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Abstract

Diffusion models have emerged as a powerful
framework for generative modeling, with guid-
ance techniques playing a crucial role in enhanc-
ing sample quality. Despite their empirical suc-
cess, a comprehensive theoretical understanding
of the guidance effect remains limited. Exist-
ing studies only focus on case studies, where
the distribution conditioned on each class is ei-
ther isotropic Gaussian or supported on a one-
dimensional interval with some extra conditions.
How to analyze the guidance effect beyond these
case studies remains an open question. Towards
closing this gap, we make an attempt to analyze
diffusion guidance under general data distribu-
tions. Rather than demonstrating uniform sam-
ple quality improvement, which does not hold in
some distributions, we prove that guidance can
improve the whole sample quality, in the sense
that the ratio of bad samples (measured by the
classifier probability) decreases in the presence
of guidance. This aligns with the motivation of
introducing guidance.

1. Introduction
Score-based diffusion models have recently emerged as an
expressive and flexible class of generative models, demon-
strating competitive performance on image and audio syn-
thesis tasks (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020; Song et al., 2021b;a; Croitoru et al.,
2023; Ramesh et al., 2022; Rombach et al., 2022; Saharia
et al., 2022). These models operate through a forward pro-
cess, which progressively transforms data from the target
distribution into Gaussian noise, and a reverse process that
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generates samples. The reverse process typically involves
approximating the score function—defined as the gradi-
ent of the log-likelihood of noisy distributions—at various
scales by training a neural network (Hyvärinen, 2005; Ho
et al., 2020; Hyvärinen, 2007; Vincent, 2011; Song & Er-
mon, 2019; Pang et al., 2020), followed by solving a reverse
stochastic differential equation (SDE) associated with the
forward process. Recent studies have rigorously established
the convergence of diffusion models, demonstrating that the
generated sample distribution approximates the target dis-
tribution (Lee et al., 2022; 2023; Chen et al., 2022; Benton
et al., 2023; Chen et al., 2023; Li et al., 2024b; Gupta et al.,
2024; Chen et al., 2024; Li et al., 2024a; Li & Yan, 2024;
Li & Jiao, 2024; Li & Cai, 2024; Huang et al., 2024; Cai &
Li, 2025; Li et al., 2025a).

As diffusion models become a dominant paradigm for gener-
ative modeling in domains such as image, video, and audio,
the need for principled methods to modulate their output has
grown significantly. For instance, when the data comprises
multiple classes, one may seek to generate samples specific
to a desired class. In practice, the standard approach is to
use diffusion guidance (Dhariwal & Nichol, 2021; Ho &
Salimans, 2021), a technique that enhances sample quality
by incorporating an auxiliary conditional score function.
This method combines the model’s score estimate with the
gradient of the log-probability of samples conditioned on
the desired class through a weighted sum, enabling the gen-
eration of outputs with high perceptual quality when an
appropriate guidance weight is applied. Reference (Karras
et al., 2024) proposed to use a bad version of the model for
guiding diffusion models.

1.1. Motivation

Despite the empirical success and widespread adoption of
guidance methods, their theoretical foundations remain un-
explored. A key question persists: why does guidance im-
prove the quality of samples generated by diffusion mod-
els? Existing literature offers partial insights through case
studies, analyzing guidance dynamics in limited scenar-
ios such as mixtures of compactly supported distributions,
isotropic Gaussian distributions, or linear guidance term
(Chidambaram et al., 2024; Wu et al., 2024; Bradley &
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Nakkiran, 2024; Li et al., 2025b). However, the effect of
guidance across general data distributions remains unknown,
and we discover that the uniform improvement does not
hold even for Gaussian mixture distributions (see Figure 1),
which highlights a significant gap in our understanding.

1.2. Our Contributions

Motivated by the above discoveries, this paper investigates
the improvement on the average of the reciprocal of clas-
sifier probabilities under general data distributions. We
demonstrate that guidance preferentially enhances the gen-
eration of samples associated with higher classifier probabil-
ities, which aligns with the primary motivation for adding
guidance. Specifically, we prove that the expectation of
the reciprocal of classifier probabilities decreases with guid-
ance. This metric bears resemblance to the commonly used
Inception Score (IS), a standard measure of sample quality
(Salimans et al., 2016), which also considers the expecta-
tion of the (logarithmic) function of classifier probabilities.
Furthermore, we extend our analysis to practical implemen-
tations, with discrete-errors and score estimation errors. We
prove that the discrete-time processes approximate their
continuous-time counterparts, ensuring the applicability of
our theoretical results in practical settings.

Comparison with prior works when restricted to specific
distributions: Existing works focus mainly on specific
classes of distributions like GMMs, while our work pro-
vides a more general theoretical analysis. Here we compare
our findings with prior works when restricted to specific
distributions. In Wu et al. (2024), the authors demonstrate
that pc|X0

(1|Y w
1 ) ≥ pc|X0

(1|Y 0
1 ) holds under specific con-

ditions, while we show that this inequality does not always
hold. In addition, Chidambaram et al. (2024) argues that
guidance can degrade the performance of diffusion models,
as it may introduce mean overshoot and variance shrinkage.
In contrast, our result shows that guidance can improve sam-
ple quality by generating more samples of high quality. Fur-
thermore, Bradley & Nakkiran (2024) shows that classifier
guidance can not generate samples from p(x|c)γp(x)1−γ

for GMMs and establishes its connection to an alternative
approach, i.e., the single-step predictor-corrector method,
whose effectiveness in this specific setting remains unclear.
In contrast, we directly analyze and demonstrate the effec-
tiveness of CFG.

2. Background
In this section, we review basics about diffusion models,
guidance, and their continuous limit. Throughout this paper,
we shall use n = 1, · · · , N and 0 ≤ t ≤ 1 to denote the
discrete and continuous time steps, respectively.

2.1. Diffusion Models

Diffusion models are based on a forward process that pro-
gressively transforms data from a target distribution into
a sequence of increasingly noisy representations. Starting
from X0 ∈ Rd drawn from the target distribution pdata, the
forward process evolves as follows:

X0 ∼ pdata, (1a)

Xn =
√
1− βnXn−1 +

√
βnZn n = 1, · · · , N, (1b)

where 0 < βn < 1 is the step-size, {Zn}1≤n≤N
i.i.d.∼

N (0, Id) is a sequence of independent Gaussian noise vec-
tors. This process gradually converts the original distribu-
tion into standard Gaussian noise as n increases.

An essential component of score-based diffusion models
is the score function, defined as the gradient of the log-
probability of the intermediate distributions in the forward
process:

s⋆n(x) := ∇ log pXn(x), 1 ≤ n ≤ N.

Assuming access to good approximations of the score func-
tions, denoted sn(x) ≈ s⋆n(x), one can utilize them to re-
verse the forward process and generate samples resembling
the target distribution. The reverse process is governed by:

YN ∼ N (0, Id), (2a)

Yn−1 =
1√

1− βn

(
Yn + βnsn(Yn)

)
+

√
βnZn, (2b)

for n = N, · · · , 2, where Zn
i.i.d.∼ N (0, Id) denotes another

sequence of independent Gaussian noise vectors. This re-
verse process has been shown to gradually remove noise
and guide the system back toward the target distribution, in
the sense that the generated Yn has distribution close to that
of Xn in (1).

2.2. Guidance

Conditional diffusion models are designed to sample from
the conditional distributions p(·|c), where c represents a
specific class label. This can be achieved by generalizing
the unconditional diffusion model defined in (2), replacing
sn(Yn) with sn(Yn|c), as shown below:

YN ∼ N (0, Id), (3a)

Yn−1 =
1√

1− βn

(
Yn + βnsn(Yn | c)

)
+

√
βnZn, (3b)

for n = N, · · · , 2, where sn(x|c) are good estimates of the
gradient of the log-density function pXn | c, given the con-
dition c. That is, sn(x|c) ≈ s⋆n(x|c) = ∇ log pXn | c(x | c).
The noise terms Zn

i.i.d.∼ N (0, Id) represent a sequence of
independent Gaussian noise vectors.
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To further enhance the quality of conditional sampling, re-
searchers introduced guidance techniques. These methods
aim to increase the posterior probability pc |X0

(c |Y0) by
modifying the reverse process as follows:

Y w
n−1 =

1√
1− βn

(
Y w
n + βn(sn(Y

w
n | c)

+ w∇ log pc |Xn
(c |Y w

n ))
)
+
√
βnZn, (4)

where the guidance scale w controls the strength of the
modification. Furthermore, reverse process (4) can be ap-
proximated as

Y w
n−1 =

1√
1− βn

(
Y w
n + βn((1 + w)sn(Y

w
n | c)

− wsn(Y
w
n )

)
+
√
βnZn. (5)

This approximation is derived from the observation that
∇ log pc |Xn

(c |x)) = s⋆n(x | c)− s⋆n(x), which is referred
to as classifier free guidance (Ho & Salimans, 2021).

2.3. Continuous Time Limit

The discrete-time diffusion process described in Section
2.1 exhibits a natural correspondence to its continuous-time
counterpart. Specifically, the forward process corresponds
to the following stochastic differential equation (SDE):

dXt = − 1

2(1− t)
Xtdt+

1√
1− t

dBt, (6a)

with X0 ∼ pdata, for 0 ≤ t ≤ 1− δ,

where Bt denotes the standard Brownian motion, and δ > 0
can be arbitrarily small. It transforms the data distribu-
tion into a standard Gaussian distribution as t → 1. Simi-
larly, the reverse process in (3) corresponds to the following
continuous-time SDE:

dYt =
(1
2
Yt +∇ log pX1−t | c(Yt | c)

)dt
t

+
1√
t
dBt, for δ ≤ t ≤ 1.

This reverse SDE effectively transforms the noise dis-
tribution back toward the target distribution condi-
tioned on c, guided by the conditional score function
∇ log pX1−t | c(Yt | c). If the initialization Yδ ∼ pX1−δ | c, it
is well-known that Yt has the same distribution with the re-
verse process of Xt, which is stated in the following lemma:

Lemma 2.1. It can be shown that for 0 ≤ τ ≤ t ≤ 1− δ,

Xt |Xτ ∼ N
(√

1− t

1− τ
Xτ ,

t− τ

1− τ
I

)
, (7)

and if Yδ ∼ pX1−δ | c, then

{Yt}
d
= {X1−t}, for δ ≤ t ≤ 1. (8)

The above result can be found in Song et al. (2021b). When
extending this framework to conditional sampling with guid-
ance in (5), the reverse SDE becomes

dY w
t =

(1
2
Y w
t + (1 + w)∇ log pX1−t | c(Y

w
t | c)

− w∇ log pX1−t
(Y w

t )
)dt
t
+

1√
t
dBt. (9)

The continuous-time framework provides a powerful per-
spective for understanding and analyzing score-based diffu-
sion models.

3. Main Results
In this section, we shall present our main theorem and its
proof. For the reverse process with guidance (9), we prove
that after introducing a non-zero guidance into the diffusion
process, the expectation of a specific decreasing function of
the classifier probability will decrease as t increases. This
is formally stated in the following theorem.

Theorem 3.1. Let

ϕt(y) := pc |X1−t
(c | y)−1 (10)

which is a decreasing map of pc |X1−t
(c | y). It can be

shown that for any δ < t < 1,

ϕt(Y
w
t )− E

[
ϕt+dt(Y

w
t+dt) |Y w

t

]
=

w

t
pc |X1−t

(c |Y w
t )−1

·
∥∥∥∇ log pX1−t | c(Y

w
t | c)−∇ log pX1−t

(Y w
t )

∥∥∥2
2
dt, (11)

where Y w
t is defined in (9).

The above result reveals that the average reciprocal of clas-
sifier probability pc |X1−t

(c | y)−1 decreases when we add
non-zero guidance. When compared with the case without
guidance, that is w = 0, the total expected improvement
over the diffusion process is given by:∫

w

t
pc |X1−t

(c |Y w
t )−1

·
∥∥∥∇ log pX1−t | c(Y

w
t | c)−∇ log pX1−t

(Y w
t )

∥∥∥2
2
dt. (12)

This result reflects an improvement in sample quality, as
samples with higher classifier probabilities are favored.

The choice of pc |X1−t
(c | y)−1 in our analysis is primar-

ily for technical considerations. It rewards more on the
decrease of bad samples with small pc |X1−t

(c | y), which
means it places greater emphasis on reducing the probabil-
ity of generating low-quality or misclassified samples. This
aligns with the initial motivation of introducing guidance.
In practice, Inception Score (IS) is commonly employed
to measure sample quality, which is related to the average
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logarithm of the classifier probability E[log pc |X1−t
(c | y)].

This is conceptually aligned with the metric in our analysis,
with the difference being that IS adopts log pc |X1−t

(c | y) as
the weight, while we use pc |X1−t

(c | y)−1, but both aim to
increase the ratio of high-quality samples (measured by the
classifier probability). In addition, to address potential con-
cerns, we note that although some practical limitations of IS
have been identified (Barratt & Sharma, 2018), it remains a
commonly used metric for evaluating sample quality in the
study of diffusion guidance (Dhariwal & Nichol, 2021; Ho
& Salimans, 2021). Moreover, in our theoretical analysis,
we use the true conditional probability, which addresses the
estimation issues discussed in Barratt & Sharma (2018).

Theorem 3.1 states that guidance improves the averaged re-
ciprocal of the classifier probability rather than the classifier
probability of each individual sample. This suggests that
while guidance improves overall sample quality, it may lead
to a decline in quality for a small subset of samples. This
insight encourages the development of adaptive guidance
methods that address this issue and achieve more uniform
performance gains, which is a potential practical application
of our theory.

Our main result is established through the following key
observation, whose proof can be found in Section 4.1.

Lemma 3.2. For any ε > 0 and 0 ≤ τ ≤ t ≤ 1 − ε, we
have

pc |Xt
(c |x)−1 = Exτ∼Xτ

[
pc |Xτ

(c |xτ )
−1 |Xt = x

]
,

(13a)

or equivalently, for any ε ≤ τ ≤ t ≤ 1,

pc |X1−τ
(c | y)−1 = Eyt∼Yt

[
pc |X1−t

(c | yt)−1 |Yτ = y
]
,

(13b)

where, Xt and Yt are defined in (6).

With Lemma 3.2 in hand, we are ready to prove our main the-
orem. Before diving into the proof details, we would like to
first explain the main analysis idea: First, this result comes
from the key observation that the function of reverse process,
pc|Xt

(c|Xt)
−1, forms a martingale, as stated in Lemma 3.2,

which is established through a careful decomposition of
pc|Xt

and pXτ |Xt
. Next, the guidance term st(x|c)− st(x)

in classifier-free guidance (CFG) aligns with the direction of
−∇pc|Xt

(c|x)−1 = pc|Xt
(c|x)−1[st(x|c) − st(x)], which

makes us expect that adding the guidance at time t can
decrease Exτ∼Xτ

[
pc|Xτ

(c|xτ )
−1|Xt = x

]
for all τ ≤ t.

Finally, to achieve the desired result, particular care must be
taken in handling first- and second-order differential terms
with respect to t for the process pc|X1−t

(c|Y w
t )−1 due to

its randomness nature, which is completed in the following
based on the technique of Ito’s formula.

Proof of Theorem 3.1. The relation (13) in the above
lemma gives us

0=
1

δ

{
E
[
pc |X1−t−δ

(c |Yt+δ)
−1

− pc |X1−t
(c |Yt)

−1 |Yt = yt
]}

=
∂pc |X1−t

(c | y)−1

∂t
| y=yt

+
1

2t
Tr
(
∇2pc |X1−t

(c | yt)−1
)

+∇pc |X1−t
(c | yt)−1

((1
2
yt +∇ log pX1−t | c(yt | c)

)1
t

)
+O(δ), (14)

where the second relation is established in Section 4.3. Here,
we let δ > 0 be some small quantity, which depends only
on yt, t and the property of X0. Similarly, we have

1

δ

{
E
[
pc |X1−t−δ

(c |Y w
t+δ)

−1

− pc |X1−t
(c |Y w

t )−1 |Y w
t = yt

]}
=

∂pc |X1−t
(c | y)−1

∂t
| y=yt

+
1

2t
Tr
(
∇2pc |X1−t

(c | yt)−1
)

+∇pc |X1−t
(c | yt)−1

((1
2
yt + (1 + w)∇ log pX1−t | c(yt | c)

− w∇ log pX1−t
(yt)

)1
t

)
+O(δ). (15)

Comparing the above two relations leads to

E
[
ϕt+δ(Y

w
t+δ) |Y w

t

]
− ϕt(Y

w
t )

= δ
w

t

(
∇ log pX1−t | c(Y

w
t | c)−∇ log pX1−τ

(Y w
t )

)
· ∇pc |X1−t

(c |Y w
t )−1 +O(δ2)

= −δ
w

t
pc |X1−t

(c |Y w
t )−1

∥∥∥∇ log pX1−t | c(Y
w
t | c)

−∇ log pX1−t
(Y w

t )
∥∥∥2
2
+O(δ2), (16)

where the second relation holds since

∇pc |X1−t
(c | y)−1 = −pc |X1−t

(c | y)−1

·
(
∇ log pX1−t | c(y | c)−∇ log pX1−t

(y)
)
. (17)

Then we can conclude the proof here.

3.1. Numerical Validation

In this section, we present experimental results on the
Gaussian Mixture Model (GMM) and ImageNet dataset to
demonstrate that guidance does not uniformly enhance the
quality of all samples. Instead, it improves overall sample
quality by reducing the average reciprocal of the classifier
probability. This observation empirically validate our theo-
retical findings.
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Figure 1. left: Ratio of samples with improved classifier probabilities for different guidance scales w; right: Expectation of
−pc |X0

(1 |Y w
0 )−1 for varying w.
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Figure 2. Experimental results on ImageNet dataset. left: Ratio of samples with improved classifier probabilities for different guidance
scales w; right: Expectation of −pc |X0

(1 |Y w
1 )−1 for varying w.

Gaussian Mixture Model: Let us consider a distribution
with two classes c = 0, 1, each with equal prior probability
pc(0) = pc(1) = 0.5, in a one-dimensional data space
(d = 1). The data distribution is defined as follows:

X0 | c = 0 ∼ N (0, 1)

X0 | c = 1 ∼ 1

2
N (1, 1) +

1

2
N (−1, 1).

According to the DDPM framework with guidance (5), the
reverse process adopts the following update rule. Starting
from Y w

N ∼ N (0, 1), the process evolves for n = N, · · · , 2:

Y w
n−1=

1
√
αn

(
Y w
n + (1− αn)

[
− w∇ log pX1−αn

(Y w
n )

+ (1 + w)∇ log pX1−αn | c(Y
w
n | c)

])
+
√
1− αnZn,

(19)

where Zn
i.i.d.∼ N (0, 1) is a sequence of independent Gaus-

sian random variables.

Here, we focus on the conditional class c = 1. The score
functions ∇ log pX1−αn | c(x | 1), ∇ log pX1−αn

(x), and the
classifier probability pc |X1−αn

(1 |x) are provided in Ap-
pendix B (cf. (44), (45), and (46)). To empirically validate
our theoretical findings, we simulate the DDPM framework
under different guidance scales w. Specifically, we fix N =
4000, vary w from 0.01 to 10, and perform 104 trials for
each w. We compute Y w

1 by implementing the reverse pro-
cess in (19), and its counterpart Y 0

1 without guidance. For
each trial, we evaluate classifier probability pc |X0

(1 |Y w
1 )

and pc |X0
(1 |Y 0

1 ), and compute the empirical probability
of P (pc |X0

(1 |Y w
1 ) ≥ pc |X0

(1 |Y 0
1 )). In addition, we also

calculate the average of −pc |X0
(1 |Y w

1 )−1 for various w.
The results are shown in Figure 1.

ImageNet dataset: We conduct a numerical experi-
ment on the ImageNet dataset. Specifically, we gener-
ate samples using a pre-trained diffusion model (Rom-
bach et al., 2021) with varying values of the guidance
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level w, and evaluate the classifier probabilities using the
Inception v3 classifier (Szegedy et al., 2016). We com-
pute two statistics: P (pc |X0

(1 |Y w
1 ) ≥ pc |X0

(1 |Y 0
1 )) and

−E[pc |X0
(1 |Y w

1 )−1], averaged over 20000 random trials
— 20 trials for each of the 1000 ImageNet categories. The
experimental results are presented in Figure 2.

It is observed that the empirical probability
P (pc |X0

(1 |Y w
1 ) ≥ pc |X0

(1 |Y 0
1 )) is less than 1 for

any w < 10, which indicates the guidance does not achieve
uniform improvement in classifier probabilities. However,
the average of −pc |X0

(1 |Y w
1 )−1 increases with w, which

explains why guidance effectively enhances sample quality,
as predicted by Theorem 3.1. Moreover, we remark that the
performance of diffusion models is commonly evaluated by
two metrics in practice: diversity and sample quality. This
study primarily focuses on the sample quality measured
in a similar way as the Inception Score, which increases
with w. However, prior work Ho & Salimans (2021) has
demonstrated that large values of w can significantly reduce
sample diversity, leading to unsatisfactory performance in
real-world applications.

3.2. Discretization and Robustness Analysis

Consider that practical algorithms operate in discrete time
and are subject to score estimation errors, we provide a
supplementary analysis of the discretization error and es-
timation error for completeness. Specifically, we aim to
show the discrete-time process in (5) closely approximates
the continuous-time process in (9), thereby validating the
observation from Theorem 3.1 in practical settings. Since
our primary focus is on the efficiency of diffusion guidance
rather than establishing a convergence theory, the bounds
and conditions derived here may not be tight.

In the following, we shall use Y w,cont
t to denote the con-

tinuous process of (9) in order to distinguish with (5), and
let

αn :=

n∏
k=1

αk, with αk := 1− βk (20)

satisfying

αN =
1

N c0
, (21a)

αn−1 = αn +
c1αn(1− αn) logN

N
, (21b)

where c0 and c1 are constants.

Before presenting the analysis result, we make the following
assumptions. The first assumption states that faithful esti-
mates of the score functions s⋆n(·) and s⋆n(·|c) are available
for all intermediate steps n, as follows:
Assumption 3.3. We assume access to estimates
sn(Y

w,cont
αn

) and sn(Y
w,cont
αn

| c) for each s⋆n(Y
w,cont
αn

) and

s⋆n(Y
w,cont
αn

| c) with the averaged ℓ2 score estimation error
as

1

N

N∑
n=1

E
[∥∥sn(Y w,cont

αn
| c)

−∇ log pX1−αn | c(Y
w,cont
αn

| c)
∥∥2
2

]
≤ ε2score; (22a)

1

N

N∑
n=1

E
[∥∥sn(Y w,cont

αn
)

−∇ log pX1−αn
(Y w,cont

αn
)
∥∥2
2

]
≤ ε2score. (22b)

We further assume that the sample Y w,cont
t , the score func-

tion ∇ log pX1−t(Y
w,cont
t ), and the conditional score func-

tion ∇ log pX1−t | c(Y
w,cont
t | c) have bounded second-order

moment, which is stated in the following lemma.

Assumption 3.4. There exists some quantity R, such that
the sum of the second-order moment of the following three
random vectors are bounded by R2, that is,

E
[∥∥Y w,cont

t

∥∥2
2
+

∥∥∇ log pX1−t
(Y w,cont

t )
∥∥2
2

+
∥∥∇ log pX1−t | c(Y

w,cont
t | c)

∥∥2
2

]
≤ R2. (23)

In addition, we consider the case with smooth score func-
tions in this paper, which is stated below.

Assumption 3.5. Assume that ∇ log pXt(x) are Lipschitz
for all 0 < t < 1 such that∥∥∇ log pXt(x1)−∇ log pXt(x2)

∥∥
2
≤ L∥x1−x2∥2. (24)

With the above assumptions, We could establish that the
discrete-time process converges to the continuous-time pro-
cess measured by the KL divergence. The proof is post-
poned to Appendix A.1.

Theorem 3.6. Suppose that Assumptions 3.3, 3.4, and 3.5
hold true. Then the sampling process (5) with the learning
rate schedule (21) satisfies

KL(Y w,cont
α1

, Y w
1 ) ≤ C

( (1 + w2)L2d log3 N

N

+
(1 + w4)L2R2 log4 N

N2
+ (1 + w2)ε2score logN

)
(25)

for some constant C > 0 large enough, where Y w,cont
α1

and
Y w
1 are defined in (9) and (5), respectively.

This theorem proves that, after a sufficiently large number
of iterations N , the sample distribution of the discrete-time
process Y w

n converges to that of the continuous-time process
Y w,cont
α1

. The latter corresponds to data contaminated by
noise with variance 1− α1. According to Theorem 3.6, the
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sampling process (5) with the learning rate schedule (21)
satisfies

E[p(c|Y w
1 )−1] ≤ E[p(c|Y w,cont

α1
)−1]

+ E[(p(c|Y w
1 )−1 − 1)1(p(c|Y w

1 )−1 > τ)],

where τ is defined as the largest value satisfying

TV(Y w,cont
α1

, Y w
1 ) ≤ P(p(c|Y w

1 )−1 > τ).

This further implies the following relative influence from
discretization, the ratio between the improvements of Y w

1

and Y w,cont
α1

over Xα1
= Y 0,cont

α1
, obeys

E[p(c|Y 0,cont
α1

)−1]− E[p(c|Y w
1 )−1]

E[p(c|Y 0,cont
α1

)−1]− E[p(c|Y w,cont
α1

)−1]

≥ 1− E[(p(c|Y w
1 )−1 − 1)1(p(c|Y w

1 )−1 > τ)]

E[p(c|Y 0,cont
α1

)−1]− E[p(c|Y w,cont
α1

)−1]
. (26)

Appendix A.2 presents numerical results for the relative
error E[(p(c|Y w

1 )−1−1)1(p(c|Y w
1 )−1>τ)]

E[p(c|Y 0,cont
α1

)−1]−E[p(c|Y w,cont
α1

)−1]
evaluated under vary-

ing total variation distance thresholds τ on the ImageNet
dataset.

4. Analysis
In this section, we shall provide details in the proof of main
results.

4.1. Proof of Lemma 3.2

According to the equivalence between Xt and Yt (see (8)
in Lemma 2.1), it is sufficient to focus on the first relation.
Recalling Lemma 2.1 again tells us

Exτ∼Xτ

[
pc |Xτ

(c |xτ )
−1 |Xt = x

]
=

∫
xτ

pXτ |Xt,c(xτ |x, c)pc |Xτ
(c |xτ )

−1dxτ

=

∫
xτ

pXτ | c(xτ | c)(2πσ2)−d/2 exp(−∥x−αxτ∥2
2

2σ2 )

pXt | c(x | c)

· pXτ (xτ )

pXτ | c(xτ | c)pc(c)
dxτ

=

∫
xτ

pXτ
(xτ )(2πσ

2)−d/2 exp(−∥x−αxτ∥2
2

2σ2 )dxτ

pXt | c(x | c)pc(c)

=
pXt(x)

pXt | c(x | c)pc(c)
= pc |Xt

(c |x)−1,

where we let α =
√

1−t
1−τ and σ =

√
t−τ
1−τ . Here, the first

line is just the definition of conditional expectation; the
second line comes from the Bayes rule and the relation (7);
and the last line can be derived by applying the Bayes rule
and the relation (7) again.

4.2. Preliminary Analysis of pc |X1−t

We begin by establishing some key properties of pc |X1−t
to

support the proofs of our main results. Let R < ∞ be some
quantity such that

P(∥X0∥2<R) >
1

2
and P(∥X0∥2<R | c) > 1

2
. (27)

Then there exists some quantity Ct,k,R > 0 depending only
on t, k, R, such that the following bounds hold:

∇kpc |X1−t
(c | y)−1≤exp(Ct,k,R(1+∥y∥22)); (28a)

∂kpc |X1−t
(c | y)−1

∂tk
≤exp(Ct,k,R(1+∥y∥22)); (28b)

∇k ∂pc |X1−t
(c | y)−1

∂t
≤exp(Ct,k,R(1+∥y∥22)), (28c)

where ∇kpc |X1−t
(c | y)−1 denotes the k-th order gradient

with respect to y of function pc |X1−t
(c | y)−1.

In the following, we focus primarily on the gradient
∇pc |X1−t

(c | y)−1, as the other bounds can be derived us-
ing similar techniques. Notice that ∇pc |X1−t

(c | y)−1 satis-
fies the following decomposition:

∇pc |X1−t
(c | y)−1

= −pc |X1−t
(c | y)−2∇pc |X1−t

(c | y)
= −pc |X1−t

(c | y)−1∇ log pc |X1−t
(c | y)

= pc |X1−t
(c | y)−1∇

[
log pX1−t

(y)− log pX1−t | c(y | c)
]
.

(29)

In addition, it can be shown later that

pc |X1−t
(c | y)−1 ≤ 2pc(c)

−1 exp
( (∥y∥2 +√

tR)2

2(1− t)

)
,

(30a)

and

∥∥∇ log pX1−t
(y)

∥∥
2
≲

∥y∥2 +
√
tR

1− t
+

d√
1− t

, (30b)

∥∥∇ log pX1−t | c(y)
∥∥
2
≲

∥y∥2 +
√
tR

1− t
+

d√
1− t

, (30c)

where f ≲ g implies that there exists a universal constant
C > 0 such that f ≤ Cg. By inserting (30a) and (30b)
into (29), the gradient ∇pc |X1−t

(c | y)−1 can be controlled
directly.

Proof of Claim (30a) - (30c). We begin with establishing
(30a). First, according to Lemma 2.1, random variable
X1−t|X0 follows Gaussian distribution N (

√
tX0, (1−t)I).

7
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Thus we have

pX1−t(y) =

∫
x0

pX0(x0)pX1−t|X0
(y|x0)dx0

=

∫
x0

pX0
(x0)(2π(1− t))−d/2 exp

(
−∥y −

√
tx0∥22

2(1− t)

)
dx0

≤ (2π(1− t))−d/2

∫
x0

pX0
(x0)dx0

= (2π(1− t))−d/2. (31)

Moreover, recalling the definition of R in (27), we have

pX1−t | c(y | c) ≥ pX1−t,∥X0∥2<R | c(y | c)
= P(∥X0∥2 < R | c)pX1−t | c,∥X0∥2<R(y | c, ∥X0∥2 < R)

≥ 1

2
inf

x0:∥x0∥2<R
(2π(1− t))−d/2 exp

(
−∥y −

√
tx0∥22

2(1− t)

)
(32)

≥ 1

2
(2π(1− t))−d/2 exp

(
− (∥y∥2 +

√
tR)2

2(1− t)

)
, (33)

where pX1−t,∥X0∥2<R | c(y | c) denotes the joint probability
density of X1−t and the binary random variable indicating
∥X0∥2 < R or not, and pX1−t | c,∥X0∥2<R(y | c) denotes the
probability density of X1−t conditioned on the class label c
and ∥X0∥2 < R. Combining (31) and (33), we have

pc |X1−t
(c | y)−1 =

pX1−t(y)

pc(c)pX1−t | c(y | c)

≤ 2pc(c)
−1 exp

( (∥y∥2 +√
tR)2

2(1− t)

)
.

Next, we shall prove (30b). For t < 1, recalling that the
random variable X1−t|X0 follows Gaussian distribution
N (

√
tX0, (1 − t)I), the score function has the following

expression

∇ log pX1−t
(y)

= −pX1−t
(y)−1

∫
x0

pX0
(x0)(2π(1− t))−d/2

· exp
(
− ∥y −

√
tx0∥22

2(1− t)

)y −√
tx0

1− t
dx0

= −
∫
x0

pX0 |X1−t
(x0 | y)

y −
√
tx0

1− t
dx0. (34)

Moreover, noticing that for any D > 0,∥∥∇ log pX1−t
(y)

∥∥
2

=

∫
x0:

∥∥ y−
√

tx0√
1−t

∥∥
2
≤D

pX0 |X1−t
(x0 | y)

∥∥∥∥y −√
tx0

1− t

∥∥∥∥
2

dx0

+
∥∥∥pX1−t(y)

−1

∫
x0:

∥∥ y−
√

tx0√
1−t

∥∥
2
>D

pX0(x0)(2π(1− t))−d/2

· exp
(
− ∥y −

√
tx0∥22

2(1− t)

)y −√
tx0

1− t
dx0

∥∥∥
2
.

For the first term, we have∫
∥y−

√
tx0∥√

1−t
≤D

pX0 |X1−t
(x0 | y)

∥y −
√
tx0∥

1− t
dx0 ≤ D√

1− t
.

For the second term, noticing that

pX1−t
(y) ≥ 1

2
(2π(1− t))−d/2 exp

(
− (∥y∥2 +

√
tR)2

2(1− t)

)
,

we have∥∥∥pX1−t(y)
−1

∫
x0:

∥∥ y−
√

tx0√
1−t

∥∥
2
>D

pX0(x0)(2π(1− t))−
d
2

· exp
(
− ∥y −

√
tx0∥22

2(1− t)

)y −√
tx0

1− t
dx0

∥∥∥
2

≤ 2 exp
( (∥y∥2 +√

tR)2

2(1− t)

)∫
x0:

∥∥ y−
√

tx0√
1−t

∥∥
2
>D

pX0(x0)

· exp
(
−∥y −

√
tx0∥22

2(1− t)

)∥∥∥∥y −√
tx0

1− t

∥∥∥∥
2

dx0

≲
2√
1− t

exp

(
(∥y∥2 +

√
tR)2

2(1− t)
− cD2 + cd

)
,

where c is a universal constant.

By choosing

D = C

(
∥y∥2 +

√
tR√

1− t
+ d

)
for some constant C > 0 large enough, we have

∥∥∇ log pX1−t
(y)

∥∥
2
≤ 2D√

1− t
≲

∥y∥2 +
√
tR

1− t
+

d√
1− t

.

Similarly, we could derive that

∥∥∇ log pX1−t | c(y | c)
∥∥
2
≲

∥y∥2 +
√
tR

1− t
+

d√
1− t

.

4.3. Proof of Claim (14)

We provide a detailed proof of Claim (14) by analyzing the
decomposition of the expectation. We start by decomposing
the expectation as follows:

E
[
pc |X1−t−δ

(c |Yt+δ)
−1 − pc |X1−t

(c |Yt)
−1 |Yt = yt

]
= E

[
pc |X1−t

(c |Yt+δ)
−1−pc |X1−t

(c |Yt)
−1 |Yt = yt

]
+ E

[
pc |X1−t−δ

(c |Yt+δ)
−1−pc |X1−t

(c |Yt+δ)
−1 |Yt=yt

]
In the following, we shall analyze these two terms sepa-
rately.

8
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Analysis of the first term. Applying Ito’s formula gives
us

pc |X1−t
(c |Yt+δ)

−1 − pc |X1−t
(c |Yt)

−1

=

∫ t+δ

t

{
1

2s
Tr
(
∇2pc |X1−t

(c |Ys)
−1

)
ds

+∇pc |X1−t
(c |Ys)

−1 ·
((1

2
Ys

+∇ log pX1−s | c(Ys | c)
)ds
s

+
1√
s
dBs

)}
. (35)

We further decompose the first term by using Ito’s formula
again as

Tr
(
∇2pc |X1−t

(c |Ys)
−1

)
− Tr

(
∇2pc |X1−t

(c |Yt)
−1

)
=

∫ s

t

{
1

2r
Tr
(
∇2Tr

(
∇2pc |X1−t

(c |Yr)
−1

))
dr

+∇Tr
(
∇2pc |X1−t

(c |Yr)
−1

)
·
((1

2
Yr

+∇ log pX1−r | c(Yr | c)
)dr
r

+
1√
r
dBr

)}
. (36)

According to bound (28a), we have

E
[
Tr
(
∇2Tr

(
∇2pc |X1−t

(c |Yr)
−1

))
|Yt = yt

]
≤ E

[
exp(Cr,4,R + Cr,4,R∥Yr∥22) |Yt = yt

]
< ∞ (37)

and

E
[
∇Tr

(
∇2pc |X1−t

(c |Yr)
−1

)
·
((1

2
Yr

+∇ log pX1−r | c(Yr | c)
)
|Yt = yt

]
< ∞. (38)

Inserting (37) and (38) into (36), we have for t ≤ s ≤ t+ δ,

Tr
(
∇2pc |X1−t

(c |Ys)
−1

)
= Tr

(
∇2pc |X1−t

(c |Yt)
−1

)
+O(δ). (39)

Similarly, we could get that for t ≤ s ≤ t+ δ,

E
[
∇pc |X1−t

(c |Ys)
−1 ·

((1
2
Ys

+∇ log pX1−s | c(Ys | c)
)
|Yt = yt

]
= ∇pc |X1−t

(c | yt)−1 ·
((1

2
yt

+∇ log pX1−t | c(yt | c)
)
+O(δ). (40)

Inserting (39) and (40) into (35), we have

1

δ
E
[
pc |X1−t

(c |Yt+δ)
−1 − pc |X1−t

(c |Yt)
−1|Yt = yt

]
=

1

2t
Tr
(
∇2pc |X1−t

(c | yt)−1
)
+∇pc |X1−t

(c | yt)−1

·
((1

2
yt +∇ log pX1−t | c(yt | c)

)1
t
+O(δ).

Analysis of the second term. The second term can be
expressed as:

E
[
pc |X1−t−δ

(c |Yt+δ)
−1 − pc |X1−t

(c |Yt+δ)
−1 |Yt = yt

]
= E

[ ∫ t+δ

t

∂

∂s
pc |X1−s

(c |Yt+δ)
−1ds |Yt = yt

]
.

Similar to the analysis of the first term, we notice that

∂

∂s
pc |X1−s

(c | y)−1 − ∂

∂t
pc |X1−t

(c | y)−1

=

∫ s

t

∂2

∂r2
pc |X1−r

(c | y)−1dr,

and according to (28b),

E
[
∂2

∂r2
pc |X1−r

(c |Yt+δ)
−1 |Yt = yt

]
< ∞.

Thus we have
1

δ
E
[
pc |X1−t−δ

(c |Yt+δ)
−1 − pc |X1−t

(c |Yt+δ)
−1 |Yt = yt

]
=

∂

∂t
pc |X1−t

(c | yt)−1 +O(δ).

Combining the above two relations, we could get our desired
result.

5. Discussion
In this paper, we present a theoretical analysis of the impact
of guidance in diffusion models under general data distri-
butions. Specifically, we demonstrate that guidance in the
continuous-time process can enhance the sampling process
by generating more high-quality samples — those associ-
ated with higher classifier probabilities — in the average
sense. Additionally, we prove that the practical discrete-time
process converges to the above analyzed continuous-time
process, as the number of iterations goes to infinity. These
results provide a theoretical foundation for the empirical
success of guidance methods.

In this paper, the convergence analysis in Theorem 3.6 is
included primarily for completeness. The dependencies on
d, L and ε may not be optimal, and the smoothness condi-
tion might not be necessary. Future research could focus on
establishing tighter bounds or analyzing under more general
bounds, to broaden the applicability and improve the conver-
gence rate. In addition, we are interested in extending these
results to the concept of Inception Score (IS), demonstrating
similar findings when the weights used in IS are applied.
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A. Discretization and Robust Analysis
A.1. Proof of Theorem 3.6

Here, we provide a brief sketch for this result. With similar analysis as Chen et al. (2022, Section 5),

KL(Y w,cont
α1

, Y w
1 )

≤
N∑

n=2

E
∫ αn−1

αn

∥∥(1 + w)[sn(Y
w,cont
αn

| c)−∇ log pX1−t | c(Y
w,cont
t | c)]

− w[sn(Y
w,cont
αn

)−∇ log pX1−t
(Y w,cont

t )]
∥∥2
2

dt

t
+ KL(Y w,cont

αN
, Y w

N ). (41)

Then it can be shown that

E
∫ αn−1

αn

∥∥s⋆n(Y w,cont
αn

)−∇ log pX1−t
(Y w,cont

t )
∥∥2
2

dt

t

≤ L2E
∫ αn−1

αn

∥∥Y w,cont
αn

− Y w,cont
t

∥∥2
2

dt

t

≤ L2E
∫ αn−1

αn

∥∥∥∥∫ t

αn

{(Y w,cont
τ

2
+ (1 + w)∇ log pX1−τ | c(Y

w,cont
τ | c)− w∇ log pX1−τ

(Y w,cont
τ )

)dτ
τ

+
dBτ√

τ

}∥∥∥∥2
2

dt

t

≲ L2((1 + w)2R2(1− αn) + d)(1− αn)
2.

Inserting the above relation, Assumption 3.3, and Assumption 3.4 into (41) leads to our desired result.

A.2. Numerical Validation

For different values of TV(Y w,cont
α1

, Y w
1 ), we empirically validate the aforementioned result on the ImageNet dataset.

Specifically, we generate 2× 104 samples Y w
1 under various guidance level w and their counterparts Y w

0 without guidance
by using a pre-trained diffusion model (Rombach et al., 2021), and evaluate the classifier probability p(c|Y w

1 ) and p(c|Y 0
1 )

by using the Inception v3 classifier (Szegedy et al., 2016). Finally, we evaluate the relative error in (26). Here we use
E[p(c|Y 0

1 )
−1]−E[p(c|Y w

1 )−1] as an estimate of E[p(c|Y 0,cont
α1

)−1]−E[p(c|Y w,cont
α1

)−1], and calculate the ratio of empirical
average

E[(p(c|Y w
1 )−1 − 1)1(p(c|Y w

1 )−1 > τ)]

E[p(c|Y 0
1 )

−1]− E[p(c|Y w
1 )−1]

.

The results are presented in the following table for various values of the TV distance and w, which indicate that the relative
error remains small, particularly for practical choices of w ≥ 1.

Table 1. Empirical values of E[(p(c|Y w
1 )−1−1)1(p(c|Y w

1 )−1>τ)]

E[p(c|Y 0
1 )−1]−E[p(c|Y w

1 )−1]
under different w and TV.

TV w = 0.2 0.4 0.6 0.8 1 2 3 4

0.30 0.447 0.196 0.115 0.085 0.029 0.006 0.006 0.002
0.10 0.440 0.194 0.114 0.085 0.029 0.006 0.005 0.002

B. Basis Calculations of GMM
Consider a GMM defined as:

X0 ∼
K∑

k=1

πkN (µk, 1), (42)
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where πk is the mixing coefficient of the k-th component, and µk is its mean. By Lemma 2.1, we have

X1−αn
∼

K∑
k=1

πkN
(√

αnµk, 1
)

pX1−αn
(x) =

K∑
k=1

πk(2π)
−1/2 exp

(
− (x−

√
αnµk)

2

2

)
.

The gradient of the log-density log pX1−αn
(x) can be computed as:

∇ log pX1−αn
(x) =

∇pX1−αn
(x)

pX1−αn
(x)

= −
K∑

k=1

πn
k

(
x−

√
αnµk

)
= −x+

√
αn

K∑
k=1

πn
kµk, (43)

where

πn
k =

πk exp
(
− (x−

√
αnµk)

2

2

)∑K
i=1 πi exp

(
− (x−

√
αnµi)2

2

) .
Using this setup for specific cases (K = 2, 3) leads to

∇ log pX1−αn | c(x | 1) = −x+

√
αn(1− exp(−2

√
αnx))

1 + exp(−2
√
αnx)

; (44)

∇ log pX1−αn
(x) = −x+

√
αn(1− exp(−2

√
αnx))

1 + exp(−2
√
αnx) + 2 exp

(
αn

2 −
√
αnx

) . (45)

Additionally, the classifier probability pc |X1−αn
(1 |x) is given by

pc |X1−αn
(1 |x) =

pX1−αn | c(x | c)p(c)
pX1−αn

(x)
=

1 + exp(−2
√
αnx)

1 + exp(−2
√
αnx) + 2 exp

(
αn

2 −
√
αnx

) . (46)
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