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Abstract

Bayesian coresets speed up posterior inference in the large-scale data regime by
approximating the full-data log-likelihood function with a surrogate log-likelihood
based on a small, weighted subset of the data. But while Bayesian coresets and
methods for construction are applicable in a wide range of models, existing theoret-
ical analysis of the posterior inferential error incurred by coreset approximations
only apply in restrictive settings—i.e., exponential family models, or models with
strong log-concavity and smoothness assumptions. This work presents general
upper and lower bounds on the Kullback-Leibler (KL) divergence of coreset ap-
proximations that reflect the full range of applicability of Bayesian coresets. The
lower bounds require only mild model assumptions typical of Bayesian asymptotic
analyses, while the upper bounds require the log-likelihood functions to satisfy
a generalized subexponentiality criterion that is weaker than conditions used in
earlier work. The lower bounds are applied to obtain fundamental limitations on
the quality of coreset approximations, and to provide a theoretical explanation for
the previously-observed poor empirical performance of importance sampling-based
construction methods. The upper bounds are used to analyze the performance of
recent subsample-optimize methods. The flexibility of the theory is demonstrated in
validation experiments involving multimodal, unidentifiable, heavy-tailed Bayesian
posterior distributions.

1 Introduction

Large-scale data is now commonplace in scientific and commerical applications of Bayesian statistics.
But despite its prevalence, and the corresponding wealth of research dedicated to scalable Bayesian
inference, there are still suprisingly few general methods that provably provide inferential results,
within some reasonable tolerated error, at a significant computational cost savings. Exact Markov
chain Monte Carlo (MCMC) methods require many full passes over the data [1, Ch. 6–12, 2, Ch. 11–
12], limiting the utility of these methods when even a single pass is expensive. A wide range of
MCMC methods that access only a subset of data per iteration, e.g., via delayed acceptance [3–6],
pseudomarginal or auxiliary variable methods [7–9], and basic subsampling [10–13], provide at most
a minor improvement over full-data MCMC [14–16]. On the other hand, methods including carefully
constructed log-likelihood function control variates can provide substantial gains [17–19]. However,
black-box control variate constructions for large-scale data often rely on assumptions such as posterior
density differentiability and unimodality that do not hold in many popular models, e.g., those with
discrete variables or multimodality. See [15, 20] for a survey of scalable MCMC methods. Parametric
approximations via variational inference [21] or the Laplace approximation [22, 23] can be obtained
scalably using stochastic optimization methods, but existing general theoretical guarantees for these
methods again typically rely on posterior normality assumptions [24, p. 141–144,25–30] (see [21, 31]
for a review).
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Although many existing methods rely on asymptotic normality or unimodality in the large-scale data
regime, the problem of handling large-scale data in Bayesian inference does not fundamentally require
this structure. Instead, one can more generally exploit redundancy in the data (i.e., the existence of
good approximate sufficient statistics), which can be used to draw principled conclusions about a large
data set based only on a small fraction of examples. Indeed, while approximate posterior normality
often does not hold in models with latent discrete or combinatorial objects, weakly identifiable or
unidentifiable parameters, persisting heavy tails, multimodality, etc., such models can and regularly
do exhibit significant redundancy in the data that can be exploited for faster large-scale inference.
Bayesian coresets [32]—which involve replacing the full dataset during inference with a sparse
weighted subset—are based on this notion of exploiting data redundancy. Empirical studies have
shown the existence of high-quality coreset posterior approximations constructed from a small
fraction of the data, even in models that violate posterior normality assumptions and for which
standard control variate techniques work poorly [33–37]. However, existing theoretical support
for Bayesian coresets in the literature is limited. There exist no lower bounds on Bayesian coreset
approximation error, and while upper bounds do exist, they currently impose restrictive assumptions.
In particular, the best available theoretical upper bounds to date apply to exponential family models
[36, 38] and models with strongly log-concave and locally smooth log-densities [37].

This article presents new theoretical techniques and results regarding the quality of Bayesian coreset
approximations. The main results are two general large-data asymptotic lower bounds on the
KL divergence (Theorems 3.3 and 3.5), as well as a general upper bound on the KL divergence
(Theorem 5.3) under the assumption that the log-likelihoods satisfy a multivariate generalization
of subexponentiality (Definition 5.2). The main general results in this paper lead to various novel
insights about specific Bayesian coreset construction methods. Under mild assumptions,

• common importance-weighted coreset constructions (e.g. [32]) require a coreset size M
proportional to the dataset size N (Corollary 4.1), even with post-hoc optimal weight scaling
(Corollary 4.2), and thus yield a negligible improvement over full-data inference;

• any construction algorithm requires a coreset size M > d when the log-likelihood function
is determined by d parameters locally around a point of concentration (Corollary 4.3);

• subsample-optimize coreset construction algorithms (e.g. [36–39]) achieve an asymptotically
bounded error with a coreset size polylogN in a wide variety of models (Corollary 6.1).

The paper includes empirical validation of the main theoretical claims on two models that violate
common assumptions made in the literature: a multimodal, unidentifiable Cauchy location model
with a heavy-tailed prior, and an unidentifiable logistic regression model with a heavy-tailed prior
and persisting posterior heavy tails. Experiments were performed on a computer with an Intel Core
i7-8700K and 32GB of RAM. Proofs of all theoretical results may be found in Appendix A.

Notation. We use standard asymptotic growth symbols O,Ω,Θ, o, ω (see, e.g., [40, Sec. 3.3]), and
their probabilistic variants Op,Ωp,Θp, op, ωp (see, e.g., [24, Sec. 2.2]). We use the same symbol
to denote a measure π and its density π(·) with respect to a specified dominating measure. We
also regularly suppress integration variables and differential symbols in integrals throughout for
notational brevity when these are clear from context; for example,

∫
π exp(ℓ) is shorthand for∫

π(dθ) exp(ℓ(θ)). Finally, the pushforward of a measure π by a map η is denoted simply ηπ.

2 Background

Define a target probability distribution π on a space Θ comprised of a sum of N potentials ℓn : Θ → R,
n = 1, . . . , N and a base distribution π0(dθ),

π(dθ) =
1

Z
exp (ℓ(θ))π0(dθ), ℓ(θ) =

N∑
n=1

ℓn(θ), θ ∈ Θ,

where the normalization constant Z is not known. In the Bayesian context, this distribution corre-
sponds to a Bayesian posterior distribution for a statistical model with prior π0 and conditionally
i.i.d. data Xn, where ℓn(θ) = log p(Xn|θ). The goal is to compute or approximate expectations
under π; but the likelihood ℓ (and its gradient) becomes expensive to evaluate when N is large. To
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avoid this cost, Bayesian coresets [32–37] involve replacing the target with a surrogate density

πw(dθ) =
1

Z(w)
exp (ℓw(θ))π0(dθ), ℓw(θ) =

N∑
n=1

wnℓn(θ), θ ∈ Θ,

where w ∈ RN , w ≥ 0 are a set of weights, and Z(w) is the new normalizing constant. If w has at
most M ≪ N nonzeros, the O(M) cost of evaluating

∑
n wnℓn (and its gradient) is a significant

improvement upon the original O(N) cost. In this work, the problem of coreset construction is
formulated in the data-asymptotic limit; a coreset construction method should

• run in o(N) time and memory (or at most O(N) with a small leading constant),
• produce a small coreset of size M = o(N),
• produce a coreset with O(1) posterior forward/reverse KL divergence as N → ∞.

These three desiderata ensure that the effort spent constructing and sampling from the coreset posterior
is worthwhile: the coreset provides a meaningful reduction in computational cost compared with
standard Markov chain Monte Carlo algorithms, and has a bounded approximation error.

3 Lower bounds on approximation error

This section presents lower bounds on the KL divergence of coreset approximations for general
models and data generating processes. The first key steps in the analysis are to write all expectations
in terms of distributions that do not depend on w, and to remove the difficult-to-control influence of
the tails of π and πw by restricting certain integrals to some small subset B ⊆ Θ of the parameter
space. Lemma 3.1, the key theoretical tool used in this section, achieves both of these two goals; note
that the result has no major assumptions and applies generally in any setting that a Bayesian coreset
can be used. For convenience, define

KL(w) := min{KL(πw||π),KL(π||πw)},

and the decreasing, nonnegative function f : R+ → R+,

f(x) =

{
− log x+ x− 1 0 ≤ x ≤ 1
0 x > 1.

Lemma 3.1 (Basic KL Lower Bound). For all measurable B ⊆ Θ and coreset weights w,

KL(w) ≥ f(JB(w)) ≥ 0,

where

JB(w) =

∫
B
π0 exp

1
2 (ℓ+ ℓw)√∫

π0 exp(ℓ)
∫
π0 exp(ℓw)

+
√
π(Bc) .

Note that while the integrals in the fraction denominator in JB(w) range over the whole Θ space, a
further lower bound on KL(w) can be obtained by restricting their domains arbitrarily. Also, crucially,
the bound in Lemma 3.1 does not depend on πw(B

c), which would be difficult to analyze without
detailed knowledge of the tail behaviour of πw as a function of the coreset weights w. Although
the bound in Lemma 3.1 applies generally, it is most useful when B is small (so that simple local
approximations of ℓ and ℓw can be used), π concentrates on B (so that π(Bc) ≈ 0), and π and πw

are very different when restricted to B; the behaviour of the bound in this case is roughly (see the
proof in Appendix A) f(JB(w)) ≈ − log(1− TV(π, πw)). Finally, note that Lemma 3.1 remains
valid if one replaces ℓw with ℓw − c and ℓ with ℓ− c′ for any constants c, c′ that do not depend on θ
but may depend on the data and coreset weights w.

For the remainder of this section, consider the setting where Θ is a measurable subset of Rd for some
d ∈ N, fix some θ0 ∈ Θ, and assume each ℓn is differentiable in a neighbourhood of θ0. Let

w =
∑
n

wn g = ∇ℓ(θ0) gw = ∇ℓw(θ0).
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Theorems 3.3 and 3.5 characterize KL divergence lower bounds in terms of the sum of the coreset
weights w and the log-likelihood gradients g, gw. Intuitively for the full data set where all wn = 1
and w = N , and an i.i.d. data generating process from the likelihood with parameter θ0, the central
limit theorem asserts under mild conditions that gw/w

p→ 0 at a rate of N−1/2. Theorems 3.3 and 3.5
below provide KL lower bounds when the coreset construction algorithm does not match this behavior.
In particular, Theorem 3.3 provides results that are useful when gw/w

p→ 0 occurs reasonably quickly
but slower than N−1/2, while Theorem 3.5 strengthens the conclusion when gw/w

p→ 0 very slowly
or not at all. The major benefit of Theorems 3.3 and 3.5 for analyzing coreset construction methods
is that they reduce the problem of analyzing posterior KL divergence to the much easier problem of
analyzing the 2-norm ∥ · ∥2 of a weighted sum of random vectors in Rd.

Consider a sequence r → 0 as N → ∞, and for a fixed matrix H ≻ 0 let

B = {θ : (θ − θ0)
TH(θ − θ0) ≤ r2}

be a sequence of neighbourhoods around θ0; these will appear in Assumptions 3.2 and 3.4 and Theo-
rems 3.3 and 3.5 below. Note that throughout, all asymptotics will be taken as N → ∞, and various
sequences (e.g., r and B) are implicitly indexed by N . To simplify notation, this dependence is
suppressed. Assumption 3.2 makes some weak assumptions about the model and data generating
process: it intuitively asserts that the potential functions are sufficiently smooth around θ0, that r → 0
slowly, and that π concentrates at θ0 at a usual rate. Note that Assumption 3.2 does not assume data
are generated i.i.d. and places no conditions on the coreset construction algorithm.

Assumption 3.2. π0 has a density with respect to the Lebesgue measure, π0(θ0) > 0, each ℓn(θ)
and π0(θ) are twice differentiable in B for sufficiently large N , and

sup
θ∈B

∥∥∥∥− 1

N
∇2ℓ(θ)−H

∥∥∥∥
2

= op(1),
∥∥∥ g

N

∥∥∥
2
= Op

(
N−1/2

)
, Nr2 = ω(1).

Two additional assumptions related to the coreset construction algorithm—namely, that it works well
enough that 1

w

∑
n wn∇2ℓn(θ)

p→ H and gw/w
p→ 0 at a rate faster than r → 0—lead to asymptotic

lower bounds on the best possible quality of coresets produced by the algorithm, as well as lower
bounds even after optimal post-hoc scaling of the weights.

Theorem 3.3. Suppose Assumption 3.2 holds. If

sup
θ∈B

∥∥∥∥− 1

w
∇2ℓw(θ)−H

∥∥∥∥
2

= op(1),
∥∥∥gw
w

∥∥∥
2
= op(r),

then

KL(w)≥Op(1)+Ωp(1)min

{
− log π(Bc),

Nw

N + w

∥∥∥ g

N
− gw

w

∥∥∥2
2
+d log

(N + w)2

N max{w, 1/r2}

}
min
α≥0

KL(αw)≥Op(1)+Ωp(1)min

{
− log π(Bc), d log

(
N
∥∥∥ g

N
− gw

w

∥∥∥2
2

)}
.

Theorem 3.3 is restricted to the case where the coreset algorithm is performing reasonably well.
Theorem 3.5 extends the bounds to the case where the algorithm is performing poorly, in the sense
that it is unable to make gw

w

p→ 0 at a rate faster than r → 0 (or perhaps gw
w does not converge to 0 at

all). In order to draw conclusions in this setting, we need a weak global assumption on the potential
functions. A function f : Θ → R is L-smooth below at θ0 if

∀θ ∈ Θ, f(θ) ≥ f(θ0) +∇f(θ0)
T (θ − θ0)−

L

2
∥θ − θ0∥22. (1)

Note that L-smoothness below is weaker than Lipschitz smoothness and does not imply concavity;
Eq. (1) restricts the growth of the function only in the negative direction, and only when the expansion
is taken at θ0. Assumption 3.4 asserts that the potential functions are smooth below.

Assumption 3.4. There exist L0, . . . , LN , L > 0 such that log π0 is L2
0-smooth below at θ0, for each

n ∈ [N ] ℓn is L2
n-smooth below at θ0, and 1

N

∑N
n=1 L

2
n

p→ L2.
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Theorem 3.5 uses Assumptions 3.2 and 3.4 and additional assumptions related to the coreset con-
struction algorithm to obtain lower bounds in a setting that relaxes the “performance” conditions in
Theorem 3.3: − 1

w

∑
n wn∇2ℓn(θ) no longer needs to converge to H in probability, and gw/w can

converge to 0 slowly or not at all.

Theorem 3.5. Suppose Assumptions 3.2 and 3.4 hold. If there exist α, β > 0 such that

P
(
∀θ ∈ B, − 1

w
∇2ℓw(θ) ⪰ αH

)
→ 1, P

(
1

w

∑
n

wnL
2
n ≤ βL2

)
→ 1,

∥∥∥gw
w

∥∥∥ = ωp(r),

then

KL(w) ≥ Op(1) + Ωp(1)min

{
− log π(Bc), d log

(
N min

{∥∥∥gw
w

∥∥∥2, 1})}.
An important final note in this section is that while Theorems 3.3 and 3.5, as stated, require choosing
Θ to be some measurable subset of Rd and that the posterior π concentrates around some point of
interest θ0 ∈ Rd, these results can be generalized to a wider class of models and spaces. In particular,
Corollary 3.6 demonstrates that if Θ is arbitrary, but the potential functions ℓn only depend on θ
through some other function η : Θ → Rd, that the conclusions of Theorems 3.3 and 3.5 still hold.

Corollary 3.6. Suppose Θ is an arbitrary measurable space, and the potential functions take the
form ℓn(η(θ)) for some measurable function η : Θ → Rd. Then if the assumptions of Theorems 3.3
and 3.5 hold for potentials (ℓn)Nn=1 as functions on Rd and pushforward prior ηπ0 on Rd, the stated
lower bounds also hold for min{KL(π||πw),KL(πw||π)}.

4 Lower bound applications

In this section, the general theoretical results from Section 3 are applied to specific algorithms,
Bayesian models, and data generating processes to explain previously observed empirical behaviour
of coreset construction, as well as to place fundamental limits on the necessary size of coresets.
Consider a setting where the data Xn arise as an i.i.d. sequence drawn from some probability
distribution ν, ℓn(η(θ)) = log p(Xn|η(θ)) for η : Θ → Rd, η0 = η(θ0), and the following technical
criteria hold (where E denotes expectation under the data generating process):

(A1) E [∇ℓn(η0)] = 0 and H = E
[
−∇2ℓn(η0)

]
= E

[
∇ℓn(η0)∇ℓn(η0)

T
]
≻ 0.

(A2) E
[
∥∇ℓn(η0)∥2+δ

2

]
< ∞ for some δ > 0 and E

[
∥∇2ℓn(η0)∥2F

]
< ∞.

(A3) On a neighbourhood of η0, ∥∇2ℓn(η)−∇2ℓn(η0)∥2 ≤ R(Xn)∥η−η0∥2, E [R(Xn)] < ∞.

(A4) ηπ0 is twice differentiable a neighbourhood of η0, and π(η0) > 0.

(A5) For all r → 0 such that r2 = ω(logN/N), − log ηπ(∥η − η0∥ > r) = Ωp(Nr2).

These conditions apply to a wide range of models, e.g., an unidentifiable, multimodal location model
posterior with heavy tails on Θ = R, where the Bayesian model is specified by

θ ∼ Cauchy(0, 1) (Xn)
N
n=1

iid∼ Cauchy(θ2, 1), (2)

and the data are generated from the likelihood with parameter θ0 = 5, and an unidentifiable logistic
regression posterior with heavy tails on R2, where the Bayesian model is specified by

θ ∼ Cauchy(0, I) Yn
ind∼ Bern

(
1

1 + e−XT
n Aθ

)
A =

[
1 1
1 1

]
, (3)

the covariates are generated via Xn
iid∼ Unif({x ∈ R2 : ∥x∥2 ≤ 1}), and the observations Yn are

generated from the likelihood with parameter θ0 = [1 6]
T . See Proposition A.6 in Appendix A for

the verification of (A1-5) for these two models. Example posterior log-densities for these models are
displayed in Fig. 1.
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(a) (b)

Figure 1: Example unnormalized posterior densities given 50 data points for (1a) the Cauchy location
model and (1b) the logistic regression model. The orange and blue dashed lines in (1b) indicate
one-dimensional slices that are shown in the rightmost panels.

Algorithm 1 Importance-weighted coreset construction

Compute probabilities (pn)Nn=1 (may depend on the data and model)
Draw I1, . . . , IM

iid∼ Categorical(p1, . . . , pN )

For each n, set wn = 1
Mpn

∑M
m=1 1[Im = n].

return (wn)
N
n=1

Algorithm 2 Scaled importance-weighted coreset construction

Obtain coreset weights (wn)
N
n=1 via Algorithm 1

Compute α⋆ = argminα≥0 KL(παw||π)
return (α⋆wn)

N
n=1

4.1 Minimum coreset size for importance-weighted coresets

A popular algorithm for coreset construction that has appeared in a wide variety of domains—e.g.,
Bayesian inference [32, 33, Section 4.1], frequentist inference (e.g., [41–45]), and optimization (see
[46] for a recent survey)—involves subsampling of the data followed by an importance-weighting
correction. The pseudocode is given in Algorithm 1. Note that E[wn] = 1, and so E[ℓw] = ℓ; the
coreset potential is an unbiased estimate of the exact potential. The advantage of this method is
that it is straightforward and computationally efficient. If the sampling probabilities are uniform
pn = 1/N, then Algorithm 1 constructs a coreset in O(M) time and O(M) memory. Nonuniform
probabilities pn require Ω(N) time, as they require a pass over all N data points to compute each pn
[32, 42] followed by sampling the coreset, e.g., via an alias table [47, 48]. However, empirical results
produced by this methodology have generally been underwhelming, even with carefully chosen
sampling probabilities; see, e.g., Figure 2 of [32].

Corollary 4.1 explains these poor results: Bayesian coresets constructed via Algorithm 1 must satisfy
M ∝ N in order to maintain a bounded KL(w) in the data-asymptotic limit. In other words, such
coresets do not satisfy the desiderata in Section 2. The only restriction is that there exist constants
c, C > 0 such that for all N ∈ N, the sampling probabilities (pn)Nn=1 satisfy

(A6) 0 < c ≤ min
n

Npn ≤ max
n

Npn ≤ C < ∞ a.s. (4)

The lower threshold ensures that the variance of the importance-weighted log-likelihood is not too
large, while the upper threshold ensures sufficient diversity in the draws from subsampling. The
condition in Eq. (4) is not a major restriction, in the sense that performance should deteriorate even
further when it does not hold. The (pn)Nn=1 may otherwise depend arbitrarily on the data and model.
Corollary 4.1. Given (A1-6), M → ∞, and M = o(N), coresets produced by Algorithm 1 satisfy

KL(w) = Ωp

(
N

M

)
. (5)
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The intuition behind Corollary 4.1 is that both the true posterior and the importance-weighted coreset
posterior are asymptotically approximately normal with variance ∝ 1/N as N → ∞; however, the
coreset posterior mean is roughly ∝ M−1/2 away from the posterior mean, because the subsample
is of size M . The KL divergence between two Gaussians is lower-bounded by the inverse variance
times the mean difference squared, yielding ≈ N/M as in Eq. (5).

Given the intuition that the coreset posterior mean is far from the posterior mean relative to their
variances, it is worth asking whether one can apply a small amount of effort to “correct” the
importance-weighted coreset by scaling the weights (and hence the variance) down, as shown in
Algorithm 2. Unfortunately, Corollary 4.2 demonstrates that even with optimal scaling, M ∝ N is
still required in order to maintain a bounded KL divergence as N → ∞.
Corollary 4.2. Given (A1-6), M → ∞, and M = o(N), coresets produced by Algorithm 1 satisfy

min
α>0

KL(αw) = Ωp

(
log

N

M

)
.

Fig. 2 provides empirical confirmation of Corollaries 4.1 and 4.2 on the Cauchy location and logistic re-
gression models in Eqs. (2) and (3). In particular, these figures show that the empirical rates of growth
of KL as a function of N closely matches Ωp(

N
M ) for importance-weighted coresets, and Ωp(log

N
M )

for the same with post-hoc scaling, for a wide range of coreset sizes M ∈ {logN,
√
N , 1/2N}. Thus,

importance weighted coreset construction methods do not satisfy the desiderata in Section 2 for a
wide range of models, and alternate methods should be considered.

4.2 Minimum coreset size for any coreset construction

This section extends the minimum coreset size results from importance-weighted schemes to any
coreset construction algorithm. In particular, Corollary 4.3 shows that under (A7)—a strengthening
of (A3) and Assumption 3.4—and (A8)—which asserts that ∇ℓ1(η0), . . . ,∇ℓM (η0) are linearly
independent a.s. and satisfy a technical moment condition—at least d coreset points are required to
keep the KL divergence bounded as N → ∞.

(A7) Assumption 3.4 holds and there exists γ > 0 such that for all sufficiently large N ∈ N,

∀η ∈ B,n ∈ [N ], −∇2ℓn(η) ⪰ γH and L2
n < γ−1L2.

(A8) For all coreset sizes M < d, there exists a δ > 0 such that

E
[(
1T (GTG)−11

)M+δ
]
< ∞ G = [∇ℓ1(η0) . . . ∇ℓM (η0)] ∈ Rd×M .

Corollary 4.3. For a fixed coreset size M < d, given (A1-5,7,8),

min
w∈RN

+
:∥w∥0≤M

KL(w) = Ωp(logN).

5 Upper bounds on approximation error

This section presents upper bounds on the KL divergence of coreset approximations. As in Section 3,
the first step is to write all expectations in terms of distributions that do not depend on w. Lemma 5.1
does so without imposing any major assumptions; the result again applies generally in any setting
that a Bayesian coreset can be used. For convenience, define

KL(w) := max{KL(πw||π),KL(π||πw)}.

Lemma 5.1 (Basic KL Upper Bound). For all coreset weights w,

KL(w) ≤ inf
λ>0

1

λ
log

∫
π exp

(
(1 + λ)(ℓ̄w − ℓ̄)

)
,

where for all n ∈ [N ], ℓ̄n = ℓn −
∫
πℓn, ℓ̄ =

∑
n ℓ̄n, and ℓ̄w =

∑
n wnℓ̄n.

The upper bound in Lemma 5.1 is nonvacuous (i.e., finite) as long as there exists a α > 1 such that
the α Rényi divergence Dα(πw||π) [49, p. 3799] is finite. Note that as in Lemma 3.1, the bound in
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Figure 2: Importance-weighted coreset quality, showing the minimum of the forward and reverse
KL divergences on the vertical axis as a function of dataset size N for 3 coreset sizes: logN (black),√
N (blue), and 1/2N (red). Dashed lines indicate predictions from the theory in Corollaries 4.1

and 4.2, solid lines indicate the mean over 10 trials, and error bars indicate standard error. The top
row shows the quality of basic importance-weighted coresets (note that both horizontal and vertical
axes are in log scale), while the bottom row shows the quality with optimal post-hoc scaling (note
that only the horizontal axis is in log scale). The left column corresponds to the Cauchy location
model, while the right column corresponds to the logistic regression model. Sampling probabilities
pn for both models are set proportional to X2

n, thresholded to lie between 0.1/N and 10/N .

Lemma 5.1 remains valid if one replaces ℓw with ℓw − c and ℓ with ℓ− c′ for any constants c, c′ that
do not depend on θ but may depend on the coreset weights w and data.

More practical bounds necessitate an assumption about the behaviour of the potentials (ℓn)Nn=1. Defi-
nition 5.2 below asserts that the multivariate moment generating function of (ℓn)Nn=1 is bounded when
the vector is close to 0. This definition is a generalization of the usual definition of subexponentiality
for the univariate setting (e.g., [50, Sec. 2.7]). Theorem 5.3 subsequently shows that Definition 5.2 is
sufficient to obtain simple bounds on KL.
Definition 5.2. For A ∈ RN×N , A ⪰ 0, and monotone function h : R+ → R+ such that
limx→0 h(x) = h(0) = 0, the potentials (ℓn)Nn=1 are (h,A)-subexponential if

∀w ∈ RN : wTAw ≤ 1,

∫
π exp

(
ℓ̄w
)
≤ exp

(
h(wTAw)

)
.

Theorem 5.3. If the potentials (ℓn)Nn=1 are (h,A)-subexponential, then

∀w ∈ RN
+ : 4(w − 1)TA(w − 1) ≤ 1, KL(w) ≤ h(4(w − 1)TA(w − 1)).

Definition 5.2, the key assumption in Theorem 5.3, is satisfied by a wide range of models when
choosing h(x) = x and A ∝ Covπ

(
(ℓn)

N
n=1

)
, as demonstrated by Proposition 5.4. Because this case

applies widely, let A-subexponential be shorthand for (h,A)-subexponentiality with h(x) = x.
Proposition 5.4. If for all w in a ball centered at the origin,

∫
π exp(ℓ̄w) < ∞, then there exists

β > 0 such that the potentials (ℓn)Nn=1 are β Covπ
(
(ℓn)

N
n=1

)
-subexponential.
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Algorithm 3 Subsample-optimize coreset construction

Compute probabilities (pn)Nn=1 (may depend on the data and model)
Draw I1, . . . , IM

iid∼ Categorical(p1, . . . , pN ), and set I = {I1, . . . , IM}
Compute w⋆ = argminw∈RN

+
KL(πw||π) s.t. wn ̸= 0 only if n ∈ I.

return (w⋆
n)

N
n=1

In other words, intuitively, if a coreset construction algorithm produces weights such that Varπ(ℓ̄w−ℓ̄)
is small, then KL(w) is also small. That being said, the generality of Definition 5.2 to allow arbitrary
h,A is still helpful in obtaining upper bounds in specific cases; see, e.g., Propositions A.1 and A.2.

6 Upper bound application: subsample-optimize coresets

A strategy to construct Bayesian coresets that has recently emerged in the literature, shown in
Algorithm 3, is to first subsample the data to select M data points, and subsequently optimize the
weights for those selected data points [36–38]. The subsampling step serves to pick a reasonably
flexible basis of log-likelihood functions for coreset approximation, and avoids the slow greedy
selection routines from earlier work [33–35]. The optimization step tunes the weights for the selected
basis, avoiding the poor approximations of importance-weighting methods. Indeed, Algorithm 3
creates exact coresets πw⋆ = π with high probability in Gaussian location models [36, Prop. 3.1]
and finite-dimensional exponential family models [37, Thm. 4.1], and near-exact coresets with
high probability in strongly log-concave models [37, Thm. 4.2] and Bayesian linear regression [38,
Prop. 3].

Corollary 6.1 generalizes these results substantially, and demonstrates that coresets of size M =
O(polylog(N)) produced by the subsample-optimize method in Algorithm 3 maintain a bounded
KL divergence as N → ∞. Two key assumptions are subexponentiality of the potentials and a
polynomial (in N ) growth of Varπ(ℓ(θ)); these conditions are not stringent and should hold for a
wide range of Bayesian models and i.i.d. data generating processes. The last key assumption in Eq. (6)
is that a randomly-chosen potential function ℓI , I ∼ Categorical(p1, . . . , pN ) (with probabilities as
in Algorithm 3) is well-aligned with the residual coreset error function. Similar alignment conditions
have appeared in past results for more restrictive settings (see, e.g., J(δ) in [37, Thm. 4.1]).
Corollary 6.1. Suppose there exist β, α > 0 and 0 ≤ ρ, ϵ < 1 such that the potential func-
tions (ℓn)

N
n=1 are β Covπ((ℓn)

N
n=1)-subexponential with probability increasing to 1 as N → ∞,

Varπ(ℓ(θ)) = Op(N
α), M = (logN)

1
1−ρ , and

P
(
max

{
0,Corrπ

(
ℓIM (θ), ℓ(θ)− ℓ⋆M−1(θ)

)}2 ≥ 1− ϵ
∣∣∣(ℓn)Nn=1

)
= ωp(M

−ρ) (6)

ℓ⋆M−1(θ) = argmin
g∈cone{ℓI1 ,...,ℓIM−1

}
Varπ(ℓ(θ)− g(θ)) I1, . . . , IM

iid∼ Categorical(p1, . . . , pN ).

Then Algorithm 3 produces a coreset with KL(w) = Op(1) as N → ∞.

Fig. 3 confirms that subsample-optimize coreset construction methods applied to the logistic regres-
sion and Cauchy location models in Eqs. (2) and (3) (which both violate the conditions of past upper
bounds in the literature) are able to provide high-quality posterior approximations for very small
coresets—in this case, M ∝ logN .

7 Conclusions

This article presented new general lower and upper bounds on the quality of Bayesian coreset
approximations, as measured by the KL divergence. These results were used to draw novel conclusions
regarding importance-weighted and subsample-optimize coreset methods, which align with simulation
experiments on two synthetic models that violate the assumptions of past theoretical results. Avenues
for future work include general bounds on the subexponentiality constant β in Proposition 5.4, as well
as the alignment probability in Eq. (6), in the setting of Bayesian models with i.i.d. data generating
processes. A limitation of this work is that both quantities currently require case-by-case analysis.
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Figure 3: Subsample-optimize coreset quality, showing the maximum of the forward and reverse
KL divergences on the vertical axis as a function of dataset size N for coresets of size 5 + 2 logN .
Solid lines indicate the mean over 70 trials, and error bars indicate standard error. The left panel is
for the Cauchy location model, while the right panel is for the logistic regression model. Sampling
probabilities are uniform pn = 1/N , and coreset weights were optimized by nonnegative least
squares for log-likelihoods discretized via samples from π [34, Eq. 4].
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A Proofs

Proof of Lemma 3.1. By Vajda’s inequality [51],

KL(w) ≥ log
1 + TV(π, πw)

1− TV(π, πw)
− 2TV(π, πw)

1 + TV(π, πw)

≥ − log (1− TV(π, πw))− TV(π, πw)

≥ 0.

The bound is monotone increasing in TV(π, πw); therefore because the squared Hellinger distance satisfies the
inequality [52, p. 61],

H2(π, πw) =
1

2

∫ (√
π −

√
πw

)2 ≤ 1

2

∫
|π − πw| = TV(π, πw),

we have that

KL(w) ≥ − log
(
1−H2(π, πw)

)
−H2(π, πw).

We substitute the value of the squared Hellinger distance to find that

KL(w) ≥ − log

(∫ √
ππw

)
+

∫ √
ππw − 1 ≥ 0.

Note that
∫ √

ππw ≤ 1, so

KL(w) ≥ − log

(
min{1,

∫ √
ππw }

)
+min{1,

∫ √
ππw } − 1 ≥ 0.

The bound is monotone decreasing in
∫ √

ππw , so we require an upper bound on
∫ √

ππw . To obtain the
required bound, we split the integral into two parts—one on the set B, and the other on Bc—and then use the
Cauchy-Schwarz inequality to bound the part on Bc. Note that by definition π and πw are mutually dominating,
so the density ratio πw/π is well-defined and measurable.∫ √

ππw =

∫
B

√
ππw +

∫
Bc

√
ππw

=

∫
B

√
ππw +

∫
π

√
πw

π
1Bc

≤
∫
B

√
ππw +

√
π(Bc)

=

∫
B
π0 exp

1
2
(ℓ+ ℓw)√∫

π0 exp(ℓ)
∫
π0 exp(ℓw)

+
√

π(Bc) .

The result follows.

Proof of Lemma 5.1. We first consider the forward KL divergence. By definition,

KL(π||πw) =

∫
π(ℓ− ℓw) + log

∫
π0 exp(ℓw)∫
π0 exp(ℓ)

=

∫
π(ℓ− ℓw) + log

∫
π exp(ℓw − ℓ).

Since the KL is positive, for λ > 0,

KL(π||πw) ≤
1 + λ

λ

∫
π(ℓ− ℓw) +

1 + λ

λ
log

∫
π exp(ℓw − ℓ)

≤ 1 + λ

λ

∫
π(ℓ− ℓw) +

1

λ
log

∫
π exp((1 + λ)(ℓw − ℓ))

=
1

λ
log

∫
π exp((1 + λ)(ℓ̄w − ℓ̄)),

by Jensen’s inequality. Next we consider the reverse KL divergence. For any λ ̸= 0,

KL(πw||π) =
∫

πw(ℓw − ℓ) + log

∫
π0 exp(ℓ)∫
π0 exp(ℓw)

=
1

λ

∫
πwλ(ℓw − ℓ)− log

∫
π exp(ℓw − ℓ).
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By Jensen’s inequality, for λ > 0,

KL(πw||π) ≤
1

λ
log

∫
πw exp(λ(ℓw − ℓ))− log

∫
π exp(ℓw − ℓ)

=
1

λ
log

∫
π exp((1 + λ)(ℓw − ℓ))∫

π exp(ℓw − ℓ)
− log

∫
π exp(ℓw − ℓ)

=
1

λ
log

∫
π exp((1 + λ)(ℓw − ℓ))− 1 + λ

λ
log

∫
π exp(ℓw − ℓ)

≤ 1 + λ

λ

∫
π(ℓ− ℓw) +

1

λ
log

∫
π exp((1 + λ)(ℓw − ℓ))

=
1

λ
log

∫
π exp((1 + λ)(ℓ̄w − ℓ̄)).

This is the same bound as in the forward KL divergence case. Since the bound applies for all λ > 0, we can take
the infimum.

Proof of Theorem 3.3. By replacing the integrals over the whole space Θ in the denominator of JB(w) in
Lemma 3.1 with integrals over the subset B,

KL(w) ≥ − logmin(1, JB(w)) + min(1, JB(w))− 1

≥ Op(1)− log JB(w)

≥ Op(1) + min
{
GB(w),− log

√
π(Bc)

}
GB(w) = − log

∫
B

π0 exp((1/2)(ℓ+ ℓw)) +
1

2
log

∫
B

π0 exp(ℓ) +
1

2
log

∫
B

π0 exp(ℓw).

So to obtain the stated lower bound on the KL divergence, we require an upper bound on log
∫
B
π0 exp((1/2)(ℓ+

ℓw)), and lower bounds on log
∫
B
π0 exp(ℓ) and log

∫
B
π0 exp(ℓw). By Taylor’s theorem, Assumption 3.2,

and the assumption on ∇2ℓw(θ), for all θ ∈ B,∣∣∣∣ℓ(θ)− ℓ(θ0)− gT (θ − θ0) +
N

2
(θ − θ0)

TH(θ − θ0)

∣∣∣∣ ≤ Nop(1)

2
(θ − θ0)

TH(θ − θ0)∣∣∣∣ℓw(θ)− ℓw(θ0)− gTw(θ − θ0) +
w

2
(θ − θ0)

TH(θ − θ0)

∣∣∣∣ ≤ wop(1)

2
(θ − θ0)

TH(θ − θ0).

(7)

We shift the exponential arguments in GB(w) by (1/2)(ℓ(θ0)+ ℓw(θ0)), note that π0 is continuous and positive
around θ0, and and apply the Taylor expansions in Eq. (7) to obtain an upper bound on the first term:

log

∫
B

π0e
1
2
(ℓ−ℓ(θ0)+ℓw−ℓw(θ0)) ≤ Op(1) + log

∫
B

e
1
2
((g+gw)T (θ−θ0)−

(∼1)(N+w)
4

(θ−θ0)
TH(θ−θ0),

where (∼1) denotes a quantity that converges in probability to 1 as N → ∞. We can transform variables to
x = CT (θ − θ0), where H = CCT is the Cholesky factorization of H , and subsequently complete the square:

log

∫
B

π0e
1
2
(... ) ≤ Op(1) +

(∼1)∥C−1(g + gw)∥2

4(N + w)
+ log

∫
∥x∥2≤r2

e
− (∼1)(N+w)

4

∥∥∥∥x− (∼1)C−1(g+gw)
(N+w)

∥∥∥∥2
.

(8)

We can obtain lower bounds on the other two terms using a similar technique:

log

∫
B

π0e
ℓ−ℓ(θ0) ≥ Op(1) +

(∼1)∥C−1g∥2

2N
+ log

∫
∥x∥2≤r2

e
− (∼1)N

2

∥∥∥∥x− (∼1)C−1g
N

∥∥∥∥2 (9)

log

∫
B

π0e
ℓw−ℓw(θ0) ≥ Op(1) +

(∼1)∥C−1gw∥2

2w
+ log

∫
∥x∥2≤r2

e
− (∼1)w

2

∥∥∥∥x− (∼1)C−1gw
w

∥∥∥∥2
. (10)

It remains to analyze the three log
∫
. . . terms. We bound the integral term in Eq. (8) with the integral over the

whole space:

log

∫
∥x∥2≤r2

e−
(∼1)(N+w)

4
∥...∥2 ≤ Op(1)−

d

2
log(N + w).

For the integral term in Eq. (9), note that since Nr2 = ω(1) and ∥C−1g/N∥ = Op(N
−1/2), we have

log

∫
∥x∥2≤r2

e−
(∼1)N

2
∥...∥2
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= log

(∫
e−

(∼1)N
2

(... ) −
∫
∥x∥2>r2

e−
(∼1)N

2
∥x− (∼1)C−1g

N
∥2
)

≥ log

((
(∼1)2π

N

)d/2

− e
− (∼1)N

4
min∥x∥≥r

∥∥∥∥x− (∼1)C−1g
N

∥∥∥∥2 ∫
e−

(∼1)N
4

∥x− (∼1)C−1g
N

∥2
)

= log

((
(∼1)2π

N

)d/2

− e−
Ωp(Nr2)

4

(
(∼1)4π

N

)d/2
)

= −d

2
log(N) +Op(1).

For the integral term in Eq. (10), we consider two cases: one where w is large, and one where it is small. First
assume wr2 > 8d log 2; then by a similar technique as used in the first lower bound, since ∥C−1gw/w∥ =
op(r),

log

∫
∥x∥2≤r2

e−
(∼1)w

2
∥...∥2

≥ log

((
(∼1)2π

w

)d/2

− e
− (∼1)w

4
min∥x∥≥r

∥∥∥∥x− (∼1)C−1gw
w

∥∥∥∥2 ∫
e−

(∼1)w
4

∥x− (∼1)C−1gw
w

∥2
)

≥ log

((
(∼1)2π

w

)d/2

− e−2d log 2(∼1)
(
(∼1)4π

w

)d/2
)

≥ −d

2
logw +Op(1).

When wr2 ≤ 8d log 2, we transform variables y = x/r to find that since ∥C−1gw/w∥ = op(r),

log

∫
∥x∥2≤r2

e−
(∼1)w

2
∥...∥2 =

d

2
log r2 + log

∫
∥y∥2≤1

e
− (∼1)wr2

2

∥∥∥∥y− (∼1)C−1gw
rw

∥∥∥∥2

≥ d

2
log r2 + log e

− 8d log 2(∼1)
2

(
2+2

∥∥∥∥ (∼1)C−1gw
rw

∥∥∥∥2)(∫
∥y∥2≤1

1

)

=
d

2
log r2 +Op(1).

Therefore regardless of the value of w,

log

∫
∥x∥2≤r2

e−
(∼1)w

2
∥...∥2 ≥ −d

2
log
(
max{w, 1/r2}

)
+Op(1).

So therefore combining all previous results,

GB(w) ≥ Op(1) +
(∼1)

4

(
∥C−1g∥2

N
+

∥C−1gw∥2

w
− ∥C−1(g + gw)∥2

N + w

)
+

d

4
log

(N + w)2

N max{w, 1/r2}

= Op(1) +
(∼1)

4

(
w∥C−1g∥2

N(N + w)
+

N∥C−1gw∥2

w(N + w)
− 2gTH−1gw

N + w

)
+

d

4
log

(N + w)2

N max{w, 1/r2}

= Op(1) +
(∼1)

4

(
Nw

N + w

∥∥∥∥C−1g

N
− C−1gw

w

∥∥∥∥2
)

+
d

4
log

(N + w)2

N max{w, 1/r2}

= Op(1) + Ωp(1)

(
Nw

N + w

∥∥∥ g

N
− gw

w

∥∥∥2 + d log
(N + w)2

N max{w, 1/r2}

)
.

We now consider the minimum over α ≥ 0. Since neither Op(1) or Ωp(1) above depends on w, we have that

min
α≥0

KL(αw) ≥ Op(1) + Ωp(1)min

{
− log π(Bc),

(
min
α≥0

Nαw

N + αw

∥∥∥ g

N
− gw

w

∥∥∥2 + d log
(N + αw)2

N max{αw, 1/r2}

)}
.

On the 1/r2 branch of the objective function, the derivative in α is always positive, and hence the minimum
occurs at α = 0, and so

min
α≥0

(. . . ) ≥ d log(Nr2).

On the αw branch of the objective function,

min
α≥0

Nαw

N + αw

∥∥∥ g

N
− gw

w

∥∥∥2 + d log
(N + αw)2

Nαw
≥ min

α≥0

Nαw

N + αw

∥∥∥ g

N
− gw

w

∥∥∥2 + d log
(N + αw)

Nαw
+ d logN.
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For a, b > 0 and x ≥ 0, the function ax− b log x is convex in x with minimum at x⋆ = b/a, and so

min
α≥0

(. . . ) ≥ d log

(
N
∥∥∥ g

N
− gw

w

∥∥∥2).
By assumption, ∥ g

N
∥ = op(r) and ∥ gw

w
∥ = op(r), and hence the αw branch has the asymptotic minimum:

min
α≥0

KL(αw) ≥ Op(1) + Ωp(1)min

{
− log π(Bc), d log

(
N
∥∥∥ g

N
− gw

w

∥∥∥2)}.

Proof of Theorem 3.5. By Lemma 3.1,

KL(w) ≥ − logmin(1, JB(w)) + min(1, JB(w))− 1

≥ Op(1) + min
{
GB(w),− log

√
π(Bc)

}
GB(w) = − log

∫
B

π0 exp((1/2)(ℓ+ ℓw)) +
1

2
log

∫
π0 exp(ℓ) +

1

2
log

∫
π0 exp(ℓw).

Note that GB in this proof is subtly different from the GB used in the proof of Theorem 3.3; the latter
two integrals are over the whole space (directly from Lemma 3.1), rather than B. We shift the exponential
arguments in GB(w) by (1/2)(ℓ(θ0) + ℓw(θ0)). We first provide lower bounds on two of the integral terms via
Assumption 3.4:

log

∫
π0e

ℓ−ℓ(θ0) ≥ Op(1) + log

∫
e(g+g0)

T (θ−θ0)−
(∼1)(N+1)L′2

2
∥θ−θ0∥2 ,

where (∼ 1) denotes a quantity that converges in probability to 1, g0 = ∇ log π0(θ0), and L′2 =
NL2+L2

0
N+1

.
Transforming variables via x = L′(θ − θ0),

log

∫
π0e

ℓ−ℓ(θ0) ≥ Op(1) + log

∫
e(g+g0)

T x/L′− (∼1)(N+1)
2

∥x∥2

= Op(1) + log

∫
e
− (∼1)(N+1)

2

∥∥∥x− g+g0
(N+1)L′

∥∥∥2+ (∼1)(N+1)
2

∥ g+g0
(N+1)L′ ∥

2

= Op(1) +
(∼1)(N + 1)

2L′2

∥∥∥∥g + g0
N + 1

∥∥∥∥2 − d

2
log(N + 1)

≥ Op(1) +
(∼1)(N + 1)

2max{L2, L2
0}

∥∥∥∥g + g0
N + 1

∥∥∥∥2 − d

2
log(N + 1).

Let L2
w = 1

w

∑
n wnL

2
n. Using the same technique, with L′2

w =
wL2

w+L2
0

w+1
and x = L′

w(θ − θ0),

log

∫
π0e

ℓw−ℓw(θ0) ≥ log

∫
e(gw+g0)

T (θ−θ0)−
(∼1)(w+1)

2
L′2

w∥θ−θ0∥2

≥ Op(1) +
w + 1

2L′2
w

∥∥∥∥gw + g0
w + 1

∥∥∥∥2 + log

∫
e
− (w+1)

2

∥∥∥∥x− gw+g0
(w+1)L′

w

∥∥∥∥2

≥ Op(1) +
w + 1

2L′2
w

∥∥∥∥gw + g0
w + 1

∥∥∥∥2 + log

∫
∥x− gw+g0

(w+1)L′
w

∥≤(w+1)−1/3

e
−w+1

2

∥∥∥∥x− gw+g0
(w+1)L′

w

∥∥∥∥2

= Op(1) +
w + 1

2L′2
w

∥∥∥∥gw + g0
w + 1

∥∥∥∥2 − d

2
log(w + 1)

≥ Op(1) +
w + 1

2max{βL2, L2
0}

∥∥∥∥gw + g0
w + 1

∥∥∥∥2 − d

2
log(w + 1).

For the upper bound on the first term, we use a local quadratic expansion around θ0, where H0 =
−∇2 log π0(θ0),

log

∫
B

π0e
1
2
(ℓ−ℓ(θ0)+ℓw−ℓw(θ0)) ≤ Op(1) + log

∫
B

e
1
2
((g+gw+2g0)

T (θ−θ0)−
(∼1)(N+w+2)

4
(θ−θ0)

T
(

(N+αw)H+2H0
N+w+2

)
(θ−θ0).

Because H ≻ 0, we have (N + αw)H + 2H0 ≻ 0 eventually; we can transform variables to x = CT (θ − θ0),
where (N+αw)H+2H0

N+w+2
= CCT is the Cholesky factorization, and subsequently complete the square. Note that√

min{min(α, 1)λminH,λminH0} ≤ λminC ≤ λmaxC ≤
√

max{max(α, 1)λmaxH,λmaxH0}
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so

log |C| = Op(1) λminC
−1HC−T ≥ λminH

max{max(α, 1)λmaxH,λmaxH0}
= η > 0,

and therefore

log

∫
B

π0e
1
2
(... )

≤ Op(1) +
(∼1)(N + w + 2)

4

∥∥∥∥C−1(g + gw + 2g0)

N + w + 2

∥∥∥∥2 + log

∫
∥x∥2≤r2η−1

e
− (∼1)(N+w+2)

4

∥∥∥∥x− (∼1)C−1(g+gw+2g0)
N+w+2

∥∥∥∥2
.

(11)

Suppose first that w + 1 ≤ N/(4∥C−1∥2 max{βL2, L2
0}). In this case we bound the integral in Eq. (11) by

integrating over the whole space:

log

∫
B

π0e
1
2
(... ) ≤ Op(1) +

(∼1)∥C−1∥2(N + w + 2)

4

∥∥∥∥g + gw + 2g0
N + w + 2

∥∥∥∥2 − d

2
log(N + w + 2).

Combining this with the previous results yields

GB(w) ≥ Op(1)

− (∼1)(N + w + 2)

4
∥C−1∥2

∥∥∥∥g + gw + 2g0
N + w + 2

∥∥∥∥2
+

d

4
log

(N + w + 2)2

(N + 1)(w + 1)
+

w + 1

4max{βL2, L2
0}

∥∥∥∥gw + g0
w + 1

∥∥∥∥2 + (N + 1)

4max{L2, L2
0}

∥∥∥∥g + g0
N + 1

∥∥∥∥2
≥ Op(1) +

d

4
log

(N + w + 2)2

(N + 1)(w + 1)
+

w + 1

4

∥∥∥∥gw + g0
w + 1

∥∥∥∥2( 1

max{βL2, L2
0}

− 2∥C−1∥2(w + 1)

N + w + 2

)
≥ Op(1) +

d

4
log

(N + w + 2)2

(N + 1)(w + 1)
+

w + 1

8max{βL2, L2
0}

∥∥∥∥gw + g0
w + 1

∥∥∥∥2.
Bounding the last term below by 0 and minimizing over w such that w ≤

√
N yields

GB(w) ≥ Op(1) +
d

4
log

√
N = Op(1) +

d

8
logN.

Bounding (N + w + 2)/(N + 1) ≥ 1 and minimizing over w such that w ≥
√
N yields

GB(w) ≥ Op(1) +
d

4
logN − d

4
log(w + 1) +

w + 1

8max{βL2, L2
0}

∥∥∥∥gw + g0
w + 1

∥∥∥∥2
≥ Op(1) +

d

4
logN

∥∥∥∥gw + g0
w + 1

∥∥∥∥2
= Op(1) +

d

4
logN

∥∥∥gw
w

∥∥∥2,
where the second line follows because for a, b > 0 and x ≥ 0, the function ax − b log x is convex in x with
minimum at x⋆ = b/a. Therefore for w + 1 ≤ N/(. . . ),

KL(w) ≥ Op(1) + Ωp(1)d log

(
N min

{∥∥∥gw
w

∥∥∥2, 1}).
Next suppose w + 1 ≥ N/(4∥C−1∥2 max{βL2, L2

0}). A second upper bound on Eq. (11) can be obtained by
taking the maximum of the integrand over the integration region ∥x∥2 ≤ r2. Note that since ∥gw/w∥ = ωp(r),
w = Ωp(N), g/N = Op(N

−1/2), and Nr2 = ωp(1), we have that ∥(g+ gw +2g0)/(N +w+2)∥ = ωp(r),
and so

log

∫
B

π0e
1
2
(... )

≤ Op(1) +
(∼1)(N + w + 2)

4

∥∥∥∥C−1(g + gw + 2g0)

N + w + 2

∥∥∥∥2 − (∼1)(N + w + 2)

4

(∥∥∥∥C−1(g + gw + 2g0)

N + w + 2

∥∥∥∥− r

)2

+
d

2
log r2

= Op(1)−
(∼1)(N + w + 2)

4
r2 +

(∼1)(N + w + 2)r

2

∥∥∥∥C−1(g + gw + 2g0)

N + w + 2

∥∥∥∥+ d

2
log r2.

So therefore combining this result with the previous bounds and minimizing over w yields

GB(w) ≥ Op(1) +
(∼1)(N + w + 2)

4
r2 − (∼1)(N + w + 2)r

2

∥∥∥∥C−1(g + gw + 2g0)

N + w + 2

∥∥∥∥
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− d

4
log((N + 1)(w + 1)r4) +

w + 1

4max{βL2, L2
0}

∥∥∥∥gw + g0
w + 1

∥∥∥∥2 + (N + 1)

4max{L2, L2
0}

∥∥∥∥g + g0
N + 1

∥∥∥∥2
≥ Op(1)−

d

4
log(Nr2) +

(∼1)N

4

(∥∥∥ g

N

∥∥∥− r
)2

− d

4
log(wr2) +

(∼1)w

4

(∥∥∥gw
w

∥∥∥− r
)2

≥ Op(1)−
d

4
log(Nr2) +

(∼1)

4
Nr2 − d

4
log(r2) +

d

4
log
∥∥∥gw
w

∥∥∥2
≥ Op(1) +

d

4
logN

∥∥∥gw
w

∥∥∥2.
Combining with the earlier bound and noting that N min{∥gw/w∥, 1} = ωp(1) yields the final result.

Proof of Corollary 3.6. The proof follows directly from Theorems 3.3 and 3.5 by the data processing inequality
applied to KL(w).

Proof of Theorem 5.3. By Lemma 5.1,

KL(w) ≤ inf
λ>0

1

λ
log

∫
π exp

(
(1 + λ)(ℓ̄w − ℓ̄)

)
= inf

λ>0

1

λ
log

∫
π exp

(
ℓ̄(1+λ)(w−1)

)
.

Since (ℓn)
N
n=1 are (f,A)-subexponential, if

(1 + λ)2(w − 1)TA(w − 1) ≤ 1,

then ∫
π exp

(
ℓ̄(1+λ)(w−1)

)
≤ exp

(
f((1 + λ)2(w − 1)TA(w − 1))

)
.

By assumption, the condition holds when λ = 1; the result follows.

Proof of Proposition 5.4. Let C(w) = log
∫
π exp(ℓ̄w). By the finiteness condition, [53, Theorem 2.4] asserts

that C(w) is continuous, and has derivatives of all orders that can be obtained by passing differentiation
through the integral within the set ∥w∥2 < α. Let U = Covπ((ℓn)

N
n=1), and S = span{w ∈ RN :

wT (ℓ̄n)
N
n=1 = 0 π-a.s.}. Note that S = kerU : since wTUw = Varπ(w

T (ℓn)
N
n=1), wTUw = 0 if and only

if wT (ℓ̄n)
N
n=1 = 0 π-a.s.; and since U is symmetric positive semidefinite, wTUw = 0 if and only if w ∈ kerU .

Therefore C(w) is continuous, has derivatives of all orders, and derivatives can be passed through the integral
within the set {w ∈ RN : w = v + u, ∥v∥2 < α/2, u ∈ kerU}. For a vector w = v + u, v ⊥ kerU ,
u ∈ kerU , and minimum positive eigenvalue λ+ of U ,

wTUw ≤ α2λ+

4
=⇒ vTUv ≤ α2λ+

4
=⇒ ∥v∥2 ≤ α

2
,

and so C(w) is continuous, has derivatives of all orders, and derivatives can be passed through the integral within

the set {w ∈ RN : wTUw ≤ α2λ+

4
}. By Taylor’s theorem, for any w in this set, there exists a distribution νw

with density proportional to π exp(ℓ̄w′) for some w′ on the segment from the origin to w such that

C(w) = log

∫
π exp(ℓ̄w) =

1

2
wTUw +

1

6
Eνw

[
(wT (ℓ̄n)

N
n=1)

3
]
.

By definition of νw, w ∈ kerU implies that wT (ℓ̄n)
N
n=1 = 0 νw-a.s. and hence 1

6
Eνw

[
(wT (ℓ̄n)

N
n=1)

3
]
= 0.

Therefore, for wTUw ≤ α2λ+

4
,

C(w) ≤ 1

2
wTUw

1 + max
wTUw≤

α2λ+
4

w⊥kerU

1

6

Eνw

[
(wT (ℓ̄n)

N
n=1)

3
]

wTUw


≤ 1

2
wTUw

(
1 + max

∥w∥2≤α
2

1

6

∥w∥2
∥∥Eνw

[
(ℓ̄n)

N
n=1 ⊗ (ℓ̄n)

N
n=1 ⊗ (ℓ̄n)

N
n=1

]∥∥
2

λ+

)

≤ 1

2
wTUw

(
1 +

α

12λ+
max

∥w∥2≤α
2

∥∥∥Eνw

[
(ℓ̄n)

N
n=1 ⊗ (ℓ̄n)

N
n=1 ⊗ (ℓ̄n)

N
n=1

]∥∥∥),
where ⊗ denotes outer products to form a tensor. By continuity of derivatives of all orders within the neighbour-
hood ∥w∥2 < α, the result follows by selecting a sufficiently small α.
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Proposition A.1. Suppose there exist c ∈ R, α, δ > 0, and 0 < ϵ < 1 such that ℓ ≤ c and for all coreset
weights w satisfying αwT Covπ((ℓn)

N
n=1)w ≤ 1, |ℓ̄w| ≤ ϵ|ℓ − c| + δ. Then the potentials (ℓn)

N
n=1 are

(h, αCovπ((ℓn)
N
n=1))-subexponential with h(x) = 1

2
x+ eδ+cϵ∫

π0eϵℓ
x1−ϵ.

Proof of Proposition A.1. Let ℓ′ = ℓ− c. Since ℓ′ ≤ 0 and |ℓ̄w| ≤ ϵ|ℓ′|+ δ for some ϵ < 1, δ > 0,∫
π exp(ℓ̄w) = 1 +

1

2

∫
π(ℓ̄w)

2 +

∫
π

∞∑
k=3

1

k!
(ℓ̄w)

k−2(1−ϵ)(ℓ̄w)
2(1−ϵ)

≤ 1 +
1

2

∫
π(ℓ̄w)

2 +

∫
π

∞∑
k=3

1

k!
(ϵ|ℓ′|+ δ)k−2(1−ϵ)|ℓ̄w|2(1−ϵ)

= 1 +
1

2

∫
π(ℓ̄w)

2 +

∫
π

(
eϵ|ℓ

′|+δ − 1− (ϵ|ℓ′|+ δ)− 1
2
(ϵ|ℓ′|+ δ)2

(ϵ|ℓ′|+ δ)2(1−ϵ)

)
|ℓ̄w|2(1−ϵ)

≤ 1 +
1

2

∫
π(ℓ̄w)

2 +

∫
πeϵ|ℓ

′|+δ|ℓ̄w|2(1−ϵ)

= 1 +
1

2

∫
π(ℓ̄w)

2 +

∫
π0e

(1−ϵ)ℓ′+δ|ℓ̄w|2(1−ϵ)∫
π0eℓ

′

≤ 1 +
1

2

∫
π(ℓ̄w)

2 + eδ

(∫
π0e

ℓ′ |ℓ̄w|2
)1−ϵ∫

π0eℓ
′

= 1 +
1

2

∫
π(ℓ̄w)

2 + eδ
(∫

π0e
ℓ′
)−ϵ(∫

π(ℓ̄w)
2

)1−ϵ

= 1 +
1

2

∫
π(ℓ̄w)

2 + eδ+cϵ

(∫
π0e

ℓ

)−ϵ(∫
π(ℓ̄w)

2

)1−ϵ

≤ exp
(
h(wT Covπ(ℓ)w)

)
,

where h(x) = 1
2
x+ eδ+cϵ∫

π0eϵℓ
x1−ϵ.

Proposition A.2. Suppose Θ = Rd, ℓ̄ is G-strongly concave, and there exists L < G, α > 0, and θ0 ∈ Θ
such that for all coreset weights w satisfying αwT Covπ((ℓn)

N
n=1)w ≤ 1, ℓ̄w is L-Lipschitz smooth, and both

∥∇ℓw(θ0)∥ and ℓ̄w(θ0) are bounded. Then for any (L/G) < ϵ < 1, there exists c ∈ R, δ > 0 such that the
potentials (ℓn)Nn=1 are (h, αCovπ((ℓn)

N
n=1))-subexponential with the same h as in Proposition A.1.

Proof of Proposition A.2. Since ℓ̄ is G-strongly concave and ℓ̄w is L-Lipschitz smooth, we can write

ℓ(θ) ≤ ℓ(θ0) +∇ℓ(θ0)
T (θ − θ0)−

G

2
∥θ − θ0∥2

= ℓ(θ0) +
G

2

∥∥G−1∇ℓ(θ0)
∥∥2 − G

2

∥∥θ − θ0 −G−1∇ℓ(θ0)
∥∥2

|ℓ̄w(θ)| ≤ |ℓ̄w(θ0) +∇ℓw(θ0)
T (θ − θ0)|+

L

2
∥θ − θ0∥2.

So setting c = ℓ(θ0) +
G
2

∥∥G−1∇ℓ(θ0)
∥∥2 implies ℓ− c is a nonpositive function as required. Then

|ℓ̄w(θ)| − ϵ|ℓ(θ)− c| ≤ |ℓ̄w(θ0)|+
ϵ

2G
∥∇ℓ(θ0)∥2 + (∥∇ℓw(θ0)∥+ ϵ∥∇ℓ(θ0)∥)∥θ − θ0∥+

L− ϵG

2
∥θ − θ0∥2.

For 0 < a < G− L, setting ϵ = L+a
G

and then maximizing over ∥θ − θ0∥ yields

|ℓ̄w(θ)| − ϵ|ℓ(θ)− c| ≤ |ℓ̄w(θ0)|+
ϵ

2G
∥∇ℓ(θ0)∥2 + (∥∇ℓw(θ0)∥+ ϵ∥∇ℓ(θ0)∥)∥θ − θ0∥ −

a

2
∥θ − θ0∥2

≤ |ℓ̄w(θ0)|+
ϵ

2G
∥∇ℓ(θ0)∥2 +

(∥∇ℓw(θ0)∥+ ϵ∥∇ℓ(θ0)∥)2

2a
.

By the boundedness of ℓ̄w(θ0) and ∇ℓw(θ0), maximizing over w yields a value of δ < ∞.

Lemma A.3. Let X1, X2, . . . be i.i.d. random variables in R with EXn = 0, and define the resampled sum

SN =

N∑
n=1

Mn

Mpn
Xn
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where (M1, . . . ,MN ) ∼ Multi(M, (p1, . . . , pN )), with strictly positive resampling probabilities p1, . . . , pN
that may depend on X1, . . . , XN and N . If there exists a δ > 0 such that as N → ∞,

1

N

∑
n

|Xn|2+δ

(Npn)1+δ
= Op(1),

1

N

∑
n

X2
n

Npn
= Ωp(1), and M → ∞,

then
√
M

1
N
SN − 1

N

∑
n Xn√

1
N

∑
n

X2
n

Npn

d→ N (0, 1).

Proof. We can rewrite

SN =
1

M

M∑
m=1

XIm

pIm

where Im
iid∼ Categorical(p1, . . . , pN ). Consider SN +BN where BN is independent of SN , BN = ±1 with

probability 1
2(NM)1+δ , and BN = 0 otherwise. So if we set AN = σ(X1, . . . , XN ), [54, Cor. 3] asserts that

SN +BN − E [SN |AN ]√
(NM)−(1+δ) +Var [SN |AN ]

d→ N (0, 1) N → ∞.

as long as for all N large enough,

Var

[
1

M

XIm

pIm
|AN

]
< ∞ a.s.,

and as N → ∞,

(NM)−(1+δ) +
∑M

m=1 E
[∣∣∣ 1

M

XIm
pIm

− E
[

1
M

XIm
pIm

|AN

]∣∣∣2+δ

|AN

]
((NM)−(1+δ) +Var [SN |AN ])

(2+δ)/2

p→ 0.

Note that the conditional mean and variance have the form

E [SN |AN ] = E
[
XIm

pIm
|AN

]
=
∑
n

Xn

Var [SN |AN ] =
1

M
Var

[
XIm

pIm
|AN

]
=

1

M

∑
n

pn

(
Xn

pn
−
∑
n

Xn

)2

,

which implies that Var
[

1
M

XIm
pIm

|AN

]
< ∞ a.s., since p1, . . . , pN are strictly nonnegative and EXn = 0

implies Xn is finite almost surely. Next, note that

(NM)−(1+δ) +
∑M

m=1 E
[∣∣∣ 1

M

XIm
pIm

− E
[

1
M

XIm
pIm

|AN

]∣∣∣2+δ

|AN

]
((NM)−(1+δ) +Var [SN |AN ])

(2+δ)/2

≤
(NM)−(1+δ) + 22+δ∑M

m=1

(
E
[∣∣∣ 1

M

XIm
pIm

∣∣∣2+δ

|AN

]
+
∣∣ 1
M

∑
n Xn

∣∣2+δ
)

((NM)−(1+δ) +Var [SN |AN ])
(2+δ)/2

=M−δ/2
N−(3+2δ) + 22+δ

(
1
N

∑
n

|Xn|2+δ

(Npn)1+δ +
∣∣ 1
N

∑
n Xn

∣∣2+δ
)

(
M−δN−(3+δ) + 1

N

∑
n

X2
n

Npn
−
(

1
N

∑
n Xn

)2)(2+δ)/2
.

The above expression converges in probability to 0 by the technical assumptions in the statement of the result as
well as the fact that 1

N

∑
n Xn

a.s.→ 0 by the law of large numbers. Once again by the technical assumptions,
Var [SN |AN ] = Ωp(N

2/M), so
Var [SN |AN ]

(NM)−(1+δ) +Var [SN |AN ]

p→ 1

BN

(NM)−(1+δ) +Var [SN |AN ]

p→ 0,

and hence by Slutsky’s theorem,
SN − E [SN |AN ]√

Var [SN |AN ]

d→ N (0, 1) N → ∞.

Using Slutsky’s theorem again with 1
N

∑
n Xn

p→ 0 and rearranging yields the final result.
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Lemma A.4. Suppose coreset weights are generated using the importance weighted construction in Algorithm 1.
Let g = ∇ℓ(η0), gw = ∇ℓw(η0), and H = −E

[
∇2ℓn(η0)

]
. If conditions A(1-3) and (A6) in Section 4 hold,

M = o(N), and M = ω(1), then∥∥∥ g

N

∥∥∥
2
= Θp

(
N−1/2

)
,

∥∥∥gw
w

∥∥∥
2
= Θp

(
M−1/2

)
,

w

N

p→ 1,

and

sup
∥η−η0∥2≤r

∥∥∥∥− 1

N
∇2ℓ(η)−H

∥∥∥∥
2

p→ 0, sup
∥η−η0∥2≤r

∥∥∥∥− 1

w
∇2ℓw(η)−H

∥∥∥∥
2

p→ 0.

Proof. First, since w =
∑

n
Mn
Mpn

, Ew = N , and

E
[
(w −N)2

]
=

N2

M2
E

[(∑
n

Mn

(
(Npn)

−1 − 1
))2]

=
N2

M2

∑
n

((Npn)
−1 − 1)2EM2

n +
∑
n ̸=n′

((Npn)
−1 − 1)((Npn′)−1 − 1)E[MnMn′ ]


=

N2

M

(∑
n

((Npn)
−1 − 1)2pn −

(∑
n′

(1/N − pn)

)2)

=
1

M

(∑
n

pn(p
−1
n −N)2

)

≤ 1

M

(
max

n
(p−1

n −N)2
)

≤ N2

M
O(1),

where the last line follows by assumption A6. Therefore by Chebyshev’s inequality and M → ∞, w/N
p→ 1.

Since the data are i.i.d., by conditions A1 and A2, the central limit theorem holds for the sum of ∇ℓn(η0) such
that g/

√
N converges in distribution to a normal, and hence

∥∥ g
N

∥∥ = Θp(N
−1/2). By conditions A1, A2, and

A6, Lemma A.3 holds such that for any t ∈ Rd,

√
M

1
N
tT gw − 1

N
tT g√

1
N

∑
n

(tT∇ℓn(η0))2

Npn

= Θp(1).

Since condition A6 asserts that C > Npn ≥ c > 0, the law of large numbers, condition A1, and M/N → 0
imply that

√
M

N
tT gw = Θp(1).

Summing over a basis of vectors t1, . . . , td shows that
√
M

N
∥gw∥2 = Θ(1)

√
M
∥∥∥gw
w

∥∥∥
2
Θp(1).

This completes the first three results. Next, by condition A3, for sufficiently large N such that the neighbourhood
contains the ball of radius r around η0,

sup
∥η−η0∥2≤r

∥∥∥∥ 1

N
∇2ℓ(η)− 1

N
∇2ℓ(η0)

∥∥∥∥
2

≤ r
1

N

∑
n

R(Xn)

sup
∥η−η0∥2≤r

∥∥∥∥ 1

N
∇2ℓw(η)−

1

N
∇2ℓw(η0)

∥∥∥∥
2

≤ r
1

N

∑
n

wnR(Xn),

and

E

[
r
1

N

∑
n

R(Xn)

]
= E

[
r
1

N

∑
n

wnR(Xn)

]
= rE [R(X)] → 0,

so that we have that both

sup
∥η−η0∥2≤r

∥∥∥∥ 1

N
∇2ℓ(η)− 1

N
∇2ℓ(η0)

∥∥∥∥
2

p→ 0 and sup
∥η−η0∥2≤r

∥∥∥∥ 1

N
∇2ℓw(η)−

1

N
∇2ℓw(η0)

∥∥∥∥
2

p→ 0
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by Markov’s inequality. Finally, by the bounded variance in A2, sampling probability bounds in A6, and
M → ∞, the variances of 1

N
∇2ℓw(η0) and 1

N
∇2ℓ(η0) both converge to 0 as N → ∞, and since both of these

quantities are unbiased estimates of E
[
∇2ℓn(η0)

]
, Chebyshev’s inequality yields the desired convergence in

probability.

Lemma A.5. Suppose (Xn)
N
n=1 are N i.i.d. random vectors in Rd. Fix M ∈ N, M < d and define

X =
[
X1 X2 . . . XM

]
∈ Rd×M . If there exists δ > 0 such that

E
[
(1T (XTX)−11)M+δ

]
< ∞,

where 1 denotes a vector of all 1 entries, then as N → ∞,
min
w∈RN

+

∥∥∥∥∥
∑N

n=1 wnXn∑N
n=1 wn

∥∥∥∥∥
2

s.t.
∑
n

1[wn > 0] < M.

 = ωp

(
N−M+δ/2

M+δ

)
.

Proof. For any ϵ > 0, by the union bound over subsets of [N ] of size M ,

P

(
min
w∈RN

+

· · · ≤ ϵ

)
≤

(
N

M

)
P
(

min
w∈RM

wTXTXw

wT 11Tw
≤ ϵ

)

≤

(
N

M

)
P
(
max

λ
min

w∈RM
wTXTXw − λ(1Tw − 1) ≤ ϵ

)

=

(
N

M

)
P
(
max

λ
λ− λ2

4
1T (XTX)−11 ≤ ϵ

)

=

(
N

M

)
P
(
1T (XTX)−11 ≥ ϵ−1

)
.

By Markov’s inequality and
(
N
M

)
≤ (eN/M)M ,

P

(
min
w∈RN

+

· · · ≤ ϵ

)
≤
(
eN

M

)M

ϵM+δE
[
(1T (XTX)−11)M+δ

]

=

(
eNϵ

M+δ
M

M

)M

E
[
(1T (XTX)−11)M+δ

]
.

Setting ϵ = N−M+δ/2
M+δ yields

P

(
min
w∈RN

+

· · · ≤ N−M+δ/2
M+δ

)
≤

(
eN− δ

2M

M

)M

E
[
(1T (XTX)−11)M+δ

]
.

The right-hand side converges to 0 as N → ∞, yielding the stated result.

Proof of Corollary 4.1 and Corollary 4.2. Set r = (logM)−1/2. Then since M = o(N), M = ω(1), and
assumptions (A1-3) and (A6) hold, Lemma A.4 holds. Note that ∥gw/w∥ = Θp(M

−1/2) = op(r), ηπ0 is
positive at η0 and twice differentiable by (A4), and Nr2 = N/ logM = ω(1) since M = o(N). Thus the
conditions of Theorem 3.3 are verified. Substitution into the right term in the minimum of Theorem 3.3 yields the
stated lower bound of Ωp(N/M). For the left term in Theorem 3.3, define B = {(η − η0)

TH(η − η0) ≤ r2}.
Then since H ≻ 0, r → 0, and r2 = 1/ logM = ω(logN/N), (A5) guarantees that − log(ηπ)(Bc) =
Ωp(Nr2) = Ωp(N/ logM). Therefore the minimum is Ωp(N/M), and we complete the proof by transferring
from KL(w) on the η-pushforward model to KL(w) on the original model using Corollary 3.6.

Proof of Corollary 4.3. Fix the δ > 0 guaranteed by (A8), and set r = N
−M+3δ/4

2(M+δ) . Note that Nr2 =

N
δ/4

M+δ = ω(1), ηπ0 is positive at η0 and twice differentiable by (A4), and by (A1-3) the results pertaining
to
∥∥ g

N

∥∥
2

and sup∥η−η0∥2≤r

∥∥− 1
N
∇2ℓ(η)−H

∥∥
2

in Lemma A.4 hold; thus Assumption 3.2 holds. By (A7),
Assumption 3.4 holds as well as the conditions on 1

w
∇2ℓw(θ) and 1

w

∑
n wnL

2
n in Theorem 3.5. Finally by

(A8), Lemma A.5 holds such that ∥∥∥gw
w

∥∥∥2 = ωp

(
N−M+δ/2

M+δ

)
,
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and hence
∥∥ gw

w

∥∥ = ωp(r). Therefore all conditions of Theorem 3.5 hold. For the left term in the minimum in

Theorem 3.5, define B = {(η − η0)
TH(η − η0) ≤ r2}. Then since H ≻ 0, r → 0, and r2 = N−M+3δ/4

M+δ =

ω(logN/N), (A5) guarantees that − log(ηπ)(Bc) = Ωp(Nr2) = Ωp

(
N

δ/4
M+δ

)
. For the right term,

log

(
N
∥∥∥gw
w

∥∥∥2) = Ωp

(
logN1−M+δ/2

M+δ

)
= Ωp(logN).

The minimum of these two is from the right term, so

KL(w) = Ωp(logN).

We complete the proof by transferring from KL(w) on the η-pushforward model to KL(w) on the original
model using Corollary 3.6.

Proposition A.6. The models specified in Eqs. (2) and (3) satisfy assumptions (A1-5).

Proof. The exact same technique applies to both models, so here we will just demonstrate it for the Cauchy
model. In the Cauchy model, θ ∈ R, η : R → R+, η(θ) = θ2, and

ℓn(η) = − log π − log((Zn − η)2 + 1) ∇ℓn(η) =
2(Zn − η)

(Zn − η)2 + 1

∇2ℓn(η) =
2(Zn − η)2 − 2

((Zn − η)2 + 1)2
∇3ℓn(η) =

4((Zn − η)2 − 3)(η − Zn)

((η − Zn)2 + 1)3
,

where Zn = Xn. Property (A1) holds by routine interchange of differentiation and integration. Property (A2)
holds (for any δ > 0) because ∇ℓn(η) and ∇2ℓn(η) are bounded functions of η and Xn jointly. Property (A3)
holds (for any neighbourhood of η0) because ∇3ℓn(η) is a bounded function of η and Xn jointly. Property (A4)
holds because the pushforward of Cauchy(0, 1) through η(θ) = θ2 has full support on R+. In order to verify
assumption (A5), suppose there exists a sequence of bounded measurable functions ϕr(Z1, . . . , ZN ) ∈ [0, 1] of
the data and constants c, c′ > 0 such that for all r → 0, r2 = ω(logN/N),

Eη0ϕr = O
(
e−cNr2

)
and sup

∥η−η0∥>r

Eη(1− ϕr) = O
(
e−c′Nr2

)
.

The functions ϕr are similar to the test functions of Schwartz [55]. Then defining µ = ηπ and µ0 = ηπ0,

µ(∥η − η0∥ > r) = ϕrµ(∥η − η0∥ > r) + (1− ϕr)µ(∥η − η0∥ > r)

≤ ϕr + (1− ϕr)µ(∥η − η0∥ > r)

= ϕr +

∫
∥η−η0∥>r

(1− ϕr)e
ℓ(η)−ℓ(η0)µ0∫

eℓ(η)−ℓ(η0)µ0
.

Using the same proof technique as in Theorem 3.3, the denominator satisfies

log

∫
eℓ(η)−ℓ(η0)µ0(dη) ≥ −d

2
logN +Op(1).

By assumption, there exists c > 0 such that

Eη0 [ϕr] = O
(
e−cNr2

)
=⇒ ϕr = Op(e

−cNr2),

and a c′ > 0 such that

Eη0

[∫
∥η−η0∥>r

(1− ϕr)e
ℓ(η)−ℓ(η0)µ0

]
=

∫
∥η−η0∥>r

Eη(1− ϕr)µ0

≤ sup
∥η−η0∥>r

Eη(1− ϕr)

= O(e−cNr2) =⇒
∫
∥η−η0∥>r

(. . . ) = Op

(
e−cNr2

)
.

Therefore µ(∥η − η0∥ ≥ r) = Op

(
e−cNr2 +Nd/2e−c′Nr2

)
= Op

(
e(d/2) logN−c′′Nr2

)
; and since r2 =

ω(logN/N), − logµ(∥η − η0∥ ≥ r) = Ωp(Nr2) as required by (A5). So to complete the proof of (A5) we
need to find a suitable ϕr . Fix ϵ > 0, and set

ϕr(Z1, . . . , ZN ) = 1

[
Pη0(|Z − η0| ≤ 1)− 1

N

N∑
n=1

1[|Zn − η0| ≤ 1] > ϵr

]
.
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Under pη0 , Hoeffding’s inequality yields

Eη0ϕr ≤ e−2Nϵ2r2 .

And under pη for ∥η − η0∥ > r, for small enough ϵ > 0, Pη0(|Z − η0| ≤ 1) − Pη(|Z − η0| ≤ 1) ≥ 2ϵr.
Therefore

Eη[1− ϕr(Z1, . . . , ZN )] = Prη

(
Pη0(|Z − η0| ≤ 1)− 1

N

N∑
n=1

1[|Zn − η0| ≤ 1] ≤ ϵr

)

≤ Prη

(
Pη(|Z − η0| ≤ 1)− 1

N

N∑
n=1

1[|Zn − η0| ≤ 1] ≤ −ϵr

)

= Prη

(
1

N

N∑
n=1

1[|Zn − η0| ≤ 1]− Pη(|Z − η0| ≤ 1) ≥ ϵr

)
,

at which point we can again apply Hoeffding’s inequality, completing the result.

Lemma A.7. Fix vectors u, u1, . . . , uN in a separable Hilbert space with inner product denoted a · b and norm
denoted ∥ ∥. Let v1, . . . , vM be drawn from {u1, . . . , uN} with probabilities p1, . . . , pN either with or without
replacement (if without replacement, the probabilities are renormalized after every draw). Then for all ϵ ≥ 0,

P

min
w≥0

∥∥∥∥∥
M∑

m=1

wmvm − u

∥∥∥∥∥
2

> ϵ
M
(

q(M,ϵ)
2

)
+1∥u∥2

 ≤ e
−
(

1−log(2)
2

)
M
,

where

q(M, ϵ) = P

(
1−max

{
0,

vM
∥vM∥ · (u− xM−1)

∥u− xM−1∥

}2

≤ ϵ

)
xM−1 = argmin

x∈cone{v1,...,vM−1}
∥x− u∥2.

Proof. First note that it suffices to analyze the case with replacement, since this case provides an upper bound
on the case without replacement. To demonstrate this, we couple two probability spaces—one that draws
v1, . . . , vM with replacement, and one without replacement. First, draw an identical vector v1 for both copies.
On each subsequent iteration m > 1, the “with replacement” copy first draws whether or not it selects a vector
that was previously selected by the “without replacement” copy. If it does, it draws that vector independently;
if it does not, it selects the same vector as the “without replacement” copy. In any case, at each iteration m,
the vectors drawn by the “with replacement” copy are always a subset of the vectors drawn by the “without
replacement” copy, and hence the minimum over w ≥ 0 is greater for that copy. It therefore suffices to analyze
the case with replacement.

To obtain an upper bound on the probability when sampling with replacement, instead of minimizing over all
w ≥ 0 jointly, suppose we use the following iterative algorithm. Set x0 = 0. At the first iteration, we draw v1
and set the weight w1 by optimizing over w1 ≥ 0:

min
w1>0

∥w1v1 − u∥2 = ∥u∥2
(
1−max

{
0,

v1 · u
∥v1∥∥u∥

}2
)
.

Set x1 = w1v1, and note that (u − x1) · x1 = 0. Then at each subsequent iteration k, assume the previous
iterate is optimized over all nonnegative weights, and hence satisfies (u− xk−1) · xk−1 = 0. We draw another
vector vk, and bound the erorr of the next iterate xk by optimizing over only the weight wk for the new vector
vk. Then

∥u− xk∥2 = min
w1,...,wk≥0

∥∥∥∥∥
k∑

m=1

wmvm − u

∥∥∥∥∥
2

≤ min
wk>0

∥wkvk + xk−1 − u∥2

= ∥u− xk−1∥2
(
1−max

{
0,

vk · (u− xk−1)

∥vk∥∥u− xk−1∥

}2
)
.

Therefore,

P

min
w≥0

∥∥∥∥∥
M∑

m=1

wmvm − u

∥∥∥∥∥
2

≤ ϵK∥u∥2


≥ P
(
in at least K iterations, ∥xk − u∥2 ≤ ϵ∥xk−1 − u∥2

)
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≥ P

(
in at least K iterations, 1−max

{
0,

vk · (u− xk−1)

∥vk∥∥u− xk−1∥

}2

≤ ϵ

)

=
∑

K⊆[M ],|K|≥K

P

(
k ∈ K ⇐⇒ 1−max

{
0,

vk · (u− xk−1)

∥vk∥∥u− xk−1∥

}2

≤ ϵ

)

≥
∑

K⊆[M ],|K|≥K

qk(1− q)M−k

=

M∑
k=K

(
M

k

)
qk(1− q)M−k,

where

q = P

(
1−max

{
0,

vM · (u− xM−1)

∥vM∥∥u− xM−1∥

}2

≤ ϵ

)
xM−1 = argmin

x∈cone{v1,...,vM−1}
∥x− u∥2

So for all 0 ≤ K ≤ M ,

P

min
w≥0

∥∥∥∥∥
M∑

m=1

wmvm − u

∥∥∥∥∥
2

> ϵK∥u∥2
 ≤ Binom(M,K − 1, q).

Using the Chernoff bound on the binomial CDF, for all K − 1 ≤ Mq,

P

min
w≥0

∥∥∥∥∥
M∑

m=1

wmvm − u

∥∥∥∥∥
2

> ϵK∥u∥2
 ≤ e

−M

(
K−1
M

log K−1
Mq

+(1−K−1
M

) log
1−K−1

M
1−q

)

= e
−(K−1) log K−1

Mq
−(M−(K−1)) log

M−(K−1)
M(1−q) .

Substituting K − 1 = Mq/2 yields

= e
M((q/2) log 2−(1−q/2) log

1−q/2
(1−q)

) ≤ e
−
(

1−log(2)
2

)
M
.

Proof of Corollary 6.1. Since the potentials are β Covπ((ℓn)
N
n=1) subexponential, Theorem 5.3 guarantees that

∀w ∈ RN
+ : 4β(w − 1)T Covπ((ℓn)

N
n=1)(w − 1) ≤ 1, KL(w) ≤ 4β(w − 1)T Covπ((ℓn)

N
n=1)(w − 1).

We apply Lemma A.7 with vectors ℓ1, . . . , ℓN (in equivalence classes specified up to a additive constant)
and inner product between ℓi, ℓj defined by Covπ(ℓi, ℓj). In the notation of Lemma A.7, by assumption,
∥u∥2 = Op(N

α) and q(M, ϵ) = ωp(M
−ρ). Substituting M = (logN)1/(1−ρ), we find that

P
(
4β(w − 1)T Covπ((ℓn)

N
n=1)(w − 1) ≥ ϵ−ωp(logN)+α logN

)
→ 0.

Combining this result with the KL bound above yields the final result.
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4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details needed to reproduce the experimental results in Figure 2 and 3 are included in
the text. Algorithms used in the experiments exist in the cited literature.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: There are no new algorithms presented in this work; the experiments involve only existing
methods for which public code is available. The code is not central to the contributions of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All details needed to reproduce the experimental results in Figure 2 and 3 are included in
the text. Algorithms used in the experiments exist in the cited literature.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: All empirical results show the mean over a number of trials, as well as error bars
indicating standard error.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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Justification: These details are not important for this paper, as there are no new methods or algorithms
presented or claims related to computational performance. However, the introduction does list that
simulations were performed on a desktop computer with a Core i7 processor and 32GB RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper presents a new theoretical analysis of error bounds for Bayesian coresets
methods. It does not present any new methodology or data with potential harmful consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: There is no potential negative societal impact of this work. The paper provides new
theory regarding existing methodology.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?
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Answer: [NA]

Justification: This does not apply.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: This does not apply.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: This does not apply.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This does not apply.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This does not apply.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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