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ABSTRACT

Contextual meta-reinforcement learning (meta-RL) relies on latent task embed-
dings to enable rapid adaptation when faced with an unknown task. However, most
methodologies rely on unimodal priors, which lack the adaptive capacity to rep-
resent complex multimodal task structure, limiting performance when faced with
non-parametric variation. We introduce Dynamic Mixture Embeddings (DME),
a belief-based contextual meta-RL method that learns a hierarchical Gaussian-
mixture Variational Autoencoder, in which mixture component parameters are
conditioned on a high-level macro latent. This yields an adaptive mixture prior
whose means and variances shift as more context is gathered, while training is fur-
ther augmented with virtual tasks drawn from the adaptive prior. DME achieves
state-of-the-art performance across the entire MetaWorld benchmark suite, de-
signed to test adaptation under non-parametric variation.

1 INTRODUCTION

Contextual meta-reinforcement learning (meta-RL) fundamentally seeks to endow an agent with the
ability to infer the current task dynamics after only a brief period of interaction, while retaining
strong performance across a broader task distribution. Functionally, this enables contextual meta-
RL policies to quickly adapt and re-optimise their behaviour when faced with new, unseen tasks.
Recent advancements in this field have produced a mature, practical framework that is seeing use
in a growing range of real-world systems, from robust autonomous driving in diverse environments
(Jiang et al., 2024; Hu et al., 2025) to situational behaviour in robotics applications (Ballou et al.,
2023; Shokry et al., 2024). Put together, these examples underscore meta-RL’s promise as a robust,
data-efficient alternative to task-specific reinforcement learning in scenarios with changing task dy-
namics.

The broad range of variations in environments and tasks a contextual meta-RL agent must face can be
separated, using the terminology of Yu et al. (2020), into two complementary groups. In parametric
variation, tasks differ only through continuous parameters such as limb mass, joint friction, reward
weights, or observation noise. While these variations still represent a broader distribution of MDPs,
contemporary algorithms are frequently able attain near-expert performance after the handful of in-
teractions required to identify the task (Zintgraf et al., 2021b; Zhang et al., 2021). In non-parametric
variation, the structure and semantics of the task itself alters: object sets change, new goal interac-
tions appear, and the transition dynamics can change entirely. Although recent methods have taken
strides towards addressing these challenges through approaches such as task clustering (Chu et al.,
2024) and task simulation (Lee et al., 2023), empirical performance on key benchmarks remains
well below those achieved in the parametric setting.

As contextual meta-RL agents begin to tackle increasingly challenging problems, the representa-
tional capacity of latent embeddings that supply the agent with task context remains a bottleneck.
In complex environments, the complexity and variety of tasks can overwhelm an encoder’s ability
to separate qualitatively different behaviours and task regimes, leading to entangled representations
that blur the boundaries between objectives. At the same time, the encoder must remain flexi-
ble enough to account for previously unseen dynamics, while still maintaining the sample efficient
adaptation that underpins meta-RL as a whole. Addressing these requirements simultaneously is a
core challenge that motivates the methodology presented in this work.
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A popular approach towards addressing some of these concerns involves multimodal representations
with Gaussian mixture embeddings (Wen et al., 2024; Lee et al., 2023). By carving latent space
into distinct regions, such embeddings are able to isolate incompatible modes of behaviour and
therefore provide more representational capacity than standard Gaussian embeddings. However,
existing methods suffer from rigidity in mixture parameters: the number and location of components
are fixed a priori, so when training later encounters unexpected challenges, the model must choose
an existing cluster, eroding representation quality and slowing adaptation.

We address this inflexibility with Dynamic Mixture Embeddings (DME), a contextual meta-RL
method that utilises a hierarchical Gaussian-mixture variational auto-encoder (GMVAE) whose
component parameters are themselves conditioned on a macro latent that is updated online from
each context window. As new evidence arrives, mixture means and covariances migrate or expand,
reallocating capacity while preserving previously learned structure. The primary contributions of
our work are as follows:

1. We develop a task encoder based on a hierarchical Gaussian-Mixture VAE whose com-
ponent parameters are conditioned on a macro latent variable. This dynamic mixture-
representation not only achieves greater expressive capacity, but also integrates well with
virtual training modules (Lee & Chung, 2021), strengthening robustness to non-parametric
task variation.

2. The subsequent method, DME, achieves state of the art performance on the entire Meta-
World benchmark suite (Yu et al., 2020), ranging from parametric variation in individual
ML1 tasks, to the challenging non-parametric ML10 and ML45 benchmarks

2 PROBLEM STATEMENT AND NOTATION

In this section, we state the contextual meta-RL problem and align on notation for the rest of the
paper. Each RL task can be considered as an MDP Mi = {S,A, P i, Ri drawn from a distribu-
tion p(M). This distribution can contain both non-parametric and parametric task variation, but
tasks from the same distribution are considered to be semantically similar and share some implicit
structure across P i and Ri. During adaptation, at timestep t the agent observes a short context
c0:t = {(sℓ, aℓ, rℓ, sℓ+1)}tℓ=0, and produces an episode-specific policy πθ(at|st, c0:t). For nota-
tional simplicity, we will often drop the subscript t unless it is relevant (e.g. πθ(a|s, c)).
The meta-objective is to maximise expected return over the task distribution:

max
θ

EMi∼p(M)

[
Eτ∼πθi

[
ri(τ)

]]
.

Finally, in this work we discuss a latent model with decomposition z = (w̃, ỹ, z̃). Throughout this
work, we will use z to represent latent representations as a conceptual whole, while z̃ refers to the
decomposed low-level task embedding.

3 RELATED WORK

Contextual meta-RL. Contextual meta-RL methods embed prior context into a probabilistic task
representation, which in turn informs the RL policy, enabling rapid adaptation to new tasks. Tradi-
tionally, contextual meta-RL methods have employed a single unimodal latent variable as the task
representation (Zhao et al., 2021; Liu et al., 2021). Adaptation is typically achieved either by pos-
terior sampling after a few exploratory episodes (Rakelly et al., 2019; Zhang et al., 2021; Wang
et al., 2024), or by a belief-based approach in which task uncertainty is explicitly conveyed to the
policy (Zintgraf et al., 2021a;b; Imagawa et al., 2022). While effective, such unimodal formulations
can struggle to capture complex or multi-modal task distributions. Our approach, DME, takes a
belief-based approach to adaptation but introduces a hierarchical mixture prior over latent variables,
thereby providing a richer representational structure.

Mixture latent variables and virtual training in meta-RL. Gaussian mixture latent task rep-
resentations have seen increasing use across all contextual meta-RL paradigms due to their ability
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to model complex, multimodal task distributions. These mixture priors have been used to explic-
itly partition tasks for separate embedding modules (Chu et al., 2024), improve robustness in non-
stationary environments (Poiani et al., 2021; Bing et al., 2023; Wang et al., 2023), and even extend
the prior non-parametrically so the number of mixture components can grow (Bing et al., 2024).
Compared to previous methods, DME conditions mixture component parameters on a high-level
macro latent inferred from context, allowing means and variances to move during adaptation, as the
inferred value of the macro latent is updated. Although hierarchical Gaussian mixtures have been
considered in the broader meta-learning literature (Zhang et al., 2023), to our knowledge DME is
the first to have truly adapted this dynamic latent structure to meta-RL.

Virtual training augments these representations by simulating additional experience from learned
task reconstructions. Within, task latents are sampled from the prior, before utilising a learned re-
ward decoder to create simulated rewards, before attaching them to existing transitions to generate
new context for training. This has been shown to be an effective mechanism to improve generalisa-
tion beyond the empirical training task distribution across both on-policy (Lee & Chung, 2021; Lee
et al., 2023; Kim et al., 2025).and off-policy (Ajay et al., 2022; Wen et al., 2024) variants. DME fol-
lows the established template of sampling task latents and decoding rewards for stored transitions,
but its synthetic tasks are drawn from adaptive mixture components, reducing dependence on tuning
the number of mixtures K.

Hierarchical meta-RL. Hierarchical control has long been used to tackle long horizons and
hard exploration by decomposing behaviour across levels: a high-level controller proposes sub-
behaviours or options and a low-level policy executes them (Bacon et al., 2017; Vezhnevets et al.,
2017; Levy et al., 2017; Nachum et al., 2018). This abstraction seeks to concentrate exploration and
credit assignment where it is most effective, utilising the slower decision-making time scales of the
high-level controller to maintain consistent behaviour.

This policy-level hierarchy has also been adapted to the meta-RL problem through a variety of
means. One approach abstracts sequences of actions into a stacks that are selected by a higher-level
decision layer, seeking to standardise high-level choices across tasks and reduce the searchable task
space during adaptation (Cho & Sun, 2024). Alternatively, instead of utilising action chains, addi-
tional information can be provided to the hierarchical meta-RL agent, such as an action-conditional
skill representation (He et al., 2024), or an auxiliary inner-loop value function (Bhatia et al., 2023).
In both cases, the hierarchical structure has been shown to improve sample efficiency and generali-
sation under task variation (Chua et al., 2023).

Our work takes an alternate route: instead of introducing a hierarchy of actions, DME builds hierar-
chy into the task representation. By learning a dynamic, multi-level latent belief, DME can embed
a wide collection of task representations in a similar fashion, while keeping a single policy that sees
structured uncertainty in task inference. In this sense, DME aims to capture many of the benefits of
hierarchy through latent representation rather than through a system of policies.

4 DYNAMIC MIXTURE EMBEDDINGS

Contextual meta-reinforcement learning (meta-RL) requires task embeddings that rapidly adapt
while distinguishing related tasks. Adaptive mixture priors offer a principled route to handling
diverse and complex tasks that require more flexibility than what traditional fixed mixture priors can
provide. However, implementing these priors in a manner bespoke for contextual meta-RL is not
trivial. Not only does training need to be structured in a way such to reduce the risk of overfitting
the high-capacity latent hierarchy, but similar latent representations must also induce comparable
behaviour in the policy.

In this section, we introduce the key concepts underpinning our method DME. We begin by in-
troducing the hierarchical Gaussian-mixture generative model at the core of DME, and discuss the
training modules that integrate it into the contextual meta-RL process. From there, we describe the
full DME algorithm and explain how virtual task simulation broadens the agent’s experience during
training. Finally, we briefly summarise key implementation details.

3
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Encoders

Decoders

PolicyNo gradient flow

Figure 1: DME overview. Outline of a forward pass through DME and its hierarchical GMVAE
encoder architecture. Online context is encoded into three latents: macro (w̃), mixture (ỹ) and task
(z̃). The RL policy utilises information from all three latents, including the task belief (µ(z), σ2,(z)).
Only z̃ is used in the decoders, ensuring that the lowest-level latent contains all information neces-
sary to reconstruct the MDP.

4.1 HIERARCHICAL GAUSSIAN MIXTURE MODEL FOR DYNAMIC TASK EMBEDDINGS

Latent hierarchy. Inspired by the hierarchical variational model of Dilokthanakul et al. (2016),
DME employs a three-tier latent structure z = (w̃, ỹ, z̃). This consists of a continuous high-level
macro-context latent w̃ ∼ N(0, I) that dynamically controls mixture parameters, a discrete cluster
latent ỹ ∼ Cat(1/K) that partitions the task embedding space into semantically distinct regions,
and a continuous low-level task embedding z̃|w̃, ỹ = k ∼ N

(
mψ(w̃, k), v

2
ψ(w̃, k)

)
, where k =

1, . . . ,K, that ultimately infers the specific task.

A decoder-side network parameterised by ψ maps the macro latent to mixture parameters,
{(mψ(w̃, k), v

2
ψ(w̃, k))}Kk=1, which define the component conditionals pψ(z̃|w̃, ỹ = k). The cat-

egorical ỹ selects an index k; given that index and w̃, z̃ is drawn from the corresponding Gaussian.
In this sense, the macro latent w̃ parameterises the component Gaussians selected by ỹ, determining
in turn the means and variances of clusters in z̃-space. For the remainder of this section, we use ϕ
for encoder parameters and ψ for decoder parameters.

Critically, this hierarchical structure is explicitly dynamic. The macro latent w̃ actively repositions
the Gaussian component means and variance structures in response to newly observed context. As
a result, unlike the fixed cluster components learned by previous methods, mixture parameters nat-
urally adapt and reallocate latent capacity in response to unseen task variation or distributional shift
during training and testing.

Task posteriors. Unlike previous applications of this model - where training primarily seeks to fit
observations drawn from a fixed generative prior - the objective of DME is to learn latent embed-
dings that quickly identify the underlying task given a small set of context transitions. Rather than
shaping the prior to match observed data, the job of the variational model is to produce posteri-
ors that capture sufficient task-relevant information to enable effective adaptation. Therefore, given
the rolling context c0:t = {(sℓ, aℓ, rℓ, sℓ+1)}tℓ=0, a recurrent encoder network parameterised by ϕ
produces posterior distributions over the continuous latent variables:

qϕ(w̃|c0:t) = N
(
µ
(w)
ϕ (c0:t), σ

(w)2
ϕ (c0:t)

)
, (1)

qϕ(z̃|c0:t) = N
(
µ
(z)
ϕ (c0:t), σ

(z)2
ϕ (c0:t)

)
. (2)

Recurrent task encoders are utilised as they are better at exploiting temporal dependencies, which is
a desirable property for on-policy meta-RL as it trains on sequential context.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Then, conditioning on inferred (w̃, z̃), the discrete posterior for ỹ can be computed analytically,
avoiding high-variance gradient estimators:

q(ỹ = k|w̃, z̃) =
N
(
z̃
∣∣mψ(w̃, k), v

2
ψ(w̃, k)

)∑K
j=1N

(
z̃
∣∣mψ(w̃, j), v2ψ(w̃, j)

) . (3)

A low-variance estimator for the categorical cluster latent offers a crucial advantage over traditional
neural estimators by keeping cluster assignments more stable during training, ensuring that down-
stream policy gradients are computed with minimal noise from label switching.

Parametrising the model this way reduces estimator variance and yields a single-path inference pro-
cedure: at test time, only the two Gaussian encoders qϕ(w̃|c0:t) and qϕ(z̃|c0:t) are required; the cate-
gorical q(ỹ|w̃, z̃) is computed analytically, avoiding a separate network for ỹ. Importantly, qϕ(z̃|c0:t)
is a single network, which mirrors the inference flow of unimodal methods such as VariBAD (Zint-
graf et al., 2021a). However, DME’s training through its hierarchical generative model encourages
z̃ to take on a multimodal structure, retaining the benefits of mixture modelling without increasing
inferential complexity at runtime.

At each timestep the encoder updates qϕ(w̃|c0:t), qϕ(z̃|c0:t), and the induced q(ỹ|w̃, z̃) so the policy
conditions on up-to-date beliefs rather than stale estimates.

Task Reconstruction. The low-level task embedding z̃ is trained via an MLP decoder to best
reconstruct all future rewards and transitions, not just at the current timestep. This coerces z̃ to
contain information that identifies the overall reward and transition function, allowing it to better
reconstruct the true MDP. Concretely, sampling z̃t ∼ qϕ(z̃|c0:t) from context-conditioned posterior,
the decoder models the distribution over all future states and rewards

pψ
(
st:T , rt:T−1

∣∣ st, at:T−1, z̃t
)
=

T−1∏
ℓ=t

pψ
(
sℓ+1

∣∣ sℓ, aℓ, z̃t) pψ(rℓ ∣∣ sℓ, aℓ, sℓ+1, z̃t
)
, (4)

where T denotes the end of the current episode horizon. Decoding the full rollout forces z̃ to
distil the information needed to recover the underlying task MDP dynamics and reward structure,
rather than merely forecasting the next step, and provides the primary learning signal for the en-
coder–decoder.

Moreover, we choose to condition the decoder on z̃ alone, excluding the macro w̃ and cluster latent
ỹ. By omitting the higher-level variables from the reconstruction path we force the information
bottleneck to reside in z̃, allowing w̃ and ỹ to play a predominantly organisational role and embed
cluster information without entangling task dynamics across multiple latent representations.

Variational objective. With z̃t ∼ qϕ(z̃|c0:t) and future indices ℓ ∈ {t, . . . , T − 1}, we introduce a
prediction error for state and reward transitions as the primary training signal for our encoder:

Lstate = −
T−1∑
ℓ=t

log pψ
(
sℓ+1 | sℓ, aℓ, z̃t

)
, (5)

Lreward = −
T−1∑
ℓ=t

log pψ
(
rℓ | sℓ, aℓ, sℓ+1, z̃t

)
. (6)

While predictive accuracy encourages precise information capture, we must also prevent latent em-
beddings from overfitting or completely collapsing into trivial forms. We assume independent pri-
ors p(w̃) = N(0, I), p(ỹ) = Cat(1/K), and pψ(z̃|w̃, ỹ) = N

(
µψ(w̃, ỹ), σ

2
ψ(w̃, ỹ)

)
, and impose

Kullback-Liebler (KL) constraints on each posterior:
Lw̃ = DKL

(
qϕ(w̃|c) ∥ p(w̃)

)
, (7)

Lỹ = DKL

(
q(ỹ|w̃, z̃) ∥ p(ỹ)

)
, (8)

Lz̃ = DKL

(
qϕ(z̃|c) ∥ pψ(z̃|w̃, ỹ)

)
, (9)

noting that the loss term for ỹ has a closed-form solution.

Combining the predictive reconstruction and KL terms, we define our full variational training ob-
jective (ELBO) as

LELBO=αsLstate + αrLreward + βwLw̃ + βyLỹ + βzLz̃, (10)

5
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where (αs, αr, βw, βy, βz) are fixed loss coefficients.

Intuitively, the reconstruction terms (Lstate,Lreward) ensure task embeddings encode actionable infor-
mation about present and future dynamics and rewards. The KL terms regularise the latent hierarchy:
Lw̃ centres the macro latent to minimise drift, Lỹ penalises deviation from a uniform categorical
prior and encourages use of all clusters, while Lz̃ aligns the encoder’s posterior qϕ(z̃|c) with the
mixture prior pψ(z̃|w̃, ỹ).

4.2 DYNAMIC MIXTURE EMBEDDINGS FOR CONTEXTUAL META-RL

DME leverages the hierarchical GMVAE architecture introduced in the previous section to infer la-
tent task representations encountered in contextual meta-RL settings. Once learned, the full latent
z = (w̃, ỹ, z̃) can serve as an informative summary of task information, guiding the agent’s be-
haviour in unseen tasks and environments. Pseudocode for the full DME algorithm can be found in
the Appendix.

Policy conditioning. Following prior work in on-policy contextual meta-RL, we feed the policy
the entire µz̃, σ2

z̃ posterior over the task latent z̃, rather than sampling a single inferred embedding
(Zintgraf et al., 2021b). In Bayesian literature this constitutes the agent’s belief state, explicitly
providing both the agent’s current estimate of the task and the uncertainty surrounding the estimate.
Supplying the belief state allows the agent policy to decide dynamically whether to explore and
reduce task uncertainty, or to exploit the existing prediction.

However, relying solely on z̃ to influence agent behaviour provides little guidance about where in
latent space would be most helpful to explore to reduce task uncertainty. Therefore, we also supply
the policy with higher-level latents w̃ and ỹ. At every environment step the encoder revisits the
accumulating context and refreshes its posteriors over w̃, ỹ, and z̃.Together, they provide structured
cues that accelerate adaptation and empirically improve performance in difficult benchmarks, as was
seen in Section 5.2.

Virtual training. To improve robustness and generalisation, DME follows the lead of Lee et al.
(2023) and employs virtual training, periodically generating synthetic tasks using its learned hierar-
chical embedding and reward decoder. Virtual training seeks to address incomplete or insufficient
task coverage by imagining plausible rewards for existing transitions under a different task embed-
ding. These rewards are generated by sampling from the hierarchical prior:

w̃virt ∼ p(w̃),
ỹvirt ∼ p(ỹ),
z̃virt ∼ pψ

(
z̃|w̃virt, ỹvirt

)
.

Conditioned on the sampled virtual task representation z̃virt, DME samples triplets (sℓ, aℓ, sℓ+1)
from the replay buffer and produces a synthetic reward

rvirt ∼ pψ
(
r | s, a, s′, z̃virt

)
. (11)

In practice, these synthetic trajectories are sampled alongside real experience at some scheduling
rate γ ∈ [0, 1], which is increased over time.

4.3 IMPLEMENTATION DETAILS

DME employs PPO (Schulman et al., 2017) as the base RL algorithm. The on-policy PPO naturally
suits scenarios involving continuously evolving task embeddings z̃, since updating directly from
recent trajectories avoids the distributional mismatches that arise in off-policy contexts.

Given the DME latent decomposition z = (w̃, ỹ, z̃), the loss functions for training PPO with dy-
namic mixture embeddings are given below

ρt =
πθ(at|st, w̃t, ỹt, z̃t)
πθold(at|st, w̃t, ỹt, z̃t)

, (12)

Lpolicy = −E
[
min

(
ρtAt, clip(ρt, 1− ϵ, 1 + ϵ)At

)]
, (13)

Lvalue =
1
2 E

[
(Vθ(st, w̃t, ỹt, z̃t)− V̂t)2

]
, (14)

Lentropy = −βent E
[
H(πθ(·|st, w̃t, ỹt, z̃t))

]
. (15)
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Figure 2: MetaWorld ML1. DME rapidly achieves near-perfect scores in the parametric single-
environment MetaWorld ML1 benchmark, achieving a new state-of-the-art performance on those
benchmarks.

where ρt represents the policy likelihood ratio, At is the advantage estimate and ϵ is the clipping
constant.

The overall PPO loss,
LPPO = Lpolicy + Lvalue + Lentropy, (16)

is optimised separately from the variational objective, and we treat (w̃, ỹ, z̃) as fixed conditioning
variables (no gradient flow from LPPO to ϕ or ψ).

5 EXPERIMENTS AND RESULTS

In this section, we describe experiments that aim to answer the following questions: 1) How does
DME adapt to parametric and non-parametric variation? 2) Does including the macro latent w̃ in the
policy input impact performance?

5.1 PARAMETRIC TASK ADAPTATION

Experiment setup. We begin by evaluating how well DME adapts to parametric task variation
in order to understand whether DME’s flexible GMVAE parameterisation can efficiently adapt to
a smaller potential task space. The MetaWorld ML1 benchmark consists of a variety of separate
environments where a robotic Sawyer arm must complete a certain task. For this experiment, we
choose reach-v2, reach-wall-v2, and push-v2 due to their frequency in related works. Each ML1
environment randomises a variety of parameters at the start of the episode. The agent must infer
those parameters from a handful of transitions and subsequently solve the task.

We compare DME against four strong contextual meta-RL baselines that range across both on-policy
belief-based inference (like DME), and off-policy sample-based inference:

• variBAD (Zintgraf et al., 2021a), which shares the same core belief-based inference frame-
work as DME but with a unimodal Gaussian task embedding.

• SDVT (Lee et al., 2023), which also utilises virtual training, but with a fixed-prior GMVAE.
• PEARL (Rakelly et al., 2019), an off-policy method that, after gathering context with an un-

informative prior, samples a single fixed posterior task embedding per adaptation episode.
• MetaCURE (Zhang et al., 2021), which extends the PEARL method with a separate ex-

plorer that maximises task information gained during initial exploration.

For belief-based agents (DME, variBAD, SDVT) we measure the return and task success rates of
the final (third) episode, while for sample-based agents (PEARL, MetaCURE) we provide two ex-
ploratory episodes and measure the performance of the subsequent exploitation episode. We utilise
the original source code and hyperparameters for all implementations.

Results. Final success rates are presented in Figure 2. DME establishes a new state-of-the-art across
the suite, achieving near-perfect success rates on reach-v2 and reach-wall-v2 in particular. On push-

7
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v2, it performs similarly to its closest peer SDVT. This is not surprising - SDVT utilises a similar
Gaussian mixture prior, but its structure is fixed. We hypothesise that the increased representational
capacity enables the macro latent w̃ to better learn the full range of parameterisation available, which
allows the agent to completely solve the task.

Although the off-policy PEARL performs well in reach-v2, we note that wall-clock time for off-
policy contextual meta-RL can be considerably longer due to the additional gradient steps taken per
epoch. In addition, both PEARL and MetaCURE completely fail to solve push-v2, highlighting the
fragility of their posterior sampling-based adaptation.

5.2 NON-PARAMETRIC TASK ADAPTATION

Experiment setup. Although parametric adaptation remains a relevant challenge in complex envi-
ronments, the true challenge for contextual meta-RL algorithms lies in adapting to non-parametric
task variation and the qualitatively different goals and transition dynamics that may result.

In order to evaluate the performance of DME when exposed to non-parametric task variation, we
utilise the challenging MetaWorld ML10 and ML45 benchmarks, whose training environment sets
span 10 and 45 distinct manipulation tasks, respectively. Each task corresponds to a separate ML1
environment - ranging from standard motion (reach-v2), to manipulation tasks (door-open-v2) and
more unusual objectives (basketball-v2). Beyond these structural and semantic differences, each
task also randomises continuous parameters (object masses, friction coefficients, goal positions), of-
fering a comprehensive test of an algorithm’s capacity to adapt across both structural and parametric
change.

After training, agents are evaluated on five held-out test tasks that were absent from the meta-training
set but can, in principle, be solved by learning and applying the fundamental manipulation skills
required to solve training tasks. We compare DME to the same peer baselines used in the parametric
study — variBAD, SDVT, PEARL, and MetaCURE.

Results. Figure 3 reports success and return curves for both training and test tasks. Again, DME
achieves the highest success rate on unseen test tasks, outperforming SDVT on both the ML10 and
ML45 benchmarks. This improvement indicates that the ability to flexibly reallocate mixture means
during training reduces over-specialisation and leaves extra capacity for genuinely novel behaviours.

This is further shown by how SDVT significantly outperforms DME in training environments, sug-
gesting that the fixed mixture parameters of SDVT lead it to overfit on the training task distribution,
leaving it unable to adapt to non-parametric task changes whose reward structure falls outside of its
existing clusters. In contrast, the dynamic clusters of DME provide more capacity to generalise to
unseen tasks at test time.

Only final results for the off-policy baselines, PEARL and MetaCURE, appear as they were tested for
far fewer environment steps due to their off-policy nature. However, despite this, the wall-clock time
remained comparable to the on-policy methods due to their tendency to take many more gradient
steps per epoch. Despite this advantage in sample efficiency, both methods struggle to effectively
adapt, possibly because their single-shot posterior sampling adaptation strategy is unreliable when
needing to adapt to non-parametric changes in the task required.

5.3 ABLATION STUDIES

Policy input. Although the macro latent w̃ is a crucial component of the hierarchical GMVAE, we
seek to understand whether knowing w̃ is helpful for the RL agent policy πθ. We compare the full
DME agent that passes w̃ to the policy, πθ(a|s, w̃, ỹ, z̃), to a variant that does not do so, resulting in
the policy πθ(a|s, ỹ, z̃). We continue to condition the policy on ỹ as previous work has shown the
benefits of including a discrete task- or subtask cluster as policy information (Lee et al., 2023).

In Figure 4, we see that conditioning on w̃ consistently improves performance relative to the w̃-
ablated variant across both ML10 and ML45 benchmarks. The intuition is straightforward: while
ỹ provides an explicit task cluster, the agent requires knowledge of the macro latent in order to
understand where those clusters may be in embedding space. In this sense, both macro latent and
cluster latent are required for the agent to truly understand mixture dynamics.
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Figure 3: Non-parametric MetaWorld. DME outperforms contemporary contextual meta-RL
methods on the difficult MetaWorld ML10 and ML45 benchmarks, achieving higher task success
rates and returns. The lower success rates in training tasks suggest that DME’s adaptive clusters are
less likely to overfit on the training distribution.
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Figure 4: Policy input ablation. Passing the macro latent w̃ to the meta-RL policy πθ(a|s, w̃, ỹ, z̃)
improves performance, suggesting that w̃ contains information useful for adaptation.

6 CONCLUSION

In this paper we presented Dynamic Mixture Embeddings (DME), a contextual meta-RL algorithm
that learns an adaptive Gaussian-mixture prior conditioned on a macro latent, so mixture components
dynamically adapt as context is gathered. An analytic cluster assignment stabilises the hierarchy,
while a decoder trained to predict entire future transitions and rewards pushes the continuous task
code to capture MDP-level structure. Together, these choices deliver strong adaptation under both
parametric and non-parametric variation, achieving state-of-the-art performance on the MetaWorld
suite.

There are several promising directions for further study. First, there is still opportunity to investigate
alternate formulations of the latent hierarchy, such as incorporating soft cluster assignments rather
than relying solely on hard partitions. As this has proven successful in fixed-cluster context (Lee
et al., 2023), we believe including the additional flexibility of DME-style may prove beneficial.
In addition, there is certainly still room to refine the interaction between virtual training and the
higher-level latents w̃ and ỹ. Integrating virtual training into cluster allocation or enabling dynamic
cluster counts for ỹ with a stick-breaking prior (Nalisnick & Smyth, 2017) could further improve
the flexibility and robustness of this method.

Ultimately, this work has shown that dynamic hierarchical task representations are a practical and
effective approach to improve adaptation and generalisation in contextual meta-RL. By utilising its
adaptive mixture prior, DME demonstrates that representational flexibility matters for fast adaptation
across both parametric and structural variation.
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A APPENDIX: ALGORITHM

Algorithm 1 DME
Input: Training task distribution p(M), virtual rate γ
Initialise on-policy storage B; policy πθ; encoder qϕ; decoder pψ
while not done do

Sample a task M ∼ p(M)
# On-policy data collection
Reset context c← {}
Sample z0 = (w̃0, ỹ0, z̃0) ∼ p(z̃|ỹ, w̃)p(ỹ)p(w̃)
for timestep t during rollout do

Form policy belief bt = (µz̃t , σ
2
z̃t
, w̃t, ỹt)

Sample action at ∼ πθ(at|st, bt) and step environment
Append (st, at, st+1, rt) to B and update c0:t
Update zt+1 = (w̃t+1, ỹt+1, z̃t+1) ∼ qϕ(w̃|c0:t)qϕ(z̃|c0:t)q(ỹ|w̃, z̃)

end for
# Training steps
Sample minibatches of sequential context c ∼ B and an on-policy PPO batch x ∼ B
Re-calculate posterior z = (w̃, ỹ, z̃) ∼ qϕ(w̃|c)qϕ(z̃|c)q(ỹ|w̃, z̃)
Calculate Lstate according to Equation 5
if with probability γ then

# Virtual update
Sample (w̃virt, ỹvirt, z̃virt) ∼ p(z̃|ỹvirt, w̃virt)p(ỹ)p(w̃) from prior
Calculate rewards rvirt according to Equation 11
Calculate Lreward using virtual rewards

else
Calculate Lreward according to Equation 5

end if
Calculate Lw̃, Lỹ, Lz̃ according to Equations 7-9
Calculate LELBO according to Equation 10
Calculate LPPO according to Equation 16
# Gradient update
Update ψ, ϕ by minimising LELBO
Update θ by minimising LPPO
Empty B

end while
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