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ABSTRACT

Pansharpening is an image processing technique that enhances spatial resolu-
tion of multispectral images by fusing them with higher-resolution panchro-
matic images, becoming increasingly critical for remote sensing and geospa-
tial analysis applications. Despite advancements, current deep learning algo-
rithms for pansharpening face limitations: lack of global information extraction
in the spatial domain and insufficient interaction across spectral channels. To
tackle these challenges, we propose DDA, a dual-domain attention plug-and-play
prior, integrating transformer attention with Convolutional Neural Networks, to
facilitate better spatial and spectral detail integration. The code is available at
https://github.com/zennnnnnnnnnnn/DDANet.

1 INTRODUCTION AND RELATED WORK

Pansharpening merges spatial enhancement with spectral preservation. It combines image fusion and
hyperspectral super-resolution2, aiming to retain spectral integrity while enhancing spatial detail.

Deep learning has significantly impacted pansharpening, offering robust solutions for remote sens-
ing data. Traditional CNN-based methods Vivone (2019) Choi et al. (2010) Vivone et al. (2018) have
achieved great performance due to the superior capabilities of DL in feature extraction and nonlinear
fitting. The pioneering PNN, with its convolutional architecture, set the stage for subsequent inno-
vations. Models such as PanNetYang et al. (2017), DiCNNHe et al. (2019), and FusionNetDeng
et al. (2020) have built upon this foundation, each enhancing the deep learning framework’s applica-
tion in pansharpening. Transformer models in pansharpening address CNN limitations but require
extensive computational resources and large datasets, challenging remote sensing’s data-scarce do-
main. Addressing these shortcomings, our research introduces a dual-domain plug-and-play mod-
ule that synergizes spatial and spectral attention mechanismsVaswani et al. (2017)Dosovitskiy et al.
(2020). Preceding transformer modules, due to their architecture, incurred substantial computational
costsLiang et al. (2021). Our module combines CNNs and attention blocks for efficiency, capturing
global context. This dual-domain approach balances spatial clarity and material characterization.

2 METHOD

The proposed Dual-Domain Attention (DDA) module, a plug-and-play component for CNNs,
comprises the High-Resolution Spectral Attention (HRSA) and High-Resolution Spatial Attention
(HRSpA) branches. Motivated by CvTWu et al. (2021), we incorporate convolution into the trans-
former, which can reduce parameters and improve computational speed. The Dual-Domain Atten-
tion (DDA) module for CNNs features two branches: High-Resolution Spectral Attention (HRSA)
and High-Resolution Spatial Attention (HRSpA). HRSA processes input (C×H×W) through con-
volution, halving channel dimensions, and uses softmax to generate attention weights, applied
to doubled-channel input, creating a C×1×1 spectral attention map1. HRSpA, also starting with
C×H×W input, produces a spatial attention map after realignment and sigmoid function applica-
tion2. The final output combines both attention maps with the input, through element-wise multipli-
cation and summation3.

SA(X) = σ(fc(Softmax(fc(X)))) (1)
∗Corresponding author
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Figure 1: Overall Structure of the Proposed Method. The DDA module extracts spectral and spatial
attention features separately and multiplies them with the input data.

SPA(X) = σ(Reshape(Softmax(GAP(fs(X)))× fs(X))) (2)
Y = X × SA(X)× SPA(X) (3)

Here, σ denotes the sigmoid function, Softmax denotes the softmax function, GAP represents global
average pooling, and × is element-wise multiplication. fc, fs represent convolution operation for
spatial and spectral branch.

3 EXPERIMENT

Table 1: Quantitative results on 20 reduced-resolution samples of WV3. (red: best)

Method Reduced-Resolution Params
PSNR Q8 SAM ERGAS

PanNet 37.381±2.643 0.901±0.092 3.624±0.695 2.641±0.605 0.60MB
PanNet+DDA 38.014±2.541 0.908±0.092 3.328±0.622 2.440±0.614 0.61MB

MSDCNN 37.152±2.576 0.900±0.090 3.707±0.758 2.719±0.640 0.87MB
MSDCNN+DDA 37.371±2.713 0.903±0.090 3.580±0.668 2.666±0.677 0.88MB

FusionNet 37.647±2.601 0.903±0.091 3.388±0.657 2.544±0.615 0.58MB
FusionNet+DDA 37.834±2.564 0.906±0.090 3.317±0.643 2.480±0.632 0.60MB

LAGNet 38.584±2.519 0.916±0.087 3.129±0.642 2.297±0.593 0.58MB
LAGNet+DDA 38.666±2.637 0.918±0.086 3.085±0.576 2.261±0.565 0.59MB

Ideal value +∞ 1 0 0

We inserted our DDA module into recent SOTA works, including PanNetYang et al. (2017), MS-
DCNNYuan et al. (2018), FusionNetDeng et al. (2020), LAGNetJin et al. (2022). We insert DDA
into the adjacent layers of the network backbone, such as in PanNet, where we insert it between two
ResBlocks. The test results are presented in Table 1. The insertion of the DDA module resulted
in a significant improvement across all quality metrics for the integrated networks. Due to space
constraints, we have placed the details of the experimental setup and visual results in the appendix.

4 CONCLUSION

In summary, our study advances pansharpening by overcoming limitations in information extraction
and spectral interaction in deep learning. We introduced DDA, a novel and efficient module that
synergistically combines the global attention capabilities of transformers with the structural advan-
tages of CNNs. This dual-domain module has exhibited exceptional performance in enhancing both
the spatial and spectral quality of pansharpened images, as verified through comprehensive evalu-
ations. Our open-source code contributes significantly to remote sensing, setting a benchmark in
image fusion and hyperspectral super-resolution.
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A APPENDIX

A.1 SCHEMATIC DIAGRAM

LRMS ∈ ℝℎ×𝑤×𝑐 
PAN ∈ ℝ𝐻×𝑊 GT ∈ ℝ𝐻×𝑊×𝑐

+ pansharpening

Figure 2: schematic diagram of hyperspectral pansharpening

A.2 EXPERIMENT SETTINGS

Datasets. We conducted experiments on the WV3 dataset using data exclusively sourced from Pan-
CollectionDeng et al. (2022), which comprises a total of 10,000 samples. Each sample is composed
of a set of PAN/LRMS/GT images.The testing dataset is categorized into two types: a reduced-
resolution dataset(8x256x256) and a full-resolution dataset(8x512x512). We tested on the reduced-
resolution dataset.

Evaluation Metrics. For the evaluation of the reduced-resolution dataset, we employ four metrics:
Peak Signal-to-Noise Ratio (PSNR), Quality Index (Q8)Garzelli & Nencini (2009), Spectral Angle
Mapper (SAM), and the Error Relative to Global Amplitude of the Spectra (ERGAS)Wald (2010).

Through experimentation, our network demonstrated its suitability for integration into the deep in-
termediate region where spectral dual-domain information of PAN and MS is highly fused. Experi-
mental results can be referenced on our GitHub repository.
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Figure 3: Visual results on the reduced-resolution sample from WV3 dataset
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