
AlchemistCoder: Harmonizing and Eliciting Code
Capability by Hindsight Tuning on Multi-source Data

Zifan Song1,2∗ Yudong Wang2∗ Wenwei Zhang2∗ Kuikun Liu2

Chengqi Lyu2 Demin Song2 Qipeng Guo2 Hang Yan2

Dahua Lin2,3,4 Kai Chen2† Cairong Zhao1†
1Tongji University 2Shanghai AI Laboratory

3MMLab, The Chinese University of Hong Kong
4HKGAI under InnoHK

https://internlm.github.io/AlchemistCoder

Abstract

Open-source Large Language Models (LLMs) and their specialized variants, partic-
ularly Code LLMs, have recently delivered impressive performance. However, pre-
vious Code LLMs are typically fine-tuned on single-source data with limited quality
and diversity, which may insufficiently elicit the potential of pre-trained LLMs.
In this paper, we present AlchemistCoder, a series of Code LLMs with enhanced
code generation and generalization capabilities fine-tuned on multi-source data.
To achieve this, we pioneer to unveil inherent conflicts among the various styles
and qualities in multi-source code corpora and introduce data-specific prompts
with hindsight relabeling, termed AlchemistPrompts, to harmonize different data
sources and instruction-response pairs. Additionally, we propose incorporating the
data construction process into the fine-tuning data as code comprehension tasks,
including instruction evolution, data filtering, and code review. Extensive experi-
ments demonstrate that AlchemistCoder holds a clear lead among all models of the
same size (6.7B/7B) and rivals or even surpasses larger models (15B/33B/70B),
showcasing the efficacy of our method in refining instruction-following capabilities
and advancing the boundaries of code intelligence. Source code and models are
available at https://github.com/InternLM/AlchemistCoder.

1 Introduction 49.9%
Improvement

176.6% 
Improvement

33.3%
Improvement

Inferior performance from 
directly mixing multi-source data

Figure 1: Performance scatter plot (top right
is better) of open-source models on mainstream
code benchmarks, HumanEval and MBPP. Our
AlchemistCoder series demonstrates astonishing
performance across all open-source Code LLMs.

Closed-source Large Language Models (LLMs)
like ChatGPT and GPT-4 [33, 34] exhibit im-
pressive code intelligence by learning on large-
scale and diverse code corpus, which also ben-
efits many other applications, such as math
reasoning [6], embodied control [25], and
agent [46]. Since open-source LLMs [40] still
lag behind closed-source LLMs [34] in this field,
there has been growing interest in investigating
the acquisition of code capabilities by develop-
ing specialized Code LLMs [35, 14].

The training of Code LLMs mainly goes through
pre-training and fine-tuning stages [35]. Pioneer

∗ Equal contributions
† Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://internlm.github.io/AlchemistCoder
https://github.com/InternLM/AlchemistCoder


(a) Open-Source Data Integration

(c) AlchemistPrompt Customization

open-source
datasets

data filtering
& deduplication

(b) Open-Source Data Evolution

instruction
evolution

multi-source
data

Instruction: Find the shortest path from one vertex to all other vertices in a graph.
Response: Here is the Python code that satisfies the requirement:

def bellman_ford(graph, start_vertex):
'''Bellman-Ford algorithm: A dynamic programming algorithm that …'''

Instruction: Please generate Python code for the following task and attempt to
use the concept of Dynamic Programming. Find the shortest path from one vertex
to all other vertices in a graph.
Response: Here is the Python code that satisfies the requirement …

(d) Code Comprehension Task Construction

open-source
data

comprehension 
task data

EvolCode
data

instruction
data

GPT-3.5

Alchemist
Prompt

customized
data

low-quality data

raw instruction
evolution data

A. Short Responses
B. Uncompilable code
C. Unclear code
D. Disorganized code data formatting 

(multiple choice)

data 
selecting

multi-source data

1. Correctness Score
2. Clarity
3. Suggestions
4. Refined Codecode review

GPT-4

GPT-4

Instruction
Tuning

AlchemistCoder

Harmonized Data

Pretrained LLMs
…

Figure 2: Overview for developing AlchemistCoder series. We first integrate high-quality open-source
data (a) and conduct data evolution based on them (b). Then, we adopt AlchemistPrompt to harmonize
their inherent conflicts (c) and construct code comprehension data (d). We use a mix of these data to
fine-tune various pre-trained LLMs to obtain our AlchemistCoder models.

works [5, 32, 22, 36, 3] have amassed extensive code data for pre-training, while recent open-source
models [30, 44] highight the effectiveness of high-quality or targeted code fine-tuning datasets.
Despite these advancements, current fine-tuning methods mainly rely on a specific type of code-
related question-answering dataset, unlike the pre-training stage that integrates code-related corpus
from various sources [35]. Such a discrepancy indicates that the fine-tuning data may lack the
necessary diversity to fully stimulate the capabilities of base models, resulting in limited performance,
generalization, and robustness.

To overcome the limitations in quality and diversity within single-source data, we pioneer to explore
integrating multi-source data for Code LLM fine-tuning. However, this is a non-trivial paradigm
and blindly integrating multi-source data can potentially lead to inferior performance (e.g., the
DirectlyMix-L-7B model in Fig. 1). To track this, we unveil inherent conflicts in multi-source code
corpora, including conflicting code language requirements and response styles. Inspired by hindsight
relabeling [1, 48], we propose to design data-specific prompts to harmonize the inherent conflicts for
multi-source data integration, better eliciting the performance of base models. We term this form of
prompts as AlchemistPrompts, inspired by the power and definition of Alchemists:

“Alchemist: Someone Who Transforms Things for the Better.” —— Merriam Webster

Specifically, we first integrate several open-source code datasets and conduct instruction evolu-
tion [30] based on some of them (Fig. 2(a, b)). As shown in Fig. 2(c), for instruction-response
pairs of different sources, we adopt one LLM to generate AlchemistPrompts that accurately and
explicitly describe the characteristics as requirements of the response to enrich the instructions.
In-depth, the efficacy of AlchemistPrompts is twofold: 1) Harmonization between different data
sources: AlchemistPrompts generated from the same LLM have similar styles and can bridge the style
differences between sources, while the introduction of AlchemistPrompt-customized data, accounting
for only 5%, achieves a balance between data diversity and domain gaps; 2) Harmonization within
instruction-response pairs: As fine-grained and data-specific prompts, AlchemistPrompts are designed
to augment instructions with specific programming languages, algorithm concepts, and other code-
related information involved in responses, which can refine the alignment within instruction-response
pairs and enhance the instruction-following abilities of fine-tuned models.

Apart from the conventional problem-solution data, we argue that the progression of code data (e.g.,
data evolution, cleaning, and quality evaluation) reflects higher-level capabilities and offers valuable
insights for the enhancement of Code LLMs. Consequently, we delineate the construction of data
into three integral tasks for training: instruction evolution, data filtering, and code review (see Fig. 2
(d)), facilitating enhanced code comprehension capabilities.

We conduct extensive experiments with various base models [40, 35, 14] and develop the instruction-
tuned AlchemistCoder series. As shown in Fig. 1, on two mainstream code benchmarks, HumanEval

2



Instruction: Merge the elements of two given arrays into
one, but ensure that the merged array contains only the
common elements between the two arrays.
## Input:
[1, 2, 3, 4] and [3, 4, 5, 6]

## Output:
[3, 4]
Response (a): Here is an example implementation in JavaScript:
function mergeArrays(array1, array2) {
let mergedArray = [];

for (let i = 0; i < array1.length; i++) {
if (array2.includes(array1[i])) {
mergedArray.push(array1[i]);

}
}

return mergedArray;
}

const array1 = [1, 2, 3, 4];
const array2 = [3, 4, 5, 6];
const mergedArray = mergeArrays(array1, array2);

console.log(mergedArray); // Output: [3, 4]
```

By using this algorithm, you can merge two arrays and obtain a
new array containing only the common elements between them.

Instruction: 
Change the color of the text to blue.
## Input:
Text: The quick brown fox

Response:
To change the color of the text to blue, you can
use CSS. Here's an example of how you can
achieve this:

By applying the "blue-text" class to the paragraph
element, the text will be displayed in blue color.

Inherent Conflict:
Missing Language Declaration. The instruction
does not specify the programming language, while
the response assumes HTML/CSS and provides an
implementation accordingly.

AlchemistPrompt-customized Instruction:
Assume we are working with a HTML document
and have the permissions to modify the CSS styles
associated with it.
Change the color of the text to blue.
## Input:
Text: The quick brown fox

<style>
.blue-text {

color: blue;
}

</style>
<p class="blue-text">The quick brown fox</p>

Before you begin, please make sure you know how to create a 
function in JavaScript and use the 'includes' method to check if 
an array contains a specific element. 

HTML

Instruction: 
Find the minimum of two given numbers.
## Input: 4, 6
## Output: The minimum number is 4

Response:
*Notebook Format:*
**Reasoning:**
To find the minimum of two given numbers, we can
use an if-else statement. We will compare the two
numbers, assign the smaller value to a variable called
"minimum_number", and print out it.
**Code:**

**Execution Results:**
The minimum number is 4

Inherent Conflict: 
Format Exception. The response introduces a
notebook format not specified by the instruction.

AlchemistPrompt-customized Instruction:
Complete the simple task in notebook format,
including reasoning, code, and execution results.
Find the minimum of two given numbers.
## Input: 4, 6
## Output: The minimum number is 4

num1, num2 = 4, 6
if num1 < num2:

minimum_number = num1
else:

minimum_number = num2
print(“The minimum number is", minimum_number)

Python

Instruction (Source #1&2): 
Replace all words with 5 letters or more that start with
a vowel, and end with a consonant, with "*****" in
the given text.
"The quick brown fox jumps over the lazy dog"

Response (Source #1):
Sure! Here is the text with the specified replacements:
"The quick brown fox jumps ***** the lazy dog“

Response (Source #2):
Here's a Python function that achieves this:
import re
def replace_words(text):

pattern = r'\b[aeiouAEIOU]\w{3,}[^aeiouAEIOU]\b'
result = re.sub(pattern, '*****', text)
return result

text = "The quick brown fox jumps over the lazy dog"
print(replace_words(text))

Python

Inherent Conflict:
Response Format Discrepancy. For similar instructions,
Source #1 provides the result directly, while Source #2
provides the implementation code, which may lead to
confusion in understanding the instructions.

AlchemistPrompt-customized Instruction (Source #2):
In this task, you are required to create a Python
program that scans through a given text and replaces
specified words.
Replace all words with 5 letters or more that start with
a vowel, and end with a consonant, with "*****" in
the given text.
"The quick brown fox jumps over the lazy dog"

Figure 3: Examples of inherent conflicts (e.g., various styles and quality) within multi-source code
corpora. By applying AlchemistPrompt-customized instructions that are more consistent with the
responses, the diversity from multiple sources can be effectively managed and utilized, thereby
improving the quality of our fine-tuning data and the instruction-following capabilities of the fine-
tuned models.

and MBPP, AlchemistCoder holds a clear lead among all models of equivalent size (6.7B/7B), and
rivals or even surpasses larger models (15B/33B/70B), demonstrating harmonized and formidable
code capabilities. Furthermore, we delve into the effectiveness of AlchemistPrompts and discern that
they alleviate the misalignment between instructions and responses within the data. Remarkably,
AlchemistPrompts allow the code corpus to also significantly improve the general capability of Code
LLMs, as demonstrated by the improvements on MMLU, BBH, and GSM8K. Our main contributions
are summarized as follows:

• Our work pioneers to integrate multi-source data for Code LLM fine-tuning to overcome the
limitations of quality and diversity inherent in single-source data.

• We unveil inherent conflicts within multi-source code corpora and introduce Alchemist-
Prompts, revealing the power of hindsight tuning for code generation, aiming to harmonize
the conflicts among sources and bridge the alignment within instruction-response pairs.

• We propose to incorporate data construction process into the fine-tuning data and design
code comprehension tasks, including instruction evolution, data filtering, and code review,
endowing comprehensive code capabilities.

• Extensive ablation and analytical studies confirm the efficacy of our key concepts for
enhancing the diversity, quality, and cost-effectiveness of Code LLM fine-tuning data.
Through instruction tuning on various base models, we develop the AlchemistCoder series,
surpassing all Code LLMs of the same size on a wide spectrum of code benchmarks.

2 Method

To more comprehensively elicit the capability of the base LLMs, we first construct multi-source
data for fine-tuning (§ 2.1), which is harmonized by AlchemistPrompts to take effect(§ 2.2). Code
comprehension tasks are also constructed to further improve the performance(§ 2.3). We also discuss
the details and statistics of the filtered and harmonized multi-source data in § 2.4.

2.1 Multi-source data construction

To fully elicit the capability of code LLMs, we first collect the fine-tuning data from multiple sources
(Fig. 2(a)) and adopt the instruction evolution [30] to improve the complexity of the instructions
(Fig. 2(b)). However, integrating multi-source data for instruction tuning poses challenges. Naturally,

3



one code-related question can be solved by different coding languages with various algorithms or
response styles (e.g., with or without reasoning). When naively combing data curated by different
developers with different LLMs, the model tends to learn to answer similar questions with different
coding languages and response styles, as depicted in Fig. 3. On the one hand, learning diverse
responses may elicit different capability aspects of the base models. On the other hand, since the
learned responses to similar instructions often diverge due to implicit human intentions, the LLMs
tend to be unaligned (to our expectation) after the fine-tuning on the directly mixed data (e.g., we
cannot expect which coding language the LLMs will use in real-world applications), resulting in
inferior performance. Therefore, directly mixing multi-source data is not a promising solution and
can be detrimental.

2.2 AlchemistPrompt

AlchemistPrompt Generation
Here are {{ sample number }} sets of instructions-response paired
coding samples. Each set begins with [SAMPLE BEGIN] and ends with
[SAMPLE END]. Please read them carefully and complete the TASK.

[SAMPLE 1 BEGIN]
<|Instruction|>:
{ AlchemistPrompt }
{{ sample 1 instruction }}
<|Response|>:
{{ sample 1 response }}
[SAMPLE 1 END]
…

TASK:
Please fill in { AlchemistPrompt } with appropriate content (within 50
words) to make the instructions clearer and better match the
responses.
NOTE (very important):
1. If you find code in the response, try to analyze (including but not
limited to programming languages, algorithm concepts, and code
characteristics) and briefly reflect the results in { AlchemistPrompt }.
2. You are not allowed to modify anything other than the contents
within { AlchemistPrompt }.
3. You are asked to generate only one { AlchemistPrompt }, which
should be universally applicable to all the {{ sample number }} samples.

Figure 4: Detailed prompt designed for generating
data-specific AlchemistPrompts.

To harmonize the inherent conflicts within
multi-source data, we propose to customize
data-specific prompts called AlchemistPrompts,
(Fig. 2(c)), inspired by the concept of hind-
sight [1, 48]. Specifically, we employ GPT-
4 [34] to play the role of an Alchemist and design
the prompt as illustrated in Fig. 4 to obtain Al-
chemistPrompts. For instance, for an instruction
of ‘Write code to find the shortest path from
one vertex to all other vertices in a graph’, if
the response involves Python code of a Bellman-
Ford algorithm with dynamic programming, we
would expect to customize the instruction with
an AlchemistPrompt of ‘Please generate Python
code for the following task and attempt to use
the concept of Dynamic Programming’.

For the selection of data customized by
AlchemistPrompts, we calculate the differ-
ences in perplexities of generating responses
with/without given instructions, called Con-
ditional Perplexity Discrepancy (CPD). Then,
we selectively chose data with higher CPD
values for AlchemistPrompt harmonizations.
We treat CPD as an indicator of how data affects the complexity of model-generated re-
sponses under given conditions (i.e., instructions), and its calculation formula is CPD =
Perplexity(conditional_instruction + response) − Perplexity(response). The level of CPD re-
flects the impact of the conditional instruction on the complexity of the generated response. Specif-
ically, a high CPD indicates that the perplexity of the generated response significantly increases
under the presence of a conditional instruction, which usually reflects a poor alignment between the
instruction and the response, the instruction may be unclear or not specific enough, or insufficient
contextual information, thereby increasing the difficulty of model response generation. By analyzing
high CPD values, we can identify cases where instructions and responses are poorly aligned and more
effectively optimize data quality.

The adjustments to data made by AlchemistPrompts are relatively minor and well-calibrated. Our abla-
tion study indicates that the optimal performance can be achieved by incorporating AlchemistPrompts
into only 5% samples, striking a balance between the diversity and domain gap resulting from the
fusion of multi-source data. Crucially, by retrospectively analyzing responses and reinterpreting them
as alternate goals, the AlchemistPrompts serve to elevate the condition/goal of data. This hindsight
integration [1, 48, 26] allows for a more nuanced and adaptive learning process, enhancing not only
the models’ comprehension of data but also refining instruction-following capabilities.

2.3 Code comprehension task

The existing training datasets for Code LLMs [24, 4, 39, 30, 44] primarily focus on the code generation
task consisting of programming problems and their corresponding code solutions. However, we

4



contend that beyond this, the process of constructing code data demonstrates higher-level abilities.
Consequently, we devise three code comprehension tasks relevant to data construction, including
instruction evolution, data filtering, and code review (Fig. 2(d)).

Instruction evolution. Inspired by the concept of instruction evolution [45, 30], we employ GPT-3.5
[33] to construct instruction evolution task data, which entails augmenting the requirements for
instructions and providing detailed explanations for programming tasks. Integrating the instruction
evolution task aids the model in discerning the disparities before and after evolutions, thereby
deepening the comprehension of programming requirements, code complexity, task decomposition,
and other code-related concepts.

Data filtering. We identify four categories of low-quality data from multiple sources: (a) responses
that are excessively short and lack code, (b) code that fails to compile, (c) code with poor clarity,
and (d) code that does not adhere to the requirement in the instruction regarding its organization in
function form. Each instruction in the data filtering task presents the model with a low-quality sample
and prompts the model to classify it into one of the four categories. The data filtering task entails
recycling the filtered-out data by offering counterexamples, thereby assisting the model in generating
fewer low-quality responses.

Code review. In this task, we require the model to review a piece of code and assign scores between
0 and 10 for correctness and clarity separately. Additionally, the model is expected to provide
suggestions for code improvement and present the refined code. To obtain higher-quality data, we
utilize GPT-4 [34] to generate code reviews and select cases that are more representative, particularly
those with average correctness and clarity scores exceeding 8 or falling below 6. Simultaneously,
we focus on instances where one aspect exhibits severe deficiencies, i.e., the score of correctness or
clarity is equal to or below 4.

2.4 Data cleaning and decontamination

In practice, we have established a set of filtering rules to enhance our data cleaning and purification
procedures. These rules involve excluding samples based on various criteria, such as response length
(either too short or too long), absence of code or insufficient code content, non-compilable code,
code failing test cases (pertinent to certain samples), responses structured in notebook form, and
instances with excessive textual descriptions preceding the code. After conducting an extensive series
of validation experiments, we conclusively decide to eliminate low-quality data meeting either of the
following conditions: (a) responses that are excessively brief and lack code. Such responses typically
offer direct answers to the instructions, neglecting both the code solution and explanatory annotations.
Additionally, these samples frequently present overly simplistic questions in the instructions; (b) code
solutions that are non-compilable or fail test cases (relevant to specific samples).

Concurrently, following [13], we employ N-gram similarity, cosine distance of code embeddings,
and edit distance of code syntax trees to calculate the similarity between training data and samples in
HumanEval and MBPP. We subsequently discard samples through this process of data filtering and
deduplication, resulting in the removal of approximately 6% of the dataset.

2.5 Harmonized AlchemistCoder dataset

Our AlchemistCoder dataset (∼200M tokens) comprises four types of multi-source data, encom-
passing open-source datasets and three types of data constructed by us. Specifically, (a) open-
source datasets including Evol-Instruct-Code-80k-v1 [10], CodeExercise-Python-27k [9], and evol-
codealpaca-v1 [39], (b) EvolCode data generated from gpt-3.5-turbo following [30], (c) data cus-
tomized by AlchemistPrompts, and (d) data of the code comprehension tasks (i.e., instruction evolu-
tion, data filtering, and code review).

We visualize the distributions of data sources and programming languages using two circular graphs in
Fig. 5. Concurrently, Fig. 6 reports a distribution of text description lengths and code lines. Compared
to CodeAlpaca [4] and OOS-INSTRUCT [44], our AlchemistCoder dataset presents a notably diverse
distribution and maintains moderate overall text description and code lengths, benefiting significantly
from the integration of multi-source data along with AlchemistPrompts and code comprehension
tasks. This is instrumental in contributing to a comprehensive evolution of code capability.

5



Python
(43.0%)

Others
(6.3%)

SQL
(8.2%)

HTML
(6.9%)

C & C++
(24.4%)

JavaScript 
(6.9%)

Java
(4.3%)

AlchemistPrompt-Customized  Data 
(4.6%)

Code Comprehension Task Data 
(3.7%)

Figure 5: Data distribution analysis of our Al-
chemistCoder dataset. The outer and inner cir-
cular diagrams respectively display the distribu-
tions of data composition and programming lan-
guages. Data from AlchemistPrompts and code
comprehension tasks, constituting only 8% of
the total data, plays a crucial role in harmonizing
and polishing the fine-tuning data.

Figure 6: Comparative distribution of text de-
scription lengths (top) and code lines (bottom).
Our dataset contains high-quality samples with
more diverse distributions.

3 Experiments

In this section, we report results on various benchmarks of code generation and conduct ablation
experiments. Furthermore, we present analytical studies to provide a more in-depth demonstration of
the efficacy of our AlchemistCoder.

3.1 Benchmarks and implementation details

Benchmarks. We adopt six code benchmarks: HumanEval [5], HumanEval+ [27], HumanEval-
X [49], MBPP [2], MBPP+ [27], and DS-1000 [21]. In addition, we access three mainstream
benchmarks (MMLU [15], BBH [37], and GSM8K [8]) to evaluate generalization abilities. All
evaluation and benchmark details can be found in Appendix §D.

Baselines. We compare with the following competitive baselines. Closed-Source Models: GPT-3.5-
Turbo [33] and GPT-4-Turbo [34]. Open-Source Models: Llama 2 [40], CodeLlama [35], StarCoder
[22], WizardCoder [30], DeepSeek-Coder [14], and Magicoder [44].

Supervised fine-tuning. We adopt Llama-2-7B, CodeLlama-Python-7B, and DeepSeek-Coder-Base-
6.7B as the base models and fine-tune all the base models for 2 epochs using 32 NVIDIA A100-80GB
GPUs. We set the initial learning rate, minimum learning rate, and optimizer warmup steps and at
1e-4, 6e-6, and 15, respectively. We use Adam optimizer [28] and choose a batch size of 2 with a
sequence length of 8192.

3.2 Evaluation on code generation task

Results on python code generation. We first access HumanEval and MBPP to evaluate the capability
of the AlchemistCoder series for Python code generation. These benchmarks necessitate models to
generate code based on the function definitions and subsequently pass the test cases. Models are
evaluated in zero-shot on HumanEval and 3-shot on MBPP. The comprehensive comparisons in Tab.
1 and Fig. 1 demonstrate the impressive capabilities of AlchemistCoder models. From the results,
AlchemistCoder-L attains a remarkable performance boost of 42.7% and 28.4% pass@1 scores on
HumanEval and MBPP respectively, compared to Llama 2-7B. Notably, AlchemistCoder-DS elevates
the pass@1 scores to 79.9% and 77.0% on these benchmarks, holding an overall improvement of
33.3%. Moreover, our AlchemistCoder series with 7B parameters outperforms larger models (e.g.,

6



Table 1: Results of pass@1 on HumanEval (HumanEval+) and MBPP (MBPP+) benchmarks. We
report the results of HumanEval and MBPP consistently from the EvalPlus [27] and the bold scores
denote the best performance among models of the same size.
Model Params Base Model HumanEval (+) MBPP (+) Average (+)

Closed-source Models

GPT-3.5-Turbo [33] - - 72.6 (65.9) 81.7 (69.4) 77.2 (67.7)
GPT-4-Turbo [34] - - 85.4 (81.7) 83.0 (70.7) 84.2 (76.2)

Open-source Models

Llama 2-Chat [40] 70B Llama 2 31.7 (26.2) 52.1 (38.6) 41.9 (32.4)
CodeLlama-Python [35] 70B Llama 2 57.9 (50.0) 72.4 (52.4) 65.2 (51.2)
CodeLlama-Instruct [35] 70B CodeLlama 65.2 (58.5) 73.5 (55.1) 69.4 (56.8)

CodeLlama-Python [35] 34B Llama 2 51.8 (43.9) 67.2 (50.4) 59.5 (47.2)
WizardCoder-CL [30] 34B CodeLlama-Python 73.2 (56.7) 73.2 (51.9) 73.2 (54.3)
DeepSeek-Coder-Instruct [14] 33B DeepSeek-Coder-Base 78.7 (67.7) 78.7 (59.7) 78.7 (63.7)

StarCoder [22] 15B - 34.1 (33.5) 55.1 (43.4) 44.6 (38.5)
CodeLlama-Python [35] 13B Llama 2 42.7 (36.6) 61.2 (45.6) 52.0 (41.1)
WizardCoder-SC [30] 15B StarCoder 51.9 (45.7) 61.9 (44.9) 56.9 (45.3)

Llama 2 [40] 7B - 14.0 (10.4) 26.1 (17.5) 20.1 (14.0)
StarCoder [22] 7B - 24.4 (21.3) 33.1 (29.2) 28.8 (25.3)
CodeLlama-Python [35] 7B Llama 2 37.8 (33.5) 57.6 (42.4) 47.7 (38.0)
WizardCoder-CL [30] 7B CodeLlama-Python 48.2 (42.1) 56.6 (42.4) 52.4 (42.3)
DeepSeek-Coder-Base [14] 6.7B - 47.6 (41.5) 70.2 (53.6) 58.9 (47.6)
Magicoder-CL [44] 7B CodeLlama-Python 60.4 (49.4) 64.2 (46.1) 62.3 (47.8)
MagicoderS-CL [44] 7B CodeLlama-Python 70.7 (60.4) 68.4 (49.1) 69.6 (54.8)
Magicoder-DS [44] 6.7B DeepSeek-Coder-Base 66.5 (55.5) 75.4 (55.6) 71.0 (55.6)
DeepSeek-Coder-Instruct [14] 6.7B DeepSeek-Coder-Base 73.8 (69.5) 72.7 (55.6) 73.3 (62.6)
MagicoderS-DS [44] 6.7B DeepSeek-Coder-Base 76.8 (65.2) 75.7 (56.1) 76.3 (60.7)
AlchemistCoder-L (ours) 7B Llama 2 56.7 (52.4) 54.5 (49.6) 55.6 (51.0)
AlchemistCoder-CL (ours) 7B CodeLlama-Python 74.4 (68.3) 68.5 (55.1) 71.5 (61.7)
AlchemistCoder-DS (ours) 6.7B DeepSeek-Coder-Base 79.9 (75.6) 77.0 (60.2) 78.5 (67.9)

Table 2: Results of pass@1 on HumanEval-X.
We present the multilingual code capabilities
of our AlchemistCoder with the respective base
models and competitors (6.7B/7B).
Model Python C++ Go Java JS Avg

Llama 2 14.0 11.0 6.1 11.0 14.0 11.2
CodeLlama 31.7 27.4 12.8 25.6 32.9 26.1
AlchemistCoder-L 56.7 31.1 25.6 45.1 41.5 37.1

CodeLlama-Python 37.8 33.5 30.5 39.6 35.4 35.4
MagicoderS-CL 68.3 47.6 39.6 34.8 57.9 49.6
AlchemistCoder-CL 74.4 53.1 42.7 64.0 52.4 57.3

DeepSeek-Coder-Base 47.6 45.1 38.4 56.1 43.9 46.2
MagicoderS-DS 72.6 63.4 51.8 70.7 66.5 65.0
AlchemistCoder-DS 79.9 62.2 59.8 72.0 68.9 68.6

Table 3: Pass@1 results of models with 6.7B/7B
parameters on DS-1000. pd, np, tf, sp, skl, torch,
and plt represent Pandas, Numpy, Tensorflow, Scipy,
Sklearn, Pytorch, and Matplotlib, respectively.
Model pd np tf sp skl torch plt All

Llama 2 2.4 7.3 6.7 6.6 2.6 1.5 7.7 5.0
CodeLlama 12.0 27.7 17.8 13.2 12.2 20.6 15.5 17.0
AlchemistCoder-L 13.4 22.7 31.1 11.3 25.2 8.8 29.0 20.2

CodeLlama-Python 16.2 16.4 15.6 17.9 20.0 22.1 38.7 21.0
MagicoderS-CL 25.1 40.9 35.6 29.3 36.5 38.2 51.0 36.7
AlchemistCoder-CL 30.9 43.6 46.7 30.2 37.4 41.2 52.3 40.3

DeepSeek-Coder-Base 21.3 35.0 26.7 23.6 34.8 25.0 34.8 28.7
MagicoderS-DS 30.6 46.8 44.2 30.2 33.0 29.7 45.2 37.1
AlchemistCoder-DS 32.0 51.7 44.5 33.1 38.4 33.8 49.8 40.5

WizardCoder-CL-34B and CodeLlama-Instruct-70B) and rivals with GPT-3.5-Turbo, significantly
bridging the performance gap between closed-source and open-source models.

Results on multilingual code generation. We compare the pass@1 accuracy of the base models and
the corresponding fine-tuned AlchemistCoder models on Humaneval-X [49]. The results presented in
Tab. 2 demonstrate that the AlchemistCoder series exhibits great improvements (exceeding 50%) for
multilingual code generation, delivering comprehensive code capabilities.

Results on code generation for data science. We further conduct the evaluation of data science
code completion on DS-1000 [21]. According to Tab. 3, AlchemistCoder models exhibit a notable
improvement of up to 19.2% in overall performance compared to the base models. Particularly,

7



55

57

59

61

63

65

67

69

71

73

0% 1% 3% 5% 7% 10% 13% 16% 20%

Be
nc

hm
ar

k 
Sc

or
e

ALCHEMIST-PROMPT Ratio 55

57

59

61

63

65

67

69

71

73

0.00% 5.00% 10.00% 15.00% 20.00%

Be
nc

hm
ar

k 
Sc

or
e 

(%
)

ALCHEMIST-PROMPT Ratio 

HumanEval Score (Pass@1)
MBPP Score (Pass@1)

6.6% improvement

12.2% improvement

0 20 40 60 80 100 120 140

CodeAlpaca

Evol-Instruct-Code-80k-v1

OOS-INSTRUCT

AlchemistCoder Dataset

Average Lines of Code Average Length of Description

55
57
59
61
63
65
67
69
71
73
75

0% 5% 10% 15% 20%

Av
er

ag
e 

Sc
or

e 
(H

um
an

Ev
al

&
 M

BP
P)

AlchemistPrompt Ratio 

HumanEval (Pass@1)
MBPP (Pass@1)

55
57
59
61
63
65
67
69
71
73
75

0% 5% 10% 15% 20%
AlchemistPrompt Ratio 

HumanEval (Pass@1)
MBPP (Pass@1)

8.9% Improvement

19.4% Improvement

10.3% Improvement

20.4% Improvement

(a) Augmentation (b) Replacement
Figure 7: Ablation study on the proportion of AlchemistPrompt-customized data conducted on
AlchemistCoder-CL-7B. Left: Augment the original data. Right: Replace the original data.

Table 4: Ablation study on the effectiveness of multi-source harmonization (i.e., Multi-source Inte-
gration, Data Decontamination, and AlchemistPrompt Harmonization) and code understanding tasks
(i.e., Instruction Evolution Task, Data Filtering Task, and Code Review Task) for the AlchemistCoder-
CL-7B model, evaluated on the HumanEval and MBPP benchmarks.

Multi-source
Integration

Data
Decontamination

AlchemistPrompt
Harmonization

Instruction
Evolution Task

Data
Filtering Task

Code
Review Task

HumanEval
(Pass@1)

MBPP
(Pass@1)

- - - - - - 37.8 57.6
✓ - - - - - 54.6 (16.8↑) 57.9 (0.3↑)
✓ ✓ - - - - 59.8 (5.2↑) 58.2 (0.3↑)
✓ ✓ ✓ - - - 72.0 (12.2↑) 63.4 (5.2↑)
✓ ✓ ✓ ✓ - - 71.3 (0.7↓) 65.8 (2.4↑)
✓ ✓ ✓ ✓ ✓ - 73.8 (2.5↑) 67.7 (1.9↑)
✓ ✓ ✓ ✓ ✓ ✓ 74.4 (0.6↑) 68.5 (0.8↑)

AlchemistCoder-CL achieves an astonishing overall accuracy of 40.3% with relatively better perfor-
mance in all libraries, demonstrating powerful capabilities in data science workflows.

3.3 Ablation study

The Recipe of AlchemistPrompts. As illustrated in Sec. 2.2, AlchemistPrompts can further align
the instructions and responses of data samples and harmonize the domain gap between multiple
sources. Code data from different sources may vary significantly in language style and content,
including question types, code style, presence of comments, test cases, etc. Therefore, multi-source
data mixing is a double-edged sword: it provides necessary diversity but can also bring large domain
gaps. Adding concise corpus generated from the same Alchemist model (i.e., AlchemistPrompts with
similar language styles) to a small amout of data can effectively bridge this gap while maintaining
diversity. To find the appropriate recipe of AlchemistPrompts that maintains a balance between data
diversity and domain gap, we conduct ablation experiments on the proportion (0% to 20%) of data
customized by AlchemistPrompts. We adopt two settings: (a) augment the original data with its
customized variant and report the results of fine-tuning for 2 epochs on CodeLlama-Python-7B; (b)
replace the original data and report the results of fine-tuning for the same steps (i.e., keeping the
number of tokens used consistent). As shown in Fig. 7, AlchemistCoder is particularly enhanced
when the proportion of customized data increases from 1% to 5%, and nearly peaks in performance
at 5%. Thus, we introduce AlchemistPrompts into 5% of the training set to balance the performance
gain and the generation cost. Additionally, both two strategies effectively enhance the performance
and validate the efficacy of our approach. To push the limit of AlchemistCoder, we employ the
augmentation strategy in our performance experiments. In addition, we present detailed experimental
results from the multi-source integration and harmonization process in our Appendix §C to offer a
more in-depth demonstration of the AlchemistPrompts efficacy as data complexity scales.

Efficacy of the code comprehension tasks. We conduct an ablation study on the key components of
the code comprehension tasks to ascertain their individual contributions to the overall performance.
As reported in Tab. 4, compared to the baselines (the first and second rows), the model demonstrates

8



Figure 8: In-depth analysis of the efficacy from AlchemistPrompts. Left: Kernel Density Estimation
of Conditional Perplexity Discrepancy. Right: UMAP visualization of 10 instruction/response groups.

enhanced performance on both benchmarks following the incremental incorporation of code com-
prehension task data. Notably, the improvement (5.1% regard to the pass@1 metric) is particularly
remarkable on MBPP. This indicates the significant contribution of all code comprehension tasks to
furthering programming capabilities.

3.4 Analytical study

AlchemistPrompts harmonize the discrepancy between instructions and responses. To in-depth
verify the efficacy of AlchemistPrompts, we calculate the Conditional Perplexity Discrepancy (CPD,
refer to Sec. 2.2) values of our fine-tuning data harmonized by AlchemistPrompts, i.e., the difference
between Perplexity(conditional_instruction + response) and Perplexity(response). The CPD
value quantifies the difficulty change in generating responses before and after adding specific inputs
(e.g., instructions) to the model (the smaller the value, the easier it becomes). Specifically, we adopt
the instructions before and after customization by AlchemistPrompts for comparison, and provide
the Kernel Density Estimation of CPD in Fig. 8. Clearly, the latter (green) gains smaller overall
CPD values, indicating that AlchemistPrompts are beneficial for prediction and can provide effective
contextual information. Furthermore, we randomly select 10 groups of these samples and use UMAP
[31] to map their feature representations into a 2-D space in the right of Fig. 8. From the fact that
the solid lines are generally shorter than the dashed lines, our AlchemistPrompts can harmonize the
discrepancy between instructions and responses, leading to higher-quality data for attaining improved
instruction-following ability.

AlchemistCoder models are better generalists. To further analyze the comprehensive capabilities
of our AlchemistCoder, we conduct evaluations on more diversified benchmarks, including MMLU
[15] for multitask language understanding, BBH [37] for comprehensive reasoning, and GSM8K [8]
for mathematical ability. The results are presented in Tab. 5 and illustrate that the AlchemistCoder
models exhibit an overall performance increase of 6.4%, 13.6%, and 14.5% over the base models
Llama 2, CodeLlama-Python, and DeepSeek-Coder-Base, respectively. Notably, CodeLlama-Python
presents inferior performance on these benchmarks relative to Llama 2, indicating the discrepancy
between natural language processing and code capabilities of open-source models. Such divergence
can be attributed to “catastrophic forgetting” [11, 29, 20], often occurring when fine-tuning is
exclusively concentrated on domain-specific data. By leveraging harmonized multi-source data, our
AlchemistCoder series models achieve enhanced reasoning abilities, better instruction-following
abilities, and improved context understanding, which contribute to develop better generalists.

Error case analysis. To meticulously dissect the improvements brought by our method, we provide
an analysis of error cases on HumanEval and MBPP. We compare models before and after the
introduction of AlchemistPrompts and code understanding task data. The bar chart shown in Fig.
9 (top) indicates that these two types of key data help to better handle compilation errors (i.e.,
SyntaxError, NameError, and ValueError), and eliminate the occurrence of no code written in the
responses. On the other hand, the results of Fig. 9 (bottom) on MBPP suggest that the AlchemistCoder
series incorporated with these two types of data attains stronger programming logic, as evidenced by
the clear reduction in the ‘Wrong Answer’ error cases.

9



Table 5: Results of models (6.7B/7B) on vari-
ous benchmarks, including MMLU for multitask
language understanding, BBH for comprehensive
reasoning, and GSM8K for mathematical ability.

Model MMLU BBH GSM8K Avg

Llama 2 41.1 34.6 16.8 30.8
CodeLlama 31.5 42.7 14.4 29.5
AlchemistCoder-L 43.9 42.7 25.0 37.2

CodeLlama-Python 26.1 26.7 6.6 19.8
MagicoderS-CL 33.0 41.5 18.8 31.1
AlchemistCoder-CL 42.1 39.3 20.2 33.9

DeepSeek-Coder-Base 34.0 12.8 22.0 22.9
MagicoderS-DS 34.4 43.8 14.3 30.8
AlchemistCoder-DS 38.5 45.6 28.0 37.4

AlchemistCoder-CL▲

AlchemistCoder-L▲

AlchemistCoder-L  

AlchemistCoder-CL  

AlchemistCoder-CL▲

AlchemistCoder-L▲

AlchemistCoder-L  

AlchemistCoder-CL  

0% 10% 20% 30% 40% 50% 60%

No Code SyntaxError AssertionError NameError ValueError

0% 10% 20% 30% 40% 50% 60%

Failed Wrong Answer

Figure 9: Analysis of error case proportions on
HumanEval (top) and MBPP (bottom). ▲ repre-
sents the models fine-tuned without Alchemist-
Prompts and the code comprehension task data.

4 Related Work

Code large language models. Early researches [5, 32, 22] focus on collecting massive amounts
of code data to develop pretrained Code LLMs. Recent efforts [30, 47, 44] are dedicated to fine-
tuning these pretrained models with specific instructional data to further the coding abilities. For
instance, WizardCoder [30] and Magicoder [44] construct their instruction tuning datasets based on
CodeAlpaca [4] and the stack [18] dataset, respectively. In this work, we develop the AlchemistCoder
series by instruction tuning on optimized multi-source data instead of single-category data as in
previous methods, endowing astonishing and harmonized code capability.

Instruction tuning. Instruction tuning aims to enhance LLMs via fine-tuning pre-trained LLMs
using samples of instruction/response pairs. Obtaining high-quality data for instruction tuning is
typically challenging and extensive works have been dedicated to this endeavor. For instance, Alpaca
[38] employs self-instruct [42] to generate instruction-following demonstrations. WizardLM [45]
introduces Evol-Instruct and transforms the instruction data into more complex variants. In addition
to Evol-Instruct, we also incorporate the data construction process itself as a form of data into the
training. Moreover, although previous works [16, 43, 41, 23] utilize multiple fine-tuning datasets, we
harmonize multi-source data at a fine-grained level.

Learning from hindsight. The concept of learning from hindsight [26] has been explored in
goal-conditioned learning [17, 12]. Hindsight Experience Replay (HER) [1] is designed to re-label
rewards and facilitate learning from sparse feedback. Korbak et al. [19] study the influence of
human preferences during pre-training, showing improved performance when models are aligned
with human preferences. Previous work primarily serves as an alternative to RLFT, utilizing HER
to leverage (suboptimal) historical data for model learning. We focus on harmonizing the inherent
conflicts within multi-source data through hindsight, to fully tap into the potential of base models.

5 Conclusion

In this paper, we propose an effective framework for integrating multi-source data to fine-tune Code
LLMs, addressing the limitations in quality and diversity inherent within a single-source dataset. This
is a non-trivial paradigm and we pioneer to unveil inherent conflicts in multi-source code corpora. To
resolve this challenge, we innovatively design data-specific AlchemistPrompts, inspired by hindsight
relabeling. Additionally, we make the first effort of integrating the data construction process as code
comprehension tasks into the training process. These key concepts enhance the diversity, quality, and
cost-effectiveness of code fine-tuning data, facilitating the development of the AlchemistCoder series
models with significantly improved and comprehensive coding capabilities.

6 Acknowledgments

This work is supported by National Natural Science Fund of China (62076184, 62473286) in part by
Shanghai Natural Science Foundation (22ZR1466700). Besides, this project is funded in part by the
Hong Kong Generative AI Research and Development Center (HKGAI) under the Innovation and
Technology Commission (ITC)’s InnoHK. Dahua Lin is a PI of HKGAI under the InnoHK.

10



References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob

McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

[3] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297, 2024.

[4] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation, 2023.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

[6] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. CoRR, abs/2211.12588, 2022.

[7] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[9] codefuse ai. The codeexercise-python-27k dataset. https://huggingface.co/datasets/codefuse-ai/
CodeExercise-Python-27k, 2023.

[10] codefuse ai. The evolinstrutcode dataset. https://huggingface.co/datasets/codefuse-ai/
Evol-instruction-66k, 2023.

[11] Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected by
supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

[12] Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,
Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858, 2022.

[13] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi,
Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all you need.
arXiv preprint arXiv:2306.11644, 2023.

[14] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196, 2024.

[15] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

[16] Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel
Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate: Enhancing lm
adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

[17] Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer, 1993.

[18] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533, 2022.

[19] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason
Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences. In
International Conference on Machine Learning, pages 17506–17533. PMLR, 2023.

[20] Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting in
language models via implicit inference. arXiv preprint arXiv:2309.10105, 2023.

[21] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science code
generation. In International Conference on Machine Learning, pages 18319–18345. PMLR, 2023.

[22] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161, 2023.

11

https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k


[23] Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, and Stan Z Li. Semireward: A
general reward model for semi-supervised learning. arXiv preprint arXiv:2310.03013, 2023.

[24] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, 2022.

[25] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. Code as policies: Language model programs for embodied control. In ICRA, pages 9493–9500.
IEEE, 2023.

[26] Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with feedback.
arXiv preprint arXiv:2302.02676, 3, 2023.

[27] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. arXiv preprint
arXiv:2305.01210, 2023.

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[29] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of catastrophic
forgetting in large language models during continual fine-tuning. arXiv preprint arXiv:2308.08747, 2023.

[30] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct.
arXiv preprint arXiv:2306.08568, 2023.

[31] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[32] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. Codegen: An open large language model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474, 2022.

[33] OpenAI. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/chatgpt/,
2022.

[34] OpenAI. Gpt-4 technical report. Technical report, 2023.

[35] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[36] Demin Song, Honglin Guo, Yunhua Zhou, Shuhao Xing, Yudong Wang, Zifan Song, Wenwei Zhang,
Qipeng Guo, Hang Yan, Xipeng Qiu, et al. Code needs comments: Enhancing code llms with comment
augmentation. arXiv preprint arXiv:2402.13013, 2024.

[37] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

[38] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

[39] theblackcat102. The evolved code alpaca dataset. https://huggingface.co/datasets/
theblackcat102/evol-codealpaca-v1, 2023.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[41] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat: Advancing
open-source language models with mixed-quality data. arXiv preprint arXiv:2309.11235, 2023.

[42] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

[43] Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring the
state of instruction tuning on open resources. arXiv preprint arXiv:2306.04751, 2023.

[44] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is all
you need. arXiv preprint arXiv:2312.02120, 2023.

[45] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

12

https://openai.com/blog/chatgpt/
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1


[46] Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao Wang,
Yiquan Wang, Heng Ji, and Chengxiang Zhai. If LLM is the wizard, then code is the wand: A survey on
how code empowers large language models to serve as intelligent agents. CoRR, abs/2401.00812, 2024.

[47] Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. Wavecoder: Widespread and versatile enhanced instruction tuning with refined data generation. arXiv
preprint arXiv:2312.14187, 2023.

[48] Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter Abbeel, and Joseph E Gonzalez. The wisdom of
hindsight makes language models better instruction followers. arXiv preprint arXiv:2302.05206, 2023.

[49] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

13



Appendix

In the Appendix sections, we discuss limitations (§A), ethical considerations and broader impacts
(§B), additional experimental results (§C), benchmark and evaluation details (§D), and more details
of our AlchemistCoder fine-tuning data (§E).

A Limitations

Currently, GPT-4 holds an advantage in generating high-quality responses, and thus has been chosen
as our Alchemist model. Compared to methods that heavily rely on GPT-4 to generate entire new
datasets, we have been striving to minimize our dependence on GPT-4. Instead of using GPT-4 to
generate data from scratch, we optimize a small amount of data. In the ablation experiments shown in
Figure 7, we have verified that achieving optimal performance only requires using GPT-4 to generate
AlchemistPrompts for 5% of the data. Furthermore, the generation tasks we designed only require
very short responses (less than 50 words), significantly reducing the token usage of GPT-4. Despite
these efforts, the generation of AlchemistPrompts is still a significant cost. We will explore fine-tuning
open-source models to achieve the free generation of AlchemistPrompts in the future. For data bias,
Our AlchemistPrompts enhance the instruction-following abilities of models, which can potentially
mitigate biases. For example, if the model has a bias towards responding with Python code when
the programming language is not specified, the inclusion of programming language declarations in
AlchemistPrompts helps to alleviate this bias. We have not delved into the aspect of data bias yet and
will explore it in the future.

B Ethical Considerations and Broader Impacts

We use publicly available datasets, benchmarks, and models for training and evaluation, free from
any possible harm toward individuals or groups. The generated data are relevant to code-related tasks
and no personal identification information is involved. Furthermore, we adopt ChatGPT to polish the
writing and assist with language. For broader impacts, AlchemistCoder enhances code generation and
generalization through multi-source fine-tuning, promising improved software development efficiency,
democratization of programming, and educational benefits. However, it also raises concerns about
malicious use, intellectual property issues, and skill degradation. To ensure the responsible release
of AlchemistCoder models, we will implement controlled access, provided usage guidelines, and
engaged with the research community, thereby mitigating the risks of misuse or dual-use.

C Additional Experimental Resluts

C.1 Details of fine-tuning tokens

In Tab. A1, we provide details of the training corpus used for fine-tuned Code LLMs.

C.2 Data complexity and multi-source integration

Our research demonstrates that integrating data from multiple sources significantly increases data
complexity and diversity, as evidenced by the broader distributions of code and description lengths
shown in Figure 6 of the manuscript. While this integration facilitates the model’s ability to learn richer
feature representations, it also heightens the demands on the model to manage inputs of varying styles,
formats, and quality. AlchemistCoder addresses this challenge by introducing AlchemistPrompts,
which help conduct harmonizations across various data sources and within instruction-response pairs.
To offer a more in-depth demonstration of the AlchemistPrompts efficacy as data complexity scales,
we present detailed experimental results from the multi-source integration and harmonization process
in Tab. A2

D Benchmark and Evaluation Details

D.1 HumanEval/HumanEval+

14



Table A1: Pass@1 results on HumanEval (HumanEval+) and MBPP (MBPP+) benchmarks. The
column of FT Tokens (Source) specifies the tokens and origin of fine-tuning (FT) data used to train
each model.
Model Params Base Model FT Tokens (Source) HumanEval (+) MBPP (+) Average (+)

Closed-source Models

GPT-3.5-Turbo - - - 72.6 (65.9) 81.7 (69.4) 77.2 (67.7)
GPT-4-Turbo - - - 85.4 (81.7) 83.0 (70.7) 84.2 (76.2)

Open-source Models

Llama 2-Chat 70B Llama 2 - 31.7 (26.2) 52.1 (38.6) 41.9 (32.4)
CodeLlama-Python 70B Llama 2 - 57.9 (50.0) 72.4 (52.4) 65.2 (51.2)
CodeLlama-Instruct 70B CodeLlama 5B (Llama Generation) 65.2 (58.5) 73.5 (55.1) 69.4 (56.8)

CodeLlama-Python 34B Llama 2 - 51.8 (43.9) 67.2 (50.4) 59.5 (47.2)
WizardCoder-CL 34B CodeLlama-Python 80M (GPT Generation) 73.2 (56.7) 73.2 (51.9) 73.2 (54.3)
DeepSeek-Coder-Instruct 33B DeepSeek-Coder-Base 2B (GitHub Crawling) 78.7 (67.7) 78.7 (59.7) 78.7 (63.7)

StarCoder 15B - - 34.1 (33.5) 55.1 (43.4) 44.6 (38.5)
CodeLlama-Python 13B Llama 2 - 42.7 (36.6) 61.2 (45.6) 52.0 (41.1)
WizardCoder-SC 15B StarCoder 80M (GPT Generation) 51.9 (45.7) 61.9 (44.9) 56.9 (45.3)

Llama 2 7B - - 14.0 (10.4) 26.1 (17.5) 20.1 (14.0)
StarCoder 7B - - 24.4 (21.3) 33.1 (29.2) 28.8 (25.3)
CodeLlama-Python 7B Llama 2 - 37.8 (33.5) 57.6 (42.4) 47.7 (38.0)
WizardCoder-CL 7B CodeLlama-Python 80M (GPT Generation) 48.2 (42.1) 56.6 (42.4) 52.4 (42.3)
DeepSeek-Coder-Base 6.7B - - 47.6 (41.5) 70.2 (53.6) 58.9 (47.6)
Magicoder-CL 7B CodeLlama-Python 90M (GPT Generation) 60.4 (49.4) 64.2 (46.1) 62.3 (47.8)
MagicoderS-CL 7B CodeLlama-Python 240M (GPT Generation) 70.7 (60.4) 68.4 (49.1) 69.6 (54.8)
Magicoder-DS 6.7B DeepSeek-Coder-Base 90M (GPT Generation) 66.5 (55.5) 75.4 (55.6) 71.0 (55.6)
DeepSeek-Coder-Instruct 6.7B DeepSeek-Coder-Base 2B (GitHub Crawling) 73.8 (69.5) 72.7 (55.6) 73.3 (62.6)
MagicoderS-DS 6.7B DeepSeek-Coder-Base 240M (GPT Generation) 76.8 (65.2) 75.7 (56.1) 76.3 (60.7)
AlchemistCoder-L (ours) 7B Llama 2 200M (GPT Harmonization) 56.7 (52.4) 54.5 (49.6) 55.6 (51.0)
AlchemistCoder-CL (ours) 7B CodeLlama-Python 200M (GPT Harmonization) 74.4 (68.3) 68.5 (55.1) 71.5 (61.7)
AlchemistCoder-DS (ours) 6.7B DeepSeek-Coder-Base 200M (GPT Harmonization) 79.9 (75.6) 77.0 (60.2) 78.5 (67.9)

Table A2: Ablation study on the efficacy of multi-source integration and AlchemistPrompt harmo-
nizations, evaluated on the HumanEval (Pass@1) and MBPP (Pass@1) benchmarks.

Method HumanEval MBPP

Baseline (Llama2-7B) 14.0 26.1

1-source data fine-tuning 18.3 29.0
+ AlchemistPrompt harmonizations 22.6 (4.3↑) 30.2 (1.2↑)

2-source data fine-tuning 35.4 30.6
+ AlchemistPrompt harmonizations 39.0 (3.6↑) 32.8 (2.2↑)

3-source data fine-tuning 37.8 35.4
+ AlchemistPrompt harmonizations 43.9 (6.1↑) 40.8 (5.4↑)

4-source data fine-tuning 40.2 42.2
+ AlchemistPrompt harmonizations 55.1 (14.9↑) 49.4 (7.2↑)

Prompt

Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Complete the following python function.

{ instruction }

Here is the completed function:

Prompt

Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:

Figure A1: Prompt used to evaluate on
HumanEval and HumanEval+.

HumanEval [5] and HumanEval+ [27] are benchmarks for
assessing LLMs’ code generation, focusing on functional
correctness. HumanEval+ expands on HumanEval by sig-
nificantly increasing test cases through EvalPlus, using
LLM and mutation strategies for more rigorous evalua-
tion. This approach reveals performance drops in models
like GPT-4 and ChatGPT against challenging tests, em-
phasizing the need for diverse test scenarios to accurately
evaluate LLMs’ coding abilities. For evaluation on Hu-
manEval and HumanEval+, we adopt the prompt designed
for HumanEval/HumanEval+ tasks shown in Fig. A1. Fol-

15



lowing prior works [49, 7, 44], we use the greedy decoding
strategy and focus on comparing the pass@1 metric.

D.2 MBPP/MBPP+

The MBPP (Mostly Basic Python Programming) benchmark [2] consists of around 1,000 Python
challenges, crowd-sourced to test basic programming skills, including fundamentals and standard
library use. Aimed at beginners, each challenge offers a description, solution, and three tests for
verifying solution accuracy. MBPP+ [27] is an extension of the MBPP benchmark, utilizing a subset
of hand-verified problems from MBPP-sanitized to ensure tasks are well-defined and unambiguous.
For the evaluation on MBPP and MBPP+, we adopt the three-shot prompt shown in Fig. A2.

D.3 HumanEval-X

HumanEval-X [49] is a comprehensive benchmark that assesses the capabilities of code generation
models across multiple programming languages, including Python, C++, Java, JavaScript, and Go.
It consists of 820 meticulously created data samples, each accompanied by test cases, making it
an invaluable resource for evaluating and improving multilingual code generation models. The
benchmark aims to provide insights into the models’ proficiency in solving diverse coding challenges
and their accuracy in generating functionally correct code in different languages. For evaluation on
HumanEval-X, we do not use specific prompts and follow the original test prompts.

D.4 DS-1000

The DS-1000 benchmark [21] adapts 1000 different data science coding problems each with unit
tests from StackOverflow and checks both execution semantics and surface-form constraints. These
realistic problems are drawn from seven popular data science libraries in Python, including Matplotlib
(plt), NumPy (np), Pandas (pd), SciPy (scp), Scikit-Learn (sk), PyTorch (py), and TensorFlow (tf).
DS-1000 has two modes: completion and insertion, and here we only evaluate completion, as the
basic CodeLlama-Python does not support insertion. For evaluation on DS-1000, we do not use
specific prompts and follow the original test prompts.

D.5 MMLU

The Massive Multitask Language Understanding (MMLU) benchmark [15] is an evaluation frame-
work designed to measure the depth and breadth of knowledge that LLMs possess. It accomplishes
this by testing these models across 57 varied tasks in both zero-shot and few-shot scenarios. The tasks
encompass a wide array of topics, including basic math, American history, computer science, law,
and more, challenging the models to leverage their acquired knowledge to solve complex problems.
MMLU seeks to emulate the multifaceted way in which human knowledge and problem-solving
skills are assessed, offering a comprehensive gauge of a model’s ability to understand and apply
information across multiple domains. For evaluation on MMLU, we do not use specific prompts and
follow the original test prompts.

D.6 BBH

The BIG-Bench Hard (BBH) Benchmark [37] is a specialized evaluation framework tailored to
rigorously test the capabilities of LLMs. This benchmark targets a selection of tasks that have
historically proven challenging for LLMs, focusing on areas where models typically do not exceed
average human performance. The BBH Benchmark aims to push the boundaries of what LLMs can
achieve by emphasizing complex reasoning, deep understanding, and nuanced interpretation, setting
a high bar for model development and performance evaluation. For evaluation on BBH, we do not
use specific prompts and follow the original test prompts.

D.7 GSM8K

The GSM8K (Grade School Math 8,000) benchmark [8] serves as a rigorous evaluation framework
for testing the mathematical problem-solving prowess of LLMs. This benchmark comprises a dataset
of 8,500 diverse and high-quality math word problems at the grade school level, designed to challenge

16



Prompt

Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Complete the following python function.

{ instruction }

Here is the completed function:

Prompt

Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:

Figure A2: Three-shot prompt used to evalu-
ate on MBPP and MBPP+.

: Find the shortest path from one vertex to all other vertices in a graph.
Response: Here is the Python code that satisfies the requirement:

def bellman_ford(graph, start_vertex):
'''Bellman-Ford algorithm: A dynamic programming algorithm that …'''

Instruction

Code Review Data Generation
You are asked to act as a professional code reviewer and your task is to
professionally and accurately review the given content and assign a
score. The involved programming languages include but are not limited
to Python, C, C++, Java, JavaScript, HTML, Haskell, SQL, C#, and PHP.

Please adhere to the following review requirements:
- Correct: No syntax and logic errors. The implementations should
follow the given function names.
- Clarity: Variables should have meaningful names. The arguments and
return values of functions should have type annotations.

*NOTE (important):*
1. Please evaluate and score the code from the aspects of 'correct' and
'clarity', and adhere to the following output format:
[Correct]
<your score (ranges from 0 to 10)>. <your review>
[Clarity]
<your score (ranges from 0 to 10)>. <your review>
[Suggestions]
<your additional suggestions for further improvement>
[Refined Code]
<The refined code according to your suggestions (DO NOT modify the
function declarations appearing in the code)>
2. If there is no code in the given content, please answer with [N/A].
3. DO NOT respond with content that is outside of the specified output
format.

Given Content:
{{ code from multi-source data}}

Figure A3: Detailed prompt designed for generating
code review data.

LLMs with tasks necessitating advanced, multi-step reasoning abilities. GSM8K’s primary aim is to
gauge how well these models can parse, understand, and solve math problems, thereby offering a
comprehensive measure of their capacity for logical reasoning and mathematical computation. By
incorporating such a specialized benchmark, researchers can better understand the extent to which
LLMs can mimic human-like reasoning in solving complex mathematical scenarios. For evaluation
on GSM8K, we do not use specific prompts and follow the original test prompts.

E AlchemistCoder Dataset Details

E.1 AlchemistPrompt

We provide two samples of AlchemistPrompts in Fig. A4 and Fig. A5.

E.2 Code comprehension task data

For instruction evolution task data, we provide two samples in Fig. A6 and Fig. A7. For data filtering
task data, we provide two samples in Fig. A8 and Fig. A9. For code review task data, we design
prompt as illustrated in Fig. A3 to obtain high-quality code review task data and we provide two
samples in Fig. A10 and Fig. A11.

17



Design a function that finds the greatest common divisor (GCD) of two given
numbers: 10, 20.

AlchemistPrompt-customized Instruction
Please provide a Python code example for the following task including the
expected output after the code execution.
Design a function that finds the greatest common divisor (GCD) of two given
numbers: 10, 20.

Instruction

Sure, here is a Python function that uses the Euclidean algorithm to find the GCD of
two numbers:

This function keeps replacing `a` with `b` and `b` with `a % b` (the remainder of `a /
b`) until `b` is `0`, at which point `a` is the greatest
common divisor. So, the GCD of 10 and 20 would be 10.

You can call the above function with any two numbers you want to find the GCD of.

def gcd(a, b):
while b != 0:

a, b = b, a % b
return abs(a)

print(gcd(10, 20)) # Output: 10

Response

Compare two strings and output true if they are an anagram. The input strings can
contain both lowercase and uppercase letters.

Write a Python function to check if two input strings are anagrams of each other,
considering both lower and uppercase letters. An anagram is a word or phrase
formed by rearranging the letters of a different word or phrase.
Compare two strings and output true if they are an anagram. The input strings can
contain both lowercase and uppercase letters.

Instruction

def is_anagram(string1, string2):
string1 = string1.lower()
string2 = string2.lower()
string1 = string1.replace(" ", "")
string2 = string2.replace(" ", "")

list1 = list(string1)
list2 = list(string2)
list1.sort()
list2.sort()

sorted_string1 = ''.join(list1)
sorted_string2 = ''.join(list2)

# Compare the sorted strings
if sorted_string1 == sorted_string2:

return True
else:

return False

Response

AlchemistPrompt-customized Instruction

Figure A4: Example #1 of AlchemistPrompts.

Design a function that finds the greatest common divisor (GCD) of two given
numbers: 10, 20.

AlchemistPrompt-customized Instruction
Please provide a Python code example for the following task including the
expected output after the code execution.
Design a function that finds the greatest common divisor (GCD) of two given
numbers: 10, 20.

Instruction

Sure, here is a Python function that uses the Euclidean algorithm to find the GCD of
two numbers:

This function keeps replacing `a` with `b` and `b` with `a % b` (the remainder of `a /
b`) until `b` is `0`, at which point `a` is the greatest
common divisor. So, the GCD of 10 and 20 would be 10.

You can call the above function with any two numbers you want to find the GCD of.

def gcd(a, b):
while b != 0:

a, b = b, a % b
return abs(a)

print(gcd(10, 20)) # Output: 10

Response

Compare two strings and output true if they are an anagram. The input strings can
contain both lowercase and uppercase letters.

Write a Python function to check if two input strings are anagrams of each other,
considering both lower and uppercase letters. An anagram is a word or phrase
formed by rearranging the letters of a different word or phrase.
Compare two strings and output true if they are an anagram. The input strings can
contain both lowercase and uppercase letters.

Instruction

def is_anagram(string1, string2):
string1 = string1.lower()
string2 = string2.lower()
string1 = string1.replace(" ", "")
string2 = string2.replace(" ", "")

list1 = list(string1)
list2 = list(string2)
list1.sort()
list2.sort()

sorted_string1 = ''.join(list1)
sorted_string2 = ''.join(list2)

# Compare the sorted strings
if sorted_string1 == sorted_string2:

return True
else:

return False

Response

AlchemistPrompt-customized Instruction

Figure A5: Example #2 of AlchemistPrompts.

18



Instruction
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Response
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Assistant
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.Figure A6: Example #1 of instruction evolution task data.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Assistant
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.

Instruction
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods: 
If the original problem can be solved with only a few logical steps, please add 
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may 
contain duplicates and non-integer elements. Return a dictionary with the count 
of each item. The input list can have a maximum length of 1000.

Response

Figure A7: Example #2 of instruction evolution task data.

19



User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Assistant
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Assistant
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.

Below is a code task and its corresponding solution. Please utilize your 
understanding of code to carefully review this solution.

Task:
Before we proceed, let's briefly talk about Python list indexing. Python uses 
zero-based indexing, which means the first element of a list is at index 0. The 
list 'a' here is a mutable sequence of integers, and we are going to modify it 
using a for loop.
Consider a list `a = [1,3,2,2,3,4]`. What would be the output of the following 
code?

Solution:
The correct output of the given code would be: [3, 1, 3, 2, 2, 3]

The above solution is considered to be of *low quality*. Choose from the 
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into 
modularized functions.

Your choice (answer only the choice without the reason): 

a = [1,3,2,2,3,4]

for i in range(len(a)):
a[i] = a[i -1]

a. The solution is too short (less than 20 words) and does not contain code.

User
Below is a code task and its corresponding solution. Please utilize your 
understanding of code to carefully review this solution.

Task:
Write a function that takes as input a tuple of numbers (t_1,...,t_{N+1}) and 
returns a tuple of length N where the i-th element of the tuple is equal to t_i * 
t_{i+1}. The function should also handle negative numbers and zeros, and 
return an error message if the input is not a tuple.

Solution:
Here is a function implementation in Python:

The above solution is considered to be of *low quality*. Choose from the 
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into 
modularized functions.

Your choice (answer only the choice without the reason): 

def tuple_product(input_tuple):
if not isinstance(input_tuple, tuple):

return "Error: Input is not a tuple"
return tuple(input_tuple[i] * input_tuple[i + 1] for i in

range(len(input_tuple) - 1))

print(tuple_product((1, 2, 3, 4, 5))
# Outputs: (2, 6, 12, 20)

print(tuple_product((-1, 2, -3, 4, -5)))
# Outputs: (-2, -6, -12, -20)

Assistant
a. The solution is too short (less than 20 words) and does not contain code.

Instruction

Response

Figure A8: Example #1 of data filtering task data.

20



User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Assistant
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Assistant
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.

User
Below is a code task and its corresponding solution. Please utilize your 
understanding of code to carefully review this solution.

Task:
Before we proceed, let's briefly talk about Python list indexing. Python uses
zero-based indexing, which means the first element of a list is at index 0. The 
list 'a' here is a mutable sequence of integers, and we are going to modify it 
using a for loop.
Consider a list `a = [1,3,2,2,3,4]`. What would be the output of the following 
code?

Solution:
The correct output of the given code would be: [3, 1, 3, 2, 2, 3]

The above solution is considered to be of *low quality*. Choose from the 
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into 
modularized functions.

Your choice (answer only the choice without the reason): 

a = [1,3,2,2,3,4]

for i in range(len(a)):
a[i] = a[i -1]

Assistant
a. The solution is too short (less than 20 words) and does not contain code.

Below is a code task and its corresponding solution. Please utilize your 
understanding of code to carefully review this solution.

Task:
Write a function that takes as input a tuple of numbers (t_1,...,t_{N+1}) and 
returns a tuple of length N where the i-th element of the tuple is equal to t_i * 
t_{i+1}. The function should also handle negative numbers and zeros, and 
return an error message if the input is not a tuple.

Solution:
Here is a function implementation in Python:

The above solution is considered to be of *low quality*. Choose from the 
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into 
modularized functions.

Your choice (answer only the choice without the reason): 

def tuple_product(input_tuple):
if not isinstance(input_tuple, tuple):

return "Error: Input is not a tuple"
return tuple(input_tuple[i] * input_tuple[i + 1] for i in

range(len(input_tuple) - 1))

print(tuple_product((1, 2, 3, 4, 5))
# Outputs: (2, 6, 12, 20)

print(tuple_product((-1, 2, -3, 4, -5)))
# Outputs: (-2, -6, -12, -20)

b. There are code compilation errors in the solution.

Instruction

Response

Figure A9: Example #2 of data filtering task data.

21



The prompt for generating data is omitted.
Given Content:
You can use the `generate_json` function to get JSON string:

import json
def process_value(value):

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value
def generate_json(dictionary):

modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

[Correct]
9. The code is correct. It correctly processes the values according to the
specified rules and returns the expected JSON string.
[Clarity]
8. The code is clear and easy to understand. The function names are descriptive
and the code follows a logical flow.
[Suggestions]
- It would be helpful to include type annotations for the function arguments and
return values. This would make the code more clear and easier to understand.
[Refined Code]
import json
from typing import Any, Dict, List, Union

def process_value(value: Union[str, int, List[Any], Dict[str, Any]]) -> 
Union[str, int, List[Any], Dict[str, Any]]:

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value

def generate_json(dictionary: Dict[str, Any]) -> str:
modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

User
The prompt for generating data was omitted.
Given Content:
The error in the code is an incorrect indentation when printing the indentation spaces.
The number of spaces printed should be based on the line number, but the code
mistakenly indents by a fixed number of spaces. This leads to misalignment and missing
characters in some lines. Additionally, there are missing asterisks and periods in the inner
loop, which causes the alternating pattern to be incorrect. By fixing the indentation and
adding the missing characters, the tower of stars will be displayed correctly.

def print_star_tower():
for i in range(1, 11):

# Error: Incorrect indentation
print(' ' * i, end='') # Indentation should be based on line number

for j in range(1, i*3):
if j % 2 == 0:

print('.', end='') # Error: Missing asterisk
else:

print('*', end='') # Error: Missing period
print('')

print_star_tower()

Assistant
[Correct]
3. The code has syntax and there are logic errors that cause the tower of stars to be
displayed incorrectly.
[Clarity]
8. The code uses meaningful variable names and is easy to understand.
[Suggestions]
- The code could benefit from adding type annotations to the function and its arguments.
- The logic errors could be fixed by adjusting the indentation and adding the missing
characters in the inner loop.
[Refined Code]

In the refined code, the indentation has been fixed and the missing characters have been
added. Additionally, type annotations have been added to the function and its arguments
to improve clarity.

def print_star_tower() -> None:
for i in range(1, 11):

print(' ' * i, end='')
for j in range(1, i*3):

if j % 2 == 0:
print('.', end='')

else:
print('*', end='')

print()

Instruction

Response

Figure A10: Example #1 of code review task data. For clarity, the prompt for generating data is
omitted.

22



User
The prompt for generating data was omitted.
Given Content:
You can use the `generate_json` function to get JSON string:

import json
def process_value(value):

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value
def generate_json(dictionary):

modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

Assistant
[Correct]
9. The code is correct. It correctly processes the values according to the
specified rules and returns the expected JSON string.
[Clarity]
8. The code is clear and easy to understand. The function names are descriptive
and the code follows a logical flow.
[Suggestions]
- It would be helpful to include type annotations for the function arguments and
return values. This would make the code more clear and easier to understand.
[Refined Code]
import json
from typing import Any, Dict, List, Union

def process_value(value: Union[str, int, List[Any], Dict[str, Any]]) -> 
Union[str, int, List[Any], Dict[str, Any]]:

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value

def generate_json(dictionary: Dict[str, Any]) -> str:
modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

The prompt for generating data is omitted.
Given Content:
The error in the code is an incorrect indentation when printing the indentation spaces. 
The number of spaces printed should be based on the line number, but the code 
mistakenly indents by a fixed number of spaces. This leads to misalignment and missing 
characters in some lines. Additionally, there are missing asterisks and periods in the inner 
loop, which causes the alternating pattern to be incorrect. By fixing the indentation and 
adding the missing characters, the tower of stars will be displayed correctly.

def print_star_tower():
for i in range(1, 11):

# Error: Incorrect indentation
print(' ' * i, end='') # Indentation should be based on line number

for j in range(1, i*3):
if j % 2 == 0:

print('.', end='') # Error: Missing asterisk
else:

print('*', end='') # Error: Missing period
print('')

print_star_tower()

[Correct]
3. The code has syntax and there are logic errors that cause the tower of stars to be
displayed incorrectly.
[Clarity]
8. The code uses meaningful variable names and is easy to understand.
[Suggestions]
- The code could benefit from adding type annotations to the function and its arguments.
- The logic errors could be fixed by adjusting the indentation and adding the missing
characters in the inner loop.
[Refined Code]

In the refined code, the indentation has been fixed and the missing characters have been
added. Additionally, type annotations have been added to the function and its arguments
to improve clarity.

def print_star_tower() -> None:
for i in range(1, 11):

print(' ' * i, end='')
for j in range(1, i*3):

if j % 2 == 0:
print('.', end='')

else:
print('*', end='')

print()

Instruction

Response

Figure A11: Example #2 of code review task data. For clarity, the prompt for generating data is
omitted.

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the primary contributions and
scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Appendix §A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

24



Justification: Our work focuses on experimental research to advance the boundaries of code
intelligence and does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully disclosed the datasets, models, and experimental procedures used
in detail. Benchmarks and implementation details can be found in Sec. 3.1 and Appendix
§D. More details of our AlchemistCoder fine-tuning data are provided in Appendix §E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided code with sufficient instructions in our supplemental material.
We have released our code, data, and AlchemistCoder series models at https://internlm.
github.io/AlchemistCoder.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details. Benchmarks and implemen-
tation details can be found in Sec. 3.1 and Appendix §D. More details of our AlchemistCoder
fine-tuning data are provided in Appendix §E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides extensive information about the statistical significance of
our experiments. The factors of variability are discussed, including the impact of different
data sources and the harmonization process using AlchemistPrompts.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://internlm.github.io/AlchemistCoder
https://internlm.github.io/AlchemistCoder
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments compute resources have been discussed in Sec. 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully follow the ethics guidelines of NeurIPS and the ethical considerations
have been discussed in Appendix §B.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix §B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The safeguards have been discussed in Appendix §B.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use publicly available datasets, benchmarks, and models for training and
evaluation, free from any possible harm toward individuals or groups.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new models that are well-documented. Documentation
includes details about the dataset, code, and model, such as training procedures, licenses,
limitations, and consent from data sources. We have released our code, data, and Alchemist-
Coder series models at https://internlm.github.io/AlchemistCoder.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

paperswithcode.com/datasets
https://internlm.github.io/AlchemistCoder


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30


	Introduction
	Method
	Multi-source data construction
	AlchemistPrompt
	Code comprehension task
	Data cleaning and decontamination
	Harmonized AlchemistCoder dataset

	Experiments
	Benchmarks and implementation details
	Evaluation on code generation task
	Ablation study
	Analytical study

	Related Work
	Conclusion
	Acknowledgments
	Limitations
	Ethical Considerations and Broader Impacts
	Additional Experimental Resluts
	Details of fine-tuning tokens
	Data complexity and multi-source integration

	Benchmark and Evaluation Details
	HumanEval/HumanEval+
	MBPP/MBPP+
	HumanEval-X
	DS-1000
	MMLU
	BBH
	GSM8K

	AlchemistCoder Dataset Details
	AlchemistPrompt
	Code comprehension task data


