
Efficient Low-Rank Matrix Estimation, Experimental Design, and
Arm-Set-Dependent Low-Rank Bandits

Kyoungseok Jang 1 Chicheng Zhang 2 Kwang-Sung Jun 2

Abstract
We study low-rank matrix trace regression and
the related problem of low-rank matrix bandits.
Assuming access to the distribution of the covari-
ates, we propose a novel low-rank matrix esti-
mation method called LowPopArt and provide
its recovery guarantee that depends on a novel
quantity denoted by B(Q) that characterizes the
hardness of the problem, where Q is the covari-
ance matrix of the measurement distribution. We
show that our method can provide tighter recovery
guarantees than classical nuclear norm penalized
least squares (Koltchinskii et al., 2011) in several
problems. To perform efficient estimation with
a limited number of measurements from an arbi-
trarily given measurement set A, we also propose
a novel experimental design criterion that mini-
mizes B(Q) with computational efficiency. We
leverage our novel estimator and design of experi-
ments to derive two low-rank linear bandit algo-
rithms for general arm sets that enjoy improved
regret upper bounds. This improves over previous
works on low-rank bandits, which make some-
what restrictive assumptions that the arm set is the
unit ball or that an efficient exploration distribu-
tion is given. To our knowledge, our experimental
design criterion is the first one tailored to low-rank
matrix estimation beyond the naive reduction to
linear regression, which can be of independent
interest.

1. Introduction and related work
In many real-world applications, data exhibit low-rank
structure. For example, in the Netflix problem (Bennett
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et al., 2007), the user-movie rating matrix can be well-
approximated by a low-rank matrix; in demographic sur-
veys (Udell et al., 2016), the respondents’ answers to the
survey questions are also oftentimes modeled as a low-rank
matrix. Motivated by these applications, estimation with
low-rank structure is one of the central themes in high-
dimensional statistics (Wainwright, 2019, Chapter 10).

We study the low-rank trace regression problem (Koltchin-
skii et al., 2011; Rohde & Tsybakov, 2011; Hamidi & Bay-
ati, 2020) and the related problem of low-rank linear ban-
dits (Jun et al., 2019; Lu et al., 2021). In the low-rank lin-
ear bandit problem, a learner sequentially learns to choose
arms from a given arm set to maximize reward. For each
time step t ∈ {1, · · · , n}, the learner chooses an arm At
from an arm set A ⊂ Rd1×d2 , and receives a noisy reward
yt = ⟨Θ∗, At⟩ + ηt, where Θ∗ is a rank-r matrix and ηt
is σ-subgaussian noise. The learner’s objective is to maxi-
mize its cumulative reward,

∑n
t=1 yt. This low-rank bandit

model is applicable to various practical scenarios (Natarajan
& Dhillon, 2014; Luo et al., 2017; Jun et al., 2019).

To name a few examples, in drug discovery (Luo et al.,
2017), each At represent the outer product utv⊤t of the fea-
ture representations of a pair of (drug ut, protein vt), and
Θ∗ encodes the interaction between them; in online adver-
tising (Jain & Dhillon, 2013), each At represent the outer
product of the feature representation of a pair of (user ut,
product vt), and Θ∗ models their interactions. The bandit
problem setup naturally induces an exploration-exploitation
tradeoff: as the learner does not know the reward predictor
matrix Θ∗, she may need to choose arms that are informa-
tive in learning Θ∗; on the other hand, since the learner’s
objective is maximizing the expected reward, it may also be
a good idea to choose arms that the learner believes to yield
high reward, based on the past observations.

Early studies on low-rank bandits (Jun et al., 2019; Lu et al.,
2021; Jang et al., 2021) have designed bandit algorithms
with lower regret than naive approaches that view this prob-
lem as a d1d2-dimensional linear bandit problem (Abbasi-
Yadkori et al., 2011; Abe & Long, 1999; Auer, 2002; Dani
et al., 2008). However, previous studies lack understandings
on the relationship between the geometry of the arm set
and regret bounds. Usually they assume that a “nice” explo-
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ration distribution over the arm set is given (Jun et al., 2019;
Lu et al., 2021; Kang et al., 2022; Li et al., 2022), or assume
that the arm set has some curvature property (e.g., the unit
Frobenius norm ball) (Lattimore & Hao, 2021; Huang et al.,
2021). Also, some of them rely on subprocedures that are ei-
ther computationally intractable (Lu et al., 2021, Algorithm
1), or nonconvex optimization steps without computational
efficiency guarantees (Lattimore & Hao, 2021; Jang et al.,
2021); see Appendix A for more related works. To bridge
this gap, we ask the following first question:

Can we develop computationally efficient low-rank bandit
algorithms that allow generic arm sets and provide

guarantees that adapts to the geometry of the arm set?

It is natural to apply efficient low-rank trace regression re-
sults for answering this question, since smaller estimation er-
ror leads to fewer samples for exploration thus smaller cumu-
lative regret in bandit problems. In the low-rank trace regres-
sion problem, where a learner is given a set of measurements
(Xi, yi) that satisfy that yi = ⟨Θ∗, Xi⟩ + ηi, where Θ∗ is
an unknown matrix with rank at most r ≪ min(d1, d2),
and ηi is a zero-mean σ-subgaussian noise. The goal is to
recover Θ∗ with low error. Throughout, we will use Xi for
the supervised learning setting and Ai for the bandit setting.

The low-rank trace regression problem is one of the ex-
tensively studied areas within the field of low-rank matrix
recovery problems. Keshavan et al. (2010) provides recov-
ery guarantees for projection based rank-r matrix optimiza-
tion for matrix completion, and Rohde & Tsybakov (2011);
Koltchinskii et al. (2011) provide analysis of nuclear norm
regularized estimation method for general trace regression,
with Rohde & Tsybakov (2011) providing further analy-
sis on the (computationally inefficient) Schatten-p-norm
penalized least squares method. Among these approaches,
researchers regarded the nuclear norm penalized least square
(Rohde & Tsybakov, 2011; Koltchinskii et al., 2011) as the
classic approach and applied this method directly (Lu et al.,
2021) to achieve state-of-the-art algorithm for the low-rank
bandit with a general arm set. Since better estimation can
lead to better bandit algorithms, we are interested in investi-
gating the following second question:

For low-rank trace regression, can we design estimation
algorithms that can outperform the classical nuclear norm

penalized least squares?

In this paper, we make meaningful progress in high-
dimensional low-rank trace regression and low-rank bandits,
providing algorithms with arm-set-adaptive exploration and
regret analyses for general operator-norm-bounded arm sets.

We assume that all arms are operator norm-bounded, and the
unknown parameter Θ∗ is nuclear norm bounded as follows:

Assumption A1 (operator norm-bounded arm set). The arm

set A is such that A ⊆
{
A ∈ Rd1×d2 : ∥A∥op ≤ 1

}
.

Assumption A2 (Bounded norm on reward predictor). The
reward predictor has a bounded nuclear norm: ∥Θ∗∥∗ ≤ S∗.

These two assumptions parallels the standard assumption
in the sparse linear model where the covariates are ℓ∞-
norm bounded and the unknown parameter is ℓ1-norm
bounded (Hao et al., 2020).

We will also consider the following bounded expected re-
ward assumption in place of Assumption A2:

Assumption A3 (Bounded expected reward). For all A ∈
A,
∣∣⟨Θ∗, A⟩

∣∣ ≤ Rmax.

Note that Assumption A2 implies Assumption A3 with
Rmax = S∗; however the converse is not necessarily true,
since A is not necessary the unit operator norm ball.

Our contributions are summarized as follows:

First, under the additional assumption that the measurement
distribution π is accessible to the learner, we propose a novel
and computationally efficient low-rank estimation method
called LowPopArt (Low-rank POPulation covariance re-
gression with hARd Thresholding) and prove its estimation
error guarantee (Theorem 3.4) as follows:

∥Θ̂−Θ∗∥op ≤ Õ
(
σ

√
B(Q(π))

n0

)
,

where n0 is the number of samples used, and B(Q(π)) (see
Eq. (9)) is a quantity that depends on the covariance matrix
Q(π) of the data distribution π over the measurement set A.
We show that the recovery guarantee of LowPopArt is not
worse and can sometimes be much better than the classical
nuclear norm penalized least squares method (Koltchinskii
et al., 2011) (see Section 3).

Second, motivated by the operator norm recovery bound of
LowPopArt, we propose a design of experiment objective
B(Q(π)) for finding a sampling distribution that minimizes
the error bound of LowPopArt. This is useful in settings
when we have control on the sampling distribution, such as
low-rank linear bandits, the focus of the latter part of this
paper. Applying the recovery bound to the optimal design
distribution, we obtain a recovery bound of

∥Θ̂−Θ∗∥op ≤ Õ
(
σ

√
Bmin(A)

n0

)
,

where Bmin(A) := minπ∈∆(A)B(Q(π)) depends on the
geometry of the measurement set A. For example, letting
d := max{d1, d2}, we have Bmin(A) = Θ(d2) and Θ(d3)
when A is the unit operator norm ball and unit Frobenius
norm ball, respectively (See Appendix D for the proof).
Moreover, optimizing our experimental design criterion is
computationally tractable. In contrast, many prior works
on low-rank matrix recovery require finding a sampling
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Regret bound Regret when
A = Bop(1)

Regret when
A = Ahard

Limitation

OFUL
(Abbasi-Yadkori et al., 2011) Õ(d2

√
T ) Õ(d2

√
T ) Õ(d2

√
T )

ESTR
(Jun et al., 2019) Õ(

√
rdT

λmin(Q(π))

(
λ1
λr

)3

) - - Bilinear

ε-FALB
(Jang et al., 2021) Õ(

√
d3T ) - - Bilinear &

Comp. intractable
rO-UCB

(Jang et al., 2021) Õ(
√
rd3T ) - - Bilinear &

Requires oracle
LowLOC

(Lu et al., 2021) Õ(
√
rd3T ) Õ(

√
rd3T ) Õ(

√
rd3T ) Comp. intractable

LowESTR1

(Lu et al., 2021) Õ(d1/4
√

r 1
λmin(Q(π))2

T
(

S∗
λr

)
) Õ(

√
rd5/2T ) Õ(

√
rd13/2T )

G-ESTT
(Kang et al., 2022) Õ(d1/4

√
rdMT

(
S∗
λr

)
) Õ(

√
rd5/2T ) -2

Lower bound
(Lu et al., 2021) Ω(rd

√
T )

LPA-ETC (Algorithm 3) Õ((Rmaxr
2Bmin(A)T 2)1/3) Õ(r2/3d2/3T 2/3) Õ(r2/3dT 2/3)

LPA-ESTR (Algorithm 4) Õ(d1/4
√

Bmin(A)T
(
S∗
λr

)
)) Õ(

√
d5/2T ) Õ(

√
d7/2T )

Table 1. A comparison with existing results on low-rank bandits with fixed arm sets and 1-subgaussian noise. Here, λr is abbreviation
of λr(Θ

∗), Q(π) is the covariance matrix defined in Eq. (1), Bop(1) is the unit operator norm ball, Ahard is a special arm set (See
Lemma 3.6), and Bmin(A) is an arm set dependent constant defined in Eq. (4). When A ⊆ Bop(1), we have Bmin(A) = Ω(d2) and
λmin(Q(π)) = O( 1

d
), ∀π ∈ P(A). M is another arm set dependent constant in (Kang et al., 2022), see Appendix H.2 for more details.

For the third and fourth columns, we set π to be the most favorable sampling distribution for prior results as they did not specify the
sampling distribution π but assumed favorable conditions to hold. S∗ and Rmax are upper bounds for ∥Θ∗∥∗ and maxA∈A |⟨A,Θ∗⟩|
respectively, see Assumption A2 and A3.

distribution that satisfies properties such as restricted isom-
etry property and restricted eigenvalue (Hamdi & Bayati,
2022; Koltchinskii et al., 2011; Wainwright, 2019) - all these
are computationally intractable to compute or verify and
thus hard to optimize (Bandeira et al., 2013; Juditsky &
Nemirovski, 2011), which is even harder when the measure-
ments must be limited to an arbitrarily given set A.

Finally, using LowPopArt, we propose two computationally
efficient and arm set geometry-adaptive algorithms, for low-
rank bandits with general arm sets:

• Our first algorithm, LPA-ETC (LowPopArt-Explore-
Then-Commit; Algorithm 3), leverages the classic
explore-then-commit strategy to achieve a regret bound
of Õ((Rmaxr

2Bmin(A)T 2)1/3) (Theorem 4.1). Com-
pared with the state-of-the-art low-rank bandit algo-
rithms that allow generic arm sets (Lu et al., 2021) that
guarantees a regret order Õ(

√
rd3T ), Algorithm 3’s

guarantee is better when T ≪ O( d9

Bmin(A)2r ) (see Re-
mark 3 for a more precise statement).

• Our second algorithm, LPA-ESTR (LowPopArt-
Explore-Subspace-Then-Refine; Algorithm 4), works
under the extra condition that the nonzero minimum
eigenvalue of Θ∗, denoted by λmin, is not too small.
Algorithm 4 uses the Explore-Subspace-Then-Refine
(ESTR) framework (Jun et al., 2019) and achieves a
regret bound of Õ(

√
d1/2Bmin(A)TS∗/λmin)) (The-

orem 4.2). LPA-ESTR gives a strictly better regret

bound than previously-known computationally effi-
cient algorithms. For example, compared to LowESTR
(Lu et al., 2021), the regret of our LPA-ESTR algo-
rithm makes not only a factor of

√
r improvement, but

also the dependence on the arm set dependent quantity
from 1

λmin(Q(π))2 to Bmin(A); we show that for any
A ⊂ Bop(1), Bmin(A) ≤ 1

λmin(Q(π))2 (Lemma 3.6
and Corollary D.1) and there exists an instance Ahard
such that dBmin(Ahard) ≤ 1

λmin(Q(π))2 (Lemma 3.6).
• Both of our algorithms work for general arm sets, un-

like many other low-rank bandit algorithms tailored
for specific arm sets such as unit sphere (Huang et al.,
2021), symmetric unit vector pairs {uu⊤ : u ∈ Sd−1}
(Kotlowski & Neu, 2019; Lattimore & Szepesvári,
2020), or even one-hot matrices {eie⊤j : i, j ∈
[d]}(Katariya et al., 2017; Trinh et al., 2020).

We compare our regret bounds with existing results in Ta-
ble 1, which showcase how our arm set-dependent regret
bounds improve upon prior art in specific arm sets. We
also make a meticulous examination of arm set-dependent
constants on regret analysis from previous results, which we
believe will help future studies.

1Our bound here is a d1/4 factor larger from the original paper
since our setting is operator norm bounded action set, which is
different from their Frobenius norm bounded action set. For details,
see Appendix H.3.
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2. Preliminaries
Basic Notations. For a matrix M ∈ Rd1×d2 and a set
of matrices M ⊆ Rd1×d2 , let vec(M) ∈ Rd1d2 be the
vectorization of the matrix M by vertically stacking its
columns and vec(M) := {vec(M) :M ∈M}. Denote by
reshape(·) the inverse map of vec(·); i.e., reshape(v) =M
if and only if vec(M) = v. We assume that A spans
Rd1×d2 . Define d = max(d1, d2). We denote by vi
the i-th component of the vector v and by Mij the entry
of a matrix M located at the i-th row and j-th column.
Let λk(M) be the k-th largest singular value, and define
λmax(M) = λ1(M), which is also known as ∥M∥op, the
operator norm of M . Let λmin(M) be the smallest nonzero

singular value ofM . Let ∥M∥F =
√∑d1

i=1

∑d2
j=1M

2
ij and

∥M∥∗ =
∑min(d1,d2)
i=1 λi(M) be the Frobenius norm of M

and nuclear norm, respectively. Õ is the order notation that
hides logarithmic factors. For any set S, let P(S) be the set
of probability distributions on S. For any π ∈ P(A), define
the population covariance matrix of the vectorized matrix
Q(π) ∈ Rd1d2×d1d2 as follows:

Q(π) = Ea∼π
[
vec(a)vec(a)⊤

]
(1)

We define Bop(R) := {a ∈ Rd1×d2 : ∥a∥op ≤ R}.

Low-rank bandits. Throughout, we assume that the learn-
ing agent interacts with the environment in the following
manner. At every time step t ∈ {1, . . . , T}, the learner
chooses an arm At from the arm set A ⊂ Rd1×d2 and
receives reward yt = ⟨Θ∗, At⟩ + ηt, where Θ∗ is an un-
known matrix with a known upper bound of the rank at
most r ≪ min(d1, d2). ηt is an independent zero-mean σ-
subgaussian noise, and the inner product of two matrices are
defined as ⟨A,B⟩ = ⟨vec(A), vec(B)⟩ = tr(A⊤B). The
goal of the learner is to minimize its (pseudo-)regret:

Reg(T ) := T max
A∈A
⟨Θ∗, A⟩ −

T∑
t=1

⟨Θ∗, At⟩.

The following matrix generalization of Catoni’s robust mean
estimator proposed by (Minsker, 2018) will be useful for
our estimator.

Definition 2.1. Given a symmetric matrix M with its
eigenvalue decomposition M = UΛU⊤ where Λ =
diag(λ1, · · · , λd), we first define ϕ0 : R→ R as

ϕ0(x) =

{
log(1 + x+ x2

2 ) if x > 0

− log(1− x+ x2

2 ) otherwise

2(Kang et al., 2022) focused on cases where the arm-set alloca-
tion π is a continuous distribution with a differentiable probability
density. However, Ahard is a discrete action set, and theoretical
analysis for discrete action sets is not covered in their paper, thus
we left this part unaddressed.

and ϕ : Rd×d → Rd×d as

ϕ(M) = U
[
diag(ϕ0(λ1), ϕ0(λ2), · · · , ϕ0(λd))

]
U⊤

Finally, for any matrix A ∈ Rd1×d2 , define the dilation
operatorH : Rd1×d2 → R(d1+d2)×(d1+d2) as

H(A) =

[
0d1×d1 A
A⊤ 0d2×d2

]
.

Dilation is a common trick to allow existing estimation tools
built for real symmetric matrices to work on rectangular
matrices, as in (Huang et al., 2021; Minsker, 2018). For a
dilated matrix M ∈ R(d1+d2)×(d1+d2), (M)ht refers to the
shorthand of M1:d1,d1+1:d1+d2 .

3. LowPopArt: A novel low-rank matrix
estimator

In this section, we will present our novel low-rank matrix
estimation algorithm, LOW-rank Population Covariance re-
gression with hARd Thresholding (LowPopArt; Algorithm
1), which is inspired by a recent sparse linear estimation
algorithm called PopArt (Jang et al., 2022). We discuss the
differences between LowPopArt and PopArt in detail at the
end of this section.

LowPopArt takes samples {Xi, Yi}n0
i=1, sample size n0, the

population covariance matrix of the vectorized matrix Q(π),
pilot estimator Θ0 and pilot estimation error bound R0 s.t.
maxA∈A

∣∣⟨Θ0 −Θ, A⟩
∣∣ ≤ R0 as its input. It consists of

three stages. In the first stage, PopArt creates a collec-
tion of one-sample estimator {Θ̃i}n0

i=1 from the input data
{(Xi, Yi)}n0

i=1 as follows:

Θ̃i := Q(π)−1(Yi − ⟨Θ0, Xi⟩)vec(Xi) (2)

Note that each Θ̃i is an unbiased estimator of vec(Θ∗−Θ0).

Naively, one could use the average Θ̄ := 1
n0

∑n0

i=1 Θ̃i
as an estimator for Θ∗ − Θ0. When the number of sam-
ples is large enough, the empirical covariance matrix Q̃ =
1
n0

∑n0

i=1 vec(Xt)vec(Xt)
⊤ is close to Q(π), which makes

Θ̄ close to the d1d2-dimensional ordinary least squares
(OLS) estimator. However, it is not easy to control the
tail behavior of Θ̄, and consequently it is hard to exploit the
low-rank property when one naively uses Θ̄. Instead, we
use the estimator of Minsker (2018, Corollary 3.1) which
symmetrizes the original matrix and computes the Catoni
function for each eigenvalue (Definition 2.1), which has the
effect of lightening the tail distribution of singular values.
We call the resulting matrix Θ1. Finally, we run SVD on Θ1

and zero out all the singular values smaller than a threshold,
to exploit the knowledge that Θ∗ is low-rank.

Remark 1. In the general estimation problem, we do not
have prior knowledge of the inverse covariance matrix of
the data, but one may attempt to estimate it if having sample
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Algorithm 1 LowPopArt
1: Input: Samples {Xi, Yi}n0

i=1, sample size n0, the popu-
lation covariance matrix of the vectorized matrix Q(π),
pilot estimator Θ0 and pilot estimation error bound R0.
Step 1: Compute one-sample estimators.

2: for t = 1, . . . , n0 do
3: Compute Θ̃i as in Eq. (2).
4: end for

Step 2: Compute the matrix Catoni

estimator (Minsker, 2018) using {Θ̃i}n0
i=1

5: Compute:

Θ1 = Θ0 +
( 1

n0ν

n0∑
i=1

ψ
(
νH
(
reshape

(
Θ̃i
))))

ht

where ν = 1
σ+R0

√
2

B(Q)n0
ln 2d

δ .
Step 3: Hard-thresholding eigenvalues.

6: Let U1Σ1V
⊤
1 be Θ1’s SVD. Let Σ̃1 be a modification

of Σ that zeros out its diagonal entries that are at most

λth := 2(R0 + σ)

√
(B(Q) ln 2d

δ )
n0

where B(Q) is in Eq.
(4).

7: Return: Estimator Θ̂ = U1Σ̃1V
⊤
1 .

access to the covariate distribution; e.g., matrix geometric
sampling (Neu & Olkhovskaya, 2020). On the other hand,
there are some problems (such as bandits or compressed
sensing) where the agent has full control over the distri-
bution of the dataset. In these cases, LowPopArt can be
directly applied. Obtaining a precise performance guarantee
when the covariance matrix is estimated from the observed
samples is left as future work.

Analysis of Algorithm 1 We start by stating the following
recovery guarantee of the estimator Θ1. Detailed proofs of
this part are mainly in Appendix B.

Theorem 3.1. Suppose we run Algorithm 1 with the arm
set A which satisfies Assumption A1, sample size n0, pop-
ulation covariance matrix of vectorized matrices Q, pilot
estimator Θ0 and pilot estimation error bound R0, such
that maxA∈A

∣∣⟨Θ0 −Θ∗, A⟩
∣∣ ≤ R0, then Θ1 satisfies the

following error bound with probability at least 1− δ:

∥Θ1 −Θ∗∥op ≤ O
(
(σ +R0)

√
B(Q)
n0

ln 2d
δ

)
. (3)

where

B(Q) := max

(
λmax

( d2∑
i=1

D
(col)
i

)
, λmax

( d1∑
i=1

D
(row)
i

))
(4)

where D(col)
i = (Q−1)[i·ds+1:(i+1)·ds],[i·ds+1:(i+1)·ds] and

D
(row)
i := [(Q−1)jk]j,k∈{i+d1(ℓ−1):ℓ∈[d2]}; see Figure 1 for

illustrations.

Figure 1. Illustration of D(col)
i and D

(row)
i

Remark 2. The intuition underlying B(Q) is as follows.
When d = 1, B(Q) is proportional to the variance of
Θ̃1; for d ≥ 1, B(Q) is, informally, at most proportional
to the largest variance of Θ̃1 projected onto rank-1 dyads{
uv⊤ : u, v ∈ Sd−1

}
; see the proof of Lemma B.2 for de-

tails.

From the above Theorem 3.1, one could deduce the final
operator norm bound of the output Θ̂.

Theorem 3.2. Under the same assumption in Theorem
3.1, the following holds with probability at least 1 − δ:
rank(Θ̂) ≤ r, and

∥Θ̂−Θ∗∥op ≤ O
(
(σ +R0)

√
B(Q)

n0
ln

2d

δ

)
(5)

Theorem 3.2 implies the following error bounds in nuclear
norm and Frobenius norm recovery errors:

Corollary 3.3. Under the same assumption as in Theorem
3.1, the following nuclear norm and Frobenius norm bounds
hold with probabiliy at least 1− δ:

∥Θ̂−Θ∗∥∗ ≤ O
(
(σ +R0)

√
r2B(Q)

n0
ln

2d

δ

)
(6)

∥Θ̂−Θ∗∥F ≤ O
(
(σ +R0)

√
rB(Q)

n0
ln

2d

δ

)
(7)

In practical applications, the learner may not have a spe-
cific pilot estimator. A naive application of LowPopArt
with pilot estimator 0d1×d2 gives an estimator Θ̂ such

that ∥Θ̂ − Θ∗∥op ≤ Õ
(
(σ +Rmax)

√
B(Q)
n0

)
with As-

sumption A3; the dependence on Rmax is somewhat un-
desirable when Rmax ≫ σ. Motivated by this, we pro-
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Algorithm 2 Warm-LowPopArt: a bootstrapped version
of LowPopArt

1: Input: Samples {Xi, Yi}n0
i=1, sample size n0, popu-

lation covariance matrix of the vectorized matrix Q,
failure rate δ.

2: Θ0←LowPopArt({Xi, Yi}
n0

2
i=1, n0/2, Q, 0d1×d2 , S∗,δ/2)

3: Θ̂←LowPopArt({Xi, Yi}n0

i=
n0

2 +1
, n0/2, Q,Θ0, σ, δ/2)

4: Return: Θ̂

pose an improved version of LowPopArt whose estima-

tion error guarantee is Õ
(
σ
√

B(Q)
n0

)
under mild assump-

tions, i.e. Warm-LowPopArt (Algorithm 2). Its key
idea is to first use LowPopArt to construct a coarse es-
timator Θ0 such that ∥Θ0 − Θ∗∥∗ ≤ σ, which ensures
that maxA∈A

∣∣⟨Θ0 −Θ∗, A⟩
∣∣ ≤ σ; it subsequently calls

LowPopArt again with Θ0 as a pilot estimator, to obtain the
final estimate Θ̂. Formally, we have the following theorem:
Theorem 3.4. Suppose that Assumption A1 and A3 hold,
and Algorithm 2 is run with arm set A, sample size n0,
failure rate δ, and n0 ≥ Õ

(
r2B(Q) · (σ+Rmax

σ )2
)

, then

its output Θ̂ is such that rank(Θ̂) ≤ r, and:

∥Θ̂−Θ∗∥op ≤ O
(
σ

√
2B(Q)

n0
ln

2d

δ

)
. (8)

Comparison with nuclear norm penalty methods An
alternative and popular approach for matrix estimation is
nuclear norm penalized least squares (Koltchinskii et al.,
2011), which yields a recovery guarantee of ∥Θ̂−Θ∗∥F ≤
Õ(
√

r
nλmin(Q)2 ) and ∥Θ̂ − Θ∗∥∗ ≤ Õ(

√
r2

nλmin(Q)2 ).

We show in Appendix G.3.1 that under Assumption A1,
λmin(Q) ≤ 1

d , and by Lemma 3.5 below, our error bound
of LowPopArt is always tighter than that of (Koltchinskii
et al., 2011).
Lemma 3.5. B(Q) ≤ d

λmin(Q)

Thus, B(Q) can be viewed as a tighter measurement-
distribution-dependent quantity that characterizes the hard-
ness of the low-rank matrix recovery,

However, we can go even further – it is a natural question
to consider how much the recovery error can be reduced
when applying the best experimental design tailored to each
estimation method.

Experimental design As can be seen from Theorem 3.2,
the recovery guarantee of the LowPopArt algorithm de-
pends on the hardness B(Q). Therefore, if the agent can
design the sampling distribution over the given measure-
ment set A, a natural choice would be one that minimizes
the B(Q) value. Formally, we define the optimal B(Q) as:

Bmin(A) := min
π∈P(A)

B(Q(π)) (9)

where Q(π) is defined in Eq. (1).

Intuitively, this quantity can be understood as a single metric
capturing the geometry of the measurement set. This opti-
mization problem is convex and can be efficiently computed
using common convex optimization tools such as cvxpy
(Diamond & Boyd, 2016).

Research on the experimental design for low-rank matrix es-
timation is surprisingly scarce. One reasonable comparison
point for our experimental design is the classical E-optimal
design (Lattimore & Hao, 2021; Hao et al., 2020; Soare
et al., 2014), well-known in experimental design for linear
regression. E-optimality aims to maximize the minimum
eigenvalue of the sampling distribution’s covariance matrix,
with optimal objective value formally defined as follows:

Cmin(A) = max
π∈P(A)

λmin(Q(π)) (10)

Now, the important question is how the recovery bounds of
LowPopArt and nuclear norm penalized least squares differ
when written in terms of Cmin(A) and Bmin(A), respec-
tively. We have established the following results between
Cmin(A) and Bmin(A):

Lemma 3.6. Suppose Assumption A1 holds. Then d2 ≤
Bmin(A) ≤ d

Cmin
, and there exists an arm set Ahard for

which Bmin(Ahard) ≈ 1
Cmin

.

See Appendix C for the proof of Lemma 3.5, 3.6 and the
construction ofAhard. For the arm setAhard our guarantee is
1

d3/2
times tighter than the guarantee of (Koltchinskii et al.,

2011), which shows the importance of using the right arm
set geometry quantity.

Main novelty of LowPopArt compared to PopArt (Jang
et al., 2022). The major challenge is the absence of the
knowledge of a well-structured basis that the agent could
exploit a low-rank property of Θ∗ to do better estimation.
In sparse linear bandits, the basis for testing the zeroness
is known to the agent (i.e. the canonical basis), so the
estimation procedure can simply focus on controlling the
estimation error over the d coordinates. On the other hand,
in low-rank bandits, we need to control the subspace estima-
tion error, but the potential number of subspace directions
(i.e., F = {uv⊤ : u ∈ Sd1−1, v ∈ Sd2−1} or its ε-net) is
infinite or exponentially large (∼ exp(d1 + d2)). Indeed,
one of the naive extension of (Jang et al., 2022) for estima-
tion, which considers all possible directions in an ε-net of
F . However, this causes computational intractability. To
get around this issue, we propose to directly upper bound
∥Θ̂−Θ∗∥op for establishing Frobenius and nuclear norm
recovery error guarantees, which can be performed via the
method of (Minsker, 2018) in a computationally efficient
manner. This was the key observation that led to our main
result.
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Algorithm 3 LPA-ETC (LowPopArt based Explore then
commit)

1: Input: time horizon T , arm set A, exploration lengths
n0, regularization parameter ν, pilot estimator Θ0

2: Solve the optimization problem in Eq. (9) and denote
the solution as π∗

3: for t = 1, . . . , n0 do
4: Independently pull the arm At according to π∗ and

receives the reward Yt
5: end for
6: Run Warm-LowPopArt({Ai, Yi}n0

i=1, n0, Q(π∗), δ)

and get Θ̂
7: for t = n0 + 1, . . . , T do
8: Pull the arm At = arg maxA∈A ⟨Θ̂, A⟩
9: end for

4. Low rank bandit algorithms
We now leverage LowPopArt to design two computationally
efficient algorithms for low-rank bandits.

Explore-then-commit based algorithm. Algorithm 3 is
based on the well-known Explore-then-Commit framework.
It uses Warm-LowPopArt as its exploration method to ob-
tain Θ̂, an estimate of Θ∗, and subsequently takes the greedy
arm with respect to Θ̂.

We prove the following regret guarantee:
Theorem 4.1 (Regret upper bound). Suppose that Assump-
tion A1 and A3 hold, and T ≥ rBmin(A)(σ+Rmax

σ )4.
The regret upper bound of Alg. 3 with n0 =

min(T,
(
σ2r2Bmin(A)T 2/R2

max

)1/3
) is as follows:

Reg(T ) ≤ Õ((σ2Rmaxr
2T 2Bmin(A))1/3) (11)

Remark 3. To the best of our knowledge, the only algo-
rithms that can handle general arm sets with λmin(Θ

∗)-
free regret bounds are LowLOC (Lu et al., 2021) and rO-
UCB (Jang et al., 2021). Both algorithms have regret bounds
of O(σr1/2d3/2

√
T ) but are not computationally tractable.

On the other hand, our ETC-based algorithm is computa-
tionally efficient and achieves a better regret bound when
T ≤ O

(
σ2d9R−2

maxBmin(A)−2r−1
)
.

Explore-Subspace-Then-Refine (ESTR) based algorithm.
Although general, Algorithm 3 overlooks a favorable struc-
ture underlying many low-rank bandit problems: Θ∗ is well-
conditioned in many settings, e.g. λmin ≥ Ω(S∗/r). Such
structure has been exploited by many prior works (Jun et al.,
2019; Lu et al., 2021; Kang et al., 2022) to design

√
T -

regret algorithms. In this part, in addition to Assumption A1
and A2, we assume that λmin(Θ

∗) ≥ Sr for some known
Sr > 0.

In this section, we use Warm-LowPopArt to design an
efficient algorithm with O(

√
T ) regret (Algorithm 4). Al-

gorithm 4 is based on the Explore-Subspace-Then-Refine

Algorithm 4 LPA-ESTR (LowPopArt based Explore Sub-
space Then Refine)

1: Input: time horizon T , arm set A, exploration lengths
n0, singular value lower bound Sr

2: Solve the optimization problem in Eq. (9) and denote
the solution as π

3: for t = 1, . . . , n0 do
4: Independently pull the arm At according to π and

receives the reward Yt
5: end for
6: Run Warm-LowPopArt({Ai, Yi}n0

i=1, n0, Q(π), δ)

and get Θ̂ with SVD result Θ̂ = Û Σ̂V̂ ⊤.
7: Let Û⊥ and V̂⊥ be the orthonormal bases of the orthog-

onal complement subspaces of Û and V̂ , respectively.
8: Rotate whole arm feature set A′ :=
{[Û Û⊥]A[V̂ V̂⊥]

⊤ : A ∈ A}
9: Define a vectorized arm feature set so that the last (d1−
r)(d2 − r)components are from the complementary
subspaces:

A′
vec := {(vec(A′

1:r,1:r); vec(A′
r+1:d1,1:r);

vec(A′
1:r,r+1:d2); vec(A′

r+1:d1,r+1:d2)) : A
′ ∈ A′}

10: Invoke LowOFUL with time horizon T − n0, arm set
A′

vec, the low dimension k = r(d1+d2−r), λ = σ2

S2
∗
dr,

λ⊥ = T
r log(1+ dT

λ )
, B = S∗, and B⊥ = Bmin(A)σ2S∗

n0S2
r

.

(ESTR) framework (Jun et al., 2019). In ESTR, we use
Warm-LowPopArt to find an estimate Θ̂ such that it closely
approximates Θ in operator norm. We then estimate the
row and column spaces of Θ using an SVD over Θ̂, repre-
sented by their orthonormal bases Û and V̂ . Then, we rotate
the arm set using Û and V̂ . After this transformation, the
original linear bandit problem becomes a d1d2-dimensional
linear bandit problem with arm set A′ and reward predictor

θ∗ = ( vec(Û⊤Θ∗V̂ ); vec(Û⊤
⊥Θ∗V̂ );

vec(Û⊤Θ∗V̂⊥); vec(Û⊤
⊥Θ∗V̂⊥))

Crucially, by the recovery guarantee of Warm-LowPopArt
and Wedin’s Theorem (Stewart & Sun, 1990), ∥Û⊤

⊥U∥op

and ∥V̂ ⊤
⊥ V ∥op are both small; as a consequence,

∥θ∗r(d1+d2−r)+1:d1d2
∥2 = ∥ vec(Û⊤

⊥Θ∗V̂⊥)∥F ≤
∥Û⊤

⊥U∥op∥Θ∗∥F ∥V̂ ⊤
⊥ V ∥op, which is also small. In

other words, we are now faced with a linear bandit
problem with the prior knowledge that a large subset of the
coordinates of the reward predictor is small.

This motivates the usage of the LowOFUL algorithm (Jun
et al., 2019)3 in the second stage, which is a modification of

3Pseudocode of LowOFUL is in Appendix G.1, Algorithm 5.
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OFUL (Abbasi-Yadkori et al., 2011) with heavy penaliza-
tions on the reward predictor on insignificant coordinates.
Theorem 4.2 states the overall regret upper bound of Algo-
rithm 4.
Theorem 4.2. Suppose that Assumptions A1 and A2 hold,
λmin(Θ

∗) ≥ Sr for some known Sr > 0, and T ≥
16Bmin(A)σ4

d0.5Sr(Θ∗)2 . The regret upper bound of Algorithm 4 with

n0 =
√

d0.5Bmin(A)
S2
r

T is

Reg(T ) ≤ Õ
(
σ

√
S2
∗
S2
r
Bmin(A)d0.5T

)
with probability at least 1− 2δ.

Algorithm 4 attains a
√
T -order regret bound, at the cost of

introducing a dependence of Sr factor in the regret bound.
Remark 4. When Θ∗ is well conditioned, i.e. Sr ≥
Ω(S∗/r), the above regret bound can be simplified to
O(σ

√
r2d0.5Bmin(A)T ). For the case where A = Bop(1),

we can prove Bmin(A) ≤ d2, and we have the upper bound
of order Õ(

√
r2d2.5T ) when Θ∗ is well-conditioned, which

is an improved result compared to
√
r3d2.5T of Lu et al.

(2021) and even to the computationally inefficient result√
rd3T of Lu et al. (2021). Plus, our algorithm is strictly

better than LowESTR (Lu et al., 2021) in any cases because
Bmin(A) ≤ 1

λmin(Q(π))2 ,∀π ∈ P(A) by Lemma 3.6.
Remark 5. In addition to arm set dependent constant, LPA-
ESTR also achieves an improved regret guarantee over
LowESTR (Lu et al., 2021) w.r.t. r. This is because
our LowPopArt estimator provides improved bounds on
∥Û⊤

⊥U∥op and ∥V̂ ⊤
⊥ V ∥op, which are a factor of

√
r lower

than their respective bounds in (Lu et al., 2021). This is en-
abled by the unique operator-norm based recovery guarantee
of LowPopArt and the operator norm-version of Wedin’s
Theorem; to the best of our knowledge, we are not aware
of an operator-norm-based recovery guarantee for nuclear
norm penalized least squares regression.

5. Experiments
We now evaluate the empirical performance of LowPopArt
and our proposed experimental design to validate our im-
provement. For all experiments, we set ground truth Θ∗ =
uv⊤ where , u ∼ Unif(Sd1−1) and v ∼ Unif(Sd2−1) and
we sample Θ∗ before each experiment starts. The noise of
the reward ηt ∼ N(0, 1). All plots are generated by av-
eraging over 60 number of random instances. We defer
unimportant details of the experimental setup in Appendix J,
and please check https://github.com/jajajang/
LowPopArt for the code.

Low-rank matrix recovery. Figure 2 presents the results
on the nuclear norm recovery error (y-axis) as a function
of the sample size (x-axis). In this matrix recovery ex-
periments, d1 = d2 = 3. The prefix of each line (Cmin,

Figure 2. Experiment results on nuclear norm error

Bmin) represents the experimental design for the sampling
distribution (optimal solutions of Eq. (10) and Eq. (9), re-
spectively). The suffix (LPA, nuc) indicates the estimation
method employed (LowPopArt and nuclear norm regular-
ized least squares, respectively.) In the left plot, Arm set A
has 150 arms and the elements of A are drawn uniformly at
random from BFrob(1). In the right figure, we consider the
arm set Ahard from Lemma 3.6 that has a significant dispar-
ity between Bmin(A) and Cmin(A) values (see Appendix
C for the definition).

As one can see in the above figures, in all cases, Bmin(A)
based exploration generally outperforms naive E-optimal
design, and LowPopArt tends to show a better nuclear norm
recovery error than nuc.

Figure 3. Experiment results on bandits with ETC-based (left) and
ESTR-based algorithms (right)

Low-rank matrix bandits. We consider a low-rank ban-
dit setting with d1 = d2 = 5, and for each experi-
ment arm set A has 100 elements which are drawn from
Unif(BFrob(1)). Figure 3 presents the results of applying
LowPopArt-based algorithms (Algorithm 3 and 4) to the
low-rank bandit problem. The first graph (left) compares
Algorithm 3 with another ETC-based algorithm, which is
based on nuclear norm regularized least squares. Please
check Appendix J for the pseudocode of this algorithm.
Algorithm 3 achieves a significantly lower regret with a
much shorter exploration length, demonstrating more stable
results than nuclear norm regularization.

We next consider a bilinear bandit setting where the arm
set has structure A = {xz⊤ : x ∈ X , z ∈ Z}. We draw
X and Z uniformly at random from the Sd1−1 and Sd2−1,
respectively, with d1 = d2 = 6. The second graph (right)
compares our Algorithm 4 with state-of-the-art algorithms
based on OFUL, such as ESTR (Jun et al., 2019), rO-UCB
(Jang et al., 2021), LowESTR(Lu et al., 2021), and OFUL
on the flattened d1d2-dimensional linear bandit problem it-
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self (Abbasi-Yadkori et al., 2011). Once again, it is apparent
that our LPA-ESTR (Algorithm 4) outperforms other OFUL
based algorithms, showing lower and more stable cumula-
tive regret. For more experiments, including validating the
utility of LowPopArt’s thresholding step and a real-world
dataset experiment, see Appendix J.

6. Lower bound
We show via the following theorem that in Algorithm 3’s
regret upper bound (11), its dependence on some structural
parameters of the action set is fundamental.
Theorem 6.1. For any d, r such that 2r − 1 ≤ d − 1,

T ≥ 1, C ∈ [ rd2 ,
1
d ], σ > 0, Rmax ∈ [σ

√
r
TC , σ

√
d6C2

Tr2 ],
any bandit algorithm B, there exists a (2r − 1)-rank d-
dimensional bandit environment with σ-subgaussian noise,
action space A ⊂

{
a : ∥a∥op ≤ 1

}
such that Cmin(A) ≥

C, and Θ∗ which satisfies maxA∈A |⟨Θ∗, A⟩| ≤ Rmax such
that

EΘ,B[Reg(Θ, T )] ≥ Ω(σ2/3R1/3
maxr

1/3T 2/3C−1/3)

Specifically, the theorem implies that, we cannot
hope to design an algorithm with a regret bound
of say, Õ(σ2/3R

1/3
maxr2/3d1/3T 2/3), without de-

pendence on Cmin(A). To see this, we choose
C = Θ( rd2 ) in Theorem 6.1, which yields a regret
lower bound of Ω(σ2/3R

1/3
maxd2/3T 2/3), which is

≫ Õ(σ2/3R
1/3
maxr2/3d1/3T 2/3) when d≫ r2.

Remark 6. In Theorem 6.1, for the sake of clarity in notation,
the lower bound was expressed in terms of C which is a
lower bound of Cmin(A). However, if one desires a lower
bound based on Bmin(A), one can simply substitute every
C in Theorem 6.1 with d

B . This is because, by Lemma 3.6,
Cmin(A) ≥ d

B implies that Bmin(A) ≤ B the lower bound
in terms of B is as follows:

EΘ,B[Reg(Θ, T )] ≥ Ω(σ2/3R1/3
maxr

1/3T 2/3B1/3d−1/3)

Compared with Theorem 4.2’s upper bound, there is a
(rd)1/3 gap between the upper and lower bounds. We con-
jecture that our upper bound is tight and lower bound is
loose. Indeed, our lower bound construction follows the con-
struction in (Hao et al., 2020) which reduces regret lower
bound to lower bounding error of a two-hypothesis test-
ing problem; it would be interesting to see if better lower
bounds can be developed using advanced techniques such
as Lattimore & Hao (2021); Jang et al. (2022).

Comparison with prior work. By a direct adaptation
of regret lower bound for d-dimensional stochastic bandits
with unit-ball action spaces to the dr-dimensional setting,
(Lu et al., 2021) shows a regret lower bound of Ω(σdr

√
T )

for rank-r matrix bandit for the action space A being the
unit Frobenius ball. A close examination of their lower

bound reveals that, their lower bound fits into our Assump-
tion A2 with S∗ ≥ Ω( dr√

T
). As our lower bound allows S∗

to take values as small as σ
√

r
TC , which in turn can be as

small asσ
√

dr
T , our lower bound covers different regimes

of parameter settings from (Lu et al., 2021), which is of
independent interest.

7. Conclusion
We have proposed a novel low-rank estimation algorithm
called LowPopArt, along with a novel experimental design
that aims at minimizing LowPopArt’s recovery guarantees.
This new algorithm utilizes the geometry of the arm set to
conduct estimation in a different manner than conventional
approaches. Based on LowPopArt, we have designed two
low-rank bandit algorithms with general arm sets, improving
the dimensionality dependence in regret bounds.

Although general, one drawback of our algorithms is that,
when applied to special arm sets (e.g. the unit Frobenius
norm ball), its guarantees are inferior than algorithms de-
signed specifically for these settings (Lattimore & Hao,
2021; Huang et al., 2021). Designing algorithms that can
match these guarantees in these specialized settings while
maintaining generality is an interesting future direction. An-
other interesting open question is establishing regret lower
bound that depends on the geometry of the arm set in the
low-rank bandit problem.
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A. Additional Related Work
Low-rank bandits with general arm sets The first low-rank bandit algorithm that can work with a broad range of
arm sets is proposed by Jun et al. (2019). They studied the bilinear bandit model, where the arm set A is of the form{
xz⊤, x ∈ X , z ∈ Z

}
, and X ,Z are subsets of

{
x ∈ Rd1 : ∥x∥2 ≤ 1

}
,
{
z ∈ Rd2 : ∥z∥2 ≤ 1

}
, respectively. They pro-

posed the Explore-Subspace-Then-Refine algorithm that has a regret of Õ(
√

rdT
λmin(Q(π))

λmax(Θ
∗)

λmin(Θ∗) ); this is the first algorithm

that enjoys regret rate improvements over the naive rate of Õ(d2
√
T ) obtained by a direct reduction to d1d2-dimensional

linear bandits, which ignores the low-rank structure. Lu et al. (2021) extended the bilinear arm set to generic matrix
arm sets and proposed LowLOC, a computationally inefficient algorithm with Õ(

√
rd3T ) regret and a computationally

efficient algorithm LowESTR with Õ(
√
rd3T/λmin) regret. They also proved a Ω(rd

√
T ) regret lower bound for this

setting. Kang et al. (2022) designed low-rank bandit algorithms by combining Stein’s method for matrix estimation and the
Explore-Subspace-Then-Refine framework of (Jun et al., 2019), assuming the existence of a nice exploration distribution
over the arm set; their regret bound is Õ(

√
rd2MT/λmin), where M is an arm set-dependent constant. However, the M

from their given example can have hidden dimensionality dependence – when specialized to the setting of A being the unit
Frobenius norm ball, it is of order d1d2, which induces higher regret compared to the previous works with general arm
sets (Jun et al., 2019; Lu et al., 2021). See Appendix H for a detailed derivation. In addition, there is no known method to
optimize M . As far as we know, (Kang et al., 2022) is the first low-rank bandit paper that applies the techniques of (Minsker,
2018). For the Catoni’s estimator, several studies use Catoni’s estimator to get a variance-dependent bound on regret bound,
such as (Camilleri et al., 2021; Mason et al., 2021).

Low-rank bandits with specific arm sets There have been lots of other variants of the low-rank bandit, exploiting
more specific structures. Some researchers (Katariya et al., 2017; Trinh et al., 2020; Jedra et al., 2024) mainly focused
on low-rank bandit problems with canonical arms, which means A =

{
eie

⊤
j : i ∈ [d1], j ∈ [d2]

}
; Katariya et al. (2017)

and Trinh et al. (2020) even added rank-1 assumption on Θ∗ over this setting. Kveton et al. (2017) studied about low-rank
bandit where the hidden matrix is a hott topic matrix and arm set is {UV ⊤ : U⊤ = [u1;u2; · · · ;ur], ui ∈ ∆([d1]), V

⊤ =
[v1; v2; · · · ; vr], vi ∈ ∆([d2])}. where [u1;u2; · · · ;ur] refers to concatenation of r vectors to create a matrix. Kotlowski
& Neu (2019); Lattimore & Hao (2021); Huang et al. (2021) studied the low-rank bandit with a sphere or unit ball arm
set. Though Lattimore & Hao (2021) and Huang et al. (2021) dramatically improved the regret bounds (see Table 1), as
Rusmevichientong & Tsitsiklis (2010) have pointed out, the curvature property of the arm set (Huang et al., 2016) can help
the agent to improve the regret bound - the regret bound of ETC can be

√
T when the arm set satisfies certain curvature

property. We show in Appendix H that even when the arm set is modified slightly, the regret analysis in these works may no
longer go through. In contrast, our algorithm is applicable to general arm sets.

Low-rank contextual bandits with time-varying arm sets Li et al. (2022) studied high-dimensional contextual bandits
where at each time step, the set of available arms are drawn iid from some fixed distribution; when specialized to the
low-rank linear bandit setting, their setup is different ours due to the nature of time-varying arm sets in their work.

Sparse linear bandits As previously discussed in Section 1, the algorithm presented in this paper draws inspiration
from sparse linear bandit algorithms. Reserachers have made significant development on the field of sparse linear bandit
algorithms, e.g. (Hao et al., 2020; Jang et al., 2022). These papers extensively utilize the geometry of the arm set and
effectively mitigate the dependence on dimensionality in the regret bound.

Low-rank matrix estimation It is natural to apply efficient low-rank matrix recovery results for solving low-rank bandit,
since smaller estimation error leads fewer samples for exploration which leads smaller cumulative regret in bandit problems.
Keshavan et al. (2010) provides recovery guarantees for projection based rank-r matrix optimization for matrix completion,
and Rohde & Tsybakov (2011); Koltchinskii et al. (2011) provide analysis of nuclear norm regularized estimation method
for general trace regression, with Rohde & Tsybakov (2011) providing further analysis on the (computationally inefficient)
Schatten-p-norm penalized least squares method. In this paper, we mainly use the robust matrix mean estimator of (Minsker,
2018) us it to provide efficient matrix recovery.
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B. Proof of Section 3
B.1. Proof of Theorem 3.1

Proof. First, we recall the following lemma of Minsker (2018) on robust matrix mean estimation:

Lemma B.1 (Modification of Corollary 3.1, Minsker (2018)). For a sequence independent, identically distributed random
matrices (Mi)

n
i=1, let

σ2
n = max


∥∥∥∥∥∥
n∑
i=1

E[MiM
⊤
i ]

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
n∑
i=1

E[M⊤
i Mi]

∥∥∥∥∥∥
op


Given ν = t

√
n

σ2
n

, let Xi = ϕ(νH(Mi)) and let T̂ = 1
nν (
∑n
i=1Xi)ht. Then, with probability at least 1 − 2(d1 +

d2) exp
(
− t2n

2σ2
n

)
,

∥T̂ − E[Mi]∥op ≤
t√
n

To utilize this Lemma B.1, we choose Mi’s so that

• E [Mi] = Θ∗ −Θ0 so that T̂ estimates the hidden parameter Θ∗ −Θ0

• σ2
m is well-controlled.

It can be checked that Mi = reshape
(
Θ̃i

)
satisfies the condition with σ2

n ≤ 2(σ2 +R2
0)B(Q)n0 (See Appendix B.2 for

the proof). Substituting σ2
n by 2(σ2 +R2

0)B(Q)n0, and setting t =
√

2σ2
n

n0
ln 2d

δ leads the desired result.

B.2. Proof of σ2
n ≤ 2(σ2 +R2

0)B(Q) in Theorem 3.1

Lemma B.2.

σ2
n = max(

n∑
i=1

∥E[MiM
⊤
i ]∥op,

n∑
i=1

∥E[M⊤
i Mi]∥op) ≤ 2nB(Q)(σ2 +R2

0)

Proof. Note that Mi = reshape
(
Q(π∗)−1(Yi − ⟨Θ0, Xi⟩)vec(Xi)

)
, and all Mi are i.i.d. Therefore, σ2

n = n ·
max(∥E[M1M

⊤
1 ]∥op, ∥E[M⊤

1 M1]∥op), and to compute the first term in the max,

E[MiM
⊤
i ] = E

[
(Yi − ⟨Θ0, Xi⟩)2reshape

(
Q(π)−1vec(Xi)

)
reshape

(
Q(π)−1vec(Xi)

)⊤]
⪯ 2E

[
(η2i + ⟨Θ0 −Θ∗, Xi⟩2)reshape

(
Q(π)−1vec(Xi)

)
reshape

(
Q(π)−1vec(Xi)

)⊤]
⪯ 2(σ2 +R2

0) · E
[

reshape
(
Q(π)−1vec(Xi)

)
reshape

(
Q(π)−1vec(Xi)

)⊤]

where the first inequality holds since (Yi − ⟨Θ0, Xi⟩)2 = (ηi + ⟨Θ∗ −Θ0, Xi⟩)2 ≤ 2η2i + 2⟨Θ∗ −Θ0, Xi⟩2. Now the

main task is how to compute ∥E
[
reshape

(
Q(π∗)−1vec(Xi)

)
reshape

(
Q(π∗)−1vec(Xi)

)⊤] ∥op. Here, we will simply use
the definition of the operator norm.∥∥∥∥∥E

[
reshape

(
Q(π∗)−1vec(Xi)

)
reshape

(
Q(π∗)−1vec(Xi)

)⊤]∥∥∥∥∥
op

= max
u∈Sd1−1

u⊤ E
[

reshape
(
Q(π∗)−1vec(Xi)

)
reshape

(
Q(π∗)−1vec(Xi)

)⊤]
u
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= max
u∈Sd1−1

u⊤ E

reshape
(
Q(π∗)−1vec(Xi)

)
·

 d2∑
i=1

ed2i (ed2i )⊤

 · reshape
(
Q(π∗)−1vec(Xi)

)⊤u
= max
u∈Sd1−1

E

 d2∑
i=1

⟨(ed2i ⊗ u),
(
Q(π∗)−1vec(Xi)

)
⟩2


= max
u∈Sd1−1

 d2∑
i=1

(ed2i ⊗ u)
⊤Q−1(π)(ed2i ⊗ u)


= max
u∈Sd1−1

u⊤
 d2∑
i=1

D
(col)
i

u

 = λmax(

d2∑
i=1

D
(col)
i )

Therefore, we can conclude ∥E[MiM
⊤
i ]∥op ≤ (σ2 + R2

0)λmax(
∑d2
i=1D

(col)
i ), and similarly ∥E[M⊤

i Mi]∥op ≤ d1(σ
2 +

R2
0)λmax(D

(row)
i ). Thus,

σ2
n ≤ 2max

λmax(

d2∑
i=1

D
(row)
i ), λmax(

d1∑
i=1

D
(col)
i )

 (σ2 +R2
0)n = 2B(Q)(σ2 +R2

0)n.

This concludes the proof.

B.3. Proof of Theorem 3.2

Proof. Note that for all j ≥ r + 1, σj(Θ∗) = 0. By Weyl’s Theorem (Horn & Johnson, 2012), for all j ≥ r + 1, we have

that σj(Θ1) ≤ 2

√
((σ2+R2

0))B(Q)(ln 2d
δ )

n0
= λth. As a consequence, Θ̂ has rank at most r.

Moreover, by construction, ∥Θ̂−Θ1∥op ≤ λth. By triangle inequality, we have ∥Θ̂−Θ∗∥op ≤ 2λth.

B.4. Proof of Corollary 3.3

Proof. For any matrix M , ∥M∥∗ ≤ r∥M∥op and ∥M∥∗ ≤
√
r∥M∥F . Substitute M to Θ̂ − Θ∗ leads the desired

property.

B.5. Proof of Theorem 3.4

Proof. By Corollary 3.3, the assumption n0 ≥ Õ
(
r2B(Q) · (σ+S∗

σ )2
)

guarantees that ∥Θ0 −Θ∗∥∗ ≤ O(σ) where Θ0 is
the pilot estimator in Line 2 of Algorithm 2. Therefore, maxA∈A |⟨Θ0 −Θ, A⟩| ≤ maxA∈A ∥Θ0 − Θ∥∗∥A∥op ≤ O(σ).
We can get our final result by substituting R0 to O(σ) in Theorem 3.2.

C. Proofs of Lemma 3.5 and 3.6
C.1. Preliminaries - Relationship between D(col)

i and D(row)
i

In Figure 1, D(col)
i and D(row)

i looks quite different. However, it turns out that they are coming from the similar logic, due
to the nature of the low-rank bandit problem.

Recall the definition of the low-rank bandit problem. For each time, the agent pulls action At ∈ Rd1×d2 and receives reward
⟨Θ∗, At⟩ + ηt. However, one could simply transpose all the actions and define A⊤ := {a⊤ : a ∈ A}, and think of the
reward as ⟨(Θ∗)⊤, A⊤

t ⟩+ ηt. This does not change the nature of the problem. The definition of D(col)
i and D(row)

i comes
from this fact.

To compare the original low-rank bandit problem with ’transposed version’ of the low-rank bandit problem, letQtrans(π) :=
Ea∼π[vec(a⊤)vec(a⊤)⊤]. Then, the following properties also hold:
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• vec(a) = Pvec(a⊤) for a fixed permutation matrix P ∈ Rd1d2×d1d2 .
• λmin(Q) = λmin(Qtrans) since Qtrans = P⊤QP .

• One could check D(row)
i (Q) = D

(col)
i (Qtrans) and D(col)

i (Q) = D
(row)
i (Qtrans).

Which means, though D(col)
i and D(row)

i looks quite different, D(row)
i is the matrix that come from the same logic as D(col)

i ,
but from the transposed problem.

Therefore, from now on, we will only compute D(col)
i related quantity for the scale comparison in this Section C.

C.2. Proof of Lemma 3.5

Proof. For any vector v ∈ Rd1 , define Ext(v, i) ∈ Rd1d2 as follows:

Ext(v, i) := ed2i ⊗ v

Then,

λmax(

d2∑
i=1

D
(col)
i ) ≤

d2∑
i=1

λmax(D
(col)
i ) (Homogeneity of degree 1 and convexity of maximum eigenvalue.)

=

d−2∑
i=1

max
v∈Sd1−1

v⊤(D
(col)
i )v

=

d−2∑
i=1

max
v∈Sd1−1

Ext(v, i)⊤Q−1Ext(v, i)

≤
d−2∑
i=1

max
u∈Sd1d2−1

u⊤Q−1u

= d2λmax(Q
−1) =

d2
λmin(Q)

and the proof follows.

C.3. Proof of Lemma 3.6

In this section, we will consider a setting where d1 = d2 = d, and the following action set, Ahard =
{reshape(a1), · · · , reshape(ad2)} ⊂ Rd×d where

ai :=

{
l · e1 For i = 1

e1 +m · ei Otherwise

Eventually, we will choose l = 1√
d
,m = 1 for our final Ahard, but to demonstrate the effect of each scaling factor, we will

leave l,m unspecified and assume l,m ≤ 1 throughout this proof.

In this subsection, we will also use following definitions for the brevity.

• D := d2,
• πi := π(ai), and π̂ := (π1, π2, · · · , πD) for any π ∈ P(A)
• Sym(n) be a permutation group of [n].
• For any permutation σ ∈ Sym(n)

– For any v ∈ Rd, let σ(v) := (vσ(1), · · · , vσ(n))
– For any π ∈ P(A), define σ(π) ∈ P(A) to be such that σ(π)(ai) := π̂σ(i)

for the brevity.
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Now, one could check that

Q(π) =

[
l2π1 +

∑D
i=2 πi mπ̂⊤

2:D

mπ̂2:D m2 diag(π̂2:D)

]
(12)

For the notational convenience, let q̂ = (π−1
1 , · · · , π−1

D ). Then,

Q(π)−1 =

[
1

l2π1
− 1
ml2π1

1⊤D−1

− 1
ml2π1

1D−1
1
m2 diag(q̂2:D) + 1

l2m2π1
1D−11⊤D−1

]

C.3.1. CALCULATE Cmin(Ahard)

Suppose that ΠC is the set of optimal experimental designs for Cmin (which means, the solution of Eq. (10)). Below, we
will show that there exists some πC in ΠC such that πC2 = · · · = πCD.

Prove that ∃πC ∈ ΠC such that πC2 = · · · = πCD Note that λmax and the matrix inversion are both convex functions.
Moreover, from the symmetry of the arm set Ahard, for any permutation σ′ ∈ Sym(D) which satisfies σ′(1) = 1, for all
π ∈ P(Ahard), λmax(Q(π)−1) = λmax(Q(σ′(π))−1). Let

σ1(i) =


1 if i = 1

2 if i = D

i+ 1 Otherwise

Now, fix π ∈ ΠC ; Define πC to be

πC(ai) =

π(a1) if i = 1∑D
s=2 π(as)

D−1 Otherwise

Then,

λmax(Q(π)−1) =
1

D − 1

D−1∑
s=1

λmax(Q(σs1(π))
−1)

≥ λmax(Q(
1

D − 1

D−1∑
s=1

σs1(π))
−1) (Convexity)

≥ λmax(Q(πC)−1)

≥ λmax(Q(π))−1) (Minimality of π)

Therefore, πC ∈ ΠC , and to calculate Cmin(Ahard), it suffices to consider only distributions π ∈ P(Ahard) which satisfies
π2 = π3 = · · · = πD. Let π1 = a, and π2 = b for brevity.

Then, the characteristic matrix looks like this: if we let In be the n× n dimensional identity matrix,

Q(π)− λID =


l2a+ (D − 1)b− λ mb · · · mb

mb
... (m2b− λ)ID−1

mb


17
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and by the row operation,

det(Q(π)− λID) = det


l2a+ (D − 1)b− λ− (D − 1) m2b2

m2b−λ 0 · · · 0

mb
... (m2b− λ)ID−1

mb


The characteristic polynomial is therefore

det(Q(π)− λI) = (m2b− λ)D−2(λ2 − ((D − 1)b+ l2a+m2b)λ+ l2am2b)

We can therefore get two eigenvalues from quadratic equation, and eigenvalue m2b has multiplicity D − 2.

For eigenvalues from the quadratic equation, note that for the quadratic equation of the form λ2 −Bλ+ C = 0(B,C > 0),
the smaller eigenvalue has the order of Θ(CB ) since B < B +

√
B2 − 4C < 2B. Therefore, the order of the eigenvalue is

Θ( l2am2b
((D−1)b+l2a+m2b) ) and for the inverse, it’s of order Θ(BC ).

When l,m < 1, one can note that the dominating terms are Db and l2a on the denominator. Therefore,

λmax(Q(π)−1) = Θ(max(
1

m2b
,

D

m2l2a
))

Using the fact that a+ (D − 1)b = 1, one can get we get optimal rate when a
b = Θ( dl2 ) and the final C−1

min = Θ( D
m2l2 ).

C.3.2. CALCULATE Bmin(AHARD)

From Eq. (12),

[Q(π)−1]1:d,1:d =

[
1

l2π1
− 1
ml2π1

1⊤d−1

− 1
ml2π1

1d−1
1
m2 diag(q̂2:d) + 1

l2π1m2 1d−11⊤d−1

]

and

[Q(π)−1]d(i−1)+1:di,d(i−1)+1:di =
1

m2
diag(q̂d(i−1)+1:di) +

1

l2π1m2
1d1⊤d

for i = 2, · · · , d. Therefore, if we let Gi(π) =
∑d−1
j=0

1
πdj+i

for i = 2, · · · , d− 1, and G1(π) =
∑d−1
j=1

1
πdj+1

,

d∑
i=1

D
(col)
i (π) =

d∑
i=1

[Q(π)−1]d(i−1)+1:di,d(i−1)+1:di =

[
1

l2π1
+ 1

m2G1 +
(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤
d−1

d−m−1
m2l2π1

1d−1
1
m2 diag(G2:d) +

d−1
l2m2π1

1d−11⊤
d−1

]
(13)

Suppose that ΠB is the set of optimal experimental designs for Bmin (which means, the solution of Eq. (9)). Below, we will
show that there exists some πB in ΠB such that

• πBi = πBj for all i, j ̸≡ 1 (mod d)

• πBd+1 = πB2d+1 = · · ·πB(d−1)d+1

18
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C.3.3. PROVING THAT ∃πB ∈ ΠB SUCH THAT πBi = πBj FOR ALL i, j ̸≡ 1 (mod d)

Let G = 1
d−1

∑d
i=2Gi, and let π ∈ ΠB . Let σ be the permutation of [d] which is defined as

σ(n) =


1 if n ≡ 1 (mod d)

2 if n ≡ 0 (mod d)

n+ 1 otherwise

and ρ be the permutation of [D] which is defined as

ρ(n) =


n if n ≡ 1 (mod d)

n− d+ 2 if n ≡ 0 (mod d)

n+ 1 otherwise

Then,

B(Q(π)) =
1

d− 1

d−1∑
s=1

B(Q(ρs(π)) (From the symmetry of Eq. (13))

=
1

d− 1

d−1∑
s=1

λmax

[ 1
l2π1

+ 1
m2G1 +

(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤d−1
d−m−1
m2l2π1

1d−1
1
m2 diag(σs(G)2:d) + d−1

l2π1m2 1d−11⊤
d−1

]
(Property of permutation σ)

≥ λmax

 1

d− 1

d−1∑
s=1

[
1

l2π1
+ 1

m2G1 +
(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤d−1
d−m−1
m2l2π1

1d−1
1
m2 diag(σs(G)2:d) + d−1

l2m2π1
1d−11⊤

d−1

]
(Jensen’s inequality and convexity)

= λmax

[ 1
l2π1

+ 1
m2G1 +

(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤d−1
d−m−1
m2l2π1

1d−1
1
m2 diag(G1d−1) +

d−1
l2m2π1

1d−11⊤d−1

]
Plus, note that when C ′ > C > 0,

λmax

[ 1
l2π1

+ 1
m2G1 +

(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤d−1
d−m−1
m2l2π1

1d−1
1
m2 diag(C ′1d−1) +

d−1
l2m2π1

1d−11⊤d−1

]
≥ λmax

[ 1
l2π1

+ 1
m2G1 +

(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤
d−1

d−m−1
m2l2π1

1d−1
1
m2 diag(C1d−1) +

d−1
l2m2π1

1d−11⊤
d−1

] .

Now consider the following distribution πB

πB(an) =

π(an) if n ≡ 1 (mod d)
1−

∑
i:i̸≡1 (mod d) πi

D−d otherwise

By AM-HM inequality, we have

(d− 1)G =

d∑
i=2

Gi =
∑

i ̸≡1 (mod d)

1

πi
≥ (D − d)2∑

i ̸≡1 (mod d) πi
=

(D − d)2

1− π1 −
∑d
i=2 πi

=
d(d− 1)

πB2

This means G ≥ d
πB
2

, and naturally
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B(Q(π)) ≥ λmax

[ 1
l2π1

+ 1
m2G1 +

(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤
d−1

d−m−1
m2l2π1

1d−1
1
m2 diag(G1d−1) +

d−1
l2m2π1

1d−11⊤
d−1

]
≥ λmax


 1
l2π1

+ 1
m2G1 +

(d−1)2

l2m2π1

d−m−1
m2l2π1

1⊤
d−1

d−m−1
m2l2π1

1d−1
1
m2 diag( d

πB
2

1d−1) +
d−1

l2m2π1
1d−11⊤d−1




= B(Q(πB))

By the minimality of π, B(Q(π)) = B(Q(πB)) and πB ∈ ΠB . Therefore we can conclude that one of the optimal
allocation π should satisfy πi = πj for all i, j ̸≡ 1 (mod d).

C.4. Proving that ∃πB ∈ ΠB such that πBd+1 = πB2d+1 = . . . = πB(d−1)d+1 and πBi = πBj for all i, j ̸≡ 1 (mod d)

Suppose that π ∈ ΠB which satisfies πi = πj for all i, j ̸≡ 1 (mod d)). We aim to construct a πB such that in addition to
this property, πB satisfies πBd+1 = πB2d+1 = . . . = πB(d−1)d+1.

Define πB as

πBi =


∑d

j=2 πj

d−1 if i = 2, · · · , d
πi Otherwise

.

Then, from AM-HM we can note that

G1(π) =

d∑
i=2

1

πi
≥ (d− 1)2

1∑d
i=2 πi

=

d∑
i=2

1

πBi
:= G1(π

B)

and therefore, B(Q(π)) ≥ B(Q(πB)) (we need to change only G1 to G1(π
B) from the above calculation) and therefore

πB ∈ ΠB .

C.4.1. CALCULATING Bmin(A)

From the above observations, to calculate Bmin(Ahard), it suffices to restrict to those π’s of the following form:

• π1 = a

• πd+1 = π2d+1 = · · · = π(d−1)d+1 = b

• πi = · · ·πD = c for all i ̸≡ 1 (mod d).
• a+ (d− 1)b+ (D − d)c = 1

• G2 = · · · = Gd = G := d
b , G1 = d−1

c .

To compute the maximum eigenvalue, we should solve the following characteristic equation:

det


[ 1

l2a + 1
m2G1 +

(d−1)2

m2l2a
d−m−1
m2l2a 1⊤d−1

d−m−1
m2l2a 1d−1

1
m2 diag(G1d−1) +

d−1
l2am2 1d−11⊤d−1

]− λI
 = 0

⇔det


[ 1

l2a + 1
m2G1 +

(d−1)2

m2l2a − λ
d−m−1
m2l2a 1⊤

d−1
d−m−1
m2l2a 1d−1 diag(( Gm2 − λ)1d−1) +

d−1
l2am2 1d−11⊤d−1

]
 = 0
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⇔det



 1
l2a + 1

m2G1 +
(d−1)2

m2l2a − λ− (d−m−1
m2l2a )2 d−1

G
m2 −λ+ (d−1)2

l2am2

0

d−m−1
m2l2a 1d−1 diag(( Gm2 − λ)1d−1) +

d−1
l2am2 1d−11⊤d−1



 = 0

(Determinant is invariant under row operation)

⇔(
1

l2a
+

1

m2
G1 +

(d− 1)2

m2l2a
− λ−

(d−m−1
m2l2a )2 · (d− 1)
G
m2 − λ+ (d−1)2

l2am2

) · det
(

diag((
G

m2
− λ)1d−1) +

d− 1

l2am2
1d−11⊤d−1

)
= 0

(Determinant cofactor formula)

⇔(
1

l2a
+

1

m2
G1 +

(d− 1)2

m2l2a
− λ−

(d−m−1
m2l2a )2 · (d− 1)
G
m2 − λ+ (d−1)2

l2am2

) · ( G
m2
− λ+

(d− 1)2

l2am2
) · ( G

m2
− λ)d−2 = 0

⇔[(
1

l2a
+

1

m2
G1 +

(d− 1)2

m2l2a
− λ) · ( G

m2
− λ+

(d− 1)2

l2am2
)− (d− 1)(

d−m− 1

m2l2a
)2] · ( G

m2
− λ)d−2 = 0

From the above characteristic polynomial, we can notice there are d− 2 repeated eigenvalues of size G, and the remaining
two eigenvalues are the solution of the following quadratic equation:

[(
1

l2a
+

1

m2
G1 +

(d− 1)2

m2l2a
− λ) · ( G

m2
− λ+

(d− 1)2

l2am2
)− (d− 1)(

d−m− 1

m2l2a
)2] = 0

After rearrangement, this formula looks like this:

λ2 −Bλ+ C = 0

where B = G1

m2 + 1
l2a + G

m2 + 2(d−1)2

m2l2a and C =
(

1
l2a + 1

m2G1 +
(d−1)2

m2l2a

)
·
(
G
m2 + (d−1)2

l2am2

)
− (d − 1)(d−m−1

m2l2a )2. Now

note that C > 0, since C >
(

(d−1)2

m2l2a

)2
− (d− 1)(d−m−1

m2l2a )2 > 0.

Since C > 0 and 0 < B2− 4C < B2, B ≤ B+
√
B2−4C
2 ≤ 2B which means that the largest solution of the above quadratic

equation is of order B. Now one could note that B = Θ(max(G1

m2 ,
G
m2 ,

d2

m2l2a )), or

B = Θ(max

(
d

m2b
,
d

m2c
,

d2

m2l2a

)
)

After optimizing the scale, a = Θ(dbl2 ), c = Θ(b) and from the constraint a+ (d− 1)b+ (D − d)c = 1,

1

b
= Θ

(
d

l2
+D

)
and B = Θ

(
d2

m2l2 + d3

m2

)
and so Bmin(Ahard) = Θ

(
d2

m2l2 + d3

m2

)
. When applying l = 1√

d
and m = 1, we get

Bmin(Ahard) = Θ(d3)

Recall that we have shown that C−1
min(Ahard) = Θ

(
d2

m2l2

)
; with this choice of l and m, C−1

min(Ahard) = Θ(d3). Therefore,

for Ahard, Bmin(Ahard) = Θ(C−1
min(Ahard)).

D. Examples of Bmin(A) and Cmin(A)
D.1. A is Frobenius norm unit ball

Claim 1. If A is the unit ball in Frobenius norm: A = {A ∈ Rd1×d2 : ∥A∥F ≤ 1}, then Cmin(A) = 1
d1d2

and
Bmin(A) = d2d2d.
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Proof. We will prove Cmin(A) = 1
d1d2

by proving Cmin(A) ≤ 1
d1d2

and Cmin(A) ≥ 1
d1d2

.

Proving Cmin(A) ≥ 1
d1d2

: Let B = {reshape(ek) : k = 1, · · · , d1d2}. Note that vec(B) is a d1d2 dimensional canonical

basis, and for any π ∈ ∆(B), Q(π) =
∑d1d2
i=1 πieie

⊤
i = diag(π1, · · · , πd1d2) and λmin(Q(π)) = min{πi}d1d2i=1 . Let π be a

uniform distribution over B. Then, λmin(Q(π)) = 1
d1d2

and this fact leads to Cmin(A) ≥ 1
d1d2

.

Proving Cmin(A) ≤ 1
d1d2

: Fix any distribution π over A. Therefore, tr(Ea∼π[vec(a) vec(a)⊤]) =

Ea∼π tr(∥ vec(a) vec(a)⊤)] ≤ 1 since for all a ∈ A, ∥a∥F ≤ 1 and tr(vec(a) vec(a)⊤) = ∥ vec(a)∥22 = ∥a∥2F ≤ 1.
Therefore, by the minimality of λd1d2 we get λd1d2(Q(π)) ≤ 1

d1d2
tr(Q(π)) = 1

d1d2
.

Proving Bmin(A) ≥ d1d2d: From the definition of B(Q) (Eq. 4),

B(Q) = max

λmax

 d2∑
i=1

D
(col)
i

 , λmax

 d1∑
j=1

D
(row)
j




≥ max

 1

d1
tr

 d2∑
i=1

D
(col)
i

 ,
1

d2
tr

 d1∑
j=1

D
(row)
j


 (λmax(M) ≥ 1

d tr(M) for any matrix M ∈ Rd×d)

= max

(
1

d1
tr
(
Q(π)−1

)
,
1

d2
tr
(
Q(π)−1

))
(From the definition of D(col)

i and D(row)
i )

=
1

min(d1, d2)
tr
(
Q(π)−1

)
≥ 1

min(d1, d2)

(d1d2)
2

tr
(
Q(π)

) (AM-HM inequality on the spectrum of Q(π)−1)

Here, note that A ⊂ BFrob(1), which means

tr
(
Q(π)

)
= tr(Ea∼π[vec(a)vec(a)⊤])

= Ea∼π[tr(vec(a)vec(a)⊤)] (Linearity of expectation)

= Ea∼π[||a||2F ]
≤ Ea∼π[1] (a ∈ A ⊂ BFrob(1))
= 1

Therefore, B(Q) ≥ (d1d2)
2

min(d1,d2)
= d1d2d for any π ∈ P(A)

Proving Bmin(A) ≤ d1d2d: Consider

π(a) :=

{
1

d1d2
if vec(a) ∈ {ei : i = 1, · · · d1d2}

0 Otherwise

(Recall that ei is a canonical basis where only i-th entry is 1 and all other entries are 0.) Obviously π ∈ P(A). On the other
hand, Q(π) = 1

d1d2
Id1d2 , which means Q(π)−1 = d1d2Id1d2 and B(Q) = d1d2d. Therefore, Bmin(A) ≤ d1d2d by the

minimality of Bmin(A).

D.2. A is operator norm unit ball

Claim 2. If A is the unit ball in operator norm: A = {A ∈ Rd1×d2 : ∥A∥op ≤ 1}, then Cmin(A) = Θ( 1
max(d1,d2)

) and
Bmin(A) = max(d1, d2)

2.
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Proof. We will prove that Cmin(A) = Θ( 1
max(d1,d2)

) by proving Cmin(A) = O( 1
max(d1,d2)

) and Cmin(A) = Ω( 1
max(d1,d2)

).
WLOG d2 ≥ d1.

Proving Cmin(A) ≥ 1
max(d1,d2)

: Without loss of generality, assume that d2 ≥ d1; we will show that Cmin(A) ≥ 1
d2

.
Consider a distribution π ∈ ∆(A) which draws a matrix A ∈ A by the following process:

• Let U ∼ σ(d1) and V = [v1; v2; . . . ; vd2 ] ∼ σ(d2) where σ(d) denotes the Haar measure over d × d orthogonal
matrices and [v1; v2; . . . ; vd2 ] is a concatenation of d2 vectors.

• Let Σ =
[
Id1 0d1×(d2−d1)

]
where Id denotes d-dimensional identity matrix and 0a×b denotes a × b dimensional

zero matrix.
• Let A = UΣV ⊤ = U [v1; · · · ; vd1 ]⊤. Since U and V are all orthogonal matrices, we have ∥A∥op = 1.

Note that A has the same distribution as [v1; · · · ; vd1 ]⊤. This is because AA⊤ = UU⊤ = Id1 so those rows are mutually
orthonormal, and for any vj where j > d1, Avj = UΣ[v1; · · · ; vd1 ]⊤vj = UΣ0d1×1 = 0d1×1 which implies that all rows
in A and vd1+1, · · · , vd2 forms an orthogonal basis. Therefore we can conclude[

v1; . . . ; vd2
]
·

[
U⊤ 0
0 I

]
d
=
[
v1; . . . ; vd2

]
and A d

= [v1; · · · ; vd1 ]⊤ . Now we should check the covariance matrix of A, E
[
vec(A) vec(A)⊤

]
. As mentioned in Ap-

pendix C.1, there exists a permutation matrix P ∈ Rd1d2×d1d2 such that P vec(A) = vec(A⊤) and E
[
vec(A) vec(A)⊤

]
=

P⊤ E
[
vec(A⊤) vec(A⊤)⊤

]
P . In our case it is easier to compute E

[
vec(A⊤) vec(A⊤)⊤

]
. Since A d

= [v1; · · · ; vd1 ],

E
[
vec(A⊤) vec(A⊤)⊤

]
= E


V1,1 · · · V1,d1

...
. . .

...
Vd1,1 · · · Vd1,d1


where Vij = viv

⊤
j . We can easily note that

E
[
Vij
]
=

{
0d2×d2 i ̸= j
1
d2
Id2 i = j

and therefore E
[
vec(A⊤)vec(A⊤)⊤

]
= 1

d2
Id1d2×d1d2 . As a result,

E
[
vec(A)vec(A)⊤

]
= P⊤

(
1

d2
Id1d2×d1d2

)
P =

1

d2
P⊤P =

1

d2
Id1d2×d1d2 .

This implies that Cmin(A) ≥ 1
max(d1,d2)

.

Proving Cmin(A) ≤ O( 1
max(d1,d2)

): We know that nuclear norm is a convex function. Therefore,
∥Ea∼π[vec(a) vec(a)⊤]∥∗ ≤ Ea∼π[∥ vec(a) vec(a)⊤∥∗] ≤ d1 + d2 since for all a ∈ A, ∥a∥op ≤ 1 means ∥a∥F ≤√

min(d1, d2), and ∥ vec(a) vec(a)⊤∥∗ = ∥ vec(a) vec(a)⊤∥op = ∥ vec(a)∥2 = ∥a∥2F ≤ min(d1, d2). Therefore, by the
minimality of λd1d2 we get λd1d2(Q(π)) ≤ 1

d1d2
∥Q(π)∥∗ = 1

max(d1,d2)
.

Proving Bmin(A) ≥ max(d1, d2)
2: From the definition of B(Q) (Eq. 4),

B(Q) = max

λmax

 d2∑
i=1

D
(col)
i

 , λmax

 d1∑
j=1

D
(row)
j




≥ max
1

d1

tr

 d2∑
i=1

D
(col)
i

 ,
1

d2
tr

 d1∑
j=1

D
(row)
j


 (λmax(M) ≥ 1

d tr(M) for any matrix M ∈ Rd×d)

= max

(
1

d1
tr
(
Q(π)−1

)
,
1

d2
tr
(
Q(π)−1

))
(From the definition of D(col)

i and D(row)
i )
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=
1

min(d1, d2)
tr
(
Q(π)−1

)
≥ 1

min(d1, d2)

(d1d2)
2

tr
(
Q(π)

) (AM-HM inequality on the spectrum of Q(π)−1)

Here, note that A = Bop(1) ⊂ BFrob(
√

min(d1, d2)). Then,

tr
(
Q(π)

)
= tr(Ea∼π[vec(a)vec(a)⊤])

= Ea∼π[tr(vec(a)vec(a)⊤)] (Linearity of expectation)

= Ea∼π[||a||2F ]
≤ Ea∼π[min(d1, d2)] (a ∈ A ⊂ BFrob(

√
min(d1, d2)))

= min(d1, d2)

Therefore, B(Q) ≥ (d1d2)
2

min(d1,d2)2
= max(d1, d2)

2 for any π ∈ P(A)

Proving Bmin(A) ≤ max(d1, d2)
2: From Lemma 3.6, Bmin(A) ≤ max(d1,d2)

Cmin(A) ≤ max(d1, d2)
2.

This computation result leads to the following:

Corollary D.1. For any A ⊂ Bop(1), Cmin(A) ≤ 1
d .

Proof. By the maximality of the Cmin, when a set S is a subset of S′, then Cmin(S) ≤ Cmin(S
′). We proved in this

subsection that Cmin(Bop(1)) =
1
d . Therefore the corollary follows.

E. Proof of Theorem 4.1
Proof. First, if T ≤ σ2r2Bmin(A)

R2
max

, we have TRmax ≤ (σ2Rmaxr
2Bmin(A)T 2)1/3), therefore

Reg(T ) ≤ TRmax ≤ Õ((σ2Rmaxr
2Bmin(A)T 2)1/3)

trivially holds.

Therefore, throughout the reset of the proof we focus on the case when T ≥ σ2r2Bmin(A)
R2

max
. In this case, n0 =(

σ2r2Bmin(A)T 2

R2
max

)1/3
≤ T , and by our assumption that T ≥ r2Bmin(A)(σ+Rmax

σ )4, we have n0 ≥ r2Bmin(A)(σ+Rmax

σ )2.

This range of n0 satisfies the condition of Theorem 3.2, which gives the following recovery bound on Θ̂ with probability
1− δ:

∥Θ̂−Θ∗∥∗ ≤ 2r∥Θ̂−Θ∗∥op ≤ 2rσ

√√√√(Bmin(A) ln 2(d1+d2)
δ

)
n0

For the rest of the rounds, we can bound the instantaneous regret of the exploitation as follows:

⟨Θ∗, A∗ −At⟩ = ⟨Θ∗ − Θ̂, A∗⟩+ ⟨Θ̂, A∗⟩ − ⟨Θ∗, At⟩
≤ ⟨Θ∗ − Θ̂, A∗⟩+ ⟨Θ̂−Θ∗, At⟩ (Definition of At)

≤ ∥Θ∗ − Θ̂∥∗(∥A∗∥op + ∥At∥op) (Holder’s inequality)

≤ 2σr

√(
2
Bmin(A)

n0
ln

2(d1 + d2)

δ

)
× 2
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Therefore, we can conclude the upper bound of the total regret bound as follows:

Reg(T ) =
T∑
t=1

⟨Θ∗, A∗ −At⟩

≤ n0Rmax + T · 8σr

√√√√(Bmin(A) ln 2(d1+d2)
δ

)
n0

The final regret bound of Theorem 4.1 follows by plugging in the setting of n0 =
(
σ2r2Bmin(A)T 2

R2
max

)1/3
.

F. Results of (Jun et al., 2019)

G. Proof of Theorem 4.2
G.1. LowOFUL Algorithm

Before we proceed, we need to state the ESTR algorithm (Jun et al., 2019) for completeness. Throughout this section, we
will use the notations in this algorithm, such as the confidence set Ct.

Algorithm 5 LowOFUL (Jun et al., 2019)
1: Input: time horizon T ′, arm set A′

vec, lower dimension k, regularization parameter λ1, failure rate δ, positive constants
B,B⊥, λ, λ⊥

2: Set Λ = diag(λ, · · · , λ, λ⊥, · · · , λ⊥) where λ occupies the first k diagonal entries, and set V0 = Λ, θ0 = vec (0d1×d2).
3: for t = 1, · · · , T ′ do
4:

√
βt = σ

√
log |Vt−1|

|Λ|δ2 +
√
λB +

√
λ⊥B⊥

5: Ct = {θ : ∥θ − θ̂t−1∥Vt−1 ≤
√
βt}

6: Compute at = argmaxa∈A′
vec

maxθ∈Ct
⟨a, θ⟩

7: Pull arm at and receive reward yt.
8: Update Vt = Vt−1 + ata

⊤
t , A = [a1; · · · ; at], y = [y1, · · · , yt] θt = V −1

t Ay
9: end for

G.2. Proof of Theorem 4.2

Proof. Let’s divide the regret of Algorithm 4 into two terms. Let R1 be the regret occured by the procedure before calling
Algorithm 5, and let R2 be the regret occured by invoking LowOFUL.

Part 1: Bounding R1. For R1, since each instantaneous regret is bounded as follows:

⟨Θ∗, A∗ −At⟩ ≤ ∥Θ∗∥∗∥A∗ −At∥op ≤ ∥Θ∗∥∗(∥A∗∥op + ∥At∥op) ≤ 2∥Θ∗∥∗

Therefore, we can trivially bound R1 ≤ n0∥Θ∗∥∗ ≤ n0S∗.

Part 2: bounding subspace estimation error. From the analysis on Section 3, we have ∥Θ̂ − Θ∗∥op ≤
√

Bmin(A)σ2

n0
.

Here, we will use the following operator norm version of Wedin’s Theorem (Stewart & Sun, 1990, Theorem 4.4); for the
purpose of our analysis, this is tighter than the Frobenius norm version of Wedin’s Theorem (Stewart & Sun, 1990, Theorem
4.1).

Theorem G.1 (Wedin Theorem). Let M and M∗ be two d1 × d2 matrices with the following SVD:

M =
[
U1 U⊥

] [ Σ1 0r×(d2−r)
0(d1−r)×r Σ2

][
V ⊤
1

V ⊤
⊥

]

M∗ =
[
U∗
1 U∗

⊥
] [ Σ̃1 0r×(d2−r)

0(d1−r)×r Σ̃2

][
(V ∗

1 )
⊤

(V ∗
⊥)

⊤

]
Where
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• Σ1, Σ̃1 represents top-r singular values for M and M∗

• Σ2, Σ̃2 represents the rest of singular values for M and M∗

• (U1, V1), (U∗
1 , V

∗
1 ) are the corresponding singular vectors for Σ1 and Σ̃1

• (U⊥, V⊥), (U∗
⊥, V

∗
⊥) are the corresponding singular vectors for Σ2 and Σ̃2

respectively. Suppose that there are numbers α, δ > 0 such that

λr(Σ1) ≥ α+ δ, and λmax(Σ̃2) ≤ α
Then,

max{∥U⊤
⊥U

∗
1 ∥2op, ∥V ⊤

⊥ V
∗
1 ∥2op} ≤

max{∥(U∗
1 )

⊤(M −M∗)∥2op, ∥(M −M∗)V ∗
1 ∥2op}

δ2

We can check that by the assumption that T ≥ 16Bmin(A)σ4

d0.5S2
r

, n0 ≥ 4Bmin(A)σ2

S2
r

. Thus by Weyl’s Theorem, λr(Θ̂) ≥

λr(Θ
∗) −

√
Bmin(A)σ2

n0
≥ Sr

2 , therefore, choosing δ = Sr

2 , α = 0 satisfies the condition, since the rank of Θ̂ is r and
therefore λj(Σ2) = 0 for all j = r + 1, . . . ,min(d1, d2).

Now, substitute parameters as follows: suppose the SVD of Θ∗ = U∗Σ∗V ∗

M = Θ̂,M∗ = Θ∗

U1 = U1, U
∗ = U∗

V1 = V1, V
∗ = V ∗

Σ1 = Σ̃1,Σ
∗
1 = Σ∗

1

Plus, note that

∥Θ1 −Θ∗∥2op = ∥Θ1 −Θ∗∥2op∥V ∗
1 ∥2op ≥ ∥(Θ1 −Θ∗)V ∗

1 ∥2op

and similarly, ∥Θ1 −Θ∗∥2F ≥ ∥U∗
1 (Θ1 −Θ∗)∥2F . Now Wedin’s theorem implies that

max(∥U⊤
⊥U

∗
1 ∥2op, ∥V ⊤

⊥ V
∗
1 ∥2op) ≤

∥Θ−Θ∗∥2op

δ2

With the result of Theorem 3.4, we can conclude

∥Û⊤
⊥U

∗∥op ≤
1

Sr

√
Bmin(A)σ2

n0
, ∥V̂ ⊤

⊥ V
∗∥op ≤

1

Sr

√
Bmin(A)σ2

n0

Therefore, ∥Û⊤
⊥ΘV̂⊥∥F ≤ ∥Û⊤

⊥U∥op · ∥Σ∥F · ∥V ⊤V̂⊥∥op ≤ Bmin(A)σ2∥Θ∗∥F

n0S2
r

≤ Bmin(A)σ2S∗
n0S2

r
=: B⊥

Part 3: bounding R2. Recall that we set λ⊥ = T
r , B⊥ = σ2Bmin(A)S∗

n0S2
r

in low-OFUL.

Let regt be the instantaneous pseudo-regret at time step t: regt = ⟨Θ∗, A∗ −At⟩ = ⟨vec(Θ∗), vec(A∗)− vec(At)⟩ where
A∗ = argmaxA∈A ⟨Θ∗, A⟩. From the fact that Θ∗ ∈ Ct (Jun et al., 2019, Lemma 1) and using Cauchy-Schwarz inequality,
we have

regt = ⟨vec(Θ∗), vec(A∗)− vec(At)⟩
≤ max

Θ∈Ct−1

⟨vec(Θ)− vec(Θ∗), vec(At)⟩ (Definition of At)

≤ max
Θ∈Ct−1

∥ vec(Θ)− vec(Θ∗)∥Vt−1
∥ vec(At)∥V −1

t−1
(14)

≤ 2
√
βt∥ vec(At)∥V −1

t−1
(Definition of Ct)

≤
√
βT ∥ vec(At)∥V −1

t−1
(15)

Now, define HT := {t ∈ [T ] : t > n0, ∥At∥V −1
t−1

> 1} and H̄T := {t ∈ [T ] : t > n0, ∥At∥V −1
t−1
≤ 1}. Then,
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R2 =

T∑
t=n0+1

regt

=

T∑
t=n0+1

regt1{t ∈ H̄T }+
T∑

t=n0+1

regt1{t ∈ HT }

=

T∑
t=n0+1

regt1{t ∈ H̄T }+ 2S∗|HT | (regt ≤ 2S∗)

≤
√
|H̄T |

∑
t∈H̄T

reg2t + 2S∗|HT | (Cauchy-Schwarz)

≤
√
|H̄T |βT

∑
t∈H̄T

∥ vec(At)∥2V −1
t−1

+ 2S∗|HT | (Eq. (15))

≤

√√√√|H̄T |βT
T∑

t=n0+1

min(1, ∥ vec(At)∥2V −1
t−1

) + 2S∗|HT | (16)

Now for the first term of Eq. (16), we can use the elliptic potential lemma (Abbasi-Yadkori et al., 2011; Lattimore &
Szepesvári, 2020):

Lemma G.2 ((Lattimore & Szepesvári, 2020), Lemma 19.4).
∑n
t=1 min(1, ∥ vec(At)∥V −1

t−1
) ≤ 2 log |VT |

|Λ|

For the second term, S∗|HT |, we can use the slight modification of the elliptical potential count lemma in (Gales et al.,
2022):

Lemma G.3 (Modification of Lemma 7, (Gales et al., 2022)). |HT | ≤ 2d1d2
log 2 max

(
1, log

(
ω1

ω2
+ min(d1,d2)

ω2 log 2

))

Proof. Let MT = Λ+
∑
t∈HT

vec(At) vec(At)⊤. Then,

det(MT ) ≤
(

1

d1d2
tr(MT )

)d1d2
=

(
tr(Λ) + tr(

∑
t∈HT

vec(At) vec(At)⊤)
d1d2

)d1d2

≤
(

tr(Λ) + min(d1, d2)|HT |)
d1d2

)d1d2
(∥ vec(At)∥2 ≤

√
min(d1, d2))

Also, using the trick in the proof of (Abbasi-Yadkori et al., 2011, Lemma 11), one can also achieve a lower bound of
det(MT )

det(MT ) = det(Λ) ·
∏
t∈HT

(1 + ∥ vec(At)∥M−1
t−1

)

≥ det(Λ) ·
∏
t∈HT

(1 + ∥ vec(At)∥V −1
t−1

) (V −1
t−1 ⪰Mt−1)

≥ det(Λ)2|HT | (Definition of HT )

Therefore, we have det(Λ)2|HT | ≤ det(MT ) ≤
(
kλ+(d1d2−k)λ⊥+min(d1,d2)|HT |)

d1d2

)d1d2
, or after taking log on both sides

we have

|HT | log 2 + log det(Λ) ≤ d1d2 log
tr(Λ) + min(d1, d2)|HT |

d1d2
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Now let ω1 = max(λ, λ⊥) and ω2 = min(λ, λ⊥). Then log det(Λ) ≥ d1d2ω2 and tr(Λ) ≤ d1d2ω1 which leads

|HT | ≤
d1d2
log 2

log

(
ω1

ω2
+
|HT |
dω2

)
Using Lemma G.4 with η = 1

2 , A = d1d2
log 2 , B = 1

dω2
, C = ω1

ω2
and X = |HT | leads

|HT | ≤
2d1d2
log 2

log

(
d1d2
log 2

(
ω1

ω2|HT |
+

1

dω2

))
.

Now suppose |HT | > 2d1d2
log 2 . Then, from above inequality we have

|HT | ≤
2d1d2
log 2

log

(
ω1

ω2
+

min(d1, d2)

ω2 log 2

)
.

Therefore,

|HT | ≤
2d1d2
log 2

max

(
1, log

(
ω1

ω2
+

min(d1, d2)

ω2 log 2

))

Lemma G.4 (Modification of Lemma 8, (Gales et al., 2022)). Let X,A,B,C ≥ 0. Then X ≥ A log(C + BX) implies
that for all η ∈ (0, 1),

X ≤ A

1− η
log

(
A

2η

(
C

X
+B

))

Proof. Simply change 1 +BX to C +BX and following the proof in Gales et al. (2022) leads the desired result.

For the reasonable case we have T ≫ d1d2 ≫ Θ(1) and therefore we can safely say |HT | ≤ O(d1d2 log T ). Overall, we
have

R2 ≤ 4
√
βT

√
log
|VT |
|Λ|
√
T +O(d1d2S∗ log(T )) (17)

where
√
βt = B

√
λ+B⊥

√
λ⊥ + σ

√
log |Vt|

|Λ| .

Now the minor difference from (Jun et al., 2019; Lu et al., 2021) comes from the computation of log |VT |
|Λ| , simply

because we have different bounds on the l2 norm of the actions (note that for all a ∈ A′
vec, ∥a∥2 = ∥reshape(a)∥F ≤√

d∥reshape(a)∥op ≤
√
d.)

Lemma G.5 (Modification of Valko et al. (2014), Lemma 5). For any T , let Λ = diag([λ1, · · · , λp]). Then,

log
|VT |
|Λ|
≤ max{

p∑
i=1

log(1 +
dti
λi

)}

where the maximum is taken over all possible positive real numbers t1, · · · , tp such that
∑p
i=1 ti = T .

Note that in comparison with (Valko et al., 2014) (which originally assumes ∥at∥2 ≤ 1 for all t), we added a factor of d
inside the log because VT =

∑T
t=1 ata

⊤
t and each ∥at∥2 ≤

√
d. Detailed proof is in Appendix G.3.1

The only difference from the original lemma is that our Frobenius norm of ∥a∥F is bounded by
√
d, so we need to

compensate that scale difference inside the logarithm. Using our Λ = diag(λ, · · · , λ, λ⊥, · · · , λ⊥) with Lemma G.5 we can
induce the following result:

Lemma G.6 (Modification of Jun et al. (2019), Lemma 3). If λ⊥ = T
r log(1+ dT

λ )
, then

log
|VT |
|Λ|
≤ 2k log(1 +

dT

λ
)
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Proof.

log
|VT |
|Λ|
≤ max{

p∑
i=1

log(1 +
dti
λi

)}

≤ k log(1 + dT

λ
) +

p∑
i=k+1

log(1 +
dti
λ⊥

)

p∑
i=k+1

log(1 +
dti
λi

) ≤
p∑

i=k+1

(
dti
λ⊥

) ≤ dT

λ⊥
≤ k log(1 + dT

λ
)

One can note that the additional d factor from Lemma G.5 leads λ⊥ should have order Tr , not like T
k in Jun et al. (2019).

Combining Lemma G.6 with Eq. (17), regret occured by the LowOFUL algorithm is

R2 ≤ Õ((σk
√
T +B

√
kλT +B⊥

√
kλ⊥T ))

≤ Õ(σrd
√
T + T

√
dB⊥)

≤ Õ(σrd
√
T + T

σ2d0.5Bmin(A)S∗

n0S2
r

)

Part 4: putting it together. Therefore, the total regret of ESTR can be bounded by

RegT = R1 +R2 ≤Õ

(
n0S∗ + σrd

√
T +

Td0.5Bmin(A)σ2S∗

n0S2
r

)

≤Õ

σrd√T + σ

√
S2
∗
d0.5Bmin(A)

S2
r

T


with the setting of n0 =

√
d0.5Bmin(A)

S2
r

T in the algorithm.

G.3. Proof of Lemmas we have used in this section

G.3.1. PROOF OF LEMMA G.5

Proof. We need the following lemma of Valko et al. (2014):

Lemma G.7 (Modification of Valko et al. (2014), Lemma 4). Let Λ = diag(λ1, ..., λp) be any diagonal matrix with strictly
positive entries. Then for any vectors (at)1≤t≤T such that ∥at∥2 ≤ C for some constant C for all 1 ≤ t ≤ T , we have that
the determinant |VT | is maximized when all at are aligned with the axes.

The proof of Lemma G.7 is exactly the same as Valko et al. (2014), Lemma 4. Now, in our case, for each 1 ≤ t ≤ T ,
xt = vecXt and ∥xt∥2 ≤ ∥Xt∥F ≤

√
d∥Xt∥op ≤

√
d. Now,

|VT | = |Λ +

T∑
t=1

xtx
⊤
t |

≤ max
(ai)ti=1

:∥ai∥2≤
√
d
|Λ +

T∑
t=1

ata
⊤
t |

= max
(ai)ti=1

:ai∈{
√
de1,··· ,

√
dep}
|Λ +

T∑
t=1

ata
⊤
t | (Lemma G.7)

≤ max
(ti)ti=1

:ti≥0,
∑t

i=1 ti=T
(λi + dti)

and dividing |VT | by |Λ| and taking logarithm leads the result of Lemma G.5.
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H. Additional discussions of related works
H.1. Discussion of Huang et al. (2021)

The result of Huang et al. (2021) is mainly based on the noisy power method (Hardt & Price, 2014). After using noisy
power method to estimate Θ̂ such that ∥Θ̂−Θ∗∥F ≤ ε∥Θ∥F , they use the fact that their arm set is a sphere and therefore
the empirical best arm (greedy) is explicitly Â = Θ̂/∥Θ̂∥F and the true best arm A∗ = Θ∗/∥Θ∗∥F .

∥Θ̂−Θ∗∥F ≤ ε∥Θ∗∥F

⇐⇒ ∥ Θ̂

∥Θ∗∥F
−A∗∥F ≤ ε

and by trigonometry, one can deduce that ∥Â−A∗∥F ≤ ε. See Huang et al. (2021, Appendix B.2) for details.

They then use the fact Â = Θ̂/∥Θ̂∥F and A∗ = Θ∗/∥Θ∗∥F to achieve the instantaneous regret bound of ε2 as follows:

⟨Θ∗, A∗⟩ − ⟨Θ∗, Â⟩ = ⟨Θ
∗, A∗⟩
2

(2− ⟨ Θ∗

∥Θ∗∥F
, Â⟩) = ∥Θ

∗∥F
2

∥∥∥∥ Θ∗

∥Θ∗∥F
− Â

∥∥∥∥2
F

≤ ∥Θ∥F ε2 (18)

This small ε2 error guarantee (as opposed to, say, ε described below) is crucial for obtaining their regret bound.

To summarize, a key property Huang et al. (2021) used was the fact when Θ∗ and Θ̂ are close enough, then A∗ and Â is also
close enough in their setting. This is true when the arm set A has a smooth curvature. However, without curvature on the
arm set, the greedy arm Â = arg maxA∈A ⟨Θ̂, A⟩ can only be guaranteed such that

⟨Θ∗, A∗⟩ − ⟨Θ∗, Â⟩ ≤ 2max
a∈A
|⟨Θ̂−Θ∗, A⟩| ≤ O(ε)

Here’s one example that shows the importance of the Frobenius norm unit ball arm set for their anaylsis. Suppose that arm
set A = B ∪ {diag(1, 1, 0, · · · , 0)}, where B = {M ∈ Rd×d : ∥M∥F ≤ 1}. Consider Θ∗ = diag(1, ε, 0, · · · , 0) for some
small ε. Suppose that we run the algorithm of Huang et al. (2021) using B. Then, for an arbitrary estimation error εh, the for
the estimator using Huang et al. (2021), Θ̂h, we have guarantee ∥Θ̂h − Θ∗∥ ≤ εh∥Θ∗∥F when n0 = Õ(d2rλ−2

r ε−2
h ) is

number of total exploration steps (From Theorem 3.8 of (Huang et al., 2021)). As we have stated above, Huang et al. (2021)
converted this to a bound of ∥Â−A∗∥F when the arm set was B. However, in the case when the arm set isA, Â and A∗ can
be close enough only when (Θ̂h)22 is positive. If not, then we have ⟨Θ∗, diag(1, 1, 0, · · · , 0)⟩ −maxA∈B ⟨Θ∗, A⟩ = Ω(ε)
and this incurs εT exploitation regret. To guarantee εh ≤ ε, we need to spend Õ(d2rλ−2

r ε−2) samples for exploration.
Thus, with this analysis, the best regret upper bound we can hope for is

min(εT,
d2r

λ2rε
2
).

Choosing ε that maximizes this leads to Õ((d2rT 2λ2r)
1/3) regret upper bound. This is much worse than their previous

bound Õ(
√
d2rT/λr).

H.2. Discussion of Kang et al. (2022)

The result of Kang et al. (2022) is directly associated with a sampling distribution constant called M , which was treated
as a constant unrelated to dimensionality in the paper. However, we explain here that M , has hidden dependence on the
dimensionality.

To see this, consider the reward model yt = ⟨Θ∗, Xt⟩ + ηt where ηt ∼ N(0, σ2). It lies in the (conditional) canonical
exponential family:

pΘ∗(yt | Xt) = exp

(
ytβ − b(β)

ϕ
+ c(yt, ϕ)

)
,

where β = ⟨Θ∗, Xt⟩, b(β) = 1
2β

2, ϕ = σ2, c(yt, ϕ) = ln
(

1√
2πσ2

)
− y2t

2σ2 . The inverse link function is µ(β) = ∇b(β) = β.

Consider arm set A =
{
X ∈ Rd1×d2 : ∥X∥F ≤ 1

}
. We consider D = N(0, c

d1d2
Id1d2) (with c = O( 1

lnT )), so that T
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arms drawn iid from D all lie in X with probability 1−O( 1
T ). With this distribution,

p(X) ∝ exp(−∥X∥
2
F

2c
d1d2

) =⇒ ln p(X) = −d1d2∥X∥
2
F

2c
+ constant,

Therefore, the associated score function S(X) = ∇ ln p(X) = −d1d2c X .

Now, checking (Kang et al., 2022, Assumption 3.3), we have for all i, j,

E
[
S(X)2i,j

]
=

(d1d2)
2

c2
E
[
X2
i,j

]
=
d1d2
c

As M is chosen such that for all i, j, E
[
S(X)2i,j

]
≤M , M has to be at least d1d2c ≥ d1d2.

Plugging this into (Kang et al., 2022, Theorem 4.1), and note that µ∗ = E
[
µ′(⟨X,Θ∗⟩)

]
= 1, we have that given T1 iid

samples from D, the estimator Θ̂ has a Frobenius recovery error bound of:

∥Θ̂−Θ∗∥2F ≤ Õ((σ2 + S2
f )
d1d2dr

T1
).

As one can see from the result above, and as they have revised later, their new bound is actually no better than the known
low-rank bound Õ(σ2 d1d2dr

T ) of (Jun et al., 2019) and (Lu et al., 2021), and shows the importance of correct description of
the arm-set-dependent parameter.

For Kang et al. (2022), they also stated their result based on the Frobenius norm bounded arm set: A ⊂ {A ∈ Rd1×d2 :
∥A∥F ≤ 1}. When we change the Frobenius norm bound to operator norm bound, their estimation bound (Kang et al.
(2022, Theorem 4.1)) does not change much, but their regret analysis on ESTS needs additional d0.25 factor. This additional
dimensional dependence also applies for all ESTR-based algorithms (Jun et al., 2019; Lu et al., 2021) and it is because of
the log-determinant term computation - check Lemma G.6 and Lemma G.5 to see details of why additional d appears.

H.3. Justifying regret bound of Lu et al. (2021) in Table 1

In this section, we show that the regret bound of LowESTR (Lu et al., 2021) (originally proposed for the setting of
A ⊂ BFrob(1)), when applied to our setting (A ⊂ Bop(1)), gives a regret bound of Õ(d1/4

√
r σ2

λmin(Q(π))2T
(
S∗
λr

)
). First,

with the new assumption on the arm set A, it is necessary to set λ⊥ = T
r instead of T

rd in (Jun et al., 2019; Lu et al., 2021)
to ensure that log |VT |

|Λ| ≤ Õ(rd).

Therefore, the total regret bound of LowESTR is

Õ
(
S∗n0 + σk

√
T +B

√
kλT +B⊥

√
kλ⊥T

)
Theorem H.1 (Lemma 23 and Appendix E.2 of (Lu et al., 2021)). For the nuclear norm regularized least square estimator
Θ̂nuc, we have

∥Θ̂nuc −Θ∗∥2F ≤ 4.5
λ2n
κ2
r ≈ σ2

nλmin(Q(π))2
· r

where κ is the restricted strong convexity constant (in (Lu et al., 2021) it is λmin(Q(π))), and λn is a constant which satisfies
∥ 1n
∑n
t=1 ηtXt∥op ≤ λn

2 (it is O(
√

σ
n ); by (Koltchinskii et al., 2011), Propositioin 2).

Under this result, they are forced to use the Frobenius version of Wedin’s Theorem and trivially bound ∥U⊤
⊥U

∗∥op by
∥U⊤

⊥U
∗∥F (marked as (opF) in Eq. (19). This leads to the following looser estimation:

∥Û⊤
⊥ΘV̂⊥∥F ≤ ∥Û⊤

⊥U∥op · ∥Σ∥F · ∥V ⊤V̂⊥∥op

(opF )

≤ ∥Û⊤
⊥U∥F · ∥Σ∥F · ∥V ⊤V̂⊥∥F ≤

σ2∥Θ∗∥F
λmin(Q(π))2 · n0λr(Θ∗)2

· r

(19)

Note that there’s r term on RHS now. Since 1
λmin(Q(π)) ≥

1
Cmin

≥ Bmin(A)
d ≥ d by Lemma 3.5, LowPopArt version bound

is much tighter than Eq. (19) in all manners.

Now from the construction, B⊥ ≤ σ2∥Θ∗∥F

λmin(Q(π))2·n0λr(Θ∗)2 · r ≤
σ2

√
dS∗

λmin(Q(π))2·n0λr(Θ∗)2 · r.
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Therefore, the total regret of LowESTR can be bounded by

Reg(T ) ≤Õ

(
n0S∗ + σrd

√
T +

Td0.5σ2S∗

n0λmin(Q(π))2λr(Θ∗)2
· r

)

≤Õ

σrd√T + σ

√
S2
∗

d0.5σ2

λmin(Q(π))2λr(Θ∗)2
T · r


with the optimal tuning of n0.

Remark 7. As mentioned in Remark 3, our LPA-ESTR also achieves an improved regret guarantee over LowESTR ((Lu
et al., 2021)) not only w.r.t. d but also w.r.t. rank r too.

The main reason is that the LowPopArt provides operator norm-based recovery bound as discussed in Theorem 3.2. This
allows us to use the operator norm version of Wedin Theorem (See Section G), which means we obtained the bound
of ∥U⊤

⊥U
∗∥op and ∥V ⊤

⊥ V
∗∥op. From this bound, we used the fact that ∥AB∥F ≤ ∥A∥op∥B∥F to derive the following

relationship:

∥Û⊤
⊥ΘV̂⊥∥F ≤ ∥Û⊤

⊥U∥op · ∥Σ∥F · ∥V ⊤V̂⊥∥op ≤
Bmin(A)σ2∥Θ∗∥F

n0λr(Θ∗)2
(This is LowPopArt version.)

Remember that there’s no r term on the RHS. On the other hand, (Lu et al., 2021) used the Frobenius norm version of the
Wedin Theorem, since they mainly used the Frobenius norm bound of the nuclear norm regularized least square.

H.4. Comparison with Jedra et al. (2024)

As mentioned in Appendix A, many studies on low-rank bandits focus on cases where the bandit instance has a special
arm set. A notable example is the recent work by Jedra et al. (2024), who studied contextual bandits with a low-rank
structure where, in each round, if the (context, arm) pair (i, j) ∈ [m][n] is selected, the learner observes a noisy sample of
the (i, j)-th entry of an unknown low-rank reward matrix. This can be seen as a low-rank bandit with a canonical arm set,
that is, A = {reshape(es) : s = 1, ..., d1d2}, where they were able to obtain a regret bound of O(r7/4d3/4

√
T ). Our paper

can also be applied to this setting, and in that case, the regret bound is O(d3/2
√
T ). At first glance, the algorithm of Jedra

et al. (2024) seems superior to ours, but this is because they focus only on a specific setting where the arm set consists of
canonical vectors.

Such examples can be found in various instances in the bandit world. For instance, as mentioned in (Lattimore & Szepesvári,
2020, Section 23.3), the K-armed bandit can be considered a linear bandit with exactly K dimensions where all arms are
canonical vectors. The UCB algorithm for K-armed bandits has a regret bound of O(

√
KT ). On the other hand, OFUL

(Abbasi-Yadkori et al., 2011), the algorithm known to be minimax optimal for linear bandits in general, has a regret bound
of O(d

√
T ) in a d-dimensional space, which becomes O(K

√
T ) in this specific case, thus larger than the regret bound

of UCB. However, one cannot claim that UCB is a superior algorithm to OFUL because the generality of instances each
algorithm can handle is different.

In addition, the difference in the assumption about the unknown parameter Θ∗ also affects the result. Their algorithms
operate (and are optimized for) maxi,j |Θij |-bounded setup, whereas our paper operates under ||Θ||∗-bounded setup.

H.5. Justifying arm-set dependent constant of Jun et al. (2019) in Table 1

Consider π to be the uniform distribution of X0 × Z0, where X0 = {X1, . . . , Xd1} and Z0 = {Z0, . . . , Zd2} are sets of
linearly independent vectors in X and Z , respectively. This is exactly how (Jun et al., 2019) have sampled. They achieved
the regret bound of on Õ(∥X−1∥op∥Z−1∥opd3/2

√
rT ) where X := [X1; · · · , ;Xd1 ] and Z := X := [Z1; · · · , ;Zd2 ]. In

this section, we show that this ∥X−1∥op∥Z−1∥op is actually
√

1
d1d2λmin(Q(π)) , and therefore must be larger than or equal to√

1
d1d2Cmin(A) .
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d1d2Q(π) =

d1∑
i=1

d2∑
j=1

(Xi ⊗ Zj)(Xi ⊗ Zj)⊤

=

d1∑
i=1

d2∑
j=1

(Xi ⊗ Zj)(X⊤
i ⊗ Z⊤

j )

=

d1∑
i=1

d2∑
j=1

(XiX
⊤
i )⊗ (ZjZ

⊤
j )

=

d1∑
i=1

(XiX
⊤
i )⊗ (ZZ⊤)

= (XX⊤)⊗ (ZZ⊤)

Therefore,
1

d1d2
||Q−1||op = ||[(XX⊤)⊗ (ZZ⊤)]−1||op

= ||[(XX⊤)−1 ⊗ (ZZ⊤)−1]||op

= ||[XX⊤]−1||op||[ZZ⊤]−1||op

= ||X−1||2op||Z−1||2op

I. Comparison between our algorithm and Koltchinskii et al. (2011)
Suppose we are given (Ai, yi)

n
i=1 iid samples such that Ai ∼ Π and Π is supported on

{
A : ∥A∥op ≤ 1

}
, and for every i,

yi = ⟨Θ∗, Ai⟩ + ηi, where ηi’s are independent zero-mean σ-subgaussian noise. (Koltchinskii et al., 2011) considers a
nuclear-norm penalized estimator, defined as follows:

Θ̂ = arg min
Θ

∥Θ∥2L2(Π) − ⟨
2

n

n∑
i=1

yiAi,Θ⟩+ λ∥Θ∥∗, (20)

where ∥B∥L2(Π) =

√
EA∼Π ⟨A,B⟩2.

Theorem I.1 (Adapted from (Koltchinskii et al., 2011), Corollary 1). Given the setting above, and suppose additionally
that:

• there exists C > 0 such that for all B, ∥B∥2L2(Π) ≥ C∥B∥
2
F ,

• rank-r matrix Θ0 is such that ∥ 1n
∑n
i=1Aiyi − EA∼Π

[
⟨Θ0, A⟩A

]
∥op ≤ λ

2 .

Then, there exists some absolute constant c > 0 such that

∥Θ̂−Θ0∥F ≤ c
√
rλ

C
, ∥Θ̂−Θ0∥F ≤ c

rλ

C
.

Now the Lemma I.2 below states that Θ∗ satisfies the condition of Θ0 in Theorem I.1.

Lemma I.2. Suppose n ≥ O(ln d
δ ). Then with probability 1− δ,∥∥∥∥∥∥ 1n
n∑
i=1

Aiyi − EA∼Π

[
⟨Θ∗, A⟩A

]∥∥∥∥∥∥
op

≤ O

(S∗ + σ)

√
ln d

δ

n



Proof. Let Zi = Aiyi − EA∼Π

[
⟨Θ∗, A⟩A

]
. We first upper bound ∥Zi∥op’s ψ2-Orlicz norm; to this end, first note that∥∥∥Aiyi∥op

∥∥
ψ2
≤
∥∥|yi|∥∥ψ2

≤
∥∥|⟨Θ, Ai⟩|∥∥ψ2

+
∥∥|ηi|∥∥ψ2

≤ S∗ + σ
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Therefore, EA∼Π

[
⟨Θ∗, A⟩A

]
= E[Aiyi] also satisfies that∥∥∥∥EA∼Π

[
⟨Θ∗, A⟩A

]
∥op

∥∥∥
ψ2

≤ S∗ + σ,

hence ∥Zi∥ψ2
≤
∥∥∥Aiyi∥op

∥∥
ψ2

+
∥∥∥∥EA∼Π

[
⟨Θ∗, A⟩A

]
∥op

∥∥∥
ψ2

≤ 2(S∗ + σ).

Meanwhile,

∥E[ZiZ⊤
i ]∥op ≤ ∥E[AiA⊤

i y
2
i ]∥op = ∥E[AiA⊤

i (⟨Θ∗, Ai⟩2 + σ2)]∥op ≤ S2
∗ + σ2,

likewise,

∥E[Z⊤
i Zi]∥op ≤ S2

∗ + σ2.

Therefore, applying Proposition 2 of (Koltchinskii et al., 2011)4 on Z1, . . . , Zn, with σZ = S∗ + σ, α = 2, and U (α)
Z =

2(S∗ + σ), t = ln 1
δ gives that with probability 1− δ,∥∥∥∥∥∥ 1n

n∑
i=1

Zi

∥∥∥∥∥∥
op

= O

σZ
√

ln d
δ

n
+ U

(α)
Z

√
ln
U

(α)
Z

σZ

ln d
δ

n

 ≤ O
(S∗ + σ)

√
ln d

δ

n

 .

Applying the theorem to (Ai, yi)
n
i=1 with Θ0 set to be Θ∗, where Ai ∼ π∗ as defined in (10), we can choose C =

Cmin(A). On the other hand, Lemma I.2 below shows that choosing λ = O

(
(S∗ + σ)

√
ln d

δ

n

)
, with probability 1 − δ,

∥ 1n
∑n
i=1Aiyi − EA∼Π

[
⟨Θ0, A⟩A

]
∥op ≤ λ

2 . Therefore, we conclude that with the above setting of λ and Π = π∗, the
nuclear norm penalized estimator Θ̂ defined in Eq. (20) with satisfies that

∥Θ̂−Θ∗∥F ≤ Õ

(
S∗ + σ

Cmin(A)

√
r

n

)
, ∥Θ̂−Θ∗∥∗ ≤ Õ

(
S∗ + σ

Cmin(A)

√
r2

n

)
.

J. Experimental details settings
J.1. Experiment settings

Common settings

• Computation resource: Apple M2 Pro, 16GB memory.
• Error bar: 1-standard deviation for the shadowed area.
• We attached our code as supplementary material and will upload a public link when this paper is accepted. Please read

README.md file before running.

J.1.1. FIGURE 2 LEFT

• Dimension d1 = d2 = 3

• Time steps: from 1000 to 10000, increased by 1000
• Θ∗ = uv⊤, where u and v are drawn from Sd1−1 and Sd2−1, respectively (Sd−1 is the d-dimensional unit sphere.)
• Action set A is drawn uniformly at random from the BFrob(1). |A| = 150.
• Noise ηt ∼ N(0, 1), which means σ2 = 1.
• Repeated the experiment 60 times

J.1.2. FIGURE 2 RIGHT

• Dimension d1 = d2 = 3

4The original proposition statement is stated for the setting of σ2
Z = max(E[ZiZ

⊤
i ],E[Z⊤

i Zi]) exactly; it can be checked that the
proposition continues to hold when σ2

Z ≥ max(E[ZiZ
⊤
i ],E[Z⊤

i Zi]).
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• Time steps: from 10000 to 100000, increased by 10000
• Θ∗ = uv⊤, where u and v are drawn from Sd1−1 and Sd2−1, respectively (Sd−1 is the d-dimensional unit sphere.)
• Action set A is Ahard, which is defined as follows:

ai =

reshape( 1√
3
e1) if i = 1

reshape(e1 +
1√
3
ei) if i = 2, 3, · · · , d1d2

• Noise ηt ∼ N(0, 1), which means σ2 = 1.
• Repeated the experiment 60 times

J.1.3. FIGURE 3 LEFT

• Dimension d1 = d2 = 5

• Time steps: 100000
• Θ∗ = uv⊤, where u and v are drawn from Sd1−1 and Sd2−1, respectively (Sd−1 is the d-dimensional unit sphere.)
• Action set A is drawn uniformly at random from the BFrob(1). |A| = 100.
• Noise ηt ∼ N(0, 1), which means σ2 = 1.
• Repeated the experiment 60 times

J.1.4. FIGURE 3 RIGHT

• Dimension d1 = d2 = 6

• Time steps: 100000
• Θ∗ = uv⊤, where u and v are drawn from Sd1−1 and Sd2−1, respectively (Sd−1 is the d-dimensional unit sphere.)
• Action set A is in bilinear setting. Which means, A = {xz⊤ : x ∈ X , z ∈ Z} where X and Z are drawn uniformly at

random from the Sd1−1 and Sd2−1, respectively. |X | = 4d1 = 24, |Z| = 4d2 = 24.
• Noise ηt ∼ N(0, 1), which means σ2 = 1.
• Repeated the experiment 60 times

J.2. Algorithm for Left figures of Figure 3

Algorithm 6 Nuc-ETC (Nuclear norm regularized least square based Explore then commit)
1: Input: time horizon T , arm set A, exploration lengths n∗0, regularization parameter λ
2: Solve the optimization problem in Eq. (10) and denote the solution as π∗

3: for t = 1, . . . , n∗
0 do

4: Independently pull the arm At according to π∗ and receives the reward Yt
5: end for
6: Θ̂∗ := argminΘ∈Rd1×d2

1
2

∑n∗
0
t=1

(
⟨Θ, At⟩ − Yt

)2
+ λ∥Θ∥∗

7: for t = n∗0 + 1, . . . , T do
8: Pull the arm Xt = arg maxA∈A ⟨Θ̂∗, A⟩
9: end for

J.2.1. THEORETICAL ANALYSIS OF THE EXPLORATION LENGTH n∗0

As discussed in Appendix I, we have the following guarantee for the nuclear norm error bound of the nuclear norm
regularized least square estimator:

∥Θ̂−Θ∗∥∗ ≤ Õ
(
S∗ + σ

Cmin(A)

)√
r2

n∗0

Also, we have the following upper bound of the instantaneous regret after n∗0:

⟨Θ∗, A∗ −At⟩ = ⟨Θ∗ − Θ̂, A∗⟩+ ⟨Θ̂, A∗⟩ − ⟨Θ∗, At⟩
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Figure 4. Experiment results on nuclear norm error

≤ ⟨Θ∗ − Θ̂, A∗⟩+ ⟨Θ̂−Θ∗, At⟩ (Definition of At)

≤ ∥Θ∗ − Θ̂∥∗(∥A∗∥op + ∥At∥op) (Holder’s inequality)

≤ 2∥Θ∗ − Θ̂∥∗
Overall,the regret is

RegT =

T∑
t=1

⟨Θ∗, A∗ −At⟩ =
n∗
0∑

t=1

⟨Θ∗, A∗ −At⟩+
T∑

t=n∗
0+1

⟨Θ∗, A∗ −At⟩

≤ S∗n
∗
0 + Õ

(
S∗ + σ

Cmin(A)

)√
r2

n∗0
· (T − n∗0)

and the n∗0 which optimizes above value is n∗0 =
(
σ2r2T 2Cmin(A)−2S−2

∗
)1/3

J.3. Computational efficiency of Algorithm 1

For estimation only (Algorithm 1), we need O(d31d
3
2) for matrix inversion (Eq. (2)), O(n0(d1d2)

2) for estimators in Line 2,
and O(d21d2) for SVD in Line 3 and 4, and no more computation is needed. On the other hand, (Koltchinskii et al., 2011)
and other popular tools require optimizations that have several iterations dependent on the precision requirement of the
optimization. For (Koltchinskii et al., 2011), it requires O(n0d1d2) for each iteration. In our experiment, both were very
fast (ours: 0.3 sec, (Koltchinskii et al., 2011): 0.1 sec). For the experimental design part, no prior work explicitly studied on
experimental design in the low-rank setting as far as we know. One natural approach is to optimize the conditions of the
covariance matrix such as RIP, but there is no known computationally efficient way to directly compute these quantities
(See the last part of the second contribution in Section 1). Other naive approaches are A/D/E/G/V-optimalities that are used
in linear experimental design. They can be optimized by traditional optimization solvers like CVXPY or MOSEK. Our
algorithm could also be done in the same way since our optimization problem is also convex. (in our experiment, ours:
0.046 sec, E-optimality: 0.039 sec).

J.4. Additional Experiments

J.4.1. EFFECT OF THE THRESHOLDING PROCESS

We made an experiment to show the utility of the hard thresholding step. Bmin-LPA (blue) is our algorithm with hard
thresholding, while noElim (black) is the algorithm without hard thresholding. As we can see in Figure 4, hard thresholding
step is necessary to remove noisy observations and to utilize rank information, especially when dimension d gets larger.

This hard thresholding step is not that restrictive since it only eliminates singular values that are small enough that if the
corresponding singular value is nonzero, when applied to bandit problems, we expect that it will not harm the overall
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Figure 5. Experiment results on bandit using a real-world dataset

cumulative regret.

Experiment setting

• d1 = d2 = d, d = 2, 3, · · · , 8
• T = 10000,
• Θ∗ : random rank-1 matrix with ||Θ∗||F = 1.

• A ⊂ Rd×d: uniformly drawn from the Sd
2−1
F (1) (Frobenius norm unit sphere), |A| = 4d. Of course A changes when d

changes.
• Noise distribution : N(0, 1).
• Repeat the experiment 30 times for each d.

J.4.2. REAL-WORLD DATASET

We used the Movielens dataset (movielens-old 100k) to try the algorithm on a real-world dataset. As one can check from
Figure 5 below, our algorithm shows superior performance compared to other traditional low-rank algorithms.

Experiment setting

• d1 = d2 = d = 10

• X ⊂ Rd1 and Z ⊂ Rd2 are the subset of the left (and right, respectively) singular vectors of the rank-d approximation
from SVD result of the Movielens rating after matrix completion (KNNImputer in Scikit-learn(Pedregosa et al., 2011)).
We randomly select |X| = 50 among 1000 users (and |Z| = 50 among 1700 movies.)

• Θ∗: random rank-1 matrix with ||Θ∗||F = 1, r = 1.
• T = 105

• Noise distribution: N(0, 1).
• Repeat each algorithm 30 times to measure the average cumulative regret.

K. Proof of Lower Bound (Theorem 6.1)
We first state a more precise version of Theorem 6.1:

Theorem K.1 (Theorem 6.1 restated). For any d, r sufficiently large such that 2r − 1 ≤ d − 1, d ≥ 4000r, T ≥ 1,

C ∈ [ 400rd2 , 1
10d ], σ > 0, Rmax ∈ [125σ

√
r
TC ,

σ
64

√
d6C2

Tr2 ], any bandit algorithm B, there exists a (2r − 1)-rank d-

dimensional bandit environment with σ-subgaussian noise with an arm set A ⊂
{
a : ∥a∥op ≤ 1

}
such that Cmin(A) ≥ C

and Θ∗ which satisfies maxA∈A |⟨Θ∗, A⟩| ≤ Rmax, such that

EΘ,B[Reg(Θ, T )] ≥
1

64
σ2/3R1/3

maxr
1/3T 2/3C−1/3.
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Our lower bound instance construction and proof resembles those of sparse linear bandit lower bound argument of (Hao
et al., 2020). We make a few important modifications tailored to the low-rank bandit setting:

• Matrix-valued arms and hypotheses: in contrast to Hao et al. (2020) which considers vector-valued arms and hypotheses,
here we consider arm sets and hypotheses in Rd×d; specifically, the (d, d)-th entry of arm serves as penalizing the
informative arms inH; the row and column subspace of the null hypothesis Θ is spanned by {e1, . . . , er−1}; similarly,
the row alternative hypothesis Θ̃ is supported on some r-dimensional subspace of span {er, . . . , ed−1}.

• Range of C, lower bound of Cmin(A): Hao et al. (2020) considers the setting where all arms are ℓ∞ bounded by 1,
which induces a constraint that C ≤ 1; in contrast, we consider the setting where all arms have operator norm bounded
by 1, which induces a different constraint on C: C ≤ 1

10d .

• A different averaging argument for the low-rank setting: to establish that hypotheses Θ and Θ̃ have small divergence,
we consider the average KL divergence between PΘ and some PΘ+2εZ̃ , where Z̃ is chosen randomly from S ′ (see
Eq. (21)). This is a uncountably infinite set; we utilize symmetry of the Haar measure to bound the average KL
divergence.

K.1. The construction

Basic notations. Below, for X ∈ Rd×d, denote by X1 = X1:d−1,1:d−1 ∈ R(d−1)×(d−1), and X2 = Xr:d−1,r:d−1 ∈
R(d−r)×(d−r). Define ⟨X,Y ⟩1 = ⟨X1, Y 1⟩, and ⟨X,Y ⟩2 = ⟨X2, Y 2⟩.

Consider low-rank bandit environment rt = ⟨Θ, At⟩+ ηt, where ηt ∼ N(0, σ2) is additive Gaussian noise. As we will see
in subsequent constructions, we ensure that the arm set A ⊂

{
a : ∥a∥op ≤ 1

}
and Cmin(A) ≥ C. We also ensure that for

all instances Θ considered, ∥Θ∥∗ ≤ Rmax, so that maxA∈A ⟨Θ, A⟩ ≤ Rmax.

Setting of parameters. We choose ε =
(
Rmaxσ

2

Tr2C

) 1
3

. By the relationships of the parameters in the theorem statement, we
have that the following happen simultaneously:

1. d2 ≥ 16Tr2ε2

σ2 . This follows from the assumption that Rmax ≤ σ
64

√
d6C2

Tr2 , and will be used when we upper bound the
KL divergence of the two hard bandit instances we construct.

2. rε ≤ Rmax

24 . This follows from the assumption that Rmax ≥ 125σ
√

r
TC , and wil be used to ensure that for the hard

bandit instances constructed, ∥Θ∥∗ ≤ Rmax.
3. C ≤ 1

10d . This requirement for C is without loss of generality (up to a constant factor), as we know from Corollary D.1
that any A satisfying Assumption A1 has Cmin(A) ≤ 1

d .

Action space. Define arm set A = H ∪ S, where:

• The “informative and high regret” arm set

H =

X =

x11, . . . , x1d. . .
xd1, . . . ,

1
2

 : ∀(i, j) ̸= (d, d), xi,j ∈
{
−
√
2C,
√
2C
}
∧ ∥X∥op ≤ 1


• The “low informative and low regret” arm set

S =


[
UV ⊤ 0
0 0

]
: U, V ∈ R(d−1)×(r−1), U⊤U = V ⊤V = Ir−1


By construction, all arms inH have operator norms at most 1; meanwhile, all arms in S has a singular value decomposition[
U
0

] [
diag(1r−1) 0

0 0

] [
V ⊤ 0

]
, which also have operator norms at most 1. We also have the following claim which shows

that the arm set is well-conditioned; its proof is deferred to Section K.3.

Claim 3. Cmin(A) ≥ C.
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Bandit environments (hypotheses). Define a “null hypothesis”, a rank-r matrix bandit environment

Θ =

diag(ε1r−1) 0 0
0 diag(0d−r) 0
0 0 −Rmax

2

 ,
and define its “support matrix”

Z =

diag(1r−1) 0 0
0 diag(0d−r) 0
0 0 0

 ,
Define an “alternative hypothesis” of bandit environment Θ̃ = Θ0 + 2εZ̃, where

Z̃ = arg min
Z∈S′

EΘ

 n∑
t=1

(⟨At, Z⟩)2
 ,

here,

S ′ =


diag(0r−1) 0 0

0 UV ⊤ 0
0 0 0

 : U, V ∈ R(d−r)×(r−1), U⊤U = V ⊤V = Ir−1

 ⊆ S. (21)

Note that by item 2, rε ≤ Rmax

24 , therefore, ∥Θ∥∗ = Rmax

2 +(r− 1)ε ≤ Rmax, and ∥Θ̃∥∗ = Rmax

2 +(r− 1)ε+2(r− 1)ε ≤
Rmax.

Our goal below is to show that one of EΘ[Reg(Θ, n)] and EΘ̃[Reg(Θ̃, n)] must be large.
Remark 8. If we define T =

{
Θ+ 2εZ : Z ∈ S ′

}
, then

Θ̃ = arg min
Θ′∈T

KL(PΘ,PΘ′).

Intuitively, Θ̃ is the environment in T that is “most indistinguishable” from Θ.

We make the following observation on the optimal arm and optimal reward of these two environments, whose proof can be
found in Section K.3:
Claim 4. 1. maxA∈A ⟨A,Θ⟩ = (r − 1)ε, arg maxA∈A ⟨A,Θ⟩ = Z;

2. maxA∈A ⟨A, Θ̃⟩ = 2(r − 1)ε, arg maxA∈A ⟨A, Θ̃⟩ = Z̃.

K.2. Proof of Theorem 6.1

Step 1: Not enough exploration leads to high regret. Denote by T (H) :=
∑T
t=1 I(At ∈ H) the number of times the

learner chooses arms in the informative arm set H. We show the following claim, which formalizes the intuition that if
EΘ[T (H)], the number of times the informative arms are chosen, is small, at least one of the environments Θ, Θ̃ must induce
a large regret.
Claim 5.

max(EΘ[Reg(Θ, T )],EΘ′ [Reg(Θ′, T )]) ≥ Trε exp

(
−EΘ[T (H)]rCε2

σ2
− Tr2ε2

d2σ2

)

Proof of Claim 5. Define event

D =


T∑
t=1

I(At ∈ S)⟨At, Z⟩ ≤
T (r − 1)

2


We show via the following lemma that to ensure low-regret in Θ and Θ̃, it is necessary to control the probabilities of D and
Dc to be small under the respective environment; its proof is deferred to Section K.3:

Lemma K.2. EΘ

[
Reg(Θ, T )

]
≥ T (r−1)ε

2 Pθ(D) and EΘ̃

[
Reg(Θ̃, n)

]
≥ T (r−1)ε

2 Pθ̃(D
c)
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As an important consequence, by Bretagnolle-Huber inequality and divergence decomposition,

max(EΘ[Reg(Θ, T )],EΘ′ [Reg(Θ′, T )])

≥T (r − 1)ε

4
(PΘ(D) + PΘ̃(D

c))

≥T (r − 1)ε

4
exp

(
−KL(PΘ,PΘ̃)

)
≥T (r − 1)ε

8
exp

−EΘ

 T∑
t=1

1

2σ2
⟨Θ− Θ̃, At⟩

2




≥Trε
16

exp

−2ε2

σ2
EΘ

 T∑
t=1

⟨Z̃, At⟩
2




The following key lemma (proof in Section K.3) upper bounds the EΘ

[∑T
t=1 ⟨Z̃, At⟩

2
]

term in the exponent:

Lemma K.3. EΘ

[∑T
t=1 ⟨Z̃, At⟩

2
]
≤ 4EΘ[T (H)]rC + 8Tr2

d2 .

The claim follows by plugging this lemma into the above inequality.

Step 2: Concluding the lower bound. We now use Claim 5 to conclude the minimax regret lower bound. Observe that by
our setting of parameters, d2 ≥ 16Tr2ε2

σ2 , therefore, Claim 5 simplifies to

max(EΘ[Reg(Θ, T )],EΘ̃[Reg(Θ̃, T )]) ≥
Trε

32
exp

(
−EΘ[T (H)]rCε2

σ2

)

Before proceeding, we make another important observation that under Θ, arms inH indeed incur large regret:
Claim 6.

EΘ[Reg(Θ, n)] ≥
Rmax

8
EΘ[T (H)]

We now consider two cases:

• If EΘ[T (H)] ≤ σ2

2rCε2 , the exponent in the first inequality becomes a constant, so that we have
max(EΘ[Reg(Θ, T )],EΘ̃[Reg(Θ̃, T )]) ≥

Trε
64 .

• Otherwise, EΘ[T (H)] > σ2

2rCε2 . In this case, EΘ[Reg(Θ, T )] ≥ Rmax
σ2

16rCε2

In summary, for any bandit algorithm,

max
Θ′∈{Θ,Θ̃}

EΘ′ [Reg(Θ′, n)] ≥ 1

64
min

(
Trε,

Rmaxσ
2

rCε2

)
.

Note that our choice of ε =
(
Rmaxσ

2

Tr2C

) 1
3

balances these two terms and approximately maximizes the above; plugging its
value, we get,

max
Θ′∈{Θ,Θ̃}

EΘ′ [Reg(Θ′, T )] ≥ 1

64
R1/3

maxσ
2/3r1/3T 2/3C−1/3.

This concludes the proof of Theorem 6.1.

K.3. Proofs of auxiliary lemmas

K.3.1. PROOFS RELATED TO THE PROPERTIES OF THE LOWER BOUND CONSTRUCTION

Proof of Claim 3. It suffices to show that the uniform distribution π overH ⊆ A satisfies EA∼π
[
vec(A) vec(A)⊤

]
⪰ CI .
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Define π̃ to be the uniform distribution over

H̃ =

X =

x11, . . . , x1d. . .
xd1, . . . ,

1
2

 : ∀(i, j) ̸= (d, d), xi,j ∈
{
−
√
2C,
√
2C
} ;

it can be seen that π is distribution π̃ restricted to the set
{
A : ∥A∥op ≤ 1

}
. It therefore suffices to show that

EA∼π̃
[
vec(A) vec(A)⊤I(∥A∥op ≤ 1)

]
⪰ CI , as

EA∼π

[
vec(A) vec(A)⊤

]
=

1

PA∼π̃(∥A∥op ≤ 1)
EA∼π̃

[
vec(A) vec(A)⊤I(∥A∥op ≤ 1)

]
.

Note that EA∼π̃
[
vec(A) vec(A)⊤

]
⪰ 2CI; hence, it reduces to show that∥∥∥∥EA∼π̃

[
vec(A) vec(A)⊤I(∥A∥op > 1)

]∥∥∥∥
op
≤ C.

Note that for all A ∈ H̃, ∥ vec(A)∥2 = ∥A∥F ≤ d, which implies that ∥ vec(A) vec(A)⊤∥op ≤ d2; therefore, it suffices to
show that

PA∼π̃(∥A∥op ≥ 1) ≤ C

d2
.

Indeed, denote by a random sample from π̃ by A =

x11, . . . , x1d. . .
xd1, . . . ,

1
2

 where all xi,j’s are drawn uniformly from

{
−
√
2C,
√
2C
}

.

From Lemma K.4, with probability 1− C
d2 , random matrix X =

x11, . . . , x1d. . .
xd1, . . . , xdd

 (where xdd is also drawn uniformly from{
−
√
2C,
√
2C
}

) satisfies that

∥X∥op ≤ c
√
2C

(
√
d+

√
ln
d2

2C

)

Observe that by the assumption that C ≤ 1
10d , c

√
2C

(√
d+

√
ln d2

2C

)
+
√
2C ≤ 1

2 , therefore,

∥A∥ ≤∥X∥op +

∥∥∥∥∥∥
 0, . . . , 0

. . .
0, . . . , xdd

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥∥
0, . . . , 0. . .
0, . . . , 12


∥∥∥∥∥∥∥

op

≤ 1

2
+

1

2
≤ 1.

Proof of Claim 4. We prove the two items respectively.

1. Observe that

max
A∈H

⟨A,Θ⟩ ≤ (r − 1)ε− 1

4
Rmax ≤ −

1

8
Rmax,

max
A∈S
⟨A,Θ⟩ = max

A∈S
⟨A1,Θ1⟩ ≤ max

A∈S
∥A1∥∗∥Θ1∥op ≤ (r − 1)ε

Furthermore, note that Z ∈ S and

⟨Z,Θ⟩ = (r − 1)ε.

This shows that Z maximizes ⟨A,Θ⟩ over all A ∈ A and achieves objective value (r − 1)ε.
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2. Observe that

max
A∈H

⟨A, Θ̃⟩ ≤ 3(r − 1)ε− 1

4
Rmax ≤ −

1

8
Rmax,

max
A∈S
⟨A, Θ̃⟩ = max

A∈S
⟨A1, Θ̃1⟩ ≤ max

A∈S
∥A1∥∗∥Θ̃1∥op ≤ 2(r − 1)ε

Furthermore, note that Z̃ ∈ S and

⟨Z̃, Θ̃⟩ = 2(r − 1)ε.

This shows that Z̃ maximizes ⟨A, Θ̃⟩ over all A ∈ A and achieves objective value 2(r − 1)ε.

In the proof of Claim 3, we need the following lemma on ±1 random matrices:

Lemma K.4. Suppose A is a random matrix whose entries are drawn iid and uniformly at random from {−1,+1}. Then
there exists some constant c, such that with probability 1− δ,

∥A∥op ≤ c

(
√
d+

√
ln

1

δ

)
.

Proof. This follows from Vershynin (2010, Theorem 5.39) applied to matrix A, and the observation that every row of A is a
1-subgaussian random vector.

K.3.2. PROOFS RELATED TO THE LOWER BOUND PROOF

Proof of Lemma K.2. For the first inequality, it suffices to show that when event D happens, Reg(Θ, T ) ≥ T (r−1)ε
2 . Indeed,

Reg(Θ, T ) = T (r − 1)ε−
T∑
t=1

⟨At,Θ⟩I(At ∈ S)−
T∑
t=1

⟨At,Θ⟩I(At ∈ H)

≥ T (r − 1)ε−
T∑
t=1

⟨At,Θ⟩I(At ∈ S)

= T (r − 1)ε− ε
T∑
t=1

⟨At, Z⟩I(At ∈ S)

≥ T (r − 1)ε

2

where the first inequality uses the observation that when At ∈ H, ⟨At,Θ⟩ = ⟨At,Θ⟩1 −
1
4Rmax ≤ ∥A1

t∥op∥Θ1∥∗ ≤
(r − 1)ε∥At∥op − 1

4Rmax ≤ (r − 1)ε− 1
4Rmax ≤ 0; the second equality is due to that for At ∈ S, ⟨At,Θ⟩ = ⟨At, εZ⟩;

the second inequality is due to the definition of event D.

For the second inequality, we first claim that

Dc ⊂


T∑
t=1

I(At ∈ S)⟨At, Z̃⟩ ≤
n(r − 1)

2

 (22)

To see this, note that
T∑
t−1

I(At ∈ S)⟨At, Z + Z̃⟩ ≤
T∑
t−1

I(At ∈ S)∥At∥∗∥Z + Z̃∥op ≤ T (r − 1),

where the second inequality uses the observations that for At ∈ S, ∥At∥∗ = r − 1, and that ∥Z + Z̃∥op ≤ 1. Also, recall
from its definition that when Dc happens,

T∑
t=1

I(At ∈ S)⟨At, Z̃⟩ ≥
T (r − 1)

2
,
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Subtracting the above two inequalities, we have that
∑T
t=1 I(At ∈ S)⟨At, Z̃⟩ ≤

T (r−1)
2 holds.

We now claim that when event Dc happens, Reg(Θ̃, T ) ≥ T (r−1)ε
2 .

Reg(Θ̃, T ) = 2T (r − 1)ε−
T∑
t=1

⟨At, Θ̃⟩I(At ∈ S)−
T∑
t=1

⟨At, Θ̃⟩I(At ∈ H)

≥ 2T (r − 1)ε−
T∑
t=1

⟨At, Θ̃⟩I(At ∈ S)

= 2T (r − 1)ε− ε
T∑
t=1

(
⟨At, Z⟩+ 2⟨At, Z̃⟩

)
I(At ∈ S)

≥ T (r − 1)ε− ε
T∑
t=1

⟨At, Z̃⟩I(At ∈ S)

≥ T (r − 1)ε

2

where the first inequality uses the observation that when At ∈ H, ⟨At, Θ̃⟩ = ⟨At, Θ̃⟩1 −
1
4Rmax ≤ ∥A1

t∥op∥Θ̃1∥∗ ≤
3(r − 1)ε∥At∥op − 1

4Rmax ≤ 3(r − 1)ε− 1
4Rmax ≤ 0; the second equality is due to that ⟨At, Θ̃⟩ = ⟨At, εZ + 2εZ̃⟩; the

second inequality uses the fact that
∑T
t=1

(
⟨At, Z⟩+ ⟨At, Z̃⟩

)
I(At ∈ S) ≤

∑T
t=1 ∥At∥∗∥Z + Z̃∥ ≤ n(r − 1); the third

inequality uses our claim Eq. (22) above.

Proof of Lemma K.3. Note that Eθ
[∑T

t=1 ⟨Z̃, At⟩
2
]
≤ Eθ EZ∼D

[∑T
t=1 ⟨Z,At⟩

2
]

for any distribution D over S ′. We
choose D in the following manner. Randomly draw Z using this procedure and call the D the resultant distribution of Z:

1. Draw U = (u1, . . . , ur−1), V = (v1, . . . , vr−1) ∈ R(d−r)×(r−1) from Haar measure over matrices with orthonormal
columns.

2. Draw σ ∼ Uniform({−1,+1}d−r), a Rademacher random vector;
3. Define

Z =

diag(0r−1) 0 0
0 U diag(σ)V ⊤ 0
0 0 0

 .
Now, fix a A ∈ Rd×d; we seek to bound EZ∼D[⟨Z,A⟩2]. Observe that ⟨Z,A⟩ = ⟨Z,A⟩2 as Z is only nonzero in rows and
columns r through d− 1. Therefore, (recalling the notation A2 in Section K.1)

EZ∼D

 n∑
t=1

⟨Z,A⟩2
 =E

E

r−1∑
i=1

σi(u
⊤
i A

2vi)

2

| u1, . . . , ur−1, v1, . . . , vr−1




=E

r−1∑
i=1

(u⊤i A
2vi)

2


=(r − 1)Eu,v∼Uniform(Sd−r−1)

[
(u⊤A2v)2

]
=

r − 1

(d− r)2
∥A2∥2F ≤

4r

d2
∥A2∥2F

where the second equality use the observation that E
[
σiσj

]
= I(i = j); the third equality uses the linearity of expectation

and that ui, vi’s marginal distributions uniform over d− r-dimensional unit sphere. The last equality uses the observation
that

Eu,v∼Uniform(Sd−r−1)

[
(u⊤A2v)2

]
=

1

d− r
Ev∼Uniform(Sd−r−1) ∥A2v∥22 =

1

(d− r)2
∥A2∥2F
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The above calculation implies that:

• For A ∈ H, as ∥A2∥F =
√
C(d− r), we have EZ∼D

[
⟨Z,A⟩2

]
≤ 8rC,

• For A ∈ S, as ∥A2∥F ≤
√
r∥A2∥op ≤

√
r, we have EZ∼D

[
⟨Z,A⟩2

]
≤ 4r2

d2 .

Therefore,

EΘ

 n∑
t=1

⟨x̃, At⟩2
 ≤ EΘ

 T∑
t=1

I(At ∈ H)rκ2 +
T∑
t=1

I(At ∈ S)
r2

d

 ≤ 8EΘ[T (H)]rC +
4Tr2

d2
.

Proof of Claim 6. First, by the definition of regret,

Reg(Θ, T ) =
T∑
t=1

(
max
A∈A
⟨A,Θ⟩ − ⟨At,Θ⟩

)
I(At ∈ S) +

(
max
A∈A
⟨A,Θ⟩ − ⟨At,Θ⟩

)
I(At ∈ H)

≥
T∑
t=1

(
max
A∈A
⟨A,Θ⟩ − ⟨At,Θ⟩

)
I(At ∈ H)

Observe that: first, maxA∈A ⟨A,Θ⟩ = (r− 1)ε; second, when At ∈ H, ⟨At, Θ̃⟩ = ⟨At, Θ̃⟩1 −
1
4Rmax ≤ ∥A1

t∥op∥Θ̃1∥∗ ≤
3(r− 1)ε∥At∥op− 1

4Rmax ≤ 3(r− 1)ε− 1
4Rmax ≤ − 1

8Rmax. Therefore, Reg(Θ, n) ≥ 1
8Rmax ·T (H). The claim follows

by taking expectation over both sides with respect to PΘ.
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