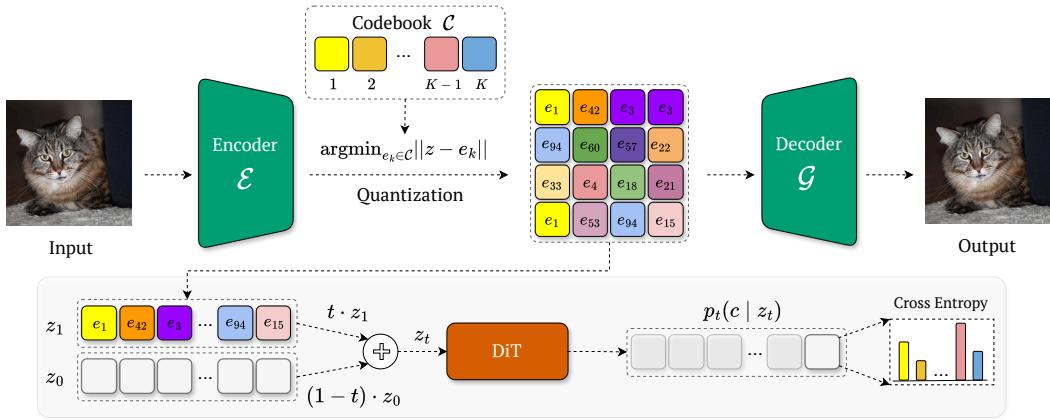


Figure 2: **Purception approach.** Purception generates high-resolution images in a vector quantized latent space. For training, we use a pretrained encoder \mathcal{E} and a codebook vector of size K to encode and quantize an image in latent space to obtain z_1 . Then, we train a diffusion transformer that predicts, given a linear interpolant z_t , a categorical distribution over the codebook vectors for each patch of the target z_1 via a cross-entropy objective. For sampling, we generate a quantized latent which we further pass through the decoder \mathcal{G} to obtain the image in pixel-space.

where $\pi_t^\theta(z_t)$ is the probability distribution over the codebook vectors outputted by a neural network (e.g., Diffusion Transformer (Peebles & Xie, 2023)). Conditioning this posterior on the noisy latent z_t yields a distribution over discrete indices while still defining transport in continuous embedding space, as we can compute

$$v_t^\theta(z_t) = \sum_{k=1}^K \pi_t^{\theta,k}(z_t) \left(\frac{e_k - z_t}{1 - t} \right) = \frac{\mu_t(z_t) - z_t}{1 - t}, \quad (13)$$

where $\mu_t(z_t) := \sum_{k=1}^K \pi_t^{\theta,k}(z_t) e_k$ and $\pi_t^{\theta,k}(z_t)$ is the probability to have as endpoint the codebook vector e_k given the time-dependent interpolant z_t . This ensures that uncertainty over multiple plausible codes is translated into smooth, geometry-aware motion, rather than discrete “teleports” between unrelated indices.

Training follows from the VFM objective, which in this case reduces to the cross-entropy loss between the predicted posterior and the ground-truth code indices:

$$\mathcal{L}_{\text{Purr}}(\theta) = -\mathbb{E}_{t,x,z_t} [\log q_\theta(c | z_t)], \quad (14)$$

where $x \sim \mathcal{D}$ is sampled from the data, z_1 and c is the corresponding quantized image and latent code respectively, and z_t is obtained through $z_t := tz_1 + (1 - t)z_0$ for $z_0 \sim p_0$ and $t \sim \mathcal{U}(0, 1)$.

Softmax temperature. Because $\pi_t^\theta(z_t)$ is obtained from logits $\tilde{\pi}_t^\theta(z_t)$ via a softmax with temperature τ ,

$$\pi_t^{\theta,k}(z_t) = \frac{\exp(\tilde{\pi}_t^{\theta,k}(z_t)/\tau)}{\sum_{i=1}^K \exp(\tilde{\pi}_t^{\theta,i}(z_t)/\tau)}, \quad (15)$$

our framework naturally inherits an inference-time degree of freedom that regulates how categorical uncertainty is expressed in the velocity field. When τ is small, the posterior distribution collapses toward the most likely index, enforcing early commitments and producing sharp, high-fidelity outputs that may, however, become overly simplistic as alternative hypotheses are ignored. Conversely, large τ values flatten the distribution, assigning non-negligible weight to multiple neighboring codes. This broadening injects more detail and variability into the generated samples, but can reduce overall fidelity as the barycenter drifts away from the most plausible embedding. Intermediate τ values often strike the best balance, echoing the bias–variance trade-off familiar from other generative frameworks. Such controllability is absent in continuous FM, where no categorical logits exist, and meaningless in fully discrete FM, where indices are collapsed immediately; it arises directly from the hybrid VQ–VFM formulation, turning temperature into a principled knob for task-adaptive inference.

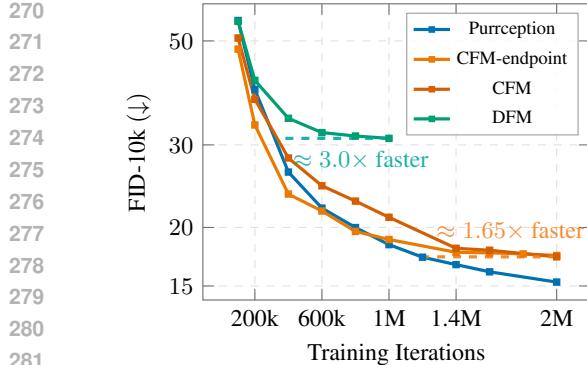
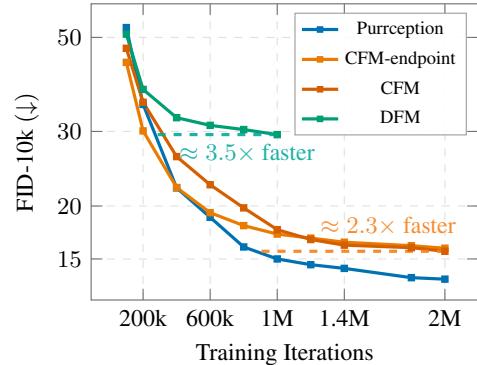


Figure 3: **Convergence speed comparison on ImageNet-1k.** FID-10k scores are plotted against training iterations for Purrception, two CFM variants, and DFM. Results are shown for two DiT backbones: (a) DiT-L/2 and (b) DiT-XL/2. **We train Purrception using the default $\tau = 1.0$ softmax temperature, while using $\tau = 0.9$ during inference.** The plots show that Purrception achieves lower final FID scores and converges significantly faster, matching the final performance of CFM and DFM in fewer training iterations. **Here we used Stable Diffusion’s vq-f8 tokenizer.** Full training details are provided in Appendix C.

4 EXPERIMENTS AND RESULTS

We validate the performance of Purrception through a series of experiments. In our experiments, we evaluate on ImageNet-1k (Deng et al., 2009) on 256×256 resolution, using **both** the Stable Diffusion’s vq-f8 (Egger et al., 2021) and LlamaGen’s vq-ds8-c2i (Sun et al., 2024a) tokenizers, as well as the DiT-L/2 and DiT-XL/2 backbones (Peebles & Xie, 2023). We provide a full description of the implementation details in Appendix C. First, we perform a comparative study between Purrception, continuous flow matching (Lipman et al., 2023), and discrete flow matching (DFM) (Gat et al., 2024). For continuous flow matching, we consider two objectives: the classical regression task of predicting the velocity field (denoted simply as CFM) and the task of predicting the endpoint (denoted as CFM-endpoint), as seen in Ma et al. (2024), allowing us to measure the effects of both (1) switching to endpoint prediction, and (2) using our discrete objective compared to the continuous baseline. We show that Purrception *converges faster* (i.e., in fewer training iterations) to a low FID, hence reducing computational resources. Then, we show that Purrception generates high-fidelity and high-quality samples when trained at scale, achieving a competitive FID against a variety of state-of-the-art autoregressive, diffusion, and masked generative baselines. Finally, we show that the softmax temperature parameter can be used to *control* the image sharpness and quality at inference time, a property unique to hybrid discrete-continuous models.

4.1 CONVERGENCE SPEED

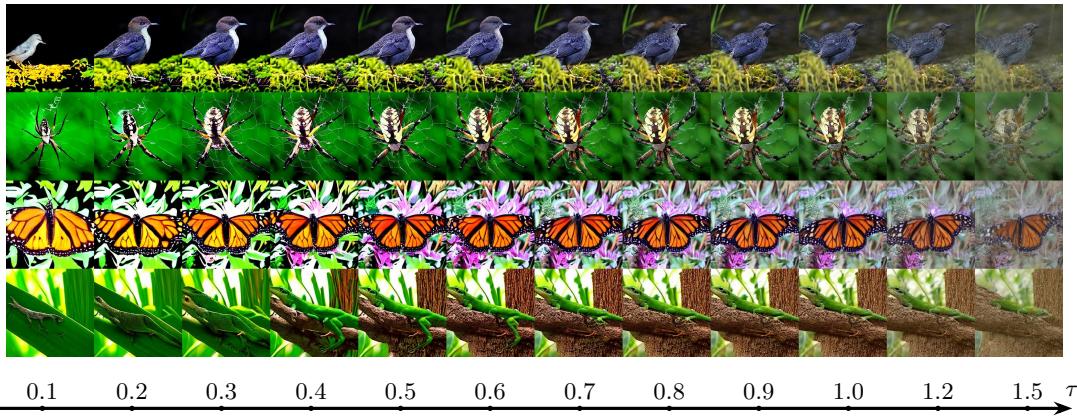
A key requirement for practical generative modeling is the ability to reach high sample quality quickly, since faster convergence directly reduces training cost and compute requirements. To evaluate this, we compare the convergence speed of Purrception against two strong baselines: the continuous flow model (CFM) (Lipman et al., 2023) and the fully discrete flow model (DFM) (Gat et al., 2024). Given the great performance of Scalable Interpolant Transformers (SiT) Ma et al. (2024), we include an additional baseline (denoted as CFM-endpoint) where the task is to predict via mean-squared error (similar to CFM) the endpoint z_1 given the interpolant z_t (similar to Purrception). For a fair comparison, we used the same training configurations, and we sample all images using Euler with 100 integration steps as ODE solver. We provide all implementation details in Appendix C.

Figure 3 reports FID-10k scores for both DiT-L/2 and DiT-XL/2 backbones. **Across settings, Purrception not only achieves lower final FID but also reaches baseline performance substantially earlier.** With DiT-L/2, Purrception checkpoint at 2M iterations matches CFM’s and CFM-endpoint’s scores after $\sim 1.2M$ iterations ($1.65 \times$ faster), while Purrception checkpoint at 1M iterations matches DFM’s

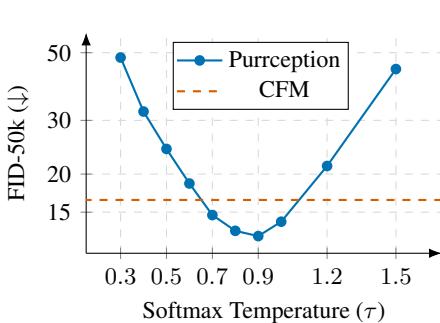
324 final score after ~ 325 k iterations ($3.0 \times$ faster). With the larger DiT-XL/2 backbone, the gap grows
 325 further: Purception converges $2.3 \times$ faster than both CFM baselines and $3.5 \times$ faster than DFM.
 326

327 These results underscore the advantage of Purception’s hybrid formulation. By receiving direct
 328 categorical supervision (unlike CFM), the model learns discrete structure more efficiently, while
 329 its use of continuous embedding space (unlike DFM) enables smooth geometry-aware transport
 330 rather than slow, discrete jumps. This combination accelerates optimization, leading to both faster
 331 convergence and stronger sample quality.
 332

333 4.2 OPTIMIZING SAMPLE QUALITY VIA SOFTMAX TEMPERATURE SCALING



350 **Figure 4: Generated samples at different softmax temperatures.** We can control the output
 351 of Purception by changing the softmax temperature. A low temperature creates simpler, cleaner
 352 samples, while a high temperature adds more fine-grained details but can sometimes introduce flaws
 353 and reduce the image quality. Here we vary τ from 0.1 to 1.5.
 354



367 **Figure 5: The effect of the softmax temperature on FID score.** The plot depicts a U-
 368 shape relationship between τ parameter used in Purception and the FID score. This
 369 parameter is not present in CFM. Both models have been trained for 1M iterations and under the
 370 same training conditions. Here we used the
 371 **Stable Diffusion’s vq-f8 autoencoder.**
 372

376 very low values, reaches an optimum around $\tau \approx 0.8\text{--}0.9$, and then degrades as τ becomes larger.
 377 Qualitatively, low τ values produce overly deterministic and simplistic images, while high τ values
 lead to noisy and incoherent generations.

355 Temperature scaling is a long-standing technique in
 356 language modeling, used to balance coherence and
 357 diversity during sampling. In the context of VQ
 358 image synthesis, continuous flow methods (e.g., CFM)
 359 cannot exploit this mechanism at all, since they lack
 360 categorical logits. Fully discrete models (e.g., DFM)
 361 can in principle apply temperature scaling to their
 362 logits, but because they commit to hard index selections
 363 at each step, adjusting τ has little practical effect –
 364 the sampling collapses to discrete jumps regardless
 365 of the distribution’s softness. In contrast, Purception
 366 retains uncertainty in the logits while transporting
 367 through the continuous embedding space, which
 368 means temperature scaling can be naturally used.

369 To test the effect of the softmax temperature during
 370 inference, we conduct an ablation study with a
 371 DiT-XL/2 backbone trained for one million iterations.
 372 During training, we keep τ to the default 1.0, varying
 373 the temperature *only* at inference. Figures 4 and
 374 5 show the effect on sample quality and FID-50k
 375 scores, respectively. We observe a clear U-shaped
 376 curve: performance improves as τ increases from
 377

378 These findings highlight that: (1) even though Purrception has been trained with a constant $\tau = 1.0$,
 379 the data distribution is best approximated for lower softmax temperatures, and (2) adjusting τ is a
 380 simple, training-free approach to improve the sample quality. Future work could consist of developing
 381 principled softmax temperature schedules during inference or varying τ during training.
 382

383 4.3 QUALITATIVE AND QUANTITATIVE RESULTS

385 To test how well Purrception performs against similar methods, we train Purrception at scale for 3.5M
 386 iterations with a DiT-XL/2 backbone, and report quantitative results on class-conditional ImageNet-1k
 387 generation at 256×256 resolution.

388 Table 1 highlights a comparison with popular image generation methods, similar to Purrception in
 389 model size and methodology, including autoregressive methods (Esser et al., 2021; Yu et al., 2021; Lee
 390 et al., 2022; Sun et al., 2024a), discrete diffusion and masked generative models (Chang et al., 2022;
 391 Gu et al., 2022; Hu & Ommer, 2024), as well as continuous diffusion models (Dhariwal & Nichol,
 392 2021; Ho et al., 2022; Rombach et al., 2022; Peebles & Xie, 2023; Ma et al., 2024). Purrception
 393 is competitive in FID score. Notably, Purrception outperforms all discrete diffusion and masked
 394 generative models. It also shows stronger performance against most autoregressive methods while
 395 having less parameters and/or benefiting from natively faster decoding than large-token autoregressive
 396 models (which often rely on inference optimizers such as vLLM Sun et al. (2024a)). This firmly
 397 establishes Purrception as a novel, state-of-the-art approach, among VQ-based latent generative
 398 models, demonstrating that our hybrid discrete-continuous formulation can surpass traditional VQ
 399 approaches in fidelity.

400 Against strong continuous diffusion baselines, Purrception falls short on important baselines like
 401 DiT-XL/2 and SiT-XL/2 baselines. We believe this is mainly due to two reasons: (1) the use of
 402 high-quality VAE autoencoders in those models, which are known to produce lower FID scores than
 403 VQ tokenizers at equivalent scales, and (2) their considerably longer training schedules (twice as
 404 many iterations as used for Purrception). Despite this gap, Purrception’s strong results highlight
 405 that our hybrid design can approach the performance of top-tier diffusion models. This underscores
 406 that Purrception effectively bridges the fidelity of continuous diffusion with the categorical training
 407 objective suitable for VQ latent spaces, positioning it as a promising direction for future generative
 408 modeling.

409 5 RELATED WORK

411 **Diffusion, flow matching, and latent spaces.** Diffusion and score-based models synthesize data
 412 via iterative denoising (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), while Flow
 413 Matching learns a time-dependent velocity field that transports a source distribution to the data
 414 distribution, yielding continuous normalizing flows with strong empirical results (Lipman et al., 2023;
 415 Liu et al., 2023; Albergo et al., 2023). Moreover, alternative parameterizations of flow matching exist,
 416 e.g. endpoint prediction shows improved performance in tasks like image generation and molecular
 417 generation (Ma et al., 2024; Eijkelboom et al., 2024). To reduce cost without sacrificing quality, many
 418 works apply these dynamics in vector-quantized latent spaces, where autoencoders provide compact
 419 discrete indices with associated embeddings (Van Den Oord et al., 2017; Razavi et al., 2019). Such
 420 latents underlie VQ-GAN and large-scale generative systems (Esser et al., 2021; Ramesh et al., 2021;
 421 2022), and running diffusion/flows on them enables efficient high-fidelity synthesis (Vahdat et al.,
 422 2021; Rombach et al., 2022; Dao et al., 2023), with recent work scaling to stronger backbones and
 423 resolutions (Ma et al., 2024; Esser et al.).

424 **Discrete dynamics and relaxations.** Beyond continuous latents, discrete diffusion and flow models
 425 operate directly on tokens or pixels (Hoogeboom et al., 2021a;b; Austin et al., 2021; Gat et al., 2024;
 426 Stark et al., 2024; Davis et al., 2024). Closer to our setting, discrete *latent* diffusion denoises over
 427 VQ indices (Gu et al., 2022; Tang et al., 2022), making the indices explicit but typically discarding
 428 the geometry of their embeddings. A complementary approach is to embed categorical data into a
 429 continuous space and run diffusion there, as in Continuous Diffusion for Categorical Data (CDCD)
 430 (Dieleman et al., 2022), developed primarily for language modelling. CDCD preserves the continuous-
 431 time formulation by operating on noisy embeddings while training with cross-entropy over token
 predictions, thereby capturing uncertainty and retaining guidance mechanisms. However, because the

432 Table 1: **Class-conditional generation on ImageNet-1k** 256×256 . We compare Purception against
 433 various autoregressive, diffusion, and masked generative models. We report the number of parameters
 434 in millions (M) or billions (B), as well as the FID scores for each model. Purception achieves a
 435 competitive FID of **3.88**, showcasing the effectiveness of our hybrid discrete-continuous approach
 436 against strong baselines, particularly the VQ image generation methods. Here we use the LlamaGen’s
 437 **vq-ds8-c2i** (Sun et al., 2024a) tokenizer and Euler with 250 integration steps as ODE solver for
 438 **FID computation**.

Model	#Parameters	FID ↓
<i>Autoregressive & Masked Generative Models</i>		
VQGAN (Esser et al., 2021)	1.4B	5.20
ViT-VQGAN (Yu et al., 2021)	1.7B	3.04
RQTransformer (Lee et al., 2022)	3.8B	3.80
LlamaGen-XL (Sun et al., 2024a)	775M	3.39
MaskGIT (Chang et al., 2022)	227M	6.18
Open-MAGVIT2-L (Luo et al., 2024)	804M	2.51
<i>Continuous Diffusion</i>		
ADM (Dhariwal & Nichol, 2021)	554M	10.94
CDM (Ho et al., 2022)	-	4.88
LDM-4 Rombach et al. (2022)	400M	3.60
DiT-XL/2 (Peebles & Xie, 2023)	675M	2.27
SiT-XL/2 (Ma et al., 2024)	675M	2.06
<i>Discrete Diffusion & Masked Generative Models</i>		
VQ-Diffusion (Gu et al., 2022)	-	5.84
Implicit Timestep Model Hu & Ommer (2024)	546M	5.30
<i>Hybrid Discrete-Continuous Models</i>		
Purception ($\tau = 0.9$, $\text{cfg} = 1.3$)	750M	3.88

459 embeddings are learned jointly, the approach relies on continuous relaxations and may diverge from
 460 the true categorical structure. Our approach follows the same general spirit of combining categorical
 461 supervision with continuous transport.

463 6 CONCLUSIONS

465 We introduced Purception, an adaptation of VFM to vector-quantized image generation. The method
 466 retains continuous transport in the embedding space while supervising with a categorical posterior
 467 over codebook indices. This coupling addresses the core trade-off of existing approaches: unlike
 468 CFM, Purception benefits from categorical supervision, and unlike DFM, it avoids collapsing
 469 geometry into hard index jumps. The result is a model that learns, broadly speaking, what to choose
 470 and where to go, expressing uncertainty over plausible codes in a geometry-aware way. Empirically,
 471 Purception outperforms both CFM and DFM on ImageNet-1k 256×256 benchmark, converging
 472 faster and achieving superior FID while preserving the efficiency of flow matching. Further ablations
 473 confirm that logits provide a controllable quality-diversity knob through temperature scaling.

474 **Limitations and Future Work.** Our approach is currently limited by its reliance on a fixed,
 475 pretrained VQ autoencoder, which makes performance dependent on the initial tokenization quality.
 476 While the model is competitive on 256×256 ImageNet-1k, its generalization to other datasets or
 477 higher resolutions needs validation, and it does not yet match the performance of top-tier continuous
 478 diffusion models. Future work could directly address these limitations by exploring different VQ
 479 models or jointly training the autoencoder with the flow model. Broader research directions include
 480 extending this hybrid perspective to domains like audio, video, and 3D shapes, as well as developing
 481 principled temperature schedules and a stronger theory for categorical objectives. Finally, because
 482 the model remains a continuous flow, it supports distillation into highly efficient, few-step samplers
 483 and can incorporate guidance, paving the way for practical generative pipelines.

484 **Ethics Statement.** All experiments in this work rely exclusively on *publicly available* datasets (i.e.,
 485 ImageNet) used under their original licenses. We do not collect or annotate any new human data.

486 As with other generative models, there exists a risk of misuse in privacy-invasive or unauthorized
487 applications. We strongly caution against such uses and emphasize the importance of adhering to
488 license terms, governance standards, and applicable legal requirements, though, as our approach is
489 primarily methodological, we do not see immediate risks.
490

491 **Reproducibility Statement.** We aim to ensure the full reproducibility of our results. All datasets,
492 baselines, and model architectures will be made publicly available. We provide pseudocode for
493 training and sampling Purception (Appendix B) as well as detailed implementation specifics in
494 Appendix C, which covers optimization settings and evaluation protocols. To facilitate replication,
495 we will release the full codebase.
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
543 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

544 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
545 denoising diffusion models in discrete state-spaces. *NeurIPS*, 2021.

546 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
547 arXiv:2405.09818*, 2024.

548 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
549 image transformer. In *CVPR*, 2022.

550 Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In *ICLR*, 2024.

551 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
552 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
553 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 2023.

554 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint
555 arXiv:2307.08698*, 2023.

556 Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ceylan, Michael Bronstein, and Joey Bose.
557 Fisher flow matching for generative modeling over discrete data. *NeurIPS*, 2024.

558 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
559 hierarchical image database. In *CVPR*, 2009.

560 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*,
561 2021.

562 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
563 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
564 Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022.

565 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
566 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
567 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
568 arXiv:2010.11929*, 2020.

569 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
570 van de Meent. Variational flow matching for graph generation. *arXiv preprint arXiv:2406.04843*,
571 2024.

572 Floor Eijkelboom, Heiko Zimmermann, Sharvaree Vadgama, Erik J Bekkers, Max Welling, Chris-
573 tian A Naesseth, and Jan-Willem van de Meent. Controlled generation with equivariant variational
574 flow matching. *arXiv preprint arXiv:2506.18340*, 2025.

575 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
576 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
577 high-resolution image synthesis, 2024. 2.

578 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
579 synthesis. In *CVPR*, 2021.

580 Tobias Sebastian Finn, Marc Bocquet, Pierre Rampal, Charlotte Durand, Flavia Porro, Alban Farchi,
581 and Alberto Carrassi. Generative ai models enable efficient and physically consistent sea-ice
582 simulations. *arXiv preprint arXiv:2508.14984*, 2025.

583 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
584 Yaron Lipman. Discrete flow matching. In *NeurIPS*, 2024.

585 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
586 Guo. Vector quantized diffusion model for text-to-image synthesis. In *CVPR*, 2022.

594 Andrés Guzmán-Cordero, Floor Eikelboom, and Jan-Willem van de Meent. Exponential family
 595 variational flow matching for tabular data generation. *arXiv preprint arXiv:2506.05940*, 2025.
 596

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 598 neural information processing systems*, 33, 2020.

599 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
 600 Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning
 601 Research*, 2022.

602

603 Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
 604 Tim Salimans. Autoregressive diffusion models. *arXiv preprint arXiv:2110.02037*, 2021a.

605

606 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 607 and multinomial diffusion: Learning categorical distributions. *NeurIPS*, 2021b.

608

609 Vincent Tao Hu and Björn Ommer. [mask] is all you need. *arXiv preprint arXiv:2412.06787*, 2024.

610

611 Vincent Tao Hu, Wei Zhang, Meng Tang, Pascal Mettes, Deli Zhao, and Cees Snoek. Latent space
 612 editing in transformer-based flow matching. In *AAAI*, 2024.

613

614 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *AISTATS*, 2016.

615

616 Jonas Kohler, Yaoyi Chen, Andreas Kramer, Cecilia Clementi, and Frank Noé. Flow-matching:
 617 Efficient coarse-graining of molecular dynamics without forces. *Journal of Chemical Theory and
 Computation*, 2023.

618

619 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 620 generation using residual quantization. In *CVPR*, 2022.

621

622 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 623 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-
 sentations*, 2023.

624

625 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
 626 and transfer data with rectified flow. In *The Eleventh International Conference on Learning
 Representations*, 2023.

627

628 Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. *arXiv preprint
 629 arXiv:1711.05101*, 2017.

630

631 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
 632 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint
 633 arXiv:2409.04410*, 2024.

634

635 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 636 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 637 transformers. *ECCV*, 2024.

638

639 Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen Zhydenko, Jonathan Kyl, and Elvis Yu-Jing
 640 Lin. High-fidelity performance metrics for generative models in pytorch, 2020.

641

642 William Peebles and Saining Xie. Scalable diffusion models with transformers. *ICCV*, 2023.

643

644 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 645 and Ilya Sutskever. Zero-shot text-to-image generation. In *ICML*, 2021.

646

647 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 648 conditional image generation with clip latents. In *ARXIV*, 2022.

649

650 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 651 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 649 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 650 ence on computer vision and pattern recognition*, 2022.

651

652 Kristiyan Sakalyan, Alessandro Palma, Filippo Guerranti, Fabian J Theis, and Stephan Günnemann.
 653 Modeling microenvironment trajectories on spatial transcriptomics with nicheflow. In *ICML 2025
 654 Generative AI and Biology (GenBio) Workshop*.

655 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 656 learning using nonequilibrium thermodynamics. In *ICML*, 2015.

657

658 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 659 Poole. Score-based generative modeling through stochastic differential equations. In *International
 660 Conference on Learning Representations*, 2020.

661 Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
 662 Tommi Jaakkola. Dirichlet flow matching with applications to DNA sequence design. In Ruslan
 663 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
 664 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 665 volume 235 of *Proceedings of Machine Learning Research*, pp. 46495–46513. PMLR, 21–27 Jul
 666 2024.

667 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 668 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 669 arXiv:2406.06525*, 2024a.

670

671 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 672 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 673 arXiv:2406.06525*, 2024b.

674 Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
 675 diffusion models. *arXiv preprint arXiv:2205.16007*, 2022.

676

677 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
 678 *Advances in neural information processing systems*, 2021.

679

680 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *NeurIPS*, 30,
 681 2017.

682

683 Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H Macke, and Bernhard
 684 Schölkopf. Flow matching for scalable simulation-based inference. *Advances in Neural Information
 Processing Systems*, 36, 2024.

685

686 Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
 687 Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
 688 transformer training instabilities. *arXiv preprint arXiv:2309.14322*, 2023.

689

690 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 691 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
 692 *arXiv preprint arXiv:2110.04627*, 2021.

693

694 Olga Zaghen, Floor Eijkelboom, Alison Pouplin, and Erik J Bekkers. Towards variational flow
 695 matching on general geometries. *arXiv preprint arXiv:2502.12981*, 2025.

696

697

698

699

700

701

702 **A USAGE OF LARGE LANGUAGE MODELS**
703

704 During the preparation of this submission, Large Language Models (LLMs) were utilized as a
705 tool to enhance the quality and presentation of our work. Specifically, we employed LLMs for
706 text refinement, including improving grammar, syntax, and clarity to ensure the readability of our
707 research. Additionally, these models assisted in refining the aesthetic and structural layout of our data
708 visualizations and plots, providing suggestions for more effective data presentation. It is important to
709 note that the LLMs served solely as an assistive tool. The authors retained full responsibility for all
710 intellectual content, including the underlying research, data analysis, interpretation of results, and the
711 final articulation of all arguments and conclusions presented in this paper.

712
713 **B ALGORITHMS**
714

715 TRAINING

716
717 **for** $x \sim \mathcal{D}$ **do**
718 $z_1 \leftarrow \text{Quantize}(\text{Encoder}(x));$
719 $c \leftarrow \text{LatentCode}(z_1);$
720 $z_0 \sim p_0;$
721 $t \sim \mathcal{U}(0, 1);$
722 $z_t \leftarrow tz_1 + (1 - t)z_0;$
723 $\mathcal{L}(\theta) = \text{CrossEntropy}(c, \pi_t^\theta(z_t));$
724 Backprop and update $\theta;$
725 **end**

726 SAMPLING (EULER INTEGRATION)

727
728 $z_0 \sim p_0;$
729 **for** $s \in \{0, \dots, T - 1\}$ **do**
730 $t \leftarrow s/T;$
731 $\pi_t \leftarrow \text{softmax}(\tilde{\pi}_t^\theta(z_s), \tau);$
732 $v_s \leftarrow \frac{\sum_{k=1}^K \pi_t^k \cdot e_k - z_s}{1 - t};$
733 $z_{s+1} \leftarrow z_s + (1/T)v_s;$
734 **end**
735 $x \leftarrow \text{Decoder}(\text{Quantize}(z_T));$
736 Return $x;$

Figure 6: Training and sampling algorithms for Purrception.

731 C IMPLEMENTATION DETAILS
732

733 **Training specifications.** We use DiT architectures of different sizes as backbones for all models
734 (i.e., Purrception, CFM, DFM). To train them, we mostly use the specifications from the original
735 paper (Peebles & Xie, 2023): we initialize the final linear layer of DiT with zeros and otherwise we
736 use the initialization techniques from the ViT (Dosovitskiy et al., 2020). We optimize our models
737 using AdamW (Kingma & Ba, 2016; Loshchilov et al., 2017) with a constant learning rate $1e - 4$, a
738 weight decay 0.01, $(\beta_1, \beta_2) = (0.9, 0.999)$. For Purrception, we use $\text{eps} = 1e - 6$. We also use a
739 global batch size 256. Based on the training details of prior image generation methods, we compute
740 the exponential moving average (EMA) of the backbone parameters over training using a decay rate
741 of 0.9999, and we do inference using solely the EMA model.

742 Additionally, we use **two tokenizers**: (1) the Stable Diffusion’s tokenizer `vq-f8` with a downsampling
743 factor $f = 8$ and a codebook \mathcal{C} of shape $16,384 \times 4$ (Esser et al., 2021) and (2) the `LlamaGen`’s
744 **tokenizer `vq-ds8-c2i` with a downsampling factor $f = 8$ and a codebook \mathcal{C} of shape $16,384 \times 8$**
745 (Sun et al., 2024a). This means that for a given RGB image x of 256×256 resolution, the shape
746 of the latent $z = \mathcal{E}(x)$ is $32 \times 32 \times d$ ($d = 4$ for `vq-f8` and $d = 8$ for `vq-ds8-c2i`), which is
747 further quantized according to \mathcal{C} . During sampling, we use the decoder \mathcal{G} to map the generated latent
748 back into pixel space. The encoder, decoder, and codebook are kept frozen during training.

749 **Sampling and FID score computation.** Flow models need to simulate an ODE to solve the
750 generative modeling task. We use the `torchdiffeq` library in PyTorch and (unless otherwise
751 specified) the usual Euler method with 100 steps when generating samples.

752 For computing the FID scores, we first generate 10,000 samples for computing FID-10k scores and
753 50,000 samples for the FID-50k. Then, we use the `torch-fidelity` PyTorch library (Obukhov
754 et al., 2020) to compute the FID score. For both FID-10k and FID-50k, we use 50k real samples (i.e.,
755 the entire validation set with 256×256 resolution) to compute the statistics for the target dataset.

756 Unless otherwise specified, we do *not* use classifier-free guidance for the models trained conditionally
 757 on ImageNet-1k.
 758

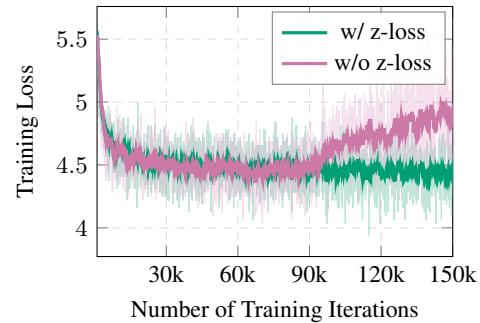
759 **Computational resources.** All methods were trained in a distributed way, using a total of 16 AMD
 760 MI250x GPUs, each GPU having 128GB of HBM2e memory.
 761

762 D TRAINING STABILITY

763 Architecturally, we use a diffusion transformer (DiT) Peebles & Xie (2023) as a backbone to
 764 predict the codebook indices that compound the target datapoint. One of the biggest challenges
 765 we encountered was maintaining a stable training for larger DiT variants (i.e., DiT-L/2, DiT-XL/2),
 766 especially because such training instabilities occurred in the later stages of the training phase.
 767

768 Since the major difference between training Flow
 769 Matching and Purrception is the training objective
 770 (i.e., mean-squared error for the former one, cross-
 771 entropy for the latter one) and Flow Matching does
 772 not have such training instabilities, we hypothesize
 773 that the cause might be the final softmax operation.
 774 Indeed, this divergence in the output logits from the
 775 log probabilities has been reported often as an insta-
 776 bility issue by the research community when training
 777 large models at scale (Chowdhery et al., 2023; Worts-
 778 man et al., 2023). In their paper, Wortsman et al.
 779 (2023) name this issue the *logit drift problem*. To mit-
 780 igate this issue, they propose regularizing the train-
 781 ing using an additional *z-loss* which proved effective
 782 in training recent state-of-the-art, billion-parameter
 783 models such as Chameleon (Chameleon Team, 2024).

784 Inspired by its success, we apply *z-loss* regularization
 785 as well. Similar to Chameleon Team (2024),
 786 we add $10^{-5} \log^2 Z$ to Purrception’s loss function,
 787 where $Z = \sum_{i=1}^K e^{x_i}$ and $\{x_i\}_{i=1}^K$ are the logits out-
 788 putted by the backbone. Figure 7 shows Purrception
 789 achieves stability when *z-loss* is integrated. Thus, we
 790 used the *z-loss* by default when training Purrception.



791
 792
 793 **Figure 7: Training loss curves with and**
 794 **without z-loss.** An additional z-loss avoids

795 E THE EFFECT OF VQ AUTOENCODERS

796 Table 2: **Quantitative comparison of Purrception trained with different VQ tokenizers.** Evalua-
 797 tion on ImageNet-1k 256 × 256 shows that the choice of tokenizer significantly influences generation
 798 quality, with **vq-ds8-c2i** outperforming **vq-f8** across all FID thresholds.

	vq-f8	vq-ds8-c2i
rFID	1.19	0.59
FID ($\tau = 0.7$)	11.80	7.44
FID ($\tau = 0.8$)	10.85	6.46
FID ($\tau = 0.9$)	10.82	7.03
FID ($\tau = 1.0$)	12.33	9.60

800 When we train Purrception, we train exclusively the DiT backbone while keeping the encoder,
 801 decoder, and codebook vectors frozen. To test how much the performance of Purrception relies
 802 on the VQ tokenizer, we train two DiT-XL/2 models on ImageNet-1k 256 × 256 with the same
 803

810 training configurations, for 3.5M iterations each, using two different VQ autoencoders: (1) the
811 Stable Diffusion’s `vq-f8` tokenizer (Rombach et al., 2022) and (2) the LlamaGen’s `vq-ds8-c2i`
812 tokenizer (Sun et al., 2024b).

813 The results in Table 2 show that Purception’s performance is tightly coupled to the quality and
814 design of the underlying VQ autoencoder used to produce the latent tokens. We can observe that for
815 LlamaGen’s tokenizer (which has a better rFID score as compared to Stable Diffusion’s one), we
816 obtain better FID-50k scores in class-conditional ImageNet-1k 256 × 256. This indicates that even
817 when the DiT backbone is trained identically, the representational granularity and perceptual fidelity
818 of the VQ tokenizer have a decisive impact on downstream generation quality.

819 Overall, the experiment highlights that the performance of Purception is not tokenizer-agnostic: its
820 effectiveness depends on the inductive biases and compression characteristics of the VQ autoencoder
821 used. Future work could explore training custom VQ models co-optimized with the DiT backbone or
822 investigating hybrid tokenizers that balance perceptual fidelity and codebook compactness.

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863