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Abstract

Deep Neural Networks (DNNs) are ubiquitous in today’s computer vision land-
scape, despite involving considerable computational costs. The mainstream ap-
proaches for runtime acceleration consist in pruning connections (unstructured

pruning) or, better, filters (structured pruning), both often requiring data to re-
train the model. In this paper, we present RED, a data-free structured, unified
approach to tackle structured pruning. First, we propose a novel adaptive hashing
of the scalar DNN weight distribution densities to increase the number of identical
neurons represented by their weight vectors. Second, we prune the network by
merging redundant neurons based on their relative similarities, as defined by their
distance. Third, we propose a novel uneven depthwise separation technique to
further prune convolutional layers. We demonstrate through a large variety of
benchmarks that RED largely outperforms other data-free pruning methods, often
reaching performance similar to unconstrained, data-driven methods.

1 Introduction

Modern Deep Neural Networks (DNNs) have become the mainstream approach in machine learning
in general and in computer vision in particular, with CNNs achieving outstanding performance on
various tasks such as object classification (He et al., 2016), detection (He et al., 2017) or segmentation
(Chen et al., 2017). However, DNNs usually reach high requirements in terms of computational
runtime. This prevents most state-of-the-art models to be deployed, most notably on edge devices. To
address this shortcoming, a number of approaches for DNN compression have been proposed over
the past few years. Architecture compression constitutes a convenient and popular way to address this
runtime limitation, involving pruning as well as tensor decomposition techniques (Cheng et al., 2017).
It consists in either removing connections, i.e. an unstructured way or suppressing or reordering
specific channels or filters i.e. a structured fashion. Although the former usually removes more
weights than the latter (Park et al., 2020), unstructured compression has the drawback to produce
sparse weight matrices, which require dedicated hardware or libraries (Han et al., 2016) for real-case
runtime improvements. Furthermore, these methods can also be divided in data-driven vs. data-free

methods. While data-free methods are far more convenient for privacy concerns, as some data may
be confidential (e.g. health data or military), they are still significantly outperformed by data-driven
methods. Hence, despite recent work (Kim et al., 2020; Tanaka et al., 2020), data-free architecture
compression remains a challenging and promising domain with room for improvements. In this
paper, we propose RED , a novel data-free structured compression framework. First, RED leverages
a novel adaptive scalar hashing of the layer-wise weight distributions to introduce redundancies in
DNNs. In particular, we show that this hashing allows to introduce vector redundancies (i.e. neurons
that perform the same operation) as well as tensor redundancies (i.e. low-rank flattened convolution
kernels). These redundancies can respectively be exploited by applying similarity-based neuron
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merging, as well as a novel uneven depthwise separation of convolutional layers. To sum it up, our
contributions are:

• An adaptive scalar weight hashing technique based on local extrema search of the weight
distribution density, that introduces redundancies among neurons without significantly
altering the predictive function.

• A method for exploiting redundancies at the vector level with similarity-based neuron
merging, and at the tensor level, with an uneven depthwise separation of convolutional layers
that factors spatially redundant components.

• We introduce RED, a portable method for data-free structured DNN compression that
significantly outperforms state-of-the-art data-free methods and often rivals existing data-
driven approaches.

2 Related Work

Most architecture compression methods rely on an underlying approximation of the predictive
function to later perform pruning, wether it can is unstructured or structured (as stated in Renda et al.
(2020)), data-driven or data-free, magnitude-based or similarity-based.

Predictive function approximation: Perhaps one of the most studied such approximation is quan-
tization (Nagel et al., 2019; Meller et al., 2019; Zhao et al., 2019). Quantization consists in mapping
DNN weights to a finite, regular grid of values. It generally aims at reducing the inference time by
coding this restricted set of values with fewer bytes (e.g. float16, int8 quantization), although it is
generally non-adaptive to the weight distribution. Hashing constitutes another intuitive approach for
predictive function approximation. Most hashing algorithms are extensions or variants of k-means
(Lloyd, 1982) which requires a prior on the studied distribution to determine a fitting value for the
number of clusters. This step can also be formulated as a learning problem (Wang et al., 2019; Stock
et al., 2020), but requires data as a consequence. In this work we propose a data-free, prior-free and
adaptive hashing of the scalar weight distribution, which introduces redundancies in DNNs.

Structured Pruning: On the one hand, unstructured approaches (Frankle & Carbin, 2018; Lin
et al., 2020b; Park et al., 2020; Lee et al., 2020) consist in removing individual weights: hence,
these methods rely on sparse matrices for implementation, which require dedicated hardware to
fully exploit the reduction at inference time. On the other hand, the so-called structured approaches
(Liebenwein et al., 2020; Li et al., 2017; He et al., 2018; Luo et al., 2017) aim at removing specific
filters, channels or neurons. Although the latter usually results in less impressive raw pruning ratios as
compared to the former, they allow significant runtime reduction without using dedicated hardware.

Data-free Pruning: Most pruning methods can be classified as data-driven as they involve, to
some extent, the use of a training database. Lee et al. (2020) uses the drift of DNN weights from their
initial values during training to select and replace irrelevant weights. The Hrank method (Lin et al.,
2020a) consists in removing low-rank feature maps, based on the observation that the latter usually
contain less relevant information. Lin et al. (2020b) extend the single layer magnitude-based weight
pruning to a simultaneous multi-layer optimization, in order to better preserve the representation
power during training. Other approaches, such as (Liebenwein et al., 2020; Meng et al., 2020), train
an over-parameterized model and apply an absolute magnitude-based pruning scheme which removes
a number of channels or neurons but generally causes accuracy drop. To address this problem, most
of these methods usually fine-tune this pruned model for enhanced performance (Liu et al., 2018;
Gale et al., 2019; Frankle & Carbin, 2018). Nevertheless, there exists a number of so-called data-free

approaches which do not require any data or fine-tuning of the pruned network, however usually
resulting in lower pruning ratios. For instance, Tanaka et al. (2020) is a data-free pruning method
with lower performances but still addresses the layer-collapse issue (where all the weights in a layer
are set to 0) by preserving the total synaptic saliency scores.

Similarity-based Pruning: All the aforementioned methods remove connections during training
via more or less adaptive or learnable thresholds under which DNN weights are pruned. Hence, such
paradigm constitutes an absolute pruning heuristic. However, relative methods based on comparison
between neurons or feature maps have also been proposed in the literature. For instance, Ayinde
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Figure 1: Illustration of the proposed adaptive scalar weight hashing. First (left), we find the estimate
of the density function dl associated to the weights values W l. Second (right), we find the local
extrema (ml

k)k2K�
l

and (M l
k)k2K+

l
of dl. Then we assign the new values W̃ l

2 K+
l

nl⇥nl�1 .

et al. (2019) use a graph-based-group-average technique to define proximity between feature maps in
order to prune filters. Recently, in Kim et al. (2020), similarity-based data-free pruning is applied by
merging neurons. The authors decompose the weight tensor into new weights and a scaling matrix to
fold into the next layer. However, in this approach, merging is performed at the tensor-level, rather
than using a fine-grained pairwise similarity. Srinivas & Babu (2015), conversely, propose to merge
together neurons of each layer based on pairwise vector similarity between them. However, their
approach doesn’t exploit scalar weight approximation, nor does it take into account tensor-level
redundancies, resulting in low pruning ratios.
In this work, we introduce redundancies in DNNs by performing scalar hashing of the layer-wise
weight distributions. In particular, we show that this hashing allows to introduce vector redundancies
(i.e. neurons that perform the same operation) as well as tensor redundancies (i.e. low-rank flattened
convolution kernels). These redundancies can respectively be exploited by applying similarity-based
neuron merging in the same vein as Srinivas & Babu (2015), as well as a novel uneven depthwise
separation of convolutional layers.

3 Introducing Redundancies via Adaptive Weights Hashing

Let’s consider a DNN f with L layers f = fL � · · · � f1. Each layer indexed by l is defined by
parameters W l for a nl-dimensional output. As DNN weights take values in R, the probability for
two values to be equal is almost surely zero: as a consequence, the probability to have redundancies
in DNNs (e.g. two neurons that perform the same operation, i.e. that have the same weight vector) is
also zero, thus limiting the possible simplification of the predictive function f . To deal with this, we
propose to simplify f by first hashing the scalar weight distribution. As illustrated on Figure 1, we
approximate the density function of the weights distribution for each layer fl using Kernel Density
Estimation (KDE):

dl : ! 7!
1

nl ⇥ nl�1�l

X

w2W l

K

✓
! � w

�l

◆
(1)

where K is the density of a Gaussian kernel with bandwidth �l. Then, we estimate the local minima
K�

l = (ml
k)k and maxima K+

l = (M l
k)k of dl by computing its values over a discrete grid with

range [min{w 2 W l
}; max{w 2 W l

}]. Because the KDE provides a continuous density func-
tion, the intermediate value theorem guarantees that |K+

l | + 1 = |K�
l |. We can thus partition R

in |K+
l | intervals with boundaries defined by the local minima and assign the value of the local

maximum to all parameters within the corresponding intervals. Assuming the (ml
k)k and (M l

k)k
sorted, with ml

0 = �1 and ml
|K�

l |�1
= +1, for every weight w in W l there exists k such that

w 2
⇥
ml

k;m
l
k+1

⇥
and w̃ = M l

k. This defines the hashed layer f̃ l with weights W̃ l. Note that
this method is adaptive and has no prior on the weight distribution contrary to k-means.
In practice, we find that DNN weights concentrate around a limited number of local modes: hence, the
proposed adaptive hashing dramatically reduces the number of different values that the weights can
take, and introduces redundancies both at the vector and tensor level. Optionally, to conveniently en-
able further compression, we define (global and per-layer) contrast hyperparameters ⌧ = 1

L

PL
l=1 ⌧

l.
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Figure 2: Neuron merging in the case of a fully-connected layer l with weights W̃ l
i,j . Similar colors

indicate equal weight values, e.g. W̃ l
0,0 = W̃ l

1,0. The pruned network weights W̄ are obtained by
merging the first 2 neurons of layer l and simply summing the corresponding weights in layer l + 1.

These hyperparameters allow to define a distance threshold (relative to each layer’s weight values
range) under which two modes are collapsed to the dominant one, further increasing redundancies.
We show in the experiments that hashing with ⌧ = 0 do not significantly alter the predictive function,
thus setting ⌧ > 0 allows to find suitable trade-off between runtime acceleration and accuracy.

4 Exploiting Redundancies in DNNs

As the hashed weights W̃ l take values in a finite set, redundancies are much more likely to occur
both at the vector and tensor level.

Vector Redundancies: First, let’s consider the case of a two-layers fully-connected neural network
f with an element-wise activation function � and no biases, i.e. f̃ : z 7! W̃ 2�(W̃ 1z) with
W̃ 1

2 K+
1

n1⇥n0 and W̃ 2
2 K+

2
n2⇥n1 the hashed parameters. Let’s also assume that we have

n̄1 < n1 distinct neurons, i.e. n̄1 distinct rows in W̃ 1. Let W̄ 1 be the sub-matrix of W̃ 1 containing
all the distinct rows of W̃ 1 only once and W̄ 2 the matrix such that all columns from W̃2 that were
applied to identical neurons of W̃ 1 are summed. Then, for each output dimension i we have:

⇣
f̃(z)

⌘

i
=

n1X

j

W̃ 2
i,j�

 
n1X

k

W̃ 1
j,kzk

!
=
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j

W̄ 2
i,j�

 
n̄1X

k

W̄ 1
j,kzk

!
=
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f̄(z)

⌘

i
(2)

In other words, we can merge identical neurons (rows of W̃ 1) and sum the corresponding weights
in W̃ 2 without altering the (hashed) layers outputs, as illustrated in Figure 2 on a simple case. This
process can straightforwardly extended to neural networks with L layers by repeating this process
from the first to last layer. Furthermore, it can be adapted to:

• Layers with bias by considering W̃ 0 = (W̃ b̃) and z0 = (zT 1)T

• Convolutional layers, by using a rewriting of the kernel, following Ma & Lu (2017)
• Batch-Normalization layers, by folding them like in Nagel et al. (2019)
• Skip Connections, where each output channel is computed using the corresponding weights

in W̃ l and W̃ l+k. Merge is performed on the two added layers simultaneously by considering
the concatenation

�
W̃ l W̃ l+k

�
.

In the case of depthwise convolutions (Sandler et al., 2018; Howard et al., 2019), each filter is applied
to a distinct input. As a consequence, two filters intrinsically cannot perform identical operations and
thus cannot be merged.
In practice, we find that after hashing, such exact neuron merging already allows to remove significant
number of parameters. However, to obtain larger pruning ratios, this merging can be relaxed: for
a layer l, we sort the set of pairwise distances between neurons or filters (e.g. as defined by the
Euclidean distance between their weight vectors) and merge the ↵l% closest neurons by taking their
average weight values. We thus define (global and layer-wise) hyperparameters ↵ = 1

L

PL
l=1 ↵

l.

Tensor Redundancies: The proposed hashing method also induces tensor-level redundancies in
regular 2D convolutional layers: to handle these redundancies we propose a novel uneven depthwise
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Figure 3: Tensor-level Simplification via of our uneven depthwise separation method for a layer
with 2 input and 2 output channels. Restrictions of filters to each input channel i are flattened and
concatenated along the output channel axis, to form matrices Wi. If these matrices have rank ri we
extract a basis Bj

i (for j in J1; riK) of the rows of each Wi and normalize it so that the last element is
equal to 1. Then we deduce the weights of the pointwise kernels P from the (Bj

i ) and the W̄ .

separation method. Let’s consider a kernel W̄ 2 K+w⇥h⇥nin⇥nout for a layer l after either the hashing
or neuron merging steps (as merging and the proposed uneven depthwise separation steps can be
applied in any order, see Appendix A.1). W̄ can be expressed as a depthwise separable convolution
if there exists D 2 Rw⇥h⇥nin⇥1 and P 2 R1⇥1⇥nin⇥nout the respective weights of depthwise and
pointwise convolution such that :

8y, x, i, j, W̄[y,x,i,j] = D[y,x,i,1]P[1,1,i,j] (3)

This condition can be expressed in terms of matrix ranks, as illustrated on Figure 3. We define the
matrix Wi as the restrictions of filters to input channel i, flattened and concatenated along the output
channel axis:

Wi =

0

B@
W̄[1,1,i,1] . . . W̄[w,h,i,1]

...
. . .

...
W̄[1,1,i,nout] . . . W̄[w,h,i,nout]

1

CA (4)

Thus, any convolutional layer can be converted to a depthwise separable convolution layer if we have
ri = 1 for all i. In such case a basis B1

i = D[:,:,i,1] of the rows of the matrix Wi can trivially be
retrieved by considering the first non-zero row and the whole layer can be transformed to a depthwise
convolutional layer. In practice, we find that it happens often after hashing. Otherwise, for all i such
that ri 6= 1 we denote (Bk

i ) a basis of the rows of Wi, with k 2 J1; riK. Then, for every j 2 J1;noutK
there exists µk

i 2 R and k 2 J1; ryK such that W̄[:,:,i,j] = µj
iB

k
i . Thus, in this case, each output

channel j gives rise to a number of basis kernels (Bk
i )k=1...ri , and the corresponding subsequent

point-wise convolutions with coefficients µj
i = P[1,1,i,j], that depends of the rank of its concatenated

flattened filter restriction matrices. Hence, we call this layer an uneven depthwise convolution with
kernels defined as the basis kernels Bk

i .
To sum it up, the proposed RED method consists in three steps: an adaptive scalar hashing step (with
hyperparameter ⌧ ), followed by pruning via similarity-based neuron merging (with hyperparameter
↵), and an uneven depthwise separation step (summarized as algorithms in Section A.2 of the
supplementary material). As it will be shown in the experiments RED significantly outperforms other
data-free architecture compression methods and often matches data-driven methods.

5 Experiments

5.1 Experimental setup

Datasets and baselines: we evaluate our models on the two de facto standard datasets for architec-
ture compression, i.e. CIFAR-10 ((Krizhevsky et al., 2009), under the MIT License) and ImageNet
((Deng et al., 2009), under the BSD-3 license). We use the standard evaluation metric of removed
parameters as well as removed FLOPs. We apply our approach on ResNet ((He et al., 2016), ResNet
20-56-110 and 164 with respective number of parameters 270k, 852k, 1.7M and 2.6M, and accuracies
92.48, 93.46, 93.81 and 94.54 on CIFAR-10 and ResNet 50 with 25M parameters and 76.17 accuracy
on ImageNet) as well as Wide-ResNet (Zagoruyko & Komodakis, 2016). Wide ResNet architectures
are defined by their number of layers as well as their wideness multiplier: we evaluate on Wide
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Figure 4: Weight distributions for several layers of a ResNet-56 on CIFAR-10 (left) and ImageNet
(right) reveal that weights concentrate around multiple modes that can be captured via hashing.

ResNet 16-8 (with 11.0M and 95.2 accuracy on CIFAR-10), 22-2 (with 1.5 and 94.1 accuracy), 28
(28-2, 28-4, 28-8 and 28-10 with 1.9M, 7.4M, 29.8M and 36.5M parameters and 94.3, 94.8, 95.4 and
95.8 accuracies) and 40-4 (with 8.9M parameters and 95.0 accuracy).

Implementation details: The proposed adaptive hashing is implemented using Scikit-learn python
library, with bandwidth �l set as the median of the differences between consecutive weight values
per layer l (see Appendix A.10) and the contrast hyperparameter ⌧ set to 0, by default. Merging
and depthwise separation are implemented using Numpy: for relaxed merging, and unless stated
otherwise, hyperparameter ↵ is set to the highest value that fully preserves the model accuracy (noted
↵⇤). We apply a per block strategy for setting the layer-wise (↵l) and a constant strategy for the
(⌧ l = ⌧). Different strategy for setting the layer-wise (↵l) and (⌧ l) are discussed in Section A.3 of
the supplementary material. We ran our experiments on a Intel(R) Core(TM) i7-7820X CPU. The
proposed hashing method processing time depends on the model’s size: ranging from 45 to 413
seconds for ResNets on CIFAR-10 and up to 21 hours for a ResNet-50 on ImageNet. This step could
however be accelerated by a layer-wise parallelization as discussed in Appendix A.9. Pruning, on
the other hand, is much faster, taking 5 seconds for ResNet-20 on CIFAR-10 and 15 minutes for a
ResNet-50 on ImageNet.

5.2 Hashing empirically induces vector and tensor-level redundancies

First, Figure 4 displays the weight distributions for several layers for ResNet-56 trained on CIFAR-10
and ResNet-50 on ImageNet. We observe that the weights concentrate around multiple dominant
modes, with the number of modes and their relative proximity being variable from one layer to
another: this motivates the design of the proposed adaptive hashing method, where each weight can
be assigned to its corresponding mode, with optional collapse of adjacent modes.
In order to measure the impact of the change in the predictive function f from the scalar hashing we
considered the average error induced by hashing in logits E[|f(x)� f̃(x)|]. This error is compared
to the distribution of the differences between the top1 and top2 logits. An error smaller than the
aforementioned difference implies that the modifications due to hashing can not change the prediction
made by the DNN. For instance, we observe on ResNet 56 on CIFAR-10 an average error of 0.75
while the average difference between top 1 ad top 2 logits is ⇡ 10.43 in the baseline model with a
standard deviation of 6.29. Furthermore, we observe similar values on other considered networks (for
details see Appendix A.4), which empirically validates the efficiency of the hashing mechanism at
preserving the accuracy.
Figure 5 also shows the evolution, during training and for each layer, of the removed parameter ratio
(obtained with hashing and either merging, relaxed merging and RED , which consists in applying
relaxed merging plus uneven depthwise separation). Initially, for the first epochs, there are no vector
redundancies (left and central plots) and few tensor redundancies (right plot), due to the initialization
scheme (e.g. Glorot or He) specifically designed to avoid vector redundancies. However, we observe
a rapid convergence towards high numbers of both vector and tensor redundant weight distributions
after only 10 epochs. In fact, we show in Section A.11 of the supplementary material that the
effectiveness of RED is robust to the choice of the initialization scheme. Additionally, we show
in Section A.5. of the supplementary material that we observe the same phenomenon even in the
presence of training methods that aims at promoting diversity among neurons (e.g. dropout).
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Figure 5: 3D plot of the removed parameters ratio as a function of the layer’s depth and the training
epoch for ResNet-56 on ResNet 50 CIFAR-10. Regardless of the initialization schemes designed to
avoid redundancies, the hashed networks present large numbers of vector and tensor redundancies,
that can be removed with minimal impact on the accuracy.

Table 1: Ablation results in terms of % removed parameters compared to the base model.

Hashing 7 7 7 3 3 3
Merge ↵ = 0 ↵ = ↵⇤ ↵ = ↵⇤ ↵ = 0 ↵ = ↵⇤ ↵ = ↵⇤

Depthwise Separation 7 7 3 7 7 3
ResNet 20 0.00 18.58 18.58 25.18 41.03 65.05
ResNet 56 0.00 61.19 61.19 58.45 77.68 84.52

ResNet 110 0.00 75.29 75.29 62.41 84.43 89.64
ResNet 164 0.00 78.61 78.61 62.73 88.87 91.06

Wide ResNet 16-8 0.00 31.08 31.08 19.67 38.67 51.92
Wide ResNet 22-2 0.00 51.17 51.17 13.27 63.67 64.98
Wide ResNet 28-2 0.00 49.19 49.19 11.46 61.20 64.19
Wide ResNet 28-4 0.00 41.79 41.79 20.99 51.99 56.07
Wide ResNet 28-8 0.00 33.58 33.58 19.78 41.78 52.87

Wide ResNet 28-10 0.00 47.25 47.25 25.59 58.79 60.80
Wide ResNet 40-4 0.00 49.67 49.67 43.37 61.80 70.35

As such, after hashing, merging exact redundancies removes 0� 50% of the weights, depending on
the layer, with more emphasis on the last layers. Relaxed merging (which looks after similar but not
necessarily equal neurons) removes up to 60% of the layers’ weights without changing the network
accuracy. Furthermore, we can remove a lot of parameters (40 � 85%) with uneven depthwise
separation among all the layers.

5.3 Ablation study

Table 1 presents results in term of % removed parameters for each step in RED for both ResNet and
Wide ResNet architectures on CIFAR-10. First, we observe that without hashing, the % removed
parameters is significantly lower for every model and pruning method or combination thereof. For
instance, on ResNet 20, Merge (↵ = 0) with hashing (column 4) outperforms Merge (↵ = ↵⇤)
without hashing. Furthermore, it can be seen by comparing the first two columns that depthwise
separation does not add much without hashing: therefore, we argue that scalar hashing is critical to
introduce vector and tensor-level redundancies without accuracy loss.
As such, hashing + merging (↵ = 0) already achieves good results without altering the predictive
function (up to 62.7% on deeper networks, e.g. ResNet-164). Furthermore, setting ↵ = ↵⇤ and using
depthwise separation allows to reach higher removed parameters rates, e.g. up to 90% on ResNet-110
and 164, without witnessing any accuracy drop. The experiments on Wide-ResNets show that the
thinner the network the higher the removed parameters rates, with Wide ResNet 40-4 and 22-2 having
the highest removed parameters ratio and 16-8 and 28-8 having the lowest. This is natural since,
from a combinatorial standpoint, assuming a similar prior, the chance to find redundancies (strict
or approximate) reduces as the channel depth increases. Last but not least, these results are very
stable, as we observe standard deviations between 0.09� 0.84 for the different models over 10 runs
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values of ↵ for ResNet 20, 56, 110 and 164 on CIFAR-10. We can remove high number of similar
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Figure 7: Comparison between RED and state-of-the-art methods on Cifar-10, in terms of % accuracy
(measured as a percentage of the base model accuracy, the higher the better) and % remaining param-
eters (the lower the better). Each method is classified either as data-free (red) or data-driven (blue)
and structured (triangle) or unstructured (rectangle). For each network, RED performs significantly
better than other data-free methods, and often as well as data-driven or unstructured methods.

of retraining and application of RED .
Figure 6 shows the compression rate, and accuracy drop for relaxed merging as a function of

parameter ↵. For ResNet 20 we observe an initial low-slope phase for which merging neurons have
a lower influence on the accuracy. For ResNet 56 and deeper, we observe an initial plateau where
merging together a large number of similar neurons (up to 50% and 80% for ResNet 56 and 110-164,
respectively) does not impact the accuracy at all. This further illustrates that the hashed DNN (and
particularly deeper networks) weights present structural redundancies, and that similarity-based
analysis can dramatically increase their efficiency. Note that the theoretical pruning factor of the
merging and tensor decomposition steps are discussed in Section A.6 of the supplementary material.
Also, we report the GPU and FLOPs performance of RED in Section A.7. Finally, hashing also
affects memory footprint as evaluated in Appendix A.8.

5.4 Comparison with state-of-the-art approaches

Comparisons on CIFAR-10: Figure 7 draws a comparison between RED and state-of-the-art
architecture compression methods, in terms of % remaining parameters and % accuracy w.r.t. the
base model. For comparison purposes, we report results on the most popular architectures, i.e. ResNet
20, 56 and 110. Each of these approaches is either classified as:

• Data-driven (blue): methods that rely on fine-tuning or retraining protocols requiring labelled
data, such as LDI (Lee et al., 2020), DPF (Lin et al., 2020b), PFP (Liebenwein et al., 2020),
FT (Li et al., 2017), SoftNet (He et al., 2018), Lottery (Frankle & Carbin, 2018), PoReg
(Zhuang et al., 2020), PFF (Meng et al., 2020), OS (Renda et al., 2020) and SCOP (Tang
et al., 2020).

• Data-free (red): methods that do not use data such as Merge (Kim et al., 2020), SynFlow
(Tanaka et al., 2020), or methods that generate synthetic data for fine-tuning such as Dream
(Yin et al., 2020).

Another classification of these methods lies on the type of pruning: we distinguish unstructured meth-
ods (depicted by a square) from structured methods (triangle). Generally speaking, RED performs
significantly better than all the others state-of-the-art data-free methods: it outperforms its closest
contenders, SynFlow (Tanaka et al., 2020) on ResNet 20, as it removes 15% more parameters without
accuracy drop. When compared to the most similar method (Kim et al., 2020), the merging step alone
(with ↵ = 0) already achieves 18% higher removed parameters ratio on ResNet 56. Furthermore,
the complete RED approach significantly widens the gap and reach 44% higher pruning ratio on
ResNet 56. Furthermore, merging and RED also allows higher removed parameters ratios on Wide
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Table 2: Comparison with state-of-the-art methods in term of % removed parameters/FLOPS and
(top-1, top-5) accuracy on a ResNet-50 trained on ImageNet. Gray cells highlight data-free methods.

Model %removed %removed Top-1% Top-5%
parameters FLOPs

Baseline - - 76.2 92.9
GAL-0.5 16.9 43.0 72.0 90.9
Dream20 20.0 37.0 73.3 -
SSS-32 27.1 31.1 74.2 91.9
Hrank1.58 36.7 43.7 75.0 92.3
RED ⌧=0 39.6 42.7 76.1 92.9
GAL-1 42.5 61.4 69.9 89.8
SCOP 42.8 45.3 76.0 92.8
RED ⌧=0.05 42.1 44.5 75.3 92.1
Hrank1.85 46.0 62.1 72.0 91.0
RED ⌧=0.10 47.3 47.9 74.1 91.1
Dream50 50.0 71.0 60.7 -
RED ⌧=0.15 54.7 55.0 71.1 90.7
RED ⌧=0.20 56.9 57.3 67.9 90.3
Hrank2.64 67.7 76.0 69.1 89.6

ResNet 40-4 (5.6% and 30%, respectively), due to finer pairwise similarity modeling as well as
handling structural redundancies through uneven depthwise separation. RED also outperforms the
best structured, data-driven method, PFP (Liebenwein et al., 2020) by achieving similar compression
ratios on the three networks without any accuracy drop. Last but not least, RED, despite being a
data-free approach, is competitive with recent data-driven and unstructured methods such as DPF
(Lin et al., 2020b), Lottery (Frankle & Carbin, 2018) or LDI (Lee et al., 2020).

Comparisons on ImageNet: Table 2 shows a comparison between RED and other state-of-the-
art structured pruning approaches on ImageNet. These methods allow to find different levels of
compromise between the removed parameter ratio (as indicated by the % remaining parameters) and
the accuracy drop.In order to find such trade-off with RED, we vary the contrast hyperparameter
⌧ in the hashing step: by merging together close modes of the weight distribution, we introduce
more redundancies, allowing to further compress the network at the expense of accuracy. Although
this initial hashing step may cause the network accuracy to drop, both redundant neuron merging
and uneven depthwise separation induce negligible loss, as echoed by the previous experiments.
Thus, RED allows to remove between 39.6% (42.7% FLOPs) of a ResNet-50 with only 0.1% top-1
accuracy drop, and (with ⌧ = 0.20) 56.9% (57.3% FLOPs) with 8.3% top-1 accuracy drop. Thus,
RED appears as a more efficient pruning algorithm than data-free Dream (Yin et al., 2020), allowing
to remove large numbers of parameters with minimal accuracy drop. Furthermore, RED is once again
very competitive with recent data-driven methods such as Hrank (Lin et al., 2020a), SCOP (Tang
et al., 2020), SSS (Huang & Wang, 2018) or GAL (Lin et al., 2019). While some recent data-driven,
unstructured approaches achieved higher levels of compression on this benchmark Evci et al. (2020),
these results show the potential of RED as an efficient, portable and privacy compliant data-free,
structured pruning method. In addition to that, we tested RED on more challenging backbones in
Appendix A.12.

6 Conclusion

In this paper, we proposed RED , a novel data-free structured architecture compression method. First,
RED uses a novel adaptive scalar hashing of the weight distributions to introduce redundancies in
DNNs under the form of vector redundancies as well as tensor redundancies. These redundancies can
be exploited with similarity-based neuron merging, as well as a novel uneven depthwise separation
scheme for convolutional layers, respectively. Furthermore, we demonstrated through thorough
experiments involving several architectures and databases, that RED significantly outperforms other
data-free, structured pruning methods and often matches recent state-of-the-art data-driven pruning
techniques, at a very minimal expanse in term of accuracy drop.
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The whole approach is fully data-free and easy-to-use. On the one hand, DNN acceleration leads
to either less energy consumption at inference or higher accuracy on a given device. On the other
hand, the advantage of data-free methods is the compliance with data-privacy laws, particularly for
applications where data access is sensible and the need to share such data may infringe privacy laws
or make partnerships with external actors difficult.

It shall nevertheless be empathized that RED could theoretically be used in conjunction with other
DNN compression techniques such as existing data-free quantization techniques. Furthermore, sparse
pruning schemes, e.g. magnitude-based pruning methods could be considered to further reduce the
computational runtime, given appropriate hardware. Last but not least, RED could quite straightfor-
wardly be applied to any existing off-the-shelf computer vision model where runtime optimization is
a concern, such as, for instance, object detection or semantic segmentation architectures.
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