
Refinements on the Complementary PDB Construction Mechanism

Anonymous

Abstract

Pattern database (PDB) is one of the most popular automated
heuristic generation techniques. A PDB maps states in a plan-
ning task to abstract states by considering a subset of vari-
ables and stores their optimal costs to the abstract goal in a
look up table. As the result of the progress made on sym-
bolic search over recent years, symbolic-PDB-based plan-
ners achieved impressive results in the International Plan-
ning Competition (IPC) 2018. Among them, Complementary
1 (CPC1) tied as the second best planners and the best non-
portfolio planners in the cost optimal track, only 2 tasks be-
hind the winner. It uses a combination of different pattern
generation algorithms to construct PDBs that are comple-
mentary to existing ones. As shown in the post contest ex-
periments, there is room for improvement. In this paper, we
would like to present our work on refining the PDB construc-
tion mechanism of CPC1. By testing on IPC 2018 bench-
marks, the results show that a significant improvement is
made on our modified planner over the original version.

Introduction
Over past few decades, there has been research on var-
ious automated heuristic generation techniques, including
abstractions (e.g. PDBs), delete relaxations (e.g. hmax) and
landmarks (e.g. LM-cut) (Helmert and Domshlak 2009).
Pattern database (PDB) is a memory-based heuristic genera-
tion technique that requires a pre-processing phase. It maps
original states to abstract states by considering a subset of
variables, namely a pattern, and stores their optimal costs to
the abstract goal in a look up table. Early experiments on
PDB heuristic search involve optimally solving the sliding-
tile puzzles (Culberson and Schaeffer 1998) and the Rubik’s
cube (Korf 1997). The automated PDB generation process
dates back to the work of Edelkamp (2001). Studies have
shown that the heuristic could be improved by combining
multiple PDBs. Felner, Korf, and Hanan (2004) show that
the heuristic from the addition of multiple disjoint PDBs is
admissible. On top of that, Holte et al. (2006) suggest tak-
ing the maximum heuristic over different additive PDBs. In
addition, different representations for PDBs have been pro-
posed. Explicit PDBs are structured as hash tables and usu-
ally limited by memory, while symbolic PDBs (Edelkamp
2002) are structured as binary decision diagrams (BDDs)

(Bryant 1986). The succinct representation of state sets in
BDDs usually reduces the memory consumption and enables
the construction of much larger PDBs.

The space of possible abstractions is huge due to expo-
nentially many patterns and various cost-partitioning strate-
gies. In order to construct PDBs with good quality, sev-
eral algorithms have been proposed, including genetic al-
gorithm (Edelkamp 2006), bin-packing (Edelkamp 2006;
Franco et al. 2017) and hill climbing (Haslum et al. 2007;
Kissmann and Edelkamp 2011). Also, some PDB evaluation
approaches have been suggested, such as average heuris-
tic value (Edelkamp 2006), random walk sampling (Haslum
et al. 2007) and stratified sampling (Lelis et al. 2016;
Barley, Franco, and Riddle 2014). The basic idea of the
Complementary PDB construction (CPC) mechanism is to
keep generating PDB collections using a combination of
the above-mentioned algorithms and add a new collection
Psel to the collection set Scur if Scur ∪ {Psel} is predicted
to improve the heuristic. Moreover, the parameters of the
PDB construction algorithms are dynamically adjusted in
the course.

The results of IPC 2018 have confirmed the effective-
ness the CPC mechanism. Both Complementary 1 (CPC1)
and Complementary 2 (CPC2) planners solved 124 planning
tasks and tied as the runner ups, only 2 tasks behind the win-
ner, and they were the best non-portfolio planners. Nonethe-
less, some ill behaviors of CPC1 have been revealed in the
post contest experiments (Franco et al. 2018). For exam-
ple, using a single PDB construction algorithm, GAMER-
Style (Kissmann and Edelkamp 2011), can solve substan-
tially more tasks than using a combination of algorithms,
which indicates that these algorithms are not well integrated.
Hence, the purpose of our research is to refine the PDB con-
struction mechanism of CPC1 by optimizing the algorithms
and the evaluator as well as better integrating all compo-
nents.

In this paper, the definitions of related concepts will be
introduced. Then, our refinements on the pattern construc-
tion algorithms, the evaluator and the overall process will be
presented. Finally, the results from the experiments on IPC
2018 benchmarks will be summarized to demonstrate the ef-
fectiveness of our refinements.



Background
SAS+ Planning
Planning tasks are encoded into the SAS+ model on the
Fast Downward planning system (Helmert 2006). An SAS+
planning task is defined by a 4-tuple Π = 〈V,O, s0, s∗〉
(Bäckström and Nebel 1995). V is a finite set of state vari-
ables, where each variable v ∈ V has as finite domain Dv .
A full state is an assignment to all state variables, while a
partial state is an assignment to a subset of state variables.
O is a finite set of operators, where each operator o ∈ O
is defined by a tuple 〈preo, effo, costo〉, specifying the pre-
conditions, the effects and the non-negative cost. Both preo
and effo are partial states. An operator o is applicable to
a state s if and only if s agrees on the values of all vari-
ables in preo. The result of applying o to s is a new state
s′ that agrees on the values of all variables in effo with the
other variables unchanged. s0 is the initial state and s∗ is the
partial goal state. A solution to a planning task is a defined
sequence of operators (o1, . . . , on) that leads from s0 to a
goal state that satisfies s∗, i.e. on(. . . o1(s0) . . .)[v] = s∗[v]
for all v ∈ V ar(s∗). The task of cost optimal planning is to
find a solution with the least cost.

The causal graph of an SAS+ planning task is a directed
graph (V,E) with V = V and (u, v) ∈ E if and only if there
is an operator o ∈ O such that effo(v) is defined and either
preo(u) or effo(u) is defined, u 6= v (Helmert 2004). An
arc (u, v) in the causal graph implies that the change of v is
dependent on the current assignment of u.

Pattern Databases
A pattern database (PDB) is a look up table of abstract
states that stores their optimal costs to the goal. It abstracts
the problem space by mapping it to a subset of state vari-
ables P ⊆ V , i.e. a pattern, and removing from the pre-
conditions and effects of operators, s0 and s∗ any variable
not in P . This kind of abstraction is said to be homomor-
phic as any transition (s, s′) in the original problem space
remains valid, thereby yielding admissible and consistent
heuristic. A PDB is constructed by a blind regression search
from the abstract goal states (Culberson and Schaeffer 1998;
Edelkamp 2001), usually up to a time and memory limit. If
the limit is reached and the search is stopped at the depth
d, a partial PDB will be formed and a heuristic value of d
plus the minimum operator cost will be returned for any un-
visited abstract state (Anderson, Holte, and Schaeffer 2007).
The size of a PDB is defined as Πv∈P |Dv|, which is the cross
product of the domain size of all variables in P .

A combination of multiple PDBs generally produces bet-
ter heuristic, e.g. through addition (Felner, Korf, and Hanan
2004) and maximization (Holte et al. 2006). Multiple PDBs
are additive if any operator o ∈ O affects at most only one
PDB, where o affects a PDB P if V ar(effo) ∩ P 6= ∅.
Given a PDB collection, the additivity can be ensured with
cost-partitioning, which splits the operator costs among the
PDBs. A simple approach adopted in the Complementary
planners, zero-one cost- partitioning, is to set the cost of
an operator o to zero if it has affected any PDB in the
collection, and keep the original cost otherwise (Edelkamp

2001). There are alternatives that could yield more informa-
tive heuristic, such as saturated cost-partitioning (Seipp et al.
2017), but they are usually more computationally expensive.
All the PDB collections are combined with the canonical
function (Haslum et al. 2007) in the Complementary plan-
ners, which takes the maximum heuristic value over all ad-
missible combinations.

Symbolic Search and PDBs
Symbolic search has gained tremendous popularity in cost
optimal planning because of significant memory saving and
faster computation. A state vector is a binary encoding of the
variables and its length is given by

∑
v∈Vdlog|Dv|e. A char-

acteristic function is used to represent a set of states that re-
turns true if and only if an encoded state is in the set. In sym-
bolic search, any characteristic function is succinctly repre-
sented in a binary decision diagram (BBD) (Bryant 1986).
In addition, any operator can be represented as a set of tran-
sition relations Tc(s, s

′) in a BBD, where c is the operator
cost, s is the predecessor state and s′ is the successor state.
The set of successors or predecessors for a state set can be
generated via the image or the preimage operation, which
takes the relational product of the state set and the transition
relations (Torralba et al. 2017). The size of a BBD depends
on the ordering of the variables. A local search algorithm
has been proposed by Kissmann and Edelkamp (2011) that
places related variables in the causal graph as close as pos-
sible, which performs much better than random ordering.

Symbolic A* search (BBDA*) partitions the open list into
a matrix of g and h value where each bucket is represented
by a BBD (Edelkamp and Reffel 1998; Jensen, Bryant, and
Veloso 2002). It expands the buckets along an f diagonal
each time, starting from the lowest g value, and adds the
successor state sets, to avoid duplicate expansion. Note that
in the presence of zero-cost operators, additional layers in
a bucket are needed to keep track of the blind search us-
ing only those operators. Symbolic PDBs (Edelkamp 2002)
can be constructed in a way similar to explicit PDBs. A re-
gression search is made from the set of abstract goals, and
the sets of expanded abstract states are encoded in BBDs
along with their costs to goal. It is convenient to query on a
heuristic value for a state set by doing a conjunction with the
BBDs, producing a subset of states with the heuristic value.

The Complementary PDB Construction
Mechanism

GAMER-Style
GAMER-Style (Kissmann and Edelkamp 2011) is a hill
climbing algorithm for constructing a single large PDB. The
sketch is given in Algorithm 1. It starts with all goal vari-
ables and sequentially adds a set of causally related vari-
ables that are predicted to improve the heuristic. If the set of
selected variables is empty, GAMER-Style will either termi-
nate if the candidate variable set is also empty, or continue
with the remaining candidate variables in the next call, i.e.
a partial GAMER run. In our implementation, the remain-
ing candidate variables are shuffled before the partial run to
avoid the effect of ordering (line 6).



The performance of GAMER-Style depends a lot on the
evaluator E. Although originally average h is used, random
walk sampling is suggested by Franco and Torralba (2019).
Compared to average h, random walk sampling gives more
precise estimate because the problem space distribution is
approximated and known dead ends are removed (Haslum et
al. 2007). In light of this, our evaluator samples separately
for GAMER-Style according to the initial h of Psel. Resam-
pling will be performed if and only if the initial h of the new
PDB increases by over 10% (line 16). More details on the
evaluator are explained in the Evaluator section.

Algorithm 1: GAMER-Style
Input : Planning task Π, evaluator E, time limit T

and memory limit M
1 if called first time then
2 Psel ←goal variables in Π;
3 if Scan = ∅ then
4 Scan ←variables causally related to Psel;
5 else
6 Shuffle Scan;
7 threshold← E(Psel);
8 while Scan 6= ∅ and iteration time< 120s and t < T

and m < M do
9 candidate variable← Scan back, Scan pop back;

10 Pcan ← Psel∪{candidate variable};
11 candidate value← E(Pcan);
12 if the highest candidate value is above the threshold

then
13 Ssel ← candidate variables whose value is within

0.1% margin of the highest candidate value;
14 if Ssel 6= ∅ then
15 Psel ← Psel ∪ Ssel;
16 E resamples if initial h of Psel rises by over 10%;
17 Scan ← ∅; // candidate variables

regenerated in the next call
18 return Psel;
19 else
20 if Scan = ∅ then
21 GAMER-Style terminates;

Bin-Packing
Next-Fit Bin-packing (Moraru et al. 2019) consists of two
algorithms, Next-Fit Decreasing Bin-Packing (NFD) and
Next-Fit Increasing Bin-Packing (NFI), which differ in the
order of candidate variables O. The sketch is given in Al-
gorithm 2. It has been shown empirically that Next-Fit Bin-
Packing is effective for seeding (Franco et al. 2018). In our
implementation, an additional step of shuffling the causally
related variables is added to inject randomness (line 11).

Causal Dependency Bin-Packing (CBP) (Franco et al.
2017), as sketched in Algorithm 3, is used in the main PDB
construction phase. Each pattern contains N randomly se-
lected goal variables and iteratively adds causally related

variables. The PDB collection is sorted in the descending or-
der with respect to the pattern length before being returned
(line 14). Compared to Next-Fit Bin-Packing, CBP is more
random because candidate variable are not sorted and N can
be adjusted. Both bin-packing algorithms are implemented
with more efficient data structures in CPC0.

Algorithm 2: Next-Fit Bin-Packing
Input : Planning task Π, sorting order O and size

limit S
1 Scan ←variables in Π whose domain size is below S;
2 Sort Scan according to O;
3 Psel ← ∅, P ← ∅;
4 while Scan 6= ∅ do
5 v ← Scan front, Scan pop front;
6 if P has no more space for v then
7 Psel ← Psel ∪ {P};
8 P ← ∅; // Restart a new bin

9 P ← P ∪ {v};
10 Srel ← variables in Scan causally related to v;
11 Shuffle Srel;
12 while Srel 6= ∅ do
13 v′ ← Srel front, Srel pop front;
14 if P has space for v′ then
15 P ← P ∪ {v′}, remove v′ from Scan;

16 Psel ← Psel ∪ {P}; // Add the last bin
17 return Psel;

Evaluator
The evaluator plays a crucial role in the PDB construction
process as it decides which PDB collections to be included
in the set Scur. The quality of a PDB collection is usually
evaluated with respect to the reduction on the search tree
size or the search time. Since the search tree size is neg-
atively related to the average heuristic value as conjected
by Korf (1997), the heuristic value is used as the metric for
evaluators such as average h (Edelkamp 2006) and random
walk sampling (Haslum et al. 2007). A stratified-sampling-
based evaluator (Lelis et al. 2016; Barley, Franco, and Rid-
dle 2014) that takes the predicted search time as the met-
ric is employed in CPC2 (Franco, Lelis, and Barley 2018),
whereas random walk sampling evaluator is used in CPC1.
As mentioned in (Franco et al. 2017), both evaluators yield
similar results on symbolic PDBs. An explanation is that
since a symbolic PDB collection generally contains fewer
PDBs than an explicit one, the look up time of a sym-
bolic PDB collection does not vary that much, resulting in
a stronger correlation between the search tree size and the
search time. For faster evaluation, random walk sampling
evaluator is also adopted in CPC0 with some modifications
and extensions.

The random walk sampling evaluator samples each state
by applying a number of uniformly chosen operators accord-
ing to the heuristic value of the initial state. After each step,
if the state is known to be a dead, the random walk returns



Algorithm 3: Causal Dependency Bin-Packing
Input : Planning task Π, number of goal variables

to place N and size limit S
1 Scan ←variables in Π whose domain size is below S;
2 Scan g ←goal variables in Π whose domain size is

below S;
3 Psel ← ∅, P ← ∅;
4 while Scan g 6= ∅ do
5 Ssel g ← N variables randomly taken from

Scan g , remove them from Scan and Scan g;
6 P ← P ∪ Ssel g;
7 Srel ← variables in Scan causally related to

Ssel g , shuffle Srel;
8 while there is v ∈ Srel that fits into P do
9 P ← P ∪ {v}, remove v from Srel, Scan and

Scan g;
10 Srel′ ← variables in Scan causally related to

v;
11 Srel ← Srel ∪ Srel′ , shuffle Srel;
12 Psel ← Psel ∪ {P};
13 P ← ∅; // Restart a new bin

14 Sort Psel in descending order with respect to the
pattern length;

15 return Psel;

to the initial state. In our evaluator, the sampling stops when
either the 10,000 state size limit or the 30s time limit is
reached, and unique states are taken from the sample. In case
the sample is empty when all sampled states are dead ends,
the initial state is always included. Then, the heuristic value
of Scur is stored for each sample state. To evaluate a new
PDB collection Psel, the heuristic value of Psel is compared
with with the stored value on each sample state, and true is
returned if and only if at least 25% states are improved. The
evaluation criteria can be summarized by

m∑
i=1

hPsel
(si) > hScur

(si)

m
≥ 0.25

where m is the sample size and {s1, . . . , sm} is the set of
sample states. Compared to the hard threshold in the origi-
nal evaluator, the ratio threshold is more accurate and flexi-
ble for varying sample size. After each evaluation, new dead
ends are removed from sample state, and the heuristic value
of each sample state is updated if Psel is included. Resam-
pling will be performed if and only if the heuristic value of
the initial state increases by over 10% to save time.

The time overhead in maximizing over a set of PDB
collections has been addressed by researchers (Holte et al.
2004; Barley, Franco, and Riddle 2014). To reduce the size
of Scur while maintaining the quality, the pruning of dom-
inated collections is introduced. The pruning progresses
backwards from the last PDB collection and stores the max-
imum heuristic value of processed PDB collections for each
sample state. A PDB collection is pruned if and only if there
is no state where its heuristic value exceeds that of any pre-
vious collection. The pruning order is determined as such

because earlier added PDB collections are more likely to be
dominated by later ones. This strategy is safe since it is quite
rare for a useful PDB collection to underperform on every
sample state.

Adaptive PDB Construction

Figure 1: The PDB construction process

The CPC process, as illustrated in Figure 1, starts with
NFD and then NFI. Both of them run for 80s excluding the
resampling time and start with a size limit of 108 that is
scaled by 10 after each iteration. Whenever a new PDB col-
lection is added, resampling will be performed if the initial
h rises by over 10%, and dominated PDB collections will
be pruned. The pruning is reasonable since the PDB collec-
tions formed in this phase are homogeneous and the time
overhead for subsequent evaluations will be reduced. The
largest size limit where a PDB is added is recorded as Sl for
later use. In CPC1, the perimeter PDB is constructed prior
to the bin packing. However, since the perimeter PDB usu-
ally takes too much time and memory to be useful and may
disadvantage other algorithms, it is not adopted in CPC0.

After the seeding phase, the PDB construction process
goes on until the time or the memory limit is reached. At
each iteration, a choice is made between CBP and GAMER-
Style using the UCB1 formula, which is a learning pol-
icy that balances exploration versus exploitation in a multi-
armed bandit problem and uniformly approaches the min-
imal expected cumulative regret (Auer, Cesa-Bianchi, and
Fischer 2002). The score for each choice is calculated by

x̄i +
√

2 lnn
ni

, where x̄i is the average reward received by the
choice i, ni is the number of times i is chosen and n is the
total number of trials, and the choice with the highest score
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Figure 2: Comparison between CPC0 and CPC1 on the planning tasks

is selected each time. In our planner, ni and n are updated
with the PDB construction time of the algorithm i, and the
reward of i is also increased if the PDB is added to Ssel. The
formula used in our planner is revised on the second term
to the correct form so that it will not be biased to explored
choices.

For CBP, the parameters N and S are decided using
UCB1 as well. The choices for N range from 1 to the num-
ber of goal variables in Π and the choices for S are drawn
from a set of sizes ranging from 109 to 1035, with the ones
over 104 ∗ Sl filtered out to avoid PDBs too large to con-
struct. The maximum size in CPC1 is 1020. GAMER-Style
complements the Bin-Packings as it constructs a single PDB
that contains all goal variables, whereas the Bin-Packings
construct a PDB collection with goal variables distributed
among them. By integrating these algorithms, the adaptive
PDB construction process can generate a great variety of
PDBs and learn the most suitable algorithm to use as well as
the best configuration. Before the A* search, the construc-
tion of any partial PDB will continue if there is excess time
and memory and dominated PDB collections will be pruned.

Experiments
Both CPC0 and CPC1 are built upon an early 2017 fork of
the Fast Downward planning system (Helmert 2006) with
the h2-based pre-processor to remove irrelevant operators
(Alcázar and Torralba 2015). The symbolic search is en-
hanced with the techniques proposed by Torralba et al.
(2017). The optimal STRIPS benchmarks from IPC 2018
are used for the evaluation, consisting of 12 domains (split
ones included) and 240 planning tasks (20 tasks in each do-
main). All experiments are conducted on an Intel i5-6200U
2.30GHz machine, under the IPC 2018 rule of 30-minute
time limit and 8 GB memory limit. The PDB construction is
set to the time limit at 15 minutes and the memory limit at 4
GB for CPC1. Since PDB construction is the most important
stage in our planners and effective PDBs may significantly

reduce the search efforts, the time limit is raised to 18 min-
utes for CPC0.

Overall Results

The key statistics from our experiments are summarized in
Table 1, Table 2 and Figure 2. The initial h values are taken
from the tasks where they are available in both planners. The
expansions, the search time, the total time and the memory
usage are taken from the tasks solved by both planners. It can
be seen from the tables and Figure 2(a) that CPC0 usually
produces PDBs with higher initial h value. This indicates
that the refined algorithms and evaluator can generate bet-
ter heuristic. While Table 2 shows that the number of tasks
where less nodes are expanded in CPC0 is almost the same
as the number of tasks where more nodes are expanded, Ta-
ble 1 shows that CPC0 has slightly fewer node expansions
on average. Looking at Figure 2(b), the instances on CPC1
side lie further off the diagonal than those on CP0 side.
Moreover, CPC1 tends to expand more nodes for the tasks
requiring a great number of expansions. It is because the
refined process in CPC0 is able to construct PDBs of con-
sistent quality over tasks of varying difficulty. According to
Table 2 and Figure 2(c), the search time of CPC0 is generally
less than that of CPC1, and the average search time of CPC0
is significantly reduced, as per Table 1. This may attribute
to the pruning of dominated PDBs that reduces the look up
time. A combination of better heuristic and faster heuristic
look up enables CPC0 to solve 12 more tasks. Hence, our
refinements make the planner even more competitive in the
context of IPC 2018.

On the other hand, the total time and the memory usage of
CPC0 are increased on average as per Table 1. It is because
we have raised the time limit for PDB construction. Also,
the drop of perimeter PDB reduces the chance of solving a
task during PDB construction, thereby increasing the total
time and the memory usage for solved tasks.



CPC0 CPC1

Domain Coverage Avg
init h

Avg
expansions

Avg
search
time(s)

Avg
total

time(s)

Avg
memory(KB) Coverage Avg

init h
Avg

expansions

Avg
search
time(s)

Avg
total

time(s)

Avg
memory(KB)

Agr 13 871.90 3733913.90 96.58 1217.22 3593952.00 10 705.00 3281583.80 74.14 901.70 3861196.40
Cal 12 11.00 6190.45 0.53 1120.37 3155986.18 11 9.15 97475.45 19.60 328.07 1982259.27

Cal-S 10 52.95 92597.11 2.52 1096.14 3904275.11 9 51.05 794227.33 14.67 244.18 1732187.56
DN 14 80.90 166718.07 7.32 784.22 2426417.43 14 60.00 977729.86 30.74 616.50 2668070.00
Nur 16 42.10 786155.14 11.38 738.95 2462988.86 14 32.25 1187245.71 57.83 464.78 2465164.86
OSS 7 1.71 2.71 0.01 7.16 924884.00 7 1.71 2.71 0.01 6.64 924018.29

OSS-S 13 141.00 79405.58 3.38 760.81 2343938.67 13 140.83 437.08 0.06 189.66 1099061.33
PNA 20 152.11 8917.44 0.32 840.22 2157075.17 18 147.50 567690.61 20.59 311.86 2009214.67
Set 10 57.67 750204.44 20.95 1184.12 3146579.11 9 53.33 586050.44 79.82 1155.60 3501106.22
Sna 14 22.25 197577.64 4.74 1202.88 4629628.18 11 2.70 1804478.00 45.88 872.29 5134996.00
Spi 11 3.75 824340.18 25.19 1227.99 4099398.18 12 4.40 428587.09 24.95 1158.53 3477634.55
Ter 16 76.70 4834400.00 18.84 965.54 2871772.75 16 81.65 2498460.25 9.78 751.06 2656157.25

Average 13 135.55 1042518.09 14.84 935.46 2943388.75 12 114.55 1066077.47 30.66 582.07 2624802.31

Table 1: Average statistics of CPC0 and CPC1 on IPC 2018 benchmarks

Domain Coverage Higher
init h

Fewer
expansions

Less
search
time

Agr 3 4 -4 0
Cal 1 0 -1 3

Cal-S 1 -3 -3 0
DN 0 10 3 2
Nur 2 6 2 5
OSS 0 0 0 0

OSS-S 0 1 -4 -1
PNA 2 5 1 3
Set 1 3 -3 6
Sna 3 20 11 8
Spi -1 3 5 1
Ter 0 -14 -10 -5

Total 12 35 -3 22

Table 2: Comparison between CPC0 and CPC1 on each do-
main. In each cell is the number of tasks where CPC0 out-
performs CPC1 minus the number of tasks where CPC1 out-
performs CPC0. The search time of a task is counted if the
difference is greater than 1s.

GAMER-Style Comparison
In CPC0, the variable selection method of GAMER-Style is
changed from average h value to random walk sampling. To
evaluate the effect, both versions are tested on Nurikabe and
Snake, where GAMER-Style contributes the most. In our ex-
periments, other PDB construction algorithms are disabled,
and both planners are set to the time limit at 900s and the
memory limit at 4GB for PDB construction and are tested
under the IPC 2018 rule.

It can be seen from Table 3 that the new version outper-
forms the original version in Snake. Despite a slight increase
in the average memory usage, there is a significant improve-
ment in the other statistics, especially a huge reduction in
the average node expansions. The difference is not that ob-
vious in Nurikabe. Although the new version has slightly
more node expansions on average, mainly due to the task

Domain Nur Sna

CPC0

Coverage 16 14
Avg init h 43.60 27.55
Avg expansions 1741837.81 13672.93
Avg search time(s) 26.22 0.36
Avg total time(s) 626.02 893.16
Avg memory(KB) 2214411.75 3944160.00

CPC1

Coverage 16 14
Avg init h 42.95 21.05
Avg expansions 1607741.94 832964.36
Avg search time(s) 43.82 28.78
Avg total time(s) 622.18 1053.54
Avg memory(KB) 2418533.00 3744610.29

Comparison
Higher init h 5 6
Fewer expansions 3 3
Less search time 5 5

Table 3: Statistics of two versions of GAMER-Style

14, it has fewer expansions on 3 more tasks. Also, the aver-
age initial h value of the new version is higher, and the initial
h value is higher on 5 more tasks. Thus, the new version is
more likely to outperform the original version in Nurikabe.
In both domains, the average search time of the new ver-
sion is significantly reduced, due to not only better heuristic,
but also the pruning method. Since the PDBs constructed
by GAMER-Style are homogeneous, it is very beneficial to
prune the dominated ones.

Related Work
GA-PDB (Edelkamp 2006) uses the the bin-packing algo-
rithm and the genetic algorithm to construct PDB collec-
tions, which are evaluated by average heuristic value. iPDB
(Haslum et al. 2007) starts with a collection of PDBs each
containing a goal variable and in each iteration constructs a
new PDB by adding a causally related variable to an existing
PDB. The PDBs are evaluated by random walk sampling and
combined with the canonical function. GAMER (Kissmann
and Edelkamp 2011) performs symbolic A* search with the
symbolic PDB constructed by GAMER-style algorithm. It
has an alternative option to perform symbolic bidirectional
blind search, depending on the property of the planning task.



CPC2 (Franco, Lelis, and Barley 2018) is an early version
of the Complementary planers. The difference is that CPC2
does not perform Next-Fit Bin-Packing or GAMER-Style
but uses CBP and Regular Bin-Packing (RBP) for PDB con-
struction and performs random mutations to selected PDB
collections. The PDB size limits are drawn from the bino-
mial distribution with the parameters dynamically adjusted.
A stratified-sampling-based evaluator is used, which evalu-
ates the PDB with respect to the predicted search time and
adds a PDB collection if the search time is predicted to be
reduced. The pruning of dominated PDB collections is per-
formed after every certain time period.

Conclusions
In this paper, we have presented our refinements on the
complementary PDB construction mechanism, including
GAMER-Style, Next-Fit Bin-Packing, Causal Dependency
Bin-Packing, as well as the random walk sampling evalua-
tor. We have optimised the algorithms, extended the eval-
uator and improved the overall process. Our experiments
show that these algorithms has been well integrated and
the modified planner CPC0 has a significantly higher cov-
erage on IPC 2018 benchmarks than the original planner
CPC1. Therefore, the effectiveness of the CPC mechanism
in cost optimal planning is again confirmed and a competi-
tive benchmark planner is contributed.

For future research, some other PDB construction algo-
rithms and cost-partitioning strategies, e.g. saturated cost-
partitioning (Seipp et al. 2017), could be introduced. Also,
more advanced evaluators such as stratified sampling (Lelis
et al. 2016; Barley, Franco, and Riddle 2014) may improve
the PDB selection process. A major drawback of PDB-
based planners is the need of pre-processing phase, which
increases the total time for solving a task. Techniques like
interleaved search and heuristic improvement (Franco and
Torralba 2019) could be further explored to address this is-
sue.
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