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Abstract001

We introduce INTERCHART, a diagnostic002
benchmark that evaluates how well vision-003
language models (VLMs) reason across multi-004
ple related charts, a task central to real-world005
applications such as scientific reporting, finan-006
cial analysis, and public policy dashboards.007
Unlike prior benchmarks focusing on isolated,008
visually uniform charts, INTERCHART chal-009
lenges models with diverse question types rang-010
ing from entity inference and trend correla-011
tion to numerical estimation and abstract multi-012
step reasoning grounded in 2–3 thematically013
or structurally related charts. We organize the014
benchmark into three tiers of increasing dif-015
ficulty: (1) factual reasoning over individual016
charts, (2) integrative analysis across syntheti-017
cally aligned chart sets, and (3) semantic infer-018
ence over visually complex, real-world chart019
pairs. Our evaluation of state-of-the-art open-020
and closed-source VLMs reveals consistent and021
steep accuracy declines as chart complexity in-022
creases. We find that models perform better023
when we decompose multi-entity charts into024
simpler visual units, underscoring their strug-025
gles with cross-chart integration. By expos-026
ing these systematic limitations, INTERCHART027
provides a rigorous framework for advancing028
multimodal reasoning in complex, multi-visual029
environments.030

1 Introduction031

Real-world settings such as scientific publications,032

business reports, and journalism dashboards rarely033

communicate data through a single chart. Instead,034

insight often emerges from comparing or synthe-035

sizing information across multiple visualizations.036

These charts may differ in type, styling, or even037

semantic framing, yet they jointly convey trends,038

correlations, and complex relationships. For hu-039

mans, reasoning across such heterogeneous vi-040

sual inputs is intuitive. However, vision-language041

models (VLMs) remain a significant challenge.042

While recent VLMs have shown strong perfor- 043

mance on single-chart visual question answering 044

(VQA) tasks (Masry et al., 2022; Methani et al., 045

2020), they perform inconsistently to aggregate 046

information across multiple charts. Existing bench- 047

marks (Li and Tajbakhsh, 2023; Kantharaj et al., 048

2022) have begun exploring multi-chart reasoning, 049

but they often rely on simplified scenarios, syn- 050

thetic data, static chart styles, or limited visual vari- 051

ation. Consequently, these datasets fail to capture 052

key challenges in real-world chart reasoning: visual 053

inconsistency, semantic misalignment, temporal 054

discontinuity, and multi-step aggregation. More- 055

over, their evaluation metrics typically depend on 056

string matching, which inadequately reflects se- 057

mantic understanding. 058

We introduce INTERCHART, a diagnostic 059

benchmark designed to probe how well VLMs 060

can reason across multiple charts with increasing 061

levels of complexity. Unlike prior datasets, IN- 062

TERCHART spans both synthetic and real-world 063

charts, and introduces a structured tiering system 064

to evaluate performance under controlled and un- 065

constrained conditions. It targets a range of rea- 066

soning abilities—from simple fact extraction to 067

multi-step, cross-domain inference—allowing re- 068

searchers to disentangle visual parsing errors from 069

reasoning failures. INTERCHART is organized into 070

three structured subsets, each targeting a differ- 071

ent level of reasoning complexity. The first tier, 072

DECAF (Decomposed Elementary Charts with An- 073

swerable Facts), consists of single-variable charts 074

decomposed from compound figures. This sub- 075

set emphasizes direct factual and comparative rea- 076

soning in simplified visual contexts. The second 077

tier, SPECTRA (Synthetic Plots for Event-based 078

Correlated Trend Reasoning and Analysis), intro- 079

duces synthetic chart pairs that share a common 080

axis but differ in style. They test a model’s ability 081

to reason about related quantities such as position 082

and velocity by requiring it to perform trend cor- 083
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relation and event-based interpretation. The third084

and most advanced tier, STORM (Sequential Tem-085

poral Reasoning Over Real-world Multi-domain086

charts), comprises visually complex and semanti-087

cally diverse real-world chart pairs. These require088

models to engage in multi-step inference, align089

mismatched semantics, and synthesize information090

across domains and temporal sequences.091

To ensure reliable assessment, we propose a092

novel LLM-assisted evaluation pipeline. Instead of093

relying solely on an exact string match, we employ094

multiple LLMs as semantic judges and aggregate095

their decisions through majority voting. It enables096

evaluators to assess paraphrased answers, numeric097

approximations, and equivalent units flexibly, pro-098

ducing more robust performance estimates.099

We summarize our contributions as follows:100

1. We present INTERCHART, the first multi-tier101

benchmark for multi-chart VQA, spanning de-102

composed, synthetic, and real-world chart con-103

texts.104

2. We design structured reasoning tasks to bench-105

mark on various closed and open-source106

VLMs across three visual tiers, capturing lo-107

calized and cross-visual dependencies, includ-108

ing trend correlation and temporal abstraction.109

3. We propose an LLM-assisted semantic evalua-110

tion framework that improves alignment with111

human judgment and enables fine-grained er-112

ror analysis.113

2 The INTERCHART Benchmark114

We introduce INTERCHART to systematically eval-115

uate how reasoning difficulty, chart diversity, and116

visual complexity affect performance in vision-117

language models (VLMs). The benchmark con-118

tains 5,214 validated question-answer (QA) pairs119

divided into three subsets: DECAF, SPECTRA, and120

STORM. These subsets represent distinct levels of121

real-world chart interpretation difficulty. Appendix122

6 summarizes the benchmark construction and an-123

notation workflow for all three subsets.124

2.1 DECAF - Decomposed Elementary Charts125

with Answerable Facts126

The DECAF subset establishes a foundation for127

evaluating baseline chart understanding. It includes128

both real and synthetic charts that represent single129

variables with minimal visual clutter. The QA tasks130

focus on factual lookup, comparisons, and parallel 131

reasoning across clearly presented data. 132

Chart Construction We selected compound 133

charts from ChartQA (Masry et al., 2022), ChartL- 134

lama (Han et al., 2023), ChartInfo (Davila et al., 135

2025), and DVQA (Kafle et al., 2018), ensuring 136

diverse sources of real-world chart styles and se- 137

mantics. These charts span common types such as 138

vertical and horizontal bar plots, line charts, box 139

plots, dot plots, and heatmaps, covering a wide 140

spectrum of visual encodings frequently used in 141

analytical documents. To support reasoning at a 142

granular level, we aimed to isolate atomic facts 143

from multi-variable visuals. When necessary, we 144

used DePlot (Liu et al., 2023) to regenerate miss- 145

ing tables from raw chart images, ensuring data 146

fidelity and completeness. We then employed a 147

custom decomposition script that extracted individ- 148

ual rows from these tables, aligned them with chart 149

legends and axis labels, and rendered simplified 150

single-variable charts using Plotly. This transfor- 151

mation allowed us to break down dense compound 152

visuals into interpretable units, promoting focused 153

reasoning over elementary visual elements. This 154

resulted in 355 compound charts and 1,188 decom- 155

posed charts. 156

QA Generation We employed a SQL-based sam- 157

pling strategy to generate table slices. We then used 158

deterministic query templates and Gemini 1.5 pro 159

to create natural language QA pairs, including both 160

chart- and table-derived prompts. A filtering pro- 161

cess reduced over 36,000 pairs to 5,800 candidates, 162

followed by manual review to finalize 2,809 QA 163

pairs. Table 1 details the chart types, sources, and 164

QA generation methods in DECAF. 165

2.2 SPECTRA - Synthetic Plots for 166

Event-based Correlated Trend Reasoning 167

and Analysis 168

The SPECTRA subset evaluates a model’s abil- 169

ity to integrate distributed information across vi- 170

sually distinct but thematically aligned synthetic 171

charts. These scenarios simulate real-world rea- 172

soning, such as interpreting relationships between 173

variables that evolve over time or across regions. 174

Chart Construction We created structured ta- 175

bles with shared axes to emulate real-world anal- 176

yses (e.g., linking urban green space with happi- 177

ness), ensuring that each table reflected plausible 178

entity relationships across dimensions such as time, 179
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Figure 1: Illustrative examples from our INTERCHART benchmark: DECAF, SPECTRA, and STORM. The DECAF
example shows a decomposed version of a chart similar to one found in STORM.

DECAF Distributions

Chart Type Original Chart Sources

Line 22 ChartQA 153
Horizontal Bar 52 DVQA 70
Vertical Bar 149 ChartInfo 27
Box Plot 58 ChartLlama 105
Heat Map 37
Dot 37

QA Generation Methods Total

Original QA 665 QA Pairs 2,809
Table-LLM 1,467 Original Charts 355
Table-SQL-LLM 677 Decomposed Charts 1,188

Table 1: Summary of chart types, sources, QA genera-
tion, and totals for DECAF.

geography, or category. These base tables served180

as input to a two-step synthetic chart construction181

pipeline. First, we used Gemini 1.5 Pro to generate182

tabular data with natural variability across rows and183

columns, guided by template-based prompt scaf-184

folds that preserved semantic consistency while185

allowing domain shifts (e.g., GDP vs. life ex-186

pectancy). Second, the structured tables were ren-187

dered into visually diverse charts using a human-188

in-the-loop chart generation module. This included189

manual oversight to ensure balanced axis scales,190

legend consistency, and type diversity (e.g., bar-191

line overlays, multi-axis scales). The resulting192

charts preserved shared axes across pairs, promot-193

ing alignment in subsequent QA tasks. Through 194

this pipeline, we generated synthetic yet realistic 195

chart combinations that encouraged event-based 196

correlation and cross-variable reasoning. 197

QA Generation We prompted the model to gen- 198

erate questions targeting low-level reasoning, such 199

as computing totals or averages; trend analysis, 200

including directional inferences and value predic- 201

tions; and scenario-based inference, such as multi- 202

condition comparisons. We used a Python-enabled 203

LLM agent to validate answers through interme- 204

diate computation before converting outputs into 205

natural language. After validation, the SPECTRA 206

subset contains 1,717 QA pairs across 333 visual 207

context sets and 870 unique charts. Table 2 pro- 208

vides detailed distributions. 209

SPECTRA & STORM Distribution

SPECTRA STORM

Correlated 1,481 Range Estimation 198
Independent 245 Abstract Numerical 275

Entity Inference 295

Totals

QA Pairs 1,717 QA Pairs 768
Context Sets 333 Original Charts 324
Unique Charts 870 Unique Images 648

Table 2: Distribution of question types and overall
counts in SPECTRA and STORM.
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2.3 STORM - Sequential Temporal reasoning210

Over Real-world Multi-domain charts211

The STORM subset probes the upper limits of cur-212

rent VLM capabilities. It contains complex real-213

world line chart pairs with diverse styles and do-214

mains. These chart combinations reflect realistic215

analysis settings such as economic reports, environ-216

mental trends, and public health dashboards.217

Chart Collection We crawled charts and associ-218

ated metadata from the Our World in Data reposi-219

tory. Using semantic cues and metadata attributes,220

we applied a semantic pairing module to group221

charts into coherent visual contexts that share re-222

lated entities across time. The pairing process iden-223

tified candidate chart pairs with aligned topics or224

axes, such as GDP and healthcare spending over225

the same time period. Each candidate pair was226

manually reviewed to ensure contextual relevance227

and analytical coherence. The chart construction228

pipeline followed the STORM algorithmic design229

outlined in Appendix - Algorithm 3, incorporating230

structured metadata extraction, entity alignment,231

and refinement steps to yield 324 validated chart232

sets comprising 648 distinct images.233

QA Curation We used Gemini 2.5 Pro to gener-234

ate candidate QA pairs grounded in both the chart235

images and their metadata. The QA generation236

process focused on multi-step reasoning that spans237

both charts in a pair, including contextual range238

estimation, numerical comparisons, temporal trend239

evaluation, and entity-based inference. Human240

annotators refined the generated QA pairs to en-241

sure clarity, correctness, and depth of reasoning.242

Each pair was reviewed, categorized, and final-243

ized through a collaborative validation loop, as244

described in Algorithm 3. The resulting STORM245

subset includes 768 QA pairs across the verified246

chart sets. Table 2 summarizes the distribution of247

question types and chart contexts.248

2.4 INTERCHART Verification249

We implemented a multi-stage verification pipeline250

that combined automated filtering and human vali-251

dation to ensure the quality of INTERCHART.252

We first used LLM-based acceptability checks to253

remove ambiguous or malformed QA pairs. Next,254

a team of 6 graduate-level annotators manually re-255

viewed each item in DECAF and SPECTRA, ensur-256

ing correctness and diversity. Two graduate-level257

annotators independently verified every QA pair of258

STORM, with arbitration used to resolve disagree- 259

ments. 260

QA Samples DECAF SPECTRA

Pre 13,000 5,800 4,800
Post 5,214 2,809 1,717
% Drop 59.9% 51.6% 64.2%

Table 3: INTERCHART human filtering statistics show-
ing QA sample counts before and after manual verifica-
tion for subsets DECAF and SPECTRA.

Table 3 shows filtering statistics for the DECAF 261

and SPECTRA subsets, revealing retention rates 262

after manual curation. Table 4 shows the inter- 263

annotator agreement for the STORM subset, mea- 264

sured using Cohen’ Kappa. We achieved a agree- 265

ment score of 70.63%, reflecting consistent annota- 266

tions for complex multi-chart reasoning. 267

QA Samples Cohen’s κ Jaccard Index

Overall 768 70.63% 94.75%

Table 4: Overall inter-annotator agreement (Cohen’s κ)
for the STORM annotated subsets.

Final Dataset Overview: INTERCHART in- 268

cludes 5,214 validated QA pairs across 1,012 269

multi-chart contexts and 2,706 unique chart im- 270

ages. These examples span diverse reasoning types, 271

visual structures, and real-world complexities, mak- 272

ing INTERCHART a comprehensive diagnostic re- 273

source for evaluating multi-chart visual question 274

answering. 275

3 Experiments 276

We benchmark visual reasoning on INTERCHART 277

using a diverse set of vision-language models 278

(VLMs) and multiple input strategies. Our experi- 279

ments address four core questions: (1) Does chart 280

decomposition improve accuracy? (2) How does 281

visual complexity affect multi-chart reasoning? (3) 282

Can prompt engineering enhance performance? (4) 283

Do structured tables offer an advantage over direct 284

visual inputs? 285

VLMs We evaluate both closed- and open- 286

source VLMs. Closed-source models include 287

Google Gemini 1.5 Pro (Team, 2024) and Ope- 288

nAI GPT-4o Mini (OpenAI, 2024). Open-source 289

models include Qwen2-VL-7B-Instruct (Yang 290

et al., 2024b), MiniCPM-V-2_6 (Hu et al., 2024), 291
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Figure 2: Visual input formats in INTERCHART: Com-
bined (stitched multi-chart image) vs. Interleaved (sep-
arate sequential chart images).

InternVL-2-8B (Chen et al., 2024), and Idefics3-292

8B-LLaMA3 (Laurençon et al., 2024). We also293

include DePlot (Liu et al., 2023) and Chart-to-294

Text (Kantharaj et al., 2022) to assess reasoning295

over structured outputs.296

3.1 Evaluation Pipelines297

We compare two reasoning pathways: direct chart-298

based VQA and a chart-to-table pipeline using in-299

termediate structured representations.300

Direct Chart Question Answering We test two301

visual formats: (i) Combined, where charts are302

stitched into a unified image, and (ii) Interleaved,303

where charts are passed sequentially. For DECAF,304

we also evaluate original compound charts to quan-305

tify gains from simplification.306

Prompting styles include Zero-Shot, Zero-Shot307

CoT (stepwise reasoning), and Few-Shot with Di-308

rectives (Tannert et al.), which gives structured309

step-level guidance. Due to input size limits, In-310

ternVL and Idefics3 are excluded from interleaved311

inputs.312

Table as Intermediate Representation This313

setup evaluates whether structured conversion aids314

reasoning. It includes: (1) Chart-to-Table Con-315

version, where models extract metadata and tables316

from images, and (2) Table-Based QA, where mod-317

els answer using these tables via CoT prompts.318

We compare Gemini 1.5 Pro, Qwen2-VL, and319

MiniCPM. To address DePlot’s title extraction is-320

sues, we augment it using Gemini title generation, 321

yielding an improved hybrid we term DePlot++. 322

This isolates the benefit of structure vs. visual in- 323

puts under matched prompts. 324

Evaluation Strategy We use LLM-based seman- 325

tic judges to score answers beyond exact string 326

matching, supporting paraphrases, numerics, and 327

unit variations if reasoning is correct. Evalua- 328

tors include Gemini 1.5 Flash (8B) (Team, 2024), 329

Phi 4 (Abdin et al., 2024), and Qwen2.5-7B- 330

Instruct (Yang et al., 2024a). Each receives the 331

question, reference answer, and model output, and 332

returns a binary correctness score along with its 333

reasoning. Final scores use majority voting. 334

To validate the majority voting agreement, we 335

benchmarked 10,000 sampled responses. In over 336

78.67% of cases, all three evaluators agreed on a 337

common answer. Per-model breakdowns appear in 338

Appendix 6. 339

4 Results and Analysis 340

We analyze performance on INTERCHART across 341

visual input formats, prompting strategies, and sub- 342

set difficulty levels by answering targeted questions 343

that highlight emerging trends, model strengths, 344

and failure modes. Tables 5 through 9 summarize 345

these results. 346

4.1 Performance across Chart Subsets 347

Do Interleaved Charts Help Models Perform 348

Better than Combined Charts? Not consis- 349

tently. As shown in Table 5, interleaving charts 350

sometimes improves performance but often leads to 351

minimal or negative changes. For example, Gemini- 352

1.5 Pro improves slightly in STORM from 34.8% to 353

36.0% but drops from 65.2% to 64.7% in DECAF. 354

Qwen2-VL decreases in DECAF (50.2% to 49.3%) 355

and SPECTRA (32.8% to 32.9%). MiniCPM im- 356

proves modestly in STORM (21.5% to 25.2%). 357

These results suggest interleaving may help with 358

visual clutter in complex charts but does not offer 359

consistent benefits across all subsets. 360

Does Decomposing Charts Improve Model Ac- 361

curacy? Yes. As shown in Table 6, converting 362

charts into structured tables improves accuracy in 363

many cases. Gemini-1.5 Pro achieves 69.9% accu- 364

racy using structured DECAF tables, outperform- 365

ing both DePlot (54.3%) and C2T (43.8%). De- 366

Plot++ further improves performance to 63.2% by 367

enhancing title and metadata alignment. Qwen2- 368

VL and MiniCPM also benefit modestly, though 369
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Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 44.8 59.3 45.6 29.7 48.5 68.3 47.9 29.4 48.8 68.6 47.2 30.6
Gemini-1.5-Pro 53.0 65.2 59.1 34.8 55.0 71.6 58.5 34.9 56.3 73.9 61.5 33.7
Qwen2-VL-7B 37.3 50.2 32.8 28.9 41.8 59.9 37.3 28.4 40.4 56.3 37.0 27.9
MiniCPM-V-2_6 34.3 52.2 32.4 21.5 35.3 52.7 31.9 21.3 32.4 48.7 30.1 18.6
InternVL-2-8B 30.4 40.0 26.6 24.8 32.3 45.2 28.2 23.6 31.6 46.3 27.3 21.2
Idefics3-8B-Llama3 23.2 39.3 19.4 11.1 23.8 38.8 19.6 13.1 25.9 35.7 25.1 17.1

Mean 37.2 51.0 36.0 25.1 39.5 56.1 37.2 25.1 39.2 55.0 38.0 24.9

Interleaved Visual Context

GPT-4o-mini 41.9 44.4 50.0 31.5 44.5 51.5 50.3 31.9 44.4 51.7 50.4 31.1
Gemini-1.5-Pro 52.7 64.7 57.4 36.0 54.1 68.1 57.8 36.4 54.2 70.3 59.6 32.9
Qwen2-VL-7B 37.0 49.3 32.9 28.9 39.4 52.8 38.7 26.7 36.1 47.9 35.2 25.2
MiniCPM-V-2_6 37.1 49.3 36.8 25.2 36.6 49.6 36.2 24.2 35.5 48.1 35.1 23.5

Mean 42.2 51.9 44.3 30.4 43.7 55.5 45.8 29.8 42.6 54.5 45.1 28.2

Table 5: Accuracies using our evaluation method with majority voting of evaluators on all models and prompting
strategies. Results are grouped by visual context format (top: Combined, bottom: Interleaved), and broken down by
set type (DECAF, SPECTRA, STORM) and strategy (Zero-Shot, Zero-Shot CoT, Few-Shot CoT with Directives).
Net scores refer to the mean score of the model across different subsets.

their scores remain lower (50.1% and 33.8%, re-370

spectively). These results suggest that SQL-based371

decomposition paired with table-driven reasoning372

can improve clarity and support more accurate in-373

ference compared to image-only inputs.374

Why Do Models Perform Poorly on Real-World375

Multi-Chart Tasks? As seen in Table 5, accu-376

racy drops sharply in the STORM subset. Gemini-377

1.5 Pro falls to 34.8%, Qwen2-VL to 28.9%, and378

MiniCPM-V-2_6 to 21.5%. These real-world chart379

pairs demand semantic alignment and temporal380

synthesis. Table 9 shows abstract numerical rea-381

soning is hardest (15.6%), followed by range es-382

timation (33.4%) and entity inference (39.1%).383

These declines reflect the challenge of integrating384

misaligned metadata, irregular axes, and domain-385

specific trends across diverse visual styles.386

Do Models Generalize Well from Synthetic to387

Real-World Chart Distributions? No. Table 5388

shows a consistent drop in performance from389

SPECTRA to STORM across all models. Gemini-390

1.5 Pro declines from 59.1% in SPECTRA to391

34.8% in STORM. Qwen2-VL drops from 32.8%392

to 28.9%, and MiniCPM-V-2_6 from 32.4% to393

21.5%. These results suggest that while models394

handle synthetic trend-based reasoning to some395

extent, they struggle to transfer those skills to real-396

world chart pairs that involve domain shifts, visual397

diversity, and temporal reasoning.398

4.2 Effect of VLMs 399

Why Does Gemini-1.5 Pro Outperform Other 400

Models? Gemini-1.5 Pro consistently leads 401

across all subsets and prompting strategies. As 402

shown in Table 5, it scores 65.2% in DECAF, 403

59.1% in SPECTRA, and 34.8% in STORM—well 404

ahead of all other models. GPT-4o-mini is the next 405

best, but lags in STORM (29.7%). Open-source 406

models like Qwen2 and MiniCPM perform rea- 407

sonably in DECAF but decline sharply on harder 408

subsets. Gemini’s strength likely stems from its 409

training on structured inputs and strong instruction- 410

following capabilities. 411

How Do Open-Source Models Compare Across 412

Subsets? Open-source models perform well in 413

DECAF but struggle in SPECTRA and STORM. 414

Qwen2-VL-7B drops from 50.2% in DECAF 415

to 32.8% in SPECTRA and 28.9% in STORM. 416

MiniCPM-V-2_6 shows a similar decline: 52.2% 417

→ 32.4% → 21.5%. InternVL and Idefics3 418

perform lower across all subsets, particularly in 419

STORM. These trends point to challenges in gen- 420

eralization, especially when models face domain 421

shifts and complex temporal reasoning. 422

4.3 Effect of Strategies 423

Which Prompting Strategies Work Best Across 424

Subsets? Few-Shot CoTD generally yields the 425

highest accuracy across models and subsets. Ta- 426

ble 5 shows Gemini-1.5 Pro improves from 65.2% 427
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Model DECAF SPECTRA STORM DECAFo

C2T 43.8 46.3 14.7 62.6
Gemini-1.5-Pro 69.9 68.1 29.5 76.0
Deplot 54.3 57.9 22.2 63.8
Deplot++ 63.2 58.1 23.6 61.9
MiniCPM-V-2_6 33.8 22.1 12.2 35.6
Qwen2-VL-7B 50.1 34.3 18.4 52.4

Table 6: Accuracies from the chart-to-table prompt-
ing and rendering strategies for DECAF, SPECTRA,
STORM, and DECAF compound charts: DECAFo.

(Zero-Shot) to 71.6% (Zero-Shot CoT), and fur-428

ther to 73.9% using Few-Shot CoTD in DECAF.429

Qwen2-VL follows a similar pattern, improving430

from 50.2% to 59.9%, before dropping slightly to431

56.3%. While MiniCPM sees minor gains with432

CoT, it drops slightly under Few-Shot CoTD. Over-433

all, structured prompting helps most in DECAF434

and SPECTRA, but offers limited advantage in435

STORM due to its high complexity.436

Does Chain-of-Thought (CoT) Consistently437

Help? Mostly in simpler subsets. Table 5 shows438

that CoT improves performance in DECAF and439

SPECTRA but offers limited benefit in STORM.440

For example, Gemini-1.5 Pro jumps from 65.2%441

to 71.6% in DECAF and from 59.1% to 58.5%442

in SPECTRA. Qwen2-VL improves from 50.2%443

to 59.9% in DECAF, and MiniCPM sees only a444

marginal gain (52.2% to 52.7%). In STORM,445

scores remain largely unchanged or even decline446

slightly, indicating that verbal reasoning alone can-447

not compensate for high visual and semantic com-448

plexity.449

4.4 Effect of Intermediate Representation450

How Do Different Table Extraction Methods451

Compare? DePlot++ consistently outperforms452

DePlot in DECAF and SPECTRA. As shown in453

Table 6, DePlot++ achieves 63.2% in DECAF454

and 58.1% in SPECTRA, compared to 54.3% and455

57.9% with DePlot.456

DECAF Chart Type Mean Best

DECAF-Decomposition
Line 39.66 57.76
Horizontal Bar 50.95 73.36
Vertical Bar 56.17 78.63
Box Plot 64.3 84.23
Heat Map 55.36 81.35
Dot 58.24 78.63

Table 7: Distribution of Accuracies for Chart Decompo-
sition Approach for DECAF.

SPECTRA Question Category Mean Best

DECAF-Decomposition
Correlated 39.49 67.43
Independent 43.22 73.47

Table 8: Distribution of Accuracies for Question Cate-
gorization Approach for SPECTRA.

This improvement reflects better title and axis align- 457

ment, which helps structured models parse tabular 458

input more accurately. The gains are modest but 459

consistent, affirming the importance of clean pre- 460

processing and metadata fidelity. 461

When Do Structured Tables Hurt Performance 462

Instead of Helping? In STORM. As shown in 463

Tables 6 and 5, structured representations often 464

degrade accuracy on complex real-world charts. 465

Gemini-1.5 Pro drops from 34.8% with visual in- 466

puts to 29.5% using tables. C2T performs even 467

worse at 14.7%. These trends suggest that tables 468

cannot capture semantic and temporal alignment 469

across axes, which are critical for accurate reason- 470

ing in real-world multi-chart settings. 471

4.5 Effect of Chart Types, Question Category, 472

and Reasoning Type 473

Which Chart Types Are Easier or Harder in DE- 474

CAF? According to Table 7, box plots (64.3%) 475

and dot plots (58.24%) are the easiest for models to 476

interpret, followed by vertical bars (56.17%). Line 477

charts (39.66%) and horizontal bars (50.95%) yield 478

lower accuracy, likely due to visual ambiguity in 479

axis orientation and overlapping labels. These re- 480

sults suggest that models perform best when the 481

chart layout is clean and the data encoding is visu- 482

ally distinct. 483

Which Question Types Are Easier in SPEC- 484

TRA? Table 8 shows that independent questions 485

achieve higher accuracy (43.22%) than correlated 486

ones (39.49%).

STORM Interleaved Combined

Reasoning Type Mean Best Mean Best

Abstract Numerical 13.6 23.7 15.6 25.5
Entity Inference 42.1 51.3 39.1 50.9
Range Estimation 31.2 52.3 33.4 47.5

Table 9: Distribution of accuracies for reasoning type
categorization in STORM, comparing interleaved and
combined visual formats.

487
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This suggests that isolating variables in SPECTRA488

makes reasoning easier for models, while corre-489

lated questions introduce multi-step dependencies490

across charts that are harder to track and align.491

How Consistent Are VLMs Across Chart Types?492

Model performance varies significantly across493

chart types. Table 7 shows accuracies ranging from494

39.66% for line charts to 64.3% for box plots. This495

variation suggests VLMs lack consistent chart-type496

generalization and are sensitive to layout complex-497

ity, axis orientation, and label density. Even high-498

performing models like Gemini show dips on dense499

or ambiguous formats, highlighting the need for500

chart-aware visual parsing.501

How Do Reasoning Types Impact Performance502

in STORM? As shown in Table 9, reasoning503

type has a clear impact on accuracy in STORM.504

Entity inference yields the highest mean accuracy505

(42.1% interleaved), followed by range estimation506

(33.4%), and abstract numerical reasoning is low-507

est (13.6–15.6%). Interleaved visual formats of-508

fer modest gains for entity and range tasks but509

have limited effect on abstract numerical reasoning,510

where semantic alignment and aggregation across511

charts remain key challenges.512

5 Comparison with Related Work513

Understanding visualizations through natural lan-514

guage has long been a goal in multimodal AI. Early515

chart-based VQA datasets such as FigureQA (Ka-516

hou et al., 2017), DVQA (Kafle et al., 2018),517

PlotQA (Methani et al., 2020), ChartQA (Masry518

et al., 2022), and ChartLlama (Han et al., 2023) in-519

troduced benchmarks over synthetic or real-world520

plots, focusing on factual or reasoning questions in521

isolated visual contexts. Recent efforts like Chart-522

Info (Davila et al., 2024) and SciGraphQA (Li and523

Tajbakhsh, 2023) extended this by incorporating524

structured data such as tables and graphs. However,525

these datasets center on single-chart scenarios and526

do not evaluate a model’s reasoning ability across527

multiple, semantically related charts. Complemen-528

tary work on multi-hop (Deng et al., 2022) and529

graph-based QA (Jin et al., 2024) has demonstrated530

that decomposing complex inputs into smaller units531

improves reasoning and interpretability.532

MultiChartQA (Zhu et al., 2025) takes a step to-533

ward multi-chart reasoning through synthetic chart534

triplets and four structured tasks: direct, parallel,535

comparative, and sequential. While it offers con-536

trolled diagnostics, the benchmark uses uniformly 537

styled charts with fixed layouts and semantics. It 538

does not assess model performance under visual di- 539

versity, semantic drift, or layout complexity, which 540

are standard features in real-world chart collec- 541

tions. 542

INTERCHART addresses these gaps with a 543

broader diagnostic lens. It introduces three sub- 544

sets DECAF, SPECTRA, and STORM spanning 545

single-chart to real-world multi-chart reasoning un- 546

der increasing difficulty and diversity. Unlike prior 547

benchmarks, it combines synthetic and real-world 548

charts to evaluate robustness to visual heterogene- 549

ity and abstraction. Additionally, it incorporates 550

an LLM-based evaluation framework that assesses 551

semantic correctness beyond string overlap. IN- 552

TERCHART thus serves both as a benchmark for 553

evaluating performance and a diagnostic frame- 554

work for identifying where current models fail in 555

complex, multi-chart reasoning scenarios. 556

6 Conclusion and Future Directions 557

We introduced INTERCHART, a diagnostic bench- 558

mark for evaluating vision-language models 559

(VLMs) on multi-chart visual reasoning. Struc- 560

tured across three progressively complex subsets 561

DECAF, SPECTRA, and STORM. INTERCHART 562

enables detailed analysis of model behavior un- 563

der controlled visual transformations. Our find- 564

ings show that while current VLMs perform well 565

on simplified, decomposed visuals, their accuracy 566

drops significantly when required to integrate or 567

infer across visually complex, semantically mis- 568

aligned chart sets. Rather than treating VQA as 569

a binary success metric, INTERCHART provides a 570

controlled setting to explore why models succeed or 571

fail by varying presentation while holding semantic 572

content constant. This enables diagnostic analysis 573

of model robustness, attention mechanisms, and 574

failure modes—offering insights relevant to model 575

design, training strategies, and interface develop- 576

ment. 577

In future work, we plan to expand INTERCHART 578

beyond traditional charts to include infographics, 579

annotated scientific plots, and hybrid layouts. We 580

also aim to explore multilingual question sets and 581

incorporate neuro-symbolic or retrieval-augmented 582

approaches to support structured abstraction and 583

cross-domain transfer. These directions can ad- 584

vance model transparency, scalability, and applica- 585

bility in real-world decision-support settings. 586
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Limitations587

INTERCHART offers a flexible diagnostic frame-588

work but comes with limitations. First, our evalua-589

tions rely entirely on zero- and few-shot prompting590

due to resource constraints. This setup does not591

capture the full potential of models that might ben-592

efit from fine-tuning on chart-specific data. Second,593

all questions and visual content are English-only,594

which limits multilingual applicability. Addition-595

ally, the current version does not support spatial596

reasoning tasks such as bounding box grounding597

or region referencing. While we plan to add fine-598

grained annotations and structured parsing outputs599

in future versions, this study focuses solely on600

answer-level reasoning. Several potential exten-601

sions—such as dynamic chart distillation, sym-602

bolic chart indexing, or JSON-based parsing su-603

pervision—remain conceptual due to scope limi-604

tations. Despite these constraints, INTERCHART605

lays a foundation for expanding multimodal eval-606

uation toward structured, visual-first tasks. Future607

extensions could include layout-aware fine-tuning608

pipelines, grounded CoT prompting, and multi-609

modal summarization agents tailored for multi-610

chart analytics.611

Ethics Statement612

This work adheres to ethical standards in data col-613

lection, annotation, and reproducibility. All visual614

data used in INTERCHART originate from publicly615

available or synthetically generated sources under616

permissible licenses. No sensitive or personally617

identifiable information is included. Annotations618

were conducted by graduate-level volunteers based619

in the United States and India, all of whom pro-620

vided informed consent. To promote transparency621

and reproducibility, we will publicly release the622

full dataset, evaluation scripts, prompt templates,623

and annotation guidelines. All filtering heuristics624

and design decisions have been carefully docu-625

mented to facilitate future research and benchmark-626

ing efforts. We also employed AI tools, including627

large language models, to assist with aspects of the628

project such as prompt development and explana-629

tory text generation. All AI-generated outputs were630

reviewed and refined by human authors to ensure631

accuracy and clarity. Overall, this project reflects632

our commitment to data privacy, transparency, an-633

notator welfare, and the responsible integration of634

AI tools throughout the research process.635
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Appendix A: Prompt Templates766

Zero-Shot Prompt767

Zero-Shot Prompt

Your task is to answer the question based on
the given {img_word}. Your final answer to
the question should strictly be in the format
"Final Answer:" <final_answer>.
Question: {question}

768

Zero-Shot Chain-of-Thought Prompt769

Zero-Shot Chain-of-Thought Prompt

Your task is to answer the question based on
the given {img_word}. Your final answer
to the question should strictly be in the for-
mat "Final Answer:" <final_answer>.
Let’s work this out in a step by step way to
be sure we have the right answer.
Question: {question}

770

Data Extraction Prompt771

Data Extraction Prompt

Your task is to extract all data from the chart
image provided. Make sure to include the
chart’s title. Output the data in a structured
format. Ensure every data point is accu-
rately captured and represented. Be meticu-
lous and do not omit any information.
Think step by step. Identify the chart type
to extract data accordingly.

772

Table-Based Question Answering Prompt773

Table-Based QA Prompt

You are tasked with answering a specific
question. The answer must be derived solely
from information provided, which is ex-
tracted from image(s) of chart(s). This in-
formation will include the data extracted
from the chart, including the chart title.
Your final answer to the question should
strictly be in the format "Final Answer:"
<final_answer>. Let’s work this out in a
step-by-step way to be sure we have the
right answer.
Data extracted from charts: {tables}
Question: {question}

774

Chart Title Extraction Prompt 775

Chart Title Extraction Prompt

Your task is to extract the main title of the
chart image. The main title is typically lo-
cated at the top of the chart, above the chart
area itself, and describes the overall subject
of the chart. The title usually describes what
data is being presented, the time period, or
the geographic location, if applicable.
If the chart does not have a discernible
main title, your response should be "Title:
None". Otherwise, your response should be
in the format "Title: <title>".

776

Few-Shot with Directives Prompt 777

Few-Shot with Directives Prompt

Your task is to answer a question based on
a given {img_word}. To ensure clarity and
accuracy, you are required to break down
the question into steps of extraction and rea-
soning. Your final answer should strictly
rely on the visual information presented in
the {img_word}.
Here are a few directives that you can follow
to reach your answer:
Step 1: Identify Relevant Entities First,
identify the key entities or data points
needed to answer the given question. These
could be labels, categories, values, or trends
in the chart or image.
Step 2: Extract Relevant Values Extract
all necessary values related to the identified
entities from the image. These values might
be numerical (e.g., percentages, quantities)
or categorical (e.g., labels, categories).
Step 3: Reasoning and Calculation Using
the extracted values, apply logical reason-
ing and calculations to derive the correct
answer. Explicitly state the reasoning pro-
cess to ensure the steps leading to the final
answer are understandable and correct.
Step 4: Provide the Final Answer Based
on your reasoning, provide the final answer
in the following format: Final Answer:
<final_answer>
Question: {question}

778
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LLM-as-a-Judge Prompt779

780

LLM-as-a-Judge Prompt

You will be given a question, the correct
answer to that question (called the "Ground
Truth answer"), and a student’s attempt to
answer the same question (called the "Stu-
dent Written Answer"). Your task is to de-
termine if the Student Written Answer is
correct when compared to the Ground Truth
answer.
Instructions:

• The answer should be based solely on
the provided information in the ques-
tion and the Ground Truth answer.

• An answer is correct if it contains the
same information as the Ground Truth
answer, even if phrased differently.

• Ignore minor differences in wording or
phrasing that do not change the mean-
ing.

• If the Ground Truth answer is a num-
ber, consider the Student Written An-
swer correct if it is approximately
equal (e.g., 20.24553 vs 20.24). State
assumptions clearly.

• For range-based questions, accept an-
swers within the correct range.

• Provide a short explanation inside
<reasoning> tags.

• Output <answer> 1 </answer> if cor-
rect, or <answer> 0 </answer> if in-
correct.

Example: Question: What is the color of
water? Ground Truth answer: Pink Stu-
dent Answer: Final Answer: Water is
colorless.
Response: <reasoning> The student
answer does not match the ground
truth. </reasoning> <answer> 0
</answer>
Now, answer the following: Ques-
tion: {question} Ground Truth answer:
{ground_truth} Student Written Answer:
{student_answer}

781

Appendix B: Flowcharts 782

Figure 3: Pipeline for DECAF: Decomposing complex
charts into simplified single-entity visuals and generat-
ing fact-based QA pairs.
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Figure 4: Pipeline for SPECTRA: Generating synthetic
multi-chart contexts for correlated trend and scenario-
based reasoning.

Figure 5: Pipeline for STORM: Constructing real-world
chart pairs and QA for multi-step reasoning across mis-
aligned domains.
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Figure 6: Evaluation pipeline overview: Combining
chart-question inputs with different prompting strategies
and judging model outputs via majority voting from
multiple LLMs.

Appendix C: Data Generation Algorithms 783

Algorithm 1 DECAF Constrained SQL Sampling
-Multi-Entity Chart Decomposition

1: Input: Table T , Level L, Operators OPnum,
OPstr, FLops, STRops, Cnj

2: Output: SQL Query S
3: for each column C in T do
4: Identify C.dataType
5: end for
6: while not ValidSQL(S, T ) do
7: Initialize empty SQL Query S ▷ Chart

Decomposition via SQL
8: select_col← Random Column from T
9: if L = 1 and Random(0,1) = 0 then

10: Skip Selection Operation
11: else
12: if select_col is Numerical then
13: Apply Numerical Operator
14: else
15: Apply String Operator
16: end if
17: end if ▷ WHERE Clause - Linked Data

Points Selection
18: if Random(0,1) = 1 then
19: Choose Column C, Value V , Operator

OP
20: Add Condition COPV
21: end if ▷ WHERE Clause - Multi-Row and

Multi-Column Reasoning
22: Extract Numeric Columns
23: Choose Number of Conditions Based on L
24: for each Condition do
25: Pick Two Numeric Columns CA, CB

26: Add Condition CAOPCB

27: end for ▷ Combine Conditions with
Conjunctions for Complex Queries

28: for each Condition do
29: Merge using Cnj (AND, OR)
30: end for ▷ ORDER BY Clause (For L = 2)
31: if select_col is Numerical and not in Con-

ditions then
32: Apply ORDER BY with ASC/DESC
33: end if
34: end while
35: Filter by Human ▷ Ensuring Logical

Consistency and Quality
36: return S
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Algorithm 2 Synthetic Simulation - Multi-Chart
Reasoning with LLM-Generated Contexts

1: Input: LLM Model MLLM , Human Annota-
tors A, Chart Generator Gchart

2: Output: Dataset D with Context Pairs and QA
Pairs

▷ Step 1: Context Table and Chart
Generation

3: Tcontexts ← ∅
4: for each scenario S generated by MLLM do
5: Extract structured entity relationships ES

6: Construct context tables TS based on ES

7: Tcontexts ← Tcontexts ∪ TS

8: end for
9: Csynthetic ← ∅

10: for each table T in Tcontexts do
11: Convert T into chart C using Gchart

12: Perform human review for accuracy and
readability

13: Csynthetic ← Csynthetic ∪ C
14: end for

▷ Step 2: Multi-Chart QA Generation
15: QA← ∅
16: for each related chart pair (C1, C2) in

Csynthetic do
17: for each annotator a in A do
18: Generate Questions
19: Use LLM-based prompt chaining for

QA refinement
20: end for
21: end for

▷ Step 3: Dataset Filtering and
Compilation

22: Perform Human Validation for Correctness and
Clarity

23: Remove Low-Quality QA Pairs
24: D ← {Csynthetic, QA}
25: return D

Algorithm 3 STORM: Chart and QA Generation
1: Input: Chart Repository C, Semantic Pairing

Module Psem, VLM Model MV LM , Annota-
tors A

2: Output: Dataset D = {(Ci, Cj , q, a)}

3: // Chart Generation Phase
4: Initialize paired chart set Pfinal ← ∅
5: for each chart Ci in repository C do
6: Extract metadata MCi

7: Use Psem to find matching chart Cj with
aligned entities

8: if valid alignment exists then
9: Add (Ci, Cj) to candidate pairs

10: end if
11: end for
12: for each pair (Ci, Cj) in candidate pairs do
13: Manually review for relevance and coher-

ence
14: if pair is contextually valid then
15: Add to Pfinal
16: end if
17: end for

18: // QA Generation Phase
19: Initialize QA set Q ← ∅
20: for each chart pair (Ci, Cj) in Pfinal do
21: Generate candidate QA pairs using MV LM

22: Annotators review and refine each (q, a)
23: Classify QA into one of:

• Contextual Range Estimation
• Abstract Numerical Analysis
• Entity Inference

24: Add (Ci, Cj , q, a) to Q
25: end for
26: return Final dataset D ← Q
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Appendix D: Model and Compute Details784

Model Sizes. We evaluated a mix of closed- and785

open-source vision-language models (VLMs), as786

well as structured reasoning baselines:787

• Gemini 1.5 Pro: 56B parameters (proprietary,788

estimate based on public disclosures).789

• GPT-4o-mini: Parameter size not publicly790

disclosed.791

• Qwen2-VL-7B-Instruct: 7B parameters.792

• MiniCPM-V-2_6: 2.6B parameters.793

• InternVL-2-8B: 8B parameters.794

• Idefics3-8B-LLaMA3: 8B parameters.795

• DePlot (Liu et al., 2023): Built on encoder-796

decoder transformer with tabular rendering;797

400M parameters.798

• Chart-to-Text (Kantharaj et al., 2022): In-799

cludes rule-based visual parsing + generation800

via T5 (220M to 3B parameters, depending on801

version).802

Compute Infrastructure. Model inference and803

evaluation were performed using:804

• NVIDIA A100, NVIDIA H200 GPUs on805

a high-memory compute cluster for open-806

source model inference and table-based807

prompting.808

• Google Cloud and OpenAI APIs for Gemini809

1.5 Pro and GPT-4o-mini, respectively.810

Approximate Compute Budget.811

• Open-source model inference: ∼320 GPU-812

hours (covering 5,214 QA pairs × 3 prompting813

strategies × multiple visual formats).814

• Evaluation with LLM-as-a-Judge: ∼60815

GPU-hours (Gemini 1.5 Flash, Qwen2.5-7B,816

and Phi-4; each example judged by 3 models).817

• Chart-to-Table + Table-based QA (DePlot,818

DePlot++, Gemini, MiniCPM, Qwen2):819

∼120 GPU-hours for rendering, metadata gen-820

eration, and table-based prompting.821

All experiments were implemented in Python ≥822

3.10 using PyTorch ≥ 2.0. Evaluation workflows823

used batch inference pipelines with structured log-824

ging, and charts were rendered or parsed using825

Plotly, DePlot, and in-house scripts.826
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Appendix E: Individual Evaluation Results

Table 10: Baseline Accuracies using our evaluation method with Gemini-1.5 Eval Engine on all models and
prompting strategies. Results are grouped by visual context format (top: Combined, bottom: Interleaved), and
broken down by set type (DECAF, SPECTRA, STORM) and strategy (Zero-Shot, Zero-Shot CoT, Few-Shot CoTD).

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 45.8 60.9 48.5 27.9 48.0 69.8 47.2 27.1 48.0 69.4 45.5 29.0
Gemini-1.5-Pro 56.3 66.3 61.7 40.8 59.3 73.8 62.0 42.2 59.1 74.6 62.9 39.9
Qwen2-VL-7B 48.7 50.3 33.8 35.2 51.0 60.7 36.6 33.9 47.8 55.6 34.5 33.3
MiniCPM-V-2_6 38.0 53.4 34.0 26.5 38.4 53.9 33.5 27.8 33.5 50.8 27.7 22.1
InternVL-2-8B 33.2 40.3 27.8 31.6 31.6 43.4 26.2 28.6 31.4 44.3 22.4 27.6
Idefics3-8B-Llama3 22.2 38.2 19.6 8.9 23.0 38.1 18.3 12.8 29.0 33.5 27.0 26.6

Mean 40.7 51.6 37.6 28.2 42.2 56.6 37.3 28.9 41.5 54.7 36.7 29.8

Interleaved Visual Context

GPT-4o 49.3 66.1 52.2 29.7 51.8 74.0 50.9 30.6 50.6 73.0 49.8 29.0
Gemini-1.5-Pro 59.0 74.2 62.9 43.0 60.0 75.0 61.9 43.0 58.4 76.1 61.3 39.4
Qwen2-VL-7B 47.5 47.6 34.1 30.8 50.3 59.6 38.8 32.5 45.1 52.5 32.5 30.2
MiniCPM-V-2_6 41.7 59.1 36.6 29.3 41.0 57.1 37.2 28.9 38.2 53.3 32.2 29.1

Mean 49.4 61.7 46.5 33.2 50.8 66.4 47.2 33.8 48.1 63.7 43.9 31.9

Table 11: Baseline Accuracies using our evaluation method with Qwen 2.5 Eval Engine on all models and prompting
strategies. Results are grouped by visual context format (top: Combined, bottom: Interleaved), and broken down by
set type (S1, S2, S3) and strategy (Zero-Shot, Zero-Shot CoT, Few-Shot CoTD).

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4o-mini 41.4 55.3 38.8 30.1 44.2 61.2 40.8 30.6 45.2 61.7 42.8 31.1
Gemini-1.5-Pro 51.1 66.1 54.5 32.6 51.1 67.0 54.9 31.4 52.1 68.6 57.1 30.7
Qwen2-VL-7B 33.8 48.0 29.0 24.5 35.5 52.5 29.8 24.3 34.5 50.1 29.8 23.7
MiniCPM-V-26 29.1 45.2 25.6 16.6 28.9 45.4 25.2 16.2 27.3 45.2 23.4 13.2
InternVL-2-8B 24.3 35.1 19.6 18.2 26.3 38.6 21.8 18.5 26.6 41.4 24.1 14.2
Idefics3-8B-Llama3 19.8 38.1 18.8 2.5 19.5 37.7 18.9 2.0 19.7 34.9 20.4 3.9
Mean 33.2 48.0 31.1 20.8 34.6 50.4 31.9 20.5 34.2 50.3 32.9 19.5

Interleaved Visual Context

GPT-4o-mini 45.6 61.3 44.1 31.4 47.3 65.8 44.3 31.8 48.0 65.6 47.2 31.1
Gemini-1.5-Pro 50.0 67.0 51.0 31.9 51.6 68.1 53.8 32.9 51.3 70.3 54.1 29.5
Qwen2-VL-7B 33.5 46.3 29.5 24.7 36.4 51.4 32.6 25.1 34.1 48.7 28.8 24.7
MiniCPM-V-26 34.4 52.3 29.6 21.3 32.9 49.9 29.4 19.4 32.2 49.8 28.7 18.2
Mean 40.9 56.7 38.6 27.3 42.1 58.8 40.0 27.3 41.4 58.6 39.7 25.9
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Microsoft Phi4 Evaluation Result

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM Net DECAF SPECTRA STORM

Combined Visual Context Image

GPT-4O-mini 47.5 61.8 49.4 31.3 53.3 73.8 55.8 30.5 53.0 74.8 53.2 31.0
Gemini-1.5-Pro 53.0 67.1 61.1 30.9 54.6 73.9 58.6 31.4 57.8 78.4 64.4 30.5
Qwen2-VL-7B 38.3 52.2 35.7 27.0 46.0 66.5 45.4 27.0 44.2 63.1 46.8 22.8
MiniCPM-V-2_6 38.9 57.9 37.6 21.3 38.6 58.7 37.2 20.0 36.6 50.2 39.0 20.6
InternVL-2-8B 34.1 44.6 32.5 25.0 37.9 53.6 36.6 23.7 36.9 53.4 35.5 21.9
Idefics3-8B-Llama3 27.7 41.6 19.9 21.8 28.9 40.6 21.4 24.6 27.7 38.6 27.8 16.7

Mean 39.9 54.2 39.4 26.0 43.2 61.2 42.5 26.2 42.0 59.8 44.4 23.9

Interleaved Visual Context

GPT-4o-mini 55.1 68.5 53.6 33.8 56.0 77.6 56.6 33.5 55.8 77.7 55.6 34.1
Gemini-1.5-Pro 55.3 74.5 58.4 33.1 55.9 76.4 57.9 33.4 57.1 78.0 63.5 29.9
Qwen2-VL-7B 37.3 49.4 35.2 27.3 45.9 64.6 44.6 28.6 42.0 55.3 44.3 26.4
MiniCPM-V-2_6 45.0 66.0 44.0 25.0 43.4 64.1 42.0 24.2 44.0 63.3 44.4 24.3

Mean 48.2 64.6 47.8 29.8 50.3 70.7 50.3 29.9 49.7 68.6 51.9 28.7

Table 12: Baseline Accuracies using our evaluation method with Microsoft Phi4 Eval Engine on All Models and
Strategies, broken down by Set Type (S1, S2, S3) and Strategy type (Zero-Shot, Zero-Shot CoT, Few-Shot CoTD).
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