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Abstract

Winner-takes-all training is a simple learning
paradigm, which handles ambiguous tasks by pre-
dicting a set of plausible hypotheses. Recently,
a connection was established between Winner-
takes-all training and centroidal Voronoi tessel-
lations, showing that, once trained, hypotheses
should quantize optimally the shape of the condi-
tional distribution to predict. However, the best
use of these hypotheses for uncertainty quantifi-
cation is still an open question. In this work, we
show how to leverage the appealing geometric
properties of the Winner-takes-all learners for con-
ditional density estimation, without modifying its
original training scheme. We theoretically estab-
lish the advantages of our novel estimator both in
terms of quantization and density estimation, and
we demonstrate its competitiveness on synthetic
and real-world datasets, including audio data.

1. Introduction
Machine-learning-based predictive systems are faced with a
fundamental limitation when there is some ambiguity in the
data or in the task itself. This results in a non-deterministic
relationship between inputs and outputs, which is challeng-
ing to cope with. Characterizing this inherent uncertainty is
the problem of conditional distribution estimation.

The recently introduced Winner-takes-all (WTA) training
scheme (Guzman-Rivera et al., 2012; Lee et al., 2016) is
a novel approach addressing ambiguity in machine learn-
ing. This scheme leverages several models, generally a
neural network equipped with several heads, to produce
multiple predictions, also called hypotheses. It trains these
hypotheses competitively, updating only the hypothesis that
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yields the current best prediction. Experimental evidence
has demonstrated that this approach enhances the diversity
of predictions, with each head gradually specializing in a
subset of the data distribution.

At the same time, a limited body of work has tried to theoreti-
cally elucidate the appealing characteristics of Winner-takes-
all learners. Specifically, Rupprecht et al. (2017) described
the geometrical properties of the trained WTA learners us-
ing the formalism of centroidal Voronoi tessellations. This
approach is linked to the field of quantization, where the
objective is to represent an arbitrary distribution optimally
using a finite set of points (Zador, 1982).

Being able to quantize a distribution in an input-dependent
manner, WTA learners have the potential to model the geo-
metric information of a distribution. This raises the follow-
ing question: can WTA learners be used to make accurate
probabilistic predictions? This paper affirms this possibility.

We build upon the recent findings of Letzelter et al. (2023),
which proposed modeling uncertainty from WTA predic-
tions, using either Dirac or uniform mixtures. We extend
this idea by proposing a kernel-based density estimator for
WTA predictors. This enables the computation of uncer-
tainty metrics, such as the negative log-likelihood, from
trained WTA models. This development introduces a novel
method for the probabilistic evaluation of WTA predictions.
Notably, it can be used even when only a single target from
the conditional distribution is available for each input.

The key contributions of this work are as follows:

1. We introduce an estimator that provides a comprehen-
sive probabilistic interpretation of WTA predictions
while retaining their appealing geometric properties.

2. We mathematically validate the competitiveness of our
estimator, both in terms of geometric quantization prop-
erties and probabilistic convergence, as the number of
hypotheses increases.

3. We empirically substantiate our estimator through ex-
periments on both synthetic and real-world data, in-
cluding audio signals.1

1Code at https://github.com/Victorletzelter/VoronoiWTA.
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2. Background
2.1. Winner-takes-all training

The Winner-takes-all training scheme is the basic building
block of the Multiple Choice Learning family of approaches
(Guzman-Rivera et al., 2012; Lee et al., 2016; 2017; Tian
et al., 2019). It was introduced to deal with inherently am-
biguous prediction tasks. Specifically, we are not only inter-
ested in predicting a single output fθ(x) ∈ Y from a given
input x ∈ X (fθ can typically be a deep neural network
with parameters θ). Instead, we want to perform several
predictions f1θ (x), . . . , f

K
θ (x) accounting for K potential

outcomes.

More precisely, let fθ ≜ (f1θ , . . . , f
K
θ ) ∈ F(X ,YK),

which could be for instance a multi-head deep neural net-
work, and let (x, y) ∈ X ×Y be a pair sampled from a joint
distribution P (with density ρ(x, y)).

In a supervised setting, the WTA training consists in:

1. performing a forward pass through the loss ℓ for all
predictors,

2. then backpropagating the loss gradients for the selected
winner hypothesis:

LWTA(θ) ≜ min
k∈J1,KK

ℓ
(
fkθ (x) , y

)
. (1)

This two-step approach, originally proposed by Lee et al.
(2016), makes it possible to use gradient-based optimization,
despite the non-differentiability of the min operator in (1).

2.2. Desirable geometrical properties

Rupprecht et al. (2017) have shown that, once trained, the
output of the set of predictors (f1θ (x), · · · , fKθ (x)) can be
interpreted as an input-dependent centroidal Voronoi tes-
sellation, thereby providing a geometrical probabilistic in-
terpretation of WTA. As done by Rupprecht et al. (2017),
we study the case where ℓ(ŷ, y) = ∥ŷ − y∥2 is the the L2

loss. In a standard machine learning setting, where a single
prediction is provided, one can prove that the risk

E(x,y)∼ρ(x,y)[ℓ(fθ(x), y)] , (2)

is minimized when ∀x ∈ X , fθ(x) = E[Yx], noting
Yx ∼ Px the conditional distribution and ρx its density.
The proof of this result is based on the customary assump-
tion that the predictor fθ is sufficiently expressive, so that
minimizing the risk (2) is equivalent to minimizing the input-
dependent risk, Ey∼ρx(y)[ℓ(fθ(x), y)], for each fixed input
x. When multiple predictors are used, as in the WTA case,
the situation is more complex. In this case, after defining
Voronoi cells as:

Yk(g) ≜ {y ∈ Y | ℓ (gk, y) < ℓ (gr, y) ,∀r ̸= k} , (3)

for some arbitrary set of generators (g1, · · · , gK), the input-
dependent risk writes, for each x ∈ X , as

K∑
k=1

∫
Yk

θ (x)

ℓ(fkθ (x), y)ρx(y)dy , (4)

where for ease of notation Ykθ (x) ≜ Yk(fθ(x)). Note that
(4) is not differentiable with respect to the parameters θ,
which are involved both in the integrand and in the integra-
tion domain. This issue can be alleviated by uncoupling the
two variables and defining:

K(g, z) ≜
K∑
k=1

∫
Yk(g)

ℓ (zk, y) ρx(y)dy , (5)

where z = (z1, · · · , zK). Note that (4) corresponds to
K(fθ(x), fθ(x)).

For the purpose of the next proposition, let us define a
centroidal Voronoi tessellation.
Definition (Centroidal Voronoi Tessellation). We say that
{Yk(z)} forms a centroidal Voronoi tessellation with re-
spect to a density function ρx and a loss function ℓ if, for
each cell k, the generator zk minimizes the weighted loss
over its region:∫
Yk(z)

ρx(y)ℓ (zk, y) dy = inf
z′∈Y⋆

k (z)

∫
Yk(z)

ρx(y)ℓ(z
′, y)dy ,

where Y⋆k (z) is the closure of Yk(z).

Based on formulation (5), Rupprecht et al. (2017) show that
one can adapt the following result.
Proposition 2.1 (Du et al., 1999). A necessary condition
for minimizing (5) is that Yk(g) are the Voronoi regions
generated by the zk, and simultaneously, {Yk(z)} forms a
centroidal Voronoi tessellation generated by {zk}.

In particular, if ℓ is the L2-loss, this condition implies that,
for each non-zero probability cell, the optimal hypotheses
placements correspond to cell-restricted conditional expec-
tations as stated in Theorem 1 of Rupprecht et al. (2017):

fkθ (x) = E[Yx | Yx ∈ Ykθ (x)] . (6)

This necessary condition, which offers a geometrical inter-
pretation of the Winner-takes-all optimum, has been verified
experimentally in previous works (Rupprecht et al., 2017;
Letzelter et al., 2023), thus demonstrating the method’s
potential to predict input-dependent centroidal Voronoi tes-
sellations using deep neural networks.

2.3. Probabilistic interpretation as a mixture model

Proposition 2.1 highlights the geometric advantages of
WTA, but it does not provide a full probabilistic interpre-
tation of this method. First, (6) is valid only in Voronoi
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cells with strictly positive mass, i.e., containing at least one
sample from the ground-truth empirical distribution. Fur-
thermore, the WTA predictor from Rupprecht et al. (2017)
implicitly affects equal probability to all Voronoi cells, re-
gardless of their ground-truth probability mass.

As a possible solution, Tian et al. (2019) and Letzelter
et al. (2023) propose to additionally train score heads
γ1θ , . . . , γ

K
θ ∈ F(X , [0, 1]), estimating the probability mass

of each cell P(Yx ∈ Ykθ (x)) by jointly optimizing in θ the
WTA loss (1) with the cross-entropy

Lscoring(θ) ≜
K∑
k=1

BCE
(
1
[
y ∈ Ykθ (x)

]
, γkθ (x)

)
, (7)

between the predicted assignation probability γkθ (x) and
the actual assignation, where BCE(p, q) ≜ −p log(q) −
(1− p) log(1− q). The full training objective is therefore
defined as a compound loss LWTA + βLscoring. Mirroring
Proposition 2.1, one can show that a necessary condition
to minimize the scoring objective is that each γkθ (x) is an
unbiased estimator of the probability mass of its cell:

γkθ (x) = P(Yx ∈ Ykθ (x)) . (8)

Assuming now that (6) and (8) are verified after training,
through the minimization of the combined objective, Let-
zelter et al. (2023) argued that it is possible to interpret
the outputs of such a model probabilistically, as a Dirac
mixture:

ρ̂x(y) =

K∑
k=1

γkθ (x)δfk
θ (x)(y) . (9)

Let Ŷx ∼ ρ̂x denote the random variable sampled from
this estimated conditional distribution. The Dirac mixture
interpretation (9) has at least two desired properties:

1. [centroidal property] the cell-restricted expectation
with respect to the estimated distribution matches the
ground truth:

E[Ŷx | Ŷx ∈ Ykθ (x)] = E[Yx | Yx ∈ Ykθ (x)] , (10)

2. [cell-scoring property] the predicted probability mass
of the Voronoi cells is unbiased:

P(Ŷx ∈ Ykθ (x)) = P(Yx ∈ Ykθ (x)) . (11)

This interpretation is hence appealing as it captures the
global shape of the distribution. However, it presents a
major caveat: it does not capture local variations of mass
within the Voronoi cells.

3. Limitations of current estimators
We illustrate hereafter the main limitations of the proba-
bilistic interpretation of the score-based WTA proposed in
Letzelter et al. (2023). To this end, we consider a toy exam-
ple inspired from Rupprecht et al. (2017).

Our goal is to predict an input-dependent distribution ρ̂x(y),
where x lives in the unit-segment X = [0, 1], and y is
restricted to the 2D-square Y = [−1, 1]2. The latter is
split into four quadrants: S1 = [−1, 0) × [−1, 0), S2 =
[−1, 0)×[0, 1], S3 = [0, 1]×[−1, 0) and S4 = [0, 1]×[0, 1].
The target distribution for each x is then generated by
first sampling one of the four quadrants with probabili-
ties p (S1) = p (S4) = 1−x

2 and p (S2) = p (S3) = x
2 .

Once a region is sampled, a point is then drawn from a
predetermined distribution restricted to that region: uniform
distributions in S1 and S4, and Gaussian distributions in
S2 and S3 (with different standard deviations, respectively,
σ2 ≫ σ3).

We trained a 20-hypothesis scoring-based WTA model, con-
sisting of a three-layer MLP, on this dataset. The predictions
for three inputs x ∈ {0.01, 0.6, 0.9} are shown in Figure 1.

For small values of x, the ground-truth conditional distri-
bution is piece-wise uniform. In this situation, the mass
does not vary much inside the predicted Voronoi cells, and
the whole distribution is hence well summarized by the pre-
dicted hypotheses and scores alone. However, the same
cannot be said as x increases. Indeed, when x ∈ {0.6, 0.9},
we see on the bottom-right quadrant (S3) that the small-
variance Gaussian is modeled by a single hypothesis and
Voronoi cell. Although the hypothesis seems to be well-
positioned at the true Gaussian mean and its correspond-
ing cell seems to verify both centroidal and cell-scoring
properties, the local mass variations within the cell are not
well-described. More precisely, neither a Dirac delta, as
in (9), nor a cell-restricted uniform distribution seem like
good estimations of the underlying conditional probability
density within S3.

This problem of intra-cell density approximation can be par-
tially mitigated by increasing the number of hypotheses and
using uniform mixtures. However, we argue that more accu-
rate estimators can be built from the adaptive grid provided
by WTA, even when the number of hypotheses is low.

This example highlights the need for WTA-based condi-
tional density estimators taking into account the data distri-
bution geometry through optimal hypotheses placement.

4. Conditional density approximation
The goal of this work is to propose a probabilistic interpre-
tation of the Winner-takes-all predictions as a conditional
density estimator that preserves the global geometric prop-
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Figure 1. Limitations of Dirac Mixtures. Model predictions for
different inputs x (columns) are shown with blue-shaded circles;
the colorbar indicates hypothesis scores. Green points depict the
target distribution for each input. Black lines mark the boundaries
of the Voronoi tessellation associated with the predictions.

erties of the predictions (centroidal Voronoi tessellation)
and captures the local variations of the probability density,
including inside Voronoi cells. Ideally, we would also like
our estimators to verify both centroidal (10) and cell-scoring
properties (11).

4.1. Kernel WTA

A straightforward way to model intra-cell density variations
is to place a kernel Kh(·, ·) : Y × Y → R+ on each hy-
pothesis k as in a traditional Parzen estimator (Rosenblatt,
1956; Parzen, 1962). This procedure defines the following
conditional density estimator, called Kernel-WTA hereafter:

ρ̂x(y) =

K∑
k=1

γkθ (x)Kh(f
k
θ (x), y) , (12)

where h ∈ R∗
+ is the scaling factor of the kernel. In this

work, we consider only isotropic kernels, e.g., Gaussian,
assumed to integrate to 1 in their second variable. Despite
being simple and allowing intra-cell variations to be mod-
eled, this method has drawbacks. Indeed, we see from (12)
that, whenever h is too large, the kernels begin to diffuse
density out of their Voronoi cells. As a result, neither the
centroidal (10) nor the cell-scoring (11) properties hold any-
more, meaning that the geometric advantages offered by the
Winner-takes-all predictions are not fully preserved. As a
second drawback, the convergence of Kernel-WTA is highly
dependent on the choice of h, as discussed in Section 5.

4.2. Voronoi WTA

As mentioned in the previous section, the straightforward
Kernel-WTA fails to preserve the geometric properties when
h is too large. Inspired by Polianskii et al. (2022), we
propose to alleviate this problem using truncated kernels.
More precisely, let V (gk,Kh) ≜

∫
Yk(g)

Kh (gk, ỹ) dỹ be
the volume of the Voronoi cell defined by generator gk,
under the metric induced by kernel Kh. We define the

Voronoi-WTA estimator as:

ρ̂x(y) =

K∑
k=1

γkθ (x)
Kh

(
fkθ (x), y

)
V (fkθ (x),Kh)

1
(
y ∈ Ykθ (x)

)
. (13)

Unlike Kernel-WTA, the density estimations derived from
(13) are designed to fulfill the cell-scoring property, i.e., if
Ŷx ∼ ρ̂x, P(Ŷx ∈ Ykθ (x)) = γkθ (x) = P(Yx ∈ Ykθ (x)). Us-
ing this property, the convergence in distribution of Voronoi-
WTA as K approaches infinity, shown in Section 5.1, is
independent of the choice of h. As in (12), h remains con-
stant by design for each input x, and in each cell k. Note
that increasing h causes a slight shift in the barycenter of
the predicted distribution from the ground-truth expectation
in each cell. Nonetheless, in our setup, h will be optimized
after the optimization of θ, ensuring that (6) is still verified.

4.3. Likelihood computation and sampling

In practice, the use of the Voronoi-WTA defined in (13)
raises three main questions: (1) how to sample from this
estimator, (2) how to compute likelihoods, and (3) how to
choose the scaling factor h.

Sampling. Rejection sampling is a simple way of sampling
from (13). In practice, one can first draw a Voronoi cell
k ∈ J1,KK from the discrete distribution of predicted scores
{γlθ(x)}, then sample from the kernel Kh(f

k
θ (x), ·) until a

sample falls in cell k. This approach was efficient enough
for all our experiments. Note that whenever the number
of hypotheses or the dimension is large, the more efficient
hit-and-run sampling method from Polianskii et al. (2022)
may be adapted for this setup.

Likelihood computation. The difficulty in computing
(13) comes from the normalization term V (fkθ (x),Kh).
In practice, it can be computed efficiently by re-writing
V (fkθ (x),Kh) as a double-integral in spherical coordinates
as explained in Polianskii et al. (2022). As the inner integral
often has a closed-form solution for usual kernels, a simple
Monte Carlo approximation of the outer integral allows us
to efficiently estimate V (fkθ (x),Kh).

Choosing the scaling factor. We limit ourselves in this
work to the case where the kernels in all Voronoi cells share
the same scaling factor h. The latter has to be tuned, which
can be done in practice based on the likelihood obtained
by the model in a validation set. Note that when h →
0, both Kernel-WTA (12) and Voronoi-WTA estimators
(13) are equivalent to the Dirac mixture (9) from Letzelter
et al. (2023). However, when h increases, Kernel-WTA
loses the geometry captured by the hypotheses {fkθ (x)},
while Voronoi-WTA preserves it, converging to a piece-
wise uniform distribution defined on the Voronoi tessellation.
This is verified experimentally in Section 6.
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5. Theoretical properties
In this section, we present informally the two main theo-
retical results of this work. These propositions are made
precise in the appendix, together with other complementary
results and their corresponding proofs.

5.1. Convergence in distribution independent of h

As a first theoretical contribution, we show in the follow-
ing proposition that Voronoi-WTA is an effective condi-
tional density estimator, in the sense that it converges to the
ground-truth underlying distribution:

Proposition 5.1. Under mild assumptions on Y and the
data distribution, Voronoi-WTA (seen as a density estimator)
converges in probability towards the conditional distribution
Px when the number K of hypotheses grows to infinity.

A formal version of this result can be found in the appendix
(Theorem B.10).

This result is similar to Theorem 4.1 by Polianskii et al.
(2022) on the convergence of the Compactified Voronoi
Density Estimator. Note, however, that our setting differs
on two main points:

1. we study the more general problem of conditional den-
sities,

2. our cell centroids correspond to the hypotheses pre-
dicted by a WTA estimator zk = fkθ (x), while Polian-
skii et al. (2022) assume random generators zk ∼ ρx.

To deal with the last point, we assume that the underlying
WTA estimator predicting {fkθ (x), γkθ (x)} has converged to-
wards a global minimum of its WTA and scoring objectives.
We give a sketch of the proof of this result below.

Proof. The convergence relies on a useful property of the
Voronoi cells obtained when we minimize the WTA ob-
jective (1): their diameter vanishes as the number K of
hypotheses grows to infinity. This observation is then used
to prove the convergence.

Let PK be the trained Voronoi-WTA estimator with K hy-
potheses. By the Portmanteau Lemma (Van der Vaart, 2000),
it is sufficient to show that PK(E) → P(E) as K → +∞
for any measurable set E ⊆ Y such that λ(∂E) = 0, where
λ denotes the Lebesgue measure. If we fix K, the Voronoi
tiling (Ykθ )k∈J1,KK induces a partition of E. Accordingly,
we split E as the disjoint union E = Eint ∪ Eext, where
Eint denotes the Voronoi cells included in E, and Eext the
Voronoi cells intersecting its border ∂E. Now, since the
radius of each cell Ykθ asymptotically vanishes (Proposition
B.9), Eext is concentrated on the border ∂E and is therefore
negligible. The proof is concluded by observing that PK
and P coincide on Eint (cell-scoring property (11)).

Note that this last argument does not hold for Kernel-WTA,

as the cell-scoring property does not hold for this model.
Also, note that Proposition 5.1 requires no assumptions on
the choice of the scaling factor h. This is another advantage
of Voronoi-WTA, this time in terms of uncertainty modeling.

5.2. Better asymptotic quantization

Voronoi-WTA estimators model the conditional distribution
using an adaptive grid. To measure how well a finite set of
points Z = {zk}k∈J1,KK approximates a data distribution
Px, it is customary to use the quantization error, also called
quadratic risk or quadratic distortion (Pagès & Printems,
2003):

R(Z) =

∫
Y
min
z∈Z

∥y − z∥22 ρx(y)dy . (14)

A natural baseline that we can use to evaluate the advantage
of the adaptative grid provided by Voronoi-WTA is the reg-
ular grid, which we call Histogram hereafter (e.g., Imani &
White (2018)). Note that the regular grid is a particular case
of a Voronoi tessellation.

The quantization error is notoriously hard to study in the
general case (Graf & Luschgy, 2007). However, things
become amenable to analysis in the asymptotic regime. With
this in mind, Zador’s theorem (Zador, 1982), a powerful
result from quantization theory, can be used to describe
the asymptotic optimal quantization error. We sum up our
observations in the following statement (see Propositions
B.12 and B.13 for a complete formulation).

Proposition 5.2. Under mild regularity assumptions,
denoting d = dim(Y), Jd a constant depending
only on the dimension, vol(Y) the volume of Y , and
ZV
x = {fkθ (x)}k∈J1,KK, the quantization error has the fol-

lowing asymptotic equivalent as K → +∞:

R(ZV
x ) ∼ Jd

(∫
Y
ρx(y)

d
d+2 dy

) d+2
d 1

K2/d
. (15)

Denoting ZH the fixed grid points defining the Histogram
baseline, we also have

R(ZH) ∼ d

12

vol(Y)2/d

K2/d
. (16)

Note that, in the first order, the quantization error of the
Histogram baseline only depends on the volume of the sup-
port of Px, whereas Voronoi-WTA takes into account local
density information provided by ρx. This gives an insight
into how the adaptative grid underlying Voronoi-WTA fits
the geometry of the data distribution.

Furthermore, one can also observe that Voronoi-WTA and
the Histogram have the same asymptotic rate of convergence,
differing only by the leading constant. However, it can be
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proved that this constant is smaller for Voronoi-WTA than
for the Histogram baseline in most cases (Proposition B.14).
Therefore, although the gap between R(ZV

x ) and R(ZH)
closes as the number K of hypotheses increases, Voronoi-
WTA always has a strictly better quantization error, even
asymptotically. This constitutes a real advantage of the
adaptive grid provided by Voronoi-WTA over a static one
and was empirically verified in Section 6.

6. Empirical study
The aim of this section is two-fold. First, it empirically
justifies the relevance of the Voronoi-WTA-based condi-
tional density estimators, compared to other possible designs
based on WTA learners, such as Kernel-WTA. Second, it
empirically validates the advantages of the Winner-takes-all
training scheme against traditional baselines for conditional
density estimation.

6.1. Experimental setting

We detail below our experimental settings. A more extensive
description of design choices is deferred to Appendix C.

Datasets. We conducted experiments on four synthetic
datasets, with X = [0, 1] and Y = [−1, 1]2, as well as on
the UCI benchmark (Hernández-Lobato & Adams, 2015).

• Single Gaussian corresponds to a single, isotropic, non-
centered two-dimensional Gaussian which does not
move as x varies.

• Rotating Two Moons is based on the two-moon dataset
from SCIKIT-LEARN (Pedregosa et al., 2011), corre-
sponding to entangled non-convex shapes. The target
distribution was generated by rotating the latter with
an angle 2πx for each x ∈ [0, 1].

• Changing Damier is an adaptation of the dataset pro-
posed in Rupprecht et al. (2017). It corresponds to a
checkerboard of 16 squares, gradually interpolated to-
wards its complementary checkerboard as x increases.

• Uniform to Gaussians is the illustrative dataset pre-
sented in Section 3.

• UCI Regression datasets (Dua & Graff, 2017) are a
standard benchmark (Hernández-Lobato & Adams,
2015) to evaluate conditional density estimators.

WTA training framework. We used the WTA training
scheme with scoring heads from Section 2.3. The density
estimation was performed following the methodology de-
scribed in Section 4, with uniform kernels and Gaussian
kernels with several scales h.

Baselines. Two standard conditional density estimation
baselines were considered in our experiments: Mixture Den-
sity Networks (MDN) (Bishop, 1994) and the Histogram
(Imani & White, 2018) mentioned in Section 5.2. More

details are given in Appendix C.1.1.

Architecture and training details. In each training setup
with synthetic data, we used a three-layer MLP, with 256
hidden units. The Adam optimizer (Kingma & Ba, 2014)
was used, and the models were trained until convergence of
the training loss, using early stopping on the validation loss.

Metrics. To evaluate the performance of each model, we
employed the Negative Log-Likelihood (NLL) and, when
the target distribution is known, the Earth Mover’s Distance
(EMD). To assess how well each model preserved the geom-
etry of the data distribution, we used the quantization risk,
as defined in (14).

6.2. Qualitative analysis

Qualitative results are provided in Figure 2, where the pre-
dictions of Score-based WTA, Histogram, and MDN are
compared. ‘Score-based WTA’ refers to both Voronoi-WTA
and Kernel-WTA, which share the same predicted hypothe-
ses and scores represented in the figure. Different behaviors
can be observed for each of the three methods. For instance,
in the Gaussian case, MDN predictions of mixture means
collapse into a single point. This well-known mode collapse
problem (Hjorth & Nabney, 1999; Graves, 2013; Rupprecht
et al., 2017; Messaoud et al., 2018; Cui et al., 2019) is also
observed for Rotated Two Moons and Changing Damier
when the number of hypotheses increases. Concerning His-
togram, we see on all datasets, except the Changing Damier,
that it requires more hypotheses to reach the same resolu-
tion as the score-based WTA, which is able to optimally
quantize the shape of all distributions with their predicted
hypotheses.

6.3. Quantitative analysis on synthetic datasets

Our main quantitative results on the synthetic datasets are
depicted in Figure 3.

Comparison to Histogram. One can see in Figure 3 that
Histogram generally does not lead to competitive perfor-
mance with respect to any metric unless a high number
of hypotheses is used. An exception is observed in the
case of the Changing Damier dataset where, by design, the
Histogram aligns perfectly with the data when it is set to
exactly 16 hypotheses (cf. Figure 2 right). When the num-
ber of hypotheses is large enough, the grid is sufficiently
fine to represent the distribution geometry and Histogram’s
performance strongly improves. Note for the quantization
error, however, that Histogram always performs worse than
Voronoi-WTA, regardless of the number of hypotheses, as
predicted by Proposition 5.2. These results showcase quan-
titatively the clear advantage of Voronoi-WTA’s adaptive
grid over Histogram.

Comparison to Mixture Density Networks. MDNs have

6
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Figure 2. Qualitative results. Each panel shows a different dataset: Single Gaussian, Rotated Two Moons, and Changing Damier. Within
each panel, columns correspond to predictions made by: MDN, Score-based WTA, and Histogram (left to right). Dots represent predicted
(or fixed) hypotheses: means, centroids, and bins. Their colors encode the predicted score or mixture weight for MDN, where darker blue
corresponds to higher scores. Red circles represent the MDN’s predicted variance for each Gaussian (opacity reflects mixture weight),
while WTA figures depict the Voronoi tessellations for predicted hypotheses. 1st row: 16 hypotheses, 2nd row: 49 hypotheses.

a bias towards fitting Gaussian distributions, and they are
trained by minimizing the NLL loss. We observe, as ex-
pected, excellent NLL results, especially in the case of the
Single Gaussian (Figure 3 top). Note that MDN is the only
method for which variable scaling factors are authorized in
each hypothesis, giving it an immediate advantage. Never-
theless, Voronoi-WTA still achieves on par performance in
terms of EMD and NLL on non-Gaussian datasets, as long
as the scaling parameter h is well-tuned. Furthermore, as
MDNs do not benefit from the optimal quantization proper-
ties of the WTA-based method, they tend to obtain subopti-
mal quantization errors in most cases (Figure 3 bottom).

Comparison with Kernel-WTA. We validate here the
choice of Voronoi-WTA instead of the more straightfor-
ward Kernel-WTA. Figure 4 provides a comparison of
both methods in the case of 16 hypotheses, in terms of
NLL test performance as a function of the scaling factor
h. We notice the expected behavior: in the low h-value
regime, Voronoi-WTA and Kernel-WTA curves coincide,
but as h increases, Voronoi-WTA’s performance stabilizes,
while Kernel-WTA’s diverges. Results using truncated uni-
form kernels are also plotted in dashed lines. As expected,
Voronoi-WTA’s performance converges to the latter’s as
h→ ∞.

Validation of Proposition 5.2. We plot at the bottom of Fig-
ure 3 both theoretical quantization errors for Voronoi-WTA
and Histogram derived in Proposition 5.2. First, we can no-
tice that there is a good match between the theoretical errors
and the empirical ones for all considered datasets. This is
especially true in the asymptotic regime, where the theo-
retical formula becomes more accurate. This validates our
assumption that our underlying score-based WTA models
are close to the global minimum of their training objectives.

6.4. Evaluation on UCI Regression Datasets

In Table 1, we present additional results for the UCI
datasets, adhering to the experimental protocols followed

by Hernández-Lobato & Adams (2015); Lakshminarayanan
et al. (2017). A more comprehensive analysis of these re-
sults is deferred to Appendix C.2. This appendix includes
an extended version of Table 1 and also covers results using
the RMSE metric (Table 5). Note that dim(Y) = 1 here.

In these datasets, the scaling factor h of WTA-based models
was optimized using a golden section search (Kiefer, 1953),
based on the average NLL over the validation set. Here,
this optimization was costly because it was carried out very
precisely. As a result, the superior sensitivity of Kernel-
WTA to the choice of h, when compared to Voronoi-WTA,
is not expected to be visible in these results (see the opti-
mized NLL of Voronoi-WTA and Kernel-WTA in Figure
4), particularly as K is small (K = 5). Future research will
explore how the optimization of h at validation time may
lead to a performance disparity between Voronoi-WTA and
Kernel-WTA, especially in the context of a distribution shift
between validation and test samples.

These results further highlight the competitiveness of WTA-
based density estimators in terms of NLL against Mixture
Density Networks (MDN) and Deep ensembles (Lakshmi-
narayanan et al., 2017), especially when the dataset size is
large (e.g., Protein, Year, cf. Table 3). This finding is partic-
ularly promising given the inherent advantages of the other
baselines: indeed, NLL is not directly optimized during
training in WTA-based methods. Moreover, we faced stabil-
ity issues when training MDN (e.g., numerical overflows in
log-likelihood computation), that we did not encounter with
Voronoi-WTA. We hope that these results will encourage
further research into the properties of these estimators.

6.5. Experimental validation with audio data

In this section, we experimentally validate our method on a
real-world application, namely on the task of Sound Event
Localization (SEL) (Adavanne et al., 2018b; Grumiaux et al.,
2022) which involves angular localization of sound sources
from input audio signals. This task is intrinsically ambigu-
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standard deviations given in Appendix, Figure 7. Detailed discussion is given in Section 6.
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Figure 4. Impact of the scaling factor. Results on the dataset
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is the standard Histogram where truncated kernels are placed on
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used in Figure 3. See Appendix C.1.5 for more results.

ous, as there is spatial dispersion in the position of the sound
sources to predict, either due to the sound source nature or
to label noise. We considered the audio dataset ANSYN
(Adavanne et al., 2018a). This dataset is generated using
simulated room impulse responses so that the position of the
sound sources can be considered free of noise. We injected
input-dependent label noise in the source position, condi-
tionally to the class of the input. Models are trained using

Table 1. UCI regression benchmark datasets comparing NLL
with 5 hypotheses. ⋆ corresponds to reported results from Laksh-
minarayanan et al. (2017). ‘–’ corresponds to cases where MDN
has not converged. Best results are in bold. ± represents the
standard deviation over the official splits.

NLL (↓)

Datasets Deep Ensembles⋆ MDN K-WTA V-WTA

Boston 2.41 ± 0.25 2.95 ± 0.31 2.48 ± 0.16 2.48 ± 0.19
Concrete 3.06 ± 0.18 3.96 ± 0.24 3.09 ± 0.10 3.08 ± 0.12
Energy 1.38 ± 0.22 1.25 ± 0.25 2.27 ± 1.22 2.22 ± 1.20
Kin8nm -1.20 ± 0.02 -0.87 ± 0.05 -0.73 ± 0.03 -0.85 ± 0.05
Naval -5.63 ± 0.05 -5.47 ± 0.29 -1.94 ± 0.00 -3.52 ± 0.38
Power 2.79 ± 0.04 3.02 ± 0.07 2.81 ± 0.05 2.85 ± 0.06
Protein 2.83 ± 0.02 – 2.39 ± 0.03 2.42 ± 0.04
Wine 0.94 ± 0.12 -1.53 ± 0.76 0.42 ± 0.18 0.37 ± 0.17
Yacht 1.18 ± 0.21 2.43 ± 0.72 2.23 ± 0.52 2.05 ± 0.46
Year 3.35 ± NA – 3.26 ± NA 3.29 ± NA

this noisy data to capture this input-dependent uncertainty.

This task is challenging because it involves real-world data,
label noise, and also because of the spherical geometry of
the output space which calls for specific angular metrics, that
are not Euclidean. Therefore, we depart from the previous
theoretical and experimental setting. All models are trained
using the same setup to ensure fair comparisons. We use
the same evaluation framework introduced for the synthetic
datasets (cf. Appendix C.3 for further details).

We compare in Table 2 the performance of Voronoi-WTA
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Table 2. NLL comparison of Voronoi-WTA (V-WTA) vs.
Kernel-WTA (K-WTA) on audio data. ‘Hist’ corresponds to
the histogram with a uniform kernel as a baseline. ‘Distortion’ is
the quantization error scaled up by 102. See Section 6.5 for the
discussion and Appendix C.3.2 for extended analysis.

NLL Distortion

h 0.3 0.5 1.0 ∅
K 9 16 25 9 16 25 9 16 25 9 16 25

V-WTA 1.27 1.18 1.15 1.36 1.24 1.18 1.57 1.33 1.22 0.42 0.26 0.17
K-WTA 1.26 1.24 1.23 1.50 1.51 1.51 2.08 2.09 2.09 0.42 0.26 0.17
Hist 1.72 1.52 1.45 1.72 1.52 1.45 1.72 1.52 1.45 1.23 0.72 0.47

to Kernel-WTA using isotropic von Mises-Fisher kernels
with scaling factor h ∈ {0.3, 0.5, 1.0}, as well as to the
Histogram baseline with uniform kernels. Overall, we see
that the performance of all methods tends to improve as the
number of hypotheses increases, both in terms of NLL and
Quantization Error. The competitive advantage of Voronoi-
WTA against Kernel-WTA is confirmed, especially for large
h values. We also notice that this performance gap nar-
rows with fewer hypotheses: in a low-hypothesis regime,
the Voronoi tessellation resolution is smaller, reducing the
possibility of capturing local geometry through truncated
kernels.

7. Related work

Conditional density estimation. Density estimation can be
tackled using parametric methods (e.g., Gaussian Mixture
Models) or non parametric methods (e.g., Kernel Density
Estimation (Rosenblatt, 1956), Histograms). Mixture Den-
sity Networks Bishop (1994) is a standard deep learning
extension of Gaussian Mixtures to the case of conditional
densities. Their strong performances across various tasks
led them to become quite popular (Zen & Senior, 2014; Li
& Lee, 2019). However, MDNs notoriously suffer from nu-
merical instabilities (Makansi et al., 2019), mode collapse
(Brando Guillaumes, 2017), low contribution to the gradi-
ent of points with high predictive variance (Seitzer et al.,
2022) and large biases depending on the choice of kernel
(Polianskii et al., 2022). In contrast, Histogram is perhaps
the simplest non-parametric alternative but is impractical in
high-dimensional settings.

Multiple Choice Learning. First introduced by Guzman-
Rivera et al. (2012), and adapted to deep learning by Lee
et al. (2016), MCL is effective in various applications, no-
tably in computer vision (Tian et al., 2019; Garcia et al.,
2021). It suffers from two main drawbacks: hypotheses
collapse and overconfidence. Solutions for the first prob-
lem include top-n update rules (Makansi et al., 2019) or
allowing a small amount of gradient flow to all hypotheses
(Rupprecht et al., 2017). The second problem has been

solved by the introduction of scoring models (Lee et al.,
2017). This approach has recently allowed for a probabilis-
tic view of MCL (Letzelter et al., 2023). However, MCL
predictions are discrete by design. One purpose of the cur-
rent work is to extend MCL to density estimation, e.g., for
improving the evaluation of such models.

Geometry of the Voronoi tessellations. Centroidal Voronoi
tessellations (Lloyd, 1982) are widely used for clustering,
vector quantization (Gersho, 1979), and shape approxima-
tion (Du et al., 2003). Its popularity stems from training
stability, and theoretical properties that have been exten-
sively studied (Du et al., 1999), especially in the context
of optimal quantization (Zador, 1982). This method has
been used to build continuous density estimators based on
uniform (Okabe et al., 2009) or Gaussian (Polianskii et al.,
2022) distributions. The additional challenges raised by this
continuous extension, such as volume estimation in high
dimensional settings, or density discontinuity at the cell
boundaries, have been discussed in the literature (Polianskii
et al., 2022; Marchetti et al., 2023). However, none of these
methods have yet been extended to the conditional setting,
which is the topic of our work.

8. Limitations
Voronoi-WTA uses the WTA training scheme to estimate the
inherent uncertainty in data. However, this approach has lim-
itations and may achieve suboptimal performance. Recent
studies have highlighted the sensitivity of WTA initializa-
tion in certain scenarios (Makansi et al., 2019; Narayanan
et al., 2021). Exploring theoretically grounded solutions to
address these issues, such as in Arthur (2007), could be a
promising direction for future research. Additionally, there
is no current evidence that the model can assess its own pre-
diction confidence, such as in detecting out-of-distribution
samples. Enhancing WTA learners with model uncertainty
quantification could expand the abilities of WTA learners.

9. Conclusion
In this paper, we introduced Voronoi-WTA, a novel con-
ditional density estimator. Voronoi-WTA is a probabilis-
tic extension of traditional WTA learners, leveraging the
advantageous geometric properties of the WTA training
scheme. Notably, Voronoi-WTA demonstrates greater re-
silience to the choice of scaling factor h compared to the
more straightforward Kernel-WTA. We support our claims
with mathematical derivations, discussing the asymptotic
performance as the number of hypotheses increases. Both
theoretical analysis and experimental comparisons against
several baselines highlight the strengths of our estimator.
The application of our estimator to more realistic datasets
opens up broad possibilities for future work.
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Organization of the Appendix
The Appendix is organized as follows. Appendix A outlines the notations employed. Appendix B presents the theoretical
results of the paper, detailing the background in Appendix B.1, demonstrating how our estimator performs distribution
estimation in Appendix B.2, and discussing its geometric properties in Appendix B.3. Appendix C covers the experimental
details and design choices, including the synthetic data experiments in Appendix C.1, the UCI regression benchmark in
Appendix C.2 and the audio experiments in Appendix C.3.

A. Notations
Let X be the set of possible inputs, and by Y the set of possible targets. We assume that X and Y are finite-dimensional
real vector spaces, and we note d as the dimension of Y . Given K hypotheses, let fθ = (f1θ , . . . , f

K
θ ) ∈ F(X ,YK) and

γθ = (γ1θ , . . . , γ
K
θ ) ∈ F(X ,∆K) be the predictions and scoring models, where ∆K = {p ∈ [0, 1]K

∑K
k=1 pk = 1} is the

simplex on RK . These models are described by parameters θ. When not necessary, we omit this dependency by writing
zk = fkθ and γk = γkθ . For a given input x ∈ X the set of predictions {fkθ (x)}k∈J1,KK induces a Voronoi tessellation of the
target space Y . We note Ykθ (x), or alternatively Yk(x), the Voronoi cell k, and by zk(x) = fkθ (x) its generator. Recall that

Yk(x) = {y ∈ Y | ℓ(y, zk(x)) < ℓ(y, zl(x)),∀l ̸= k} ,

where ℓ : Y × Y → R+ is the underlying loss used, for instance the L2 loss ℓ(ŷ, y) = ∥ŷ − y∥2, denoting by ∥ · ∥ the
Euclidean norm.

We will drop the dependency on x when the context is clear, thus referring to Yk and zk. Conversely, when we study
asymptotic properties that depend on the number of hypotheses K, we will emphasize this dependency by writing YkK and
zkK . Additionally, when Y is a d-dimensional cube, it can be partitioned into a regular grid. We note Gk the cubes of this
grid, and by gk the center of each cube. Note that this is a special case of Voronoi tessellation.

We note the set sum by E + F = {e+ f, e ∈ E, f ∈ F}, and the border of a set E by ∂E = Ē\E̊ where Ē, E̊ represents
the closure and interior of E respectively. B(0, r) is the ball of radius r with center 0 associated to ∥ · ∥. We note |E| the
cardinal of a set E, and by ∆(E) = supx,y∈E ∥x− y∥ its diameter.

We note P a data distribution over X × Y , λ the Lebesgue measure, δy the Dirac measure centered on y, 1 the indicator
function, U the uniform distribution, and N (a, b) the normal distribution with mean a and variance b. We will always assume
that P admits a probability density function ρ(x, y). We denote Px and ρx as the distribution and density, respectively,
conditional on x. If p and q denote two densities over a domain D, we define the Kullback–Leibler divergence as

KL(p||q) =
∫
D
log

(
p(x)

q(x)

)
p(x)dx .

When the two distributions are discrete, for instance with a support of size K, we will write

KLk∈J1,KK(pk || qk) =
K∑
k=1

log

(
pk
qk

)
pk .

For scalars a, b ∈ (0, 1), we define the binary cross entropy (BCE) as

BCE(a, b) = −a log(b)− (1− a) log(1− b) ,

adopting the convention that 0 log 0 = 0.

In the following, we define training objectives, which are functions of model parameters θ, using the notation L ≜ L(θ).
For a specific model M, the training objective is denoted by LM(θ). The single-sample version of this objective, which
we will denote as LM(θ) for brevity, is expressed for individual data points (x, y) as LM(θ, x, y). This single-sample
loss contributes to the overall objective LM(θ) through integration over the data distribution ρ(x, y), with LM(θ) =∫
X×Y LM(θ, x, y)ρ(x, y)dxdy.

13



Winner-takes-all learners are geometry-aware conditional density estimators

B. Theoretical results
The estimator Voronoi-WTA (V-WTA) introduced in this paper, has two main advantages: 1) it accurately estimates the data
distribution, and 2) the centroids, aligning with the optimal hypotheses according to Proposition 2.1, preserve the geometry
of the data distribution. As a result, this method effectively combines the strengths of Mixture density networks and
Winner-takes-all models. In this section, we will study these two claims along two main axes: convergence in distribution,
and asymptotic quantization risk.

The section is organized as follows. We will first introduce the necessary definitions as well as our working hypotheses, then
focus on distribution estimation, and finally study the geometrical properties of our proposed algorithm.

B.1. Theoretical setup

B.1.1. BACKGROUND

We are concerned with various estimators of the conditional distribution Px, and study their convergence. We will make use
of the Portmanteau lemma (Van der Vaart, 2000) and define weak convergence as follows.

Definition (Weak convergence). We say that a sequence of measures (PK)K∈N converges weakly towards a measure P, and
we write PK ⇀

K→+∞
P, if PK(E) −→

K→+∞
P(E) for all measurable E satisfying P(∂E) = 0.

We also study the convergence of sequences with finite support. In this context, we will often discuss uniform convergence,
which we define below.

Definition (Uniform convergence). Let (uK,k)(K,k)∈N2 denote a sequence such that (uK,k)k∈N has finite support for each
K. We will say that u converges uniformly towards (vk)k∈N if max

k∈N
∥uK,k − vk∥ −→

K→+∞
0. In particular, u vanishes

uniformly if max
k∈N

∥uK,k∥ −→
K→+∞

0.

In what follows, we will extensively use Zador’s theorem (Zador, 1982), a powerful result on the asymptotic distribution
of the centroids resulting from optimal quantization, which we recall below (see Graf et al. (2008), Equation 2.3, or
Iacobelli (2016), Theorem 1.3, for a more general version). This theorem will allow us to derive asymptotic properties of
Winner-takes-all models.

Theorem B.1 (Zador theorem). Let P = ρ dy be a Lebesgue-dominated probability measure on a compact subset Y of Rd.
Define the optimal quantization risk

RK(P) = inf
Z⊂Y:|Z|≤K

∫
Y
min
z∈Z

∥y − z∥2ρ(y)dy ,

and the asymptotic risk for the uniform distribution Jd = infK K
2/dRK(U([0, 1]d). Then

lim
K→+∞

K2/dRK(P) = Jd

(∫
Y
ρd/(d+2)dy

)(d+2)/d

.

In addition, if Z minimizes the risk RK(P), then

1

K

∑
z∈Z

δz ⇀
K→∞

ρd/(d+2)∫
Y ρ

d/(d+2)(x)dx
dy .

The constant Jd can be computed for simple cases (J1 = 1
12 and J2 = 5

18
√
3

(Newman, 1982)) and can be approximated for

large d by Jd ∼
d

2πe
(Pagès & Printems, 2003; Graf & Luschgy, 2007).
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B.1.2. ESTIMATORS

Using these notations we can define several estimators of the conditional distribution Px, for each x ∈ X :

P MDN
x : E 7→

K∑
k=1

πk(x) N (E;µk(x),Σk(x)) (17)

P H
x : E 7→

K∑
k=1

γk(x)
λ (E ∩ Gk)
λ (Gk)

(18)

P D−WTA
x : E 7→

K∑
k=1

γk(x)δzk(E) (19)

P U−WTA
x : E 7→

K∑
k=1

γk(x)
λ
(
E ∩ Yk

)
λ (Yk) (20)

P K−WTA
x : E 7→

K∑
k=1

γk(x)Kh(zk(x), E) (21)

P V−WTA
x : E 7→

K∑
k=1

γk(x)
Kh

(
zk(x), E ∩ Yk

)
Kh (zk(x),Yk)

, (22)

where h ∈ R∗
+ is the scaling factor of Kh and Kh(zk(x), E) ≜

∫
E
Kh(zk(x), y)dy.

Note that we obtain the variants of the original Dirac estimator P D−WTA
x (Letzelter et al., 2023) by changing the Dirac

kernel to a uniform kernel (P U−WTA
x ), the kernel Kh (P K−WTA

x ), or its truncated version (P V−WTA
x ).

When there is no ambiguity, we will refer to these estimators by P̂x, and their density by ρ̂x (when it exists).

B.1.3. TRAINING OBJECTIVES

We recall that Winner-takes-all models are trained with two objectives: a quantization objective optimizing the position of
the hypotheses zk(x) and a scoring objective enforcing that γk(x) accurately estimates the probability P(Yk(x)) of each
Voronoi cell of the tessellation. induced by the hypotheses. More specifically,

Lcentroid(Z) =

∫
X

∫
Y
min
z∈Zx

ℓ(z, y)ρ(x, y)dxdy , (23)

Lscoring(γ) =

∫
X

∫
Y

K∑
k=1

BCE
[
1
[
y ∈ Yk(x)

]
, γk(x)

]
ρ(x, y)dxdy , (24)

where Z : x 7→ Zx = {zk(x)}k∈J1,KK ⊂ Y and γ : x 7→ (γk(x))k∈J1,KK ∈ ∆K .

B.1.4. ASSUMPTIONS

Throughout our analysis, we will often use the following assumptions.

Assumption B.2 (Boundedness). The set of possible outputs Y is compact.

Assumption B.3 (Positivity). The data probability density function (PDF) ρ satisfies inf(x,y)∈X×Y [ρ(x, y)] > 0.

Assumption B.4 (Lipschitz). The conditional data PDF ρx is L-lipschitz for each x ∈ X .

Assumption B.5 (Optimality). The Winner-Takes-All algorithm has converged toward a global minimum of its centroid
objective

min
Z

∫
X

∫
Y
min
z∈Zx

ℓ(z, y)ρ(x, y)dxdy , (25)
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and its scoring objective (noting x 7→ (Yk(x))k∈J1,KK the resulting optimal voronoi tesselation map)

min
γ

∫
X

∫
Y

K∑
k=1

BCE
[
1
[
y ∈ Yk(x)

]
, γk(x)

]
ρ(x, y)dxdy . (26)

An empirical discussion of these assumptions is given in Appendix B.4.

B.2. Distribution estimation

B.2.1. UNBIASED ESTIMATORS

The first interesting property of WTA is that its scoring model is an unbiased estimator of the Voronoi cell’s probability mass
Proposition B.6. Under Assumption B.5, we have

∀x ∈ X , ∀k ∈ J1,KK, γk(x) = Px(Yk(x)) .

This observation is key to establishing other interesting properties of WTA. Note that it is independent of the kernel choice,
so it applies to all variants of WTA.

Proof. The scoring objective will be minimal when the integrand of Equation 26 is minimal for each x ∈ X . Looking only
at the integrand, we can write the following.

∫
Y

K∑
k=1

BCE
[
1[y ∈ Yk(x)], γk(x)

]
ρx(y)dy = −

K∑
k=1

∫
Yk(x)

log(γk(x))ρx(y)dy +

∫
Y\Yk(x)

log(1− γk(x))ρx(y)dy

= −
K∑
k=1

log(γk(x))P(Yk(x)) + log(1− γk(x))(1− P(Yk(x)))

For each k in the sum, we recognize a binary cross-entropy between γk(x) and Px(Yk(x)), which is minimal when the two
terms are equal.

Therefore all truncated estimators are themselves unbiased estimators of the Voronoi cell’s probability mass. We refer to this
as the cell-scoring property, defined in (11).
Proposition B.7. Under Assumption B.5, all estimators except P MDN

x and P K−WTA
x satisfy

∀x ∈ X , ∀k ∈ J1,KK, P̂(Yk(x)) = P(Yk(x)) .

Proof. Corollary of Proposition B.6.

B.2.2. INTERPRETATION OF THE NEGATIVE LOG-LIKELIHOOD

The negative log-likelihood (NLL) is a useful quantity for measuring the accuracy of a density estimator. For instance,
Mixture Density Networks minimize the NLL during training. Score-based WTA models are not trained to directly minimize
NLL. The following result states that, in the case of uniform-kernel estimators, the scoring objective and the NLL are
minimized when high-density zones of the target space Y are assigned to smaller Voronoi cells in volume.
Proposition B.8. Under Assumption B.5, the estimator P U−WTA

x conditional negative log-likelihood satisfies for each
x ∈ X :

NLL(P U−WTA
x ,Px) = −

K∑
k=1

log
Px(Yk(x))
λ (Yk(x)) Px(Yk(x)) ≜ −KLk∈J1,KK

[
Px(Yk(x)) ||

λ(Yk(x))
vol(Y)

]
+ log vol(Y) .

(27)

From (27), we see that minimizing the NLL with constant volume vol(Y) requires strategic placement of hypotheses.

Specifically, the probabilities Px(Yk(x)) should be high in regions where the relative volume
λ(Yk(x))
vol(Y)

is low.
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Figure 5. Illustration of the proof of Proposition B.9. On the left, we show that aK is exactly rK apart from its closest centroid. On the
right, we illustrate the sequence aφ◦ψ(K), from which we define B∞.

Proof. We note ρ̂x the density of the estimator P U-WTA
x . By definition (35), NLL(ρ̂x, ρx) ≜ −

∫
Y log(ρ̂x(y))ρx(y)dxdy.

We can write∫
Y
log(ρ̂x(y))ρx(y)dy ≜

K∑
k=1

∫
Yk(x)

log
γk(x)

λ (Yk(x))ρ(x, y)dy (28)

=

K∑
k=1

log
Px(Yk(x))
λ (Yk(x)) Px(Yk(x)) (using proposition B.6)

= KLk∈J1,KK

[
Px(Yk(x)) ||

λ(Yk(x))
vol(Y)

]
− log(vol(Y))

(
K∑
k=1

Px(Yk(x))
)
.

B.2.3. CONVERGENCE OF THE ESTIMATORS

We now turn to the main result of this section: the estimators P D−WTA
x , P U−WTA

x , and P V−WTA
x converge in distribution

towards the true data distribution Px.

This result is similar to Theorem 4.1 in Polianskii et al. (2022) about the convergence of the Compactified Voronoi Density
Estimator (CVDE). Our proof mirrors the one they propose in this article, which is itself a slight reformulation of the
Theorem 5.1 of Devroye et al. (2017). However, our setting differs from these two articles: the authors consider random i.i.d.
generators zk ∼ Px (similarly to Kernel Density Estimation (Rosenblatt, 1956; Gramacki, 2018)). However, this assumption
is not satisfied in the context of WTA, which makes their result less relevant to our purpose. To correct this mismatch,
we investigate the more realistic assumption that zk minimizes the centroid objective (Assumption B.5). This makes our
analysis more relevant in the context of Winner-Takes-All-based models. Additionally, we study the more general problem
of conditional density estimation.

The proof of CVDE convergence relies on the intuitive observation that Voronoi cells’ radius vanishes as the number of
centroids K increases. Using the Zador theorem, we first show that this phenomenon still holds when the centroids are
selected according to optimal quantization.

Proposition B.9. Under Assumption B.2 (boundedness), B.3 (positive density) and B.5 (optimal centroids), the Voronoi cell
diameter ∆(YkK) vanishes uniformly.

Proof. Suppose that the diameter ∆(YkK) does not vanish. Infinitely often, there are some cells YkK that have a diameter
greater than some ε > 0. Inside these cells, there are points y that are more than ε

2 apart from the closest centroid. In other
words, there are balls of radius ε

2 which contain no centroids (see Figure 5). This is in contrast with the second statement of
Zador’s theorem, which stipulates that the centroids zkK become dense in Y as K increases, hence a contradiction. We make
this argument rigorous below.

We note the cell radius rkK = maxy∈Yk
K
∥y − zkK∥, and the maximal cell radius rK = maxk r

k
K . It is more convenient to

work with the cell radius than with their diameter. Note that ∆(YkK) ≤ 2rkK (triangular inequality), so that it is enough to
show rK −→

K→∞
0.
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Figure 6. Illustration of the partition of E = E int ∪ E int used in the proof of Proposition B.10.

Let’s assume the opposite, and let φ be a subsequence satisfying ∀K ∈ N, rφ(K) ⩾ ε, for some ε > 0. We will build a ball
B∞ which contains no centroid infinitely often (see Figure 5).

Let aK ∈ argmax
y∈Y

{
min
k≤K

∥∥y − zkK
∥∥} be a point in the set of farthest points from their respective centroid. We can see that

B
(
aφ(K),

ε
2

)
does not intersect any centroid at step φ(K) (see Figure 5). Indeed, if aφ(K) ∈ Ykφ(K) for some index k, then

zkφ(K) is its closest centroid and for all other centroid zlφ(K), we have

∥aφ(K) − zlφ(K)∥ ≥ ∥aφ(K) − zkφ(K)∥ = rφ(K) ≥ ε >
ε

2
.

The sequence (aφ(K))K∈N is bounded (Assumption B.2), so by Bolzano–Weierstrass theorem, there is a subsequence ψ and
a limiting point a∞ such that aφ◦ψ(K) −→

K→∞
a∞. If K is large enough, ∥aφ◦ψ(K) − a∞∥ ≤ ε

4 and consequently

B∞ ≜ B
(
a∞,

ε

4

)
⊂ B

(
aφ◦ψ(K),

ε

2

)
.

In particular, B∞ does not intersect any centroid at each step φ ◦ ψ(K), which is exactly what we wanted to achieve.

The proportion of centroids contained in a set is given by the measure PK = 1
K

∑K
k=1 δzkK . The fact that B∞ does not

intersect any centroid can be rewritten

∀K ∈ φ ◦ ψ(N), PK (B∞) =
1

K

∣∣{k | zkK ∈ B∞
}∣∣ = 0 .

Assuming optimal centroid placement, we know from Zador’s theorem that

PK ⇀
K→∞

ρd/(d+2)∫
Y ρ

d/(d+2)(x)dx
dy ≜ ρ∞ dy ≜ P∞ .

It is clear from our hypotheses that infy∈Y ρ∞(y) > 0. We conclude with the two following contradicting observations.

∀K ∈ N Pφ(K)(B∞) = 0 ⇒ P∞(B∞) = 0 (weak convergence)

P∞(B∞) ≥ inf
y∈Y

ρ∞(y)λ(B∞) > 0 . (positivity)

We can now prove the convergence of WTA-based estimators.

Proposition B.10. Under Assumption B.2 (boundedness), B.3 (positive density) and B.5 (optimal centroids), P D−WTA
x ,

P U−WTA
x , and P V−WTA

x converge weakly towards P.

Proof. Let E denote any measurable such that λ(∂E) = 0. We want to show that PK(E) −→
K→+∞

P(E).
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If we fix K, the Voronoi tiling YkK induces a partition of E. Accordingly, we split E as the disjoint union E = Eint ∪Eext,
where Eint denotes the Voronoi cells included in E, and Eint the Voronoi cells intersecting its border ∂E (see Figure 6).
Using the property that the Voronoi cell diameter ∆(YkK) vanishes uniformly as the number of hypotheses K increases
to infinity, we deduce that Eext is concentrated on the border ∂E and is therefore negligible. The proof is concluded by
observing that PK and P coincide on Eint. We give the technical details below.

Let
I int
K =

{
k ∈ J1,KK | YkK ∩ E ̸= ∅, YkK\E = ∅

}
,

Iext
K =

{
k ∈ J1,KK | YkK ∩ E ̸= ∅, YkK\E ̸= ∅

}
,

Eint
K = ∪k∈I int(YkK ∩ E) and Eext

K = ∪k∈Iext(YkK ∩ E). Clearly E = Eint
K ∪ Eext

K and Eint
K ∩ Eext

K = ∅.

Recall that the considered estimators have an interesting property: the estimated density of a Voronoi cell is equal to its true
probability mass (Proposition B.7). Therefore, PK and P coincide on Eint

K . More precisely,

PK(Eint
K ) =

∑
k∈I int

PK(YkK) =
∑
k∈I int

P
(
YkK
)
= P

(
Eint
K

)
. (29)

We then refer to the maximum cell diameter by εK = maxk∆(YkK), and ε+K = supk≥K εk. We know from Proposition B.9
that εK −→

K→+∞
0.

We now show that Eext
K ⊂ ∂E +B(0, ε+K).

Let k ∈ Iext
K . We want to show that YkK intersects ∂E (see Figure 6). By definition, YkK is partially inside and outside E.

Therefore, we can choose x ∈ YkK ∩E and y ∈ YkK\E. By convexity of the Voronoi cells, we can see that its border ∂E
will intersect the segment [x, y] on a single point y∗ ∈ YkK . Formally, let

t∗ = sup{t ∈ [0, 1] | (1− t)x+ ty ∈ E} , and y∗ = (1− t∗)x+ t∗y .

We have y∗ ∈ Ē because there is a sequence converging toward y∗ from inside E by definition of sup. Moreover, y∗ /∈ Eo,
because there would be t > t∗ satisfying the constraint, by definition of open sets. Finally y∗ ∈ YkK by convexity of YkK .
Therefore y∗ ∈ ∂E ∩ YkK .

By definition of the maximum diameter ε+K ,

y∗ ∈ YkK ⇒ YkK ⊂ B(y∗, ε+K) = y∗ +B(0, ε+K) ⊂ ∂E +B(0, ε+K) .

Therefore, Eext
K ⊂ ∪k∈IextYkK ⊂ ∂E +B(0, ε+K). We conclude by observing that YkK are disjoint, and that PK(YkK ∩ E) ≤

PK(YkK) = P(YkK) for the considered estimators (Proposition B.7).

PK(Eext
K ) = PK(∪k∈Iext(YkK ∩ E)) ≤ P(∪k∈Iext(YkK)) ≤ P(∂E +B(0, ε+K)) −→

K→+∞
P(∂E) = 0 . (30)

Likewise,
P(Eext

K ) ≤ P(∂E +B(0, ε+K)) −→
K→+∞

P(∂E) = 0 . (31)

In conclusion,
|PK(E)− P(E)| ≤ |PK(Eint

K )− P(Eint
K )|︸ ︷︷ ︸

= 0 by Eq. (29)

+ |PK(Eext
K )− P(Eext

K )|︸ ︷︷ ︸
→ 0 by (30) and Eq. (31)

→
K→+∞

0 .

Note that Eq. (29) does not necessarily hold for P K−WTA
x . Therefore, this proof cannot apply to this estimator. However,

it applies to a large family of estimators P̂. Indeed, it is independent of the choice of kernel, as long as P̂ is an unbiased
estimator of the Voronoi cell probability mass.
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B.3. Geometrical properties

We will study the geometrical properties of WTA-based models through the lens of quantization risk. Our analysis will
focus on the estimators P D−WTA

x , P V−WTA
x , and P K−WTA

x , as these correspond to the cases presented in the main paper.
Specifically, we will concentrate on the positions of the hypotheses, an aspect for which the same analysis applies to all
three estimators. Indeed, both P V−WTA

x and P K−WTA
x retain the hypotheses positions following WTA training. For the

rest of this section, we drop the dependency on x without loss of generality, to lighten the notational burden.

B.3.1. QUANTIZATION RISK

We are interested in measuring the advantage of an adaptative grid of WTA. To do so, we look at the quantization risk of
WTA and Histogram.

Proposition B.11. Under Assumption B.5, we have for each K ∈ N

K∑
k=1

∫
Yk

∥zk − y∥22ρ(y)dy ≤
K∑
k=1

∫
Gk

∥gk − y∥22ρ(y)dy .

Proof. The histogram is a particular case of Voronoi tesselation.

B.3.2. ASYMPTOTIC QUANTIZATION RISK

We know the asymptotic quantization risk of WTA from the Zador theorem.

Proposition B.12. Under assumptions B.2 (boundedness) and B.5 (optimality), the asymptotic quantization risk of the
estimator P D−WTA

x has the following asymptotic evolution as K → ∞

RD−WTA
K = Jd

(∫
Y
ρd/(d+2)dy

)(d+2)/d
1

K2/d
+ o

(
1

K2/d

)
.

Proof. It is a corollary of the Zador theorem, whose conditions are met given our hypotheses.

It is also possible to compute the risk for the grid estimator P H
x .

Proposition B.13. Under assumptions B.2 (boundedness), B.3 (positivity), B.4 (lipschitz), B.5 (optimality), and assuming
moreover that Y = [0, c]d , the quantization risk of the estimator P H

x has the following asymptotic evolution

RH
K =

d

12

c2

K2/d
+O

(
1

K3/d

)
.

Proof. Consider a d-dimensional grid of K =Md points. Admitting for now that the risk over a d-dimensional cube of size
c
M is equal to d

12

(
c
M

)d+2
, we can rewrite the risk as follows.

RH
Md =

Md∑
k=1

∫
Yk

ρ(y)∥y − zkK∥2dy ≈
Md∑
k=1

ρ(zkK)

∫
Yk

∥y − zkK∥2dy =
d

12

c2

M2

 cd

Md

Md∑
k=1

ρ(zk)

 ≈ d

12

c2

M2
.

The first approximation says that ρ is essentially constant over a cube cell Vk ifK is large enough. The second approximation
is a Monte Carlo integration. If we substitute M by K, we obtain the announced result.

We now justify these two approximations formally. We first compute the risk over a d-dimensional cube of side a > 0
centered in 0 (considering a uniform distribution for ρ).∫

[− a
2 ,

a
2 ]

d

(
x21 + · · ·+ x2d

)
dx1 . . . dxd = d

∫
x21dx1 . . . dxd = dad−1

∫ a/2

−a/2
x21dx1 =

d

12
ad+2 .
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Now we compute an upper bound of the α-distortion (defined below) over the same cube. This upper bound relies on
enclosing the cube in the smallest ball containing it (which has for diameter the largest diagonal of the cube ∥(a, . . . , a)−
(0, . . . , 0)∥ =

√
da).∫
[− a

2 ,
a
2 ]

d

(√
x21 + · · ·+ x2d

)α
dx1 · · · dxd ⩽

∫
B(0,

√
da/2)

(√
x21 + · · ·+ x2d

)α
dx1 · · · dxd

=

∫ √
d a

2

0

rα
2πd/2

Γ
(
d
2

)rd−1dr

=
2πd/2

Γ
(
d
2

) ∫ √
d a

2

0

rd−1+αdr

= O
(
ad+α

)
,

Where Γ : x ∈ R∗
+ 7→

∫∞
0
tx−1e−tdt is the gamma function. Equipped with this result, we can prove the first approximation

using the assumption that ρ is L-lipschitz.∣∣∣∣∣RH
K −

K∑
k=1

ρ(zkK)

∫
Yk

K

∥y − zkK∥2dy
∣∣∣∣∣ ⩽

K∑
k=1

∫
Yk

K

|ρ(y)− ρ(zkK)| ∥y − zkK∥2dy

⩽ L

K∑
k=1

∫
Yk

K

∥y − zkK∥3dy

= L

K∑
k=1

O
(

1

Md+3

)
= O

(
1

M3

)
.

The second approximation is similar.∣∣∣∣∣ 1

Md

K∑
k=1

ρ(zkK)−
∫
Y
ρ(y)dy

∣∣∣∣∣ =
∣∣∣∣∣
K∑
k=1

ρ(zkK)

∫
Yk

K

1dy −
N∑
k=1

∫
Yk

K

ρ(y)dy

∣∣∣∣∣
⩽

K∑
k=1

∫
Yk

K

|ρ(y)− ρ(zkK)|

⩽ L

K∑
k=1

∫
Yk

K

∥y − zkK∥dy

=

K∑
k=1

O
(

1

Md+1

)
= O

(
1

M

)
.

Combining both, we obtain the desired result (note that
∫
Y ρ(y)dy = 1).

RH
K =

d

12

c2

M2
+O

(
1

M3

)
.

We can replace K in this formula.

RH
K =

d

12

c2

K2/d
+O

(
1

K3/d

)
.
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While the above proof was carried out with Y = [0, c]d with a volume of λ(Y) = cd, one can show the more general
expression:

RH
K =

d

12

λ(Y)2/d

K2/d
+O

(
1

K3/d

)
. (32)

Note that in the first order, the asymptotic quantization risk of the histogram does not depend on the distribution of the
probability mass ρ but only on the width of its support.

Both WTA and Histogram have the same asymptotic risk O
(
K− 2

d

)
. However, the leading constant is always larger for

Histogram (for all densities ρ) for large K. This means that WTA is strictly better than Histogram even in the asymptotic
regime (Proposition B.14).

Proposition B.14. Under the assumptions of Proposition B.13, the leading constant of RH
K is greater than that of RD−WTA

K

for dimension d ∈ {1, 2} and for large d.

Proof. We show that the leading constant of RH
K is greater than that of RWTA

K for large d. Using Eq. (32), we can write the
following.

d

12
λ(Y)2/d >

d

2πe

(∫
Y
dy

)2/d

=
d

2πe

(∫
Y
dy

)(2+d)/d
∫
Y ρ(y)dy∫

Y dy
(since

∫
Y
ρ(y)dy = 1)

=
d

2πe

(∫
Y
dy

)(2+d)/d
∫
Y
(
ρ(y)d/(d+2)

)(d+2)/d
dy∫

Y dy
(since (xr)1/r = x)

≥ d

2πe

(∫
Y
dy

)(2+d)/d
(∫

Y ρ(y)
d/(d+2)dy∫
Y dy

)(d+2)/d

(Jensen inequality applied to x 7→ x(d+2)/2)

=
d

2πe

(∫
Y
ρ(y)d/(d+2)dy

)(d+2)/d

.

We recognize the leading constant of the Zador theorem on the last term (using the asymptotic equivalent Jd ∼ d
2πe ). The

argument is the same for d = 1 (in which case Jd = 1
12 ), and d = 2 (in which case Jd = 5

18
√
3
< 2

12 ).

B.4. Discussion of the assumptions

We discuss in this section the validity of our assumptions.

Boundedness assumption B.2. The boundedness assumption is a necessary assumption to ensure that the volume of each
cell is well-defined, such as in the case of a piece-wise uniform distribution. This is a customary assumption in theoretical
analysis of K-Means algorithm (Emelianenko et al., 2008), as well as in centroidal Voronoi tessellations (Du et al., 1999).
Moreover, this assumption is valid in all realistic settings of pragmatic interest.

Positivity assumption B.3. The positivity assumption asserts that the data PDF is nonzero everywhere. This technical
assumption is also reasonable for practical applications. For instance, if we assume that X × Y is bounded, modifying the
distribution to ρ̃(x, y) = (1 + ε)−1(ρ(x, y) + ε) with a sufficiently small ε > 0 does not alter the experimental results, and
ensures that ρ̃ > 0 everywhere.

Lipschitz assumption B.4. The Lipschitz assumption of the data distribution was applied in Proposition B.13 and B.14.
Note that no further assumption was made on the value of L > 0.

Optimality assumption B.5. The assumption of quantization optimality is strong. There are two main arguments for its
validity:

• The convergence of WTA has not been directly studied in the literature. However, we can see WTA as a conditional
gradient descent version of K-means (Pagès & Printems, 2003). The convergence of K-means has been extensively
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studied (Sabin & Gray, 1986; Emelianenko et al., 2008; Bourne & Roper, 2015), and some results could, as further
work, be ported to WTA (Pagès & Printems, 2003). Even though few results concern the convergence towards a global
minimum of the quantization objective, theoretical evidence points toward the surprising effectiveness of this approach
in most cases (Blömer et al., 2016).

• Our justification for Assumption B.5 is also empirical. We confirmed experimentally that the empirical quantization
risk closely follows the theoretical optimal quantization risk given by Proposition 5.2. Indeed, we can see in Figure 3
that the solid and dotted green curves of the quantization risk converge in the asymptotic regime, which is when the
theoretical formula is valid.

This gives us confidence that Assumption B.5 holds in practice, possibly in an approximate manner. Further research could
explore in greater detail how the initialization of the Winner-Takes-All (WTA) training scheme influences the quality of the
optimal solution. This investigation could build upon the findings of studies such as those by Arthur (2007) and Aggarwal
et al. (2009).

C. Experimental details
C.1. Synthetic data experiments

C.1.1. BASELINES.

Two standard conditional density estimation baselines were considered in our experiments: Mixture Density Networks
(MDN) (Bishop, 1994) and the Histogram (Imani & White, 2018) mentioned in Section 5.2. We took care to assess all
methods fairly, by using the same backbone architecture and number of hypotheses for all of them. These baselines differ
however from WTA-based methods on two main axes, output format and training loss, as explained hereafter:

• MDN uses a multi-head neural network to directly predict the parameters of a mixture of Gaussians. It is trained using
the negative log-likelihood loss:

LMDN(θ) = − log ρ̂θ(y | x) , (33)

where ρ̂θ(y | x) is a mixture of Gaussians with parameters {πk(x), µk(x), σk(x)}, respectively denoting mixture
weights, means and standard deviations. We considered isotropic Gaussians here. We enhanced the original MDN
training scheme by incorporating the findings from Brando Guillaumes (2017) to improve the numerical stability of the
training. In particular, we employed the Log-sum-exp trick (Blanchard et al., 2019), and modified the neural network’s
output to predict (µ, log σ2) rather than (µ, σ).

• Histogram is purely non-parametric, unlike MDN. It uses a multi-head neural network to predict scores γkθ (x) ∈ [0, 1]
for each point in a fixed regular grid, defining the histogram bins. It is trained through backpropagation using the
following loss:

LH(θ) = − log γk
⋆

θ (x)−
∑
k ̸=k⋆

log(1− γkθ (x)) , (34)

where k⋆ = argminkℓ(gk, y) is the bin index in which the target falls. Note that the Histogram baseline can be seen
as a specific instance of hypothesis-scores architecture used in the WTA setup, where each hypothesis is static and
represents the central point of a histogram bin. In the context of the synthetic data experiments of Section 6, the output
space is Y = [−1, 1]2 and we employed a regular grid defined by row i ∈ [[1, Nrows]] and by column j ∈ [[1, Ncols]].
For each x ∈ X , if k is the hypothesis index associated to bin (i, j), we therefore have:

fkθ (x) =

(
−1 +

(
i− 1

2

)
2

Nrows
,−1 +

(
j − 1

2

)
2

Ncols

)
,

with K = NrowsNcols. In our comparisons described in Section 6, we used Nrows = Ncols in our experiments, except
when K = 20 where we set Nrows = 5 and Ncols = 4.

C.1.2. ARCHITECTURES AND TRAINING DETAILS

Architectures. In each training setup with synthetic data, we employed a two-hidden-layer multilayer perceptron. Each
layer contained 256 hidden units and used ReLU activation functions. In the final layer, we utilized tanh activations for the
hypotheses and sigmoid activations for the scores, where applicable. The last layer is duplicated depending on the number of
outputs to produce: three times the number of modes in the case of MDN (mixture coefficients, means, and variances), twice

23



Winner-takes-all learners are geometry-aware conditional density estimators

the number of hypotheses in the WTA setup (scores and hypotheses are predicted), and the product of the number of rows
and columns for the 2-dimensional histogram. Note that if the normalization of the scores is not inherently implemented in
the architecture (e.g., with a softmax activation), they must be normalized when computing metrics by considering γk(x)∑

k γk(x)
.

Training details. The Adam optimizer (Kingma & Ba, 2014) was used with a constant learning rate of 0.001 in each setup.
The models were trained until convergence of the training loss, using early stopping to select the checkpoint for which the
validation loss was the lowest. Each of the synthetic datasets consists of 100, 000 training points, and 25, 000 validation
points. Each of the models was trained for 100 epochs, with a batch size of 1024.

In each setup that involves WTA training, we used the compound loss LWTA+βLscoring with β = 1. Note that we observed
that the WTA training scheme leads to a fast convergence of the predictions fθ(x), while the scoring heads γθ(x) are slightly
slower to train. Indeed, each γkθ (x) solves a binary classification task that evolves as the position of fθ(x) is updated during
training. Therefore, this objective is untractable at the beginning of the training, because the prediction fθ(x) moves too
quickly, and it only becomes feasible near the end of training, once the prediction has stabilized. This warrants further
research on the scheduling of β during training.

C.1.3. METRICS

For assessing the quality of the predictions, we used the following metrics for each input x ∈ X .

• The Negative Log-Likelihood (NLL), which assesses the probabilistic quality of the predictions

NLL(ρ̂x, ρx) = −
∫
Y
log ρ̂x(y)ρx(y)dy , (35)

where ρ̂x(y) is the estimated density, which is assumed to integrate to 1.
• The Earth Mover’s Distance (EMD):

EMD(ρ̂x, ρx) = min
ψ∈Ψ

∑
ys∼ρx

∑
ŷk∼ρ̂x

ψs,k∥ys − ŷk∥ , (36)

where ψ ∈ Ψ is a transport plan belonging to the set of valid transport plans (Kantorovich, 1942).
• The Quantization Error, as defined in Pagès & Printems (2003):

R(Z) =

∫
Y
min
z∈Z

∥y − z∥2 ρx(y)dy . (37)

Note that equations (35), (36) and (37) assume that the target distribution ρx is available. However, this is not usually the
case for real-world tasks, for which typically one sample y ∼ ρx is available for each input x. In this case, the EMD loses
its interpretation as a distance between distributions. Nevertheless, the NLL and Distortion errors can still be computed on
an average basis over the test set, with the NLL and Quantization Errors defined as

NLL = − 1

N

N∑
i=1

log ρ̂xi
(yi) , (38)

R =
1

N

N∑
i=1

min
z∈Zi

∥yi − z∥2 , (39)

where N is the number of pairs (xi, yi) in the test set, and Zi =
{
f lθ(xi)

}
l∈J1,KK.

C.1.4. EVALUATION DETAILS

The results of Figure 3 were computed according to the following details. Note that each evaluation was performed with
N = 2, 000 test points. The results are averaged over three random seeds (see Figure 7).

NLL computation. The NLL was computed following (38), with N the number of points on each test set, and ρ̂x is for
instance given in (13) in Voronoi-WTA. The Volume

V (fkθ (x),Kh) =

∫
Yk(x)

Kh(f
k
θ (x), ỹ)dỹ , (40)

24



Winner-takes-all learners are geometry-aware conditional density estimators

was computed with the normalized Gaussian kernel:

Kh(f
k
θ (x), y) =

1

(2π)
d
2 hd

exp

(∥y − fkθ (x)∥2
2h2

)
, (41)

where d = dim(Y). In particular, d = 2 for the synthetic data experiments and d = 1 for the UCI datasets experiments.

In practice, the Volume (40) can be computed efficiently, rewriting each ỹ in the integral as

y = fkθ (x) + ts , (42)

where s ∈ Sd−1 is a direction on the unit sphere and t ∈ [0, lfk
θ (x)(s)] a scalar step. Here lfk

θ (x)(s) is the so-called directional
radius, defined as the maximum u ∈ R+ such that fkθ (x) + us ∈ Ykθ (x) if it exists, and lfk

θ (x)(s) = ∞ otherwise. In
practice, we computed each directional radius in O(Kd) operations by following Equations 7 and 8 from Polianskii et al.
(2022), leveraging the structure of Voronoi tesselation as detailed in Polianskii & Pokorny (2019). The case of unbounded
Voronoi cells did not appear here since the output is restricted to the square [−1, 1]2. As explained by Polianskii et al. (2022,
Sec.3.1), (42) allows writing V (fkθ (x),Kh) as a double-integral in spherical coordinates:

V (fkθ (x), y) =

∫
s∈Sd−1

∫
t∈

[
0,l

fk
θ
(x)

(s)

]K(
t

h
s)td−1 dt ds ,

where: K(x) ≜ exp(−∥x∥2

2 ).

As the inner integral has a closed-form solution for the Gaussian kernel (Polianskii et al., 2022), a Monte Carlo approximation
of the outer integral allows us to estimate V (fkθ (x),Kh):

V (fkθ (x), y) ≃
2π

d
2

N ′Γ
(
n
2

) N ′∑
j=1

∫[
0,l

fk
θ
(x)

(sj)

]K(
t

h
sj)t

d−1 dt ≃ 1

N ′

N ′∑
j=1

(2πh2)
d
2 γ̄

(
d

2
,
lfk

θ (x)(sj)
2

2h2

)
, (43)

where Γ is the gamma function, N ′ is the number of points {sj} sampled on the unit sphere Sd−1 (or versors) and
γ̄(a, z) ≜ 1

Γ(a)

∫ z
0
ta−1e−t dt is the incomplete gamma function. When d = 2, (43) simplifies to:

V (fkθ (x), y) ≃
1

N ′

N ′∑
j=1

2πh2

(
1− exp

(
−
lfk

θ (x)(sj)
2

2h2

))
.

In practice, we used N ′ = 40 for our experiments.

EMD computation. The EMD was computed as

EMD =
1

N

N∑
i=1

EMD(ρ̂xi , ρxi) ,

where N = 2, 000 and EMD(ρ̂x, ρx) is defined in (36). Computing the EMD for each input requires sampling from both
the predicted and target distributions, with the assumption that sampling from the target distribution is feasible. For the
predicted distribution, a rejection sampling procedure was implemented. This involved initially selecting a cell k based on
the distribution of scores

{
γlθ(x)

}
. Samples were then repeatedly drawn from the distribution Kh(f

k
θ (x), ·) until a sample

falling within the cell Ykθ (x) was obtained. In our experiments, we matched empirical measures by taking 500 samples each
from both the predicted and target distributions. Additionally, to reduce computational complexity, especially when dealing
with a large number of hypotheses, one can employ the hit-and-run sampling technique as outlined in Alg. 2 by Polianskii
et al. (2022).

Theoretical curves. The theoretical curves of Figure 3 were computed according to (15) and (16). The calculation of (15)
was performed through Monte-Carlo integration using 10, 000 samples across the output space for each input x (averaging
over 10 inputs here), for K ∈ {9, 16, 25, 49, 100}. The target density ρ is explicitly defined in the Changing Damier and
Single Gaussian datasets, while in the Rotating Moons dataset, it was approximated through Kernel Density Estimation
(with Gaussian kernel and bandwidth of 0.2).
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Figure 7. Standard deviations across three random seeds are shown in the results of Figure 3. To simplify the presentation, only the
following Voronoi-WTA curves are displayed: h = 0.1, 0.15, 0.2 for the Single Gaussian and Rotating Moons datasets, and h = 0.2, 0.3
for the Changing Damier dataset. Additionally, the y-axis of the EMD plot for the Changing Damier was cropped in Figure 3 to enhance
the scale readability.
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Figure 8. NLL vs. h with 9 hypotheses.
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Figure 9. NLL vs. h with 16 hypotheses.
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Figure 10. NLL vs. h with 25 hypotheses.
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Figure 11. NLL vs. h with 49 hypotheses.

C.1.5. ADDITIONAL RESULTS

Additional results on the four synthetic datasets Rotating Two Moons, Changing Damier, Single Gaussian and Uniform to
Gaussians presented in Section 6.1 are provided in Figures 8, 9, 10, 11. As in Figure 4, the aim here is to demonstrate the
resilience of Voronoi-WTA with respect to the choice of the scaling factor h in comparison with different baselines. These
include Kernel-WTA, and Truncated-Kernel Histogram, where truncated kernels were placed on the bin position. Here, the
truncated kernel variants were computed with normalized Gaussian kernels (41) with d = 2 here. Uniform kernels were
used in the baselines ‘Unif. Histogram’ and ‘Unif. Voronoi-WTA’.

At first, several sanity checks can be carried out. One can verify that as h → 0, Kernel-WTA and Voronoi-WTA are
equivalent in all datasets. This outcome is anticipated since, in such regimes, the impact of truncation is virtually negligible,
as discussed in Section 4.2. Similarly, when h approaches infinity, both Voronoi-WTA and the Truncated-Kernel Histogram
tend to align with their respective uniform versions – Uniform Voronoi-WTA and Uniform Histogram. This behavior is
expected due to the bounded nature of the output space. Note that we empirically observe a convex U-shape for the NLL
curves on the validation set of Kernel-WTA and Voronoi-WTA as a function of h, allowing us to use adaptive grid search
algorithms, such as the Golden Section Search (Kiefer, 1953), which have a fast convergence rate in this setting.

Additionally, observations consistent with those discussed in Section 4 have been made. These findings highlight the
robustness of Voronoi-WTA against variations in the h parameter, demonstrating its superior performance over Kernel-WTA,
at larger values of h. In contrast, Voronoi-WTA’s advantages over the Truncated-Kernel Histogram become more pronounced
at smaller h values. Except for the Changing Damier dataset, where the Histogram shows an immediate advantage, the
results align with the analysis of Section 6.3, indicating that the Histogram’s performance suffers from suboptimal hypothesis
placement in this regime. However, it is important to note that as h increases, the Truncated-Kernel Histogram sometimes
matches or exceeds the performance of other methods at a fixed h. Likewise, when K is large, the Histogram achieves
greater resolution and becomes competitive, thus compensating the naive placement of the hypotheses.

The slight deterioration in performance when considering uniform kernels compared with Gaussian kernels is attributed to
the so-called ‘compactification’ issue , as discussed in Polianskii et al. (2022). Indeed, in scenarios with large cells in the
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Voronoi tesselation,2 the application of a uniform kernel can significantly worsen NLL results. This effect is indeed less
pronounced in the histogram method, where the volume of each cell remains constant.

Consistently with observations made from audio data discussed in Section 6.5, Figures 8, 9, 10, and 11 illustrate that the
performance gap between Kernel-WTA and Voronoi-WTA widens as h increases and the number of hypotheses grows.
It is important to acknowledge a limitation: in scenarios where the hypotheses are few and sufficiently spaced apart, the
impact of truncation becomes minor. Under these conditions, Kernel-WTA is likely to offer comparable performance to
Voronoi-WTA for a wide range of h values.

C.2. UCI datasets

We conducted additional experiments on the UCI Regression Datasets (Dua & Graff, 2017), which are a standard benchmark
to evaluate conditional density estimators. Table 3 provides the sizes of the datasets.

Experimental setup. All the estimators mentioned in our manuscript (Mixture Density Network, Histogram-based methods,
and WTA-based methods) are trained and evaluated on these datasets, and results are provided in Table 4 and Table 5. The
results were computed following the same experimental protocol from Hernández-Lobato & Adams (2015). In particular,
each dataset is divided into 20 train-test folds, except the protein dataset, which is divided into 5 folds, and the Year
Prediction MSD dataset for which a single train-test split is used. Moreover, we use the same neural network backbone for
each baseline: a one-hidden layer MLP with ReLU activation function, containing 50 hidden units except for the Protein
and Year datasets, for which 100 hidden units were utilized. Each model was trained using the Adam optimizer over
1, 000 epochs with a constant learning rate of 0.01. Our data loading pipeline for the UCI datasets was adapted from the
open-sourced implementation of Han et al. (2022). In the results presented in Table 4 and Table 5, we follow the convention
of highlighting the best models for each dataset in bold, based on the mean value of the metrics. Additionally, any model
whose confidence interval overlaps with this best mean is also bolded.

Baselines. Those tables include results from three baselines reported from Table 1 of Lakshminarayanan et al. (2017)
which we use as references for those benchmarks: ‘PBP’ stands for Probabilistic Back Propagation (Hernández-Lobato &
Adams, 2015), and ‘MC-dropout’ corresponds to Monte Carlo Dropout (Gal & Ghahramani, 2016). The Histogram NLL
was computed with truncated kernels (TK-NLL for Truncated-Kernel-Histogram), following the same tuning protocol for h
as Voronoi-WTA (V-WTA) and Kernel-WTA (K-WTA). MDN corresponds to a mixture density network with Gaussian
kernels as in Appendix C.1.1. The multi-hypotheses baselines (MDN, Histogram, and WTA-based methods) were trained
with K = 5. In this setup, the regular grid of the histogram was defined with fkθ (x) =

2(k−3)
5 for k ∈ {1, . . . , 5}.

Metrics. The computed metrics correspond to first the RMSE, which is defined as RMSE =
√

1
N

∑
i ℓ(ŷi, yi), where

ŷi denotes the estimated conditional mean, which was estimated with
∑K
k=1 γk(x)zk(x) for the WTA variants, and∑K

k=1 πk(x)µk(x) for MDN. NLL has been calculated in the same way as in the previous sections, with dim(Y) = 1.

Evaluation details. Our density estimators were trained according to the procedures outlined in Section 6. Post-training,
the scaling factor h was tuned based on the average NLL over the validation set (20 % of the training data) using a golden
section search (Kiefer, 1953) (with tolerance set to 0.1 and the search interval bounded by [0.1, 2]), following a similar
protocol as Gal & Ghahramani (2016). In this setup, as per the guidelines in Hernández-Lobato & Adams (2015), we
normalized both input and output variables for training using the means and standard deviations from the training data. For
evaluation, we restored the original scale of the output predictions with the transformation fkθ (x) 7→ µtrain + σtrainf

k
θ (x)

where µtrain and σtrain represent the empirical mean and standard deviation of the response variable across the training set.
This transformation also applies to the predicted means of the MDN, while the predicted standard deviations were simply
multiplied by µtrain.

Results confirm the claims made in our manuscript and provide the following insights:

• Voronoi-WTA outperforms the Histogram-based estimator in terms of NLL and performs comparably to Kernel-WTA.
This aligns with the findings discussed in C.1.5, where Voronoi-WTA’s edge over Kernel-WTA is less pronounced in
settings with a limited number of hypotheses and where h has been already optimized. Future research will examine
how accurately optimizing h during validation affects performance when there is a distribution shift between validation
and test samples. Such a study could specifically assess potential performance discrepancies between Voronoi-WTA

2See for instance the hypotheses placement of a WTA-based trained model on a Gaussian distribution in Figure 2
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Table 3. UCI Regression benchmark datasets. N is the number of data samples and dim(X ) the input dimension. Here, the output
space Y is one dimensional.

Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

(N ; dim(X )) (506;13) (1030;8) (768;8) (8192;14) (11934;16) (9568;4) (45730;9) (1599;11) (308;6) (515345;90)

and Kernel-WTA under these conditions.
• WTA-based estimators outperform the Histogram-based estimator in terms of RMSE.
• Voronoi-WTA is competitive with MDN for NLL. This is a promising result as the NLL is optimized only during

validation for Voronoi-WTA, and during training for MDN. Moreover, we faced stability issues when training MDN
(e.g., numerical overflows in log-likelihood computation), that we did not encounter with Voronoi-WTA.

Looking at Table 4 and Table 5, we can see that for data-intensive tasks (Protein, Year) Voronoi-WTA is on par with standard
baselines in those benchmarks, and occasionally outperforms them, both in terms of NLL and RMSE. However, for tasks
with limited data available, it seems that WTA is not the most suitable method. This underperformance in the small data
regime could be expected: because of the competitive nature of the WTA training scheme, each prediction model only sees a
fraction of the data.

Table 4. UCI regression benchmark datasets comparing NLL with 5 hypotheses. ⋆ corresponds to reported results from Lakshmi-
narayanan et al. (2017). ‘–’ corresponds to cases where MDN has not converged. Best results are in bold. ± represents the standard
deviation over the splits (non-applicable for the year dataset).

NLL (↓)

Datasets PBP⋆ MC Dropout⋆ Deep Ensembles⋆ MDN TK-Hist K-WTA V-WTA

Boston 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25 2.95 ± 0.31 2.83 ± 0.17 2.48 ± 0.16 2.48 ± 0.19
Concrete 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18 3.96 ± 0.24 3.47 ± 0.12 3.09 ± 0.10 3.08 ± 0.12
Energy 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22 1.25 ± 0.25 2.39 ± 0.11 2.27 ± 1.22 2.22 ± 1.20
Kin8nm -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02 -0.87 ± 0.05 -0.70 ± 0.03 -0.73 ± 0.03 -0.85 ± 0.05
Naval -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05 -5.47 ± 0.29 -3.06 ± 0.02 -1.94 ± 0.00 -3.52 ± 0.38
Power 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04 3.02 ± 0.07 3.18 ± 0.02 2.81 ± 0.05 2.85 ± 0.06
Protein 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02 – 2.64 ± 0.01 2.39 ± 0.03 2.42 ± 0.04
Wine 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12 -1.53 ± 0.76 0.46 ± 0.10 0.42 ± 0.18 0.37 ± 0.17
Yacht 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21 2.43 ± 0.72 2.80 ± 0.23 2.23 ± 0.52 2.05 ± 0.46
Year 3.60 ± NA 3.59 ± NA 3.35 ± NA – 3.57 ± NA 3.26 ± NA 3.29 ± NA

Table 5. UCI regression benchmark datasets comparing RMSE with 5 hypotheses. ⋆ corresponds to reported results from Lakshmi-
narayanan et al. (2017). ‘–’ corresponds to cases where MDN has not converged. Best results are in bold. ± represents the standard
deviation over the splits (non-applicable for the year dataset).

RMSE (↓)

Datasets PBP⋆ MC Dropout⋆ Deep Ensembles⋆ MDN TK-Hist K-WTA V-WTA

Boston 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 3.65 ± 1.15 5.53 ± 1.26 3.54 ± 1.16 3.54 ± 1.16
Concrete 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 7.52 ± 0.96 9.03 ± 0.68 6.02 ± 0.65 6.02 ± 0.65
Energy 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 2.35 ± 0.45 3.89 ± 0.48 2.53 ± 0.99 2.53 ± 0.99
Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 0.08 ± 0.00 0.14 ± 0.01 0.10 ± 0.01 0.10 ± 0.01
Naval 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Power 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 4.11 ± 0.18 7.55 ± 0.17 4.18 ± 0.16 4.18 ± 0.16
Protein 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 – 4.47 ± 0.02 4.39 ± 0.10 4.39 ± 0.10
Wine 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.65 ± 0.04 0.67 ± 0.04 0.63 ± 0.04 0.63 ± 0.04
Yacht 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 4.08 ± 1.57 8.27 ± 2.83 3.28 ± 1.39 3.28 ± 1.39
Year 8.88 ± NA 8.85 ± NA 8.89 ± NA – 9.31 ± NA 9.09 ± NA 9.09 ± NA
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C.3. Audio data experiments

C.3.1. SETUP

This section describes in greater detail the experimental setup from Section 6.5. The audio data experiments are based on
the protocol of Schymura et al. (2021a); Letzelter et al. (2023) which is given as follows. Nevertheless, distinctions are to be
made with respect to previous works. While Letzelter et al. (2023) study the case of punctual sound source localization
(Grumiaux et al., 2022), we apply our estimators here the more general problem of data uncertainty quantification, due for
instance to an actual spatial dispersion of sound sources or annotation errors. This extension is described in greater detail in
the paragraph ‘Synthetic perturbations’ given below.

Dataset preprocessing. In our experiments, we used the ANSYN dataset (Adavanne et al., 2018a), which contains spatially
localized sound events under anechoic conditions. We conformed to the dataset processing techniques as detailed in works
by Schymura et al. (2021a); Letzelter et al. (2023). We employed the first-order Ambisonics format with four input audio
channels. The audio recordings, with a 44.1 kHz sampling rate, were segmented into 30-second durations. These segments
were further divided into non-overlapping chunks of 2 s to serve as the basis for training data. Spectrograms were calculated
with a Hann window of 0.04 seconds for the Short Term Fourier Transform calculations. This was done with a 50% overlap
between frames and utilizing 2048 points for the Fast Fourier Transform computation. The information input into the models
included both the amplitude and phase data, stacked channel-wise.

Architecture. We utilized SeldNet (Adavanne et al., 2018a) as backbone (with ∼ 1.6 M parameters). The data processing
starts with the preprocessing of raw audio, which is then fed into the model in the form of spectrograms of a set duration,
including phase information. The model then provides localization outputs at the specified resolution, in this case, considering
T = 100 output time steps for each segment. The architecture processes the data through feature extraction modules,
including Convolutional Neural Networks (CNNs) and Bi-directional Gated Recurrent Unit (GRU) layers, creating a
representation for each time step at the determined output resolution. These intermediate representations are subsequently
connected to the final localization predictions via Fully Connected (FC) layers. To suit the Winner-takes-all framework, the
terminal FC layers are divided into K separate FC heads, each delivering a two-dimensional output (azimuth and elevation)
at each time step. Additionally, the system incorporates score heads at the final stage, each yielding a single value between
0 and 1, achieved through a sigmoid activation function. Note that the ‘Histogram’ baseline in the audio experiments
of Section 6.5 utilizes the same backbone with fixed hypotheses heads. More precisely, denoting k the hypothesis index
associated with the histogram grid for row i ∈ [[1, Nrows]] and column j ∈ [[1, Ncols]] we have, for every x ∈ X :

fkθ (x) =

(
−π +

(
i− 1

2

)
2π

Nrows
,−π

2
+

(
j − 1

2

)
π

Ncols

)
,

where these coordinates correspond, respectively, to the azimuth and the elevation within the ranges [−π, π] and [−π
2 ,

π
2 ].

Note that for the 2D Histogram, K = NrowsNcols with the notations of Table 2. The results of for the 2D Histogram were
computed with Nrows = Ncols, except when K = 20 (in Figure 12 and Table 6) where we set Nrows = 5 and Ncols = 4.

Training details. The trainings were conducted using the AdamW optimizer (Loshchilov & Hutter, 2018), with a batch size
of 32, an initial learning rate of 0.05, and following the scheduling scheme from Vaswani et al. (2017). The WTA model
was trained using the multi-target version of the Winner-takes-all loss (Equation 2 and 5 of Letzelter et al. (2023)), using
confidence weight β = 1. Note that as the predictions and the targets belong to the unit sphere, the underlying loss ℓ used
was the spherical distance ℓ(ŷ, y) = arccos[ŷ⊤y] where y, ŷ ∈ S2 ⊆ R3.

Synthetic perturbation. To properly evaluate the ability of the baseline methods to predict conditional distributions, we
propose a protocol that involves injecting heteroscedastic noise.

1. During training, we performed class-conditioned perturbation of the target source positions. More precisely, for each
of the nc = 11 classes in the dataset (speech, phone, keyboard, doorslam, laughter, keysDrop,
pageturn, drawer, cough, clearthroat, knock), we randomly perturbed the target position of the
sound sources using a distinct standard deviation assigned to each class. These perturbations were drawn from normal
distributions on the spherical coordinates, with angular standard deviations (in degrees) in the set {5 + 5c | c ∈
[[0, nc − 1]]}.

2. Once trained, the hope is that at inference time, the models have understood the ambiguity in the data, such that they
can infer, given a new input audio snippet, the spatial spread of the sound source.

3. We evaluate the quality of the estimated distribution with regard to the ground-truth distribution, which is known here.
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Evaluation details. For preserving the geometry of the sphere, the likelihoods of Kernel-WTA and Voronoi-WTA were
computed using isotropic von Mises-Fisher kernels. For data that lives on a 2-dimensional sphere, i.e., for fkθ (x), y ∈ S2 ⊆
R3, such kernels write in the form

Kh(f
k
θ (x), y) =

κ

4π sinhκ
exp

(
κy⊤fkθ (x)

)
,

where h > 0 is the scaling factor associated with the kernel defined as h = 1√
κ

. The kernel is thus defined with a single

concentration parameter κ > 0. The volume V (fkθ (x),Kh) ≜
∫
Yk

θ (x)
Kh

(
fkθ (x), ỹ

)
dỹ of the predicted distribution of

Voronoi-WTA in each curved cell k was computed noting that∫
Yk

θ (x)

Kh

(
fkθ (x), ỹ

)
dỹ ≃ S(Ykθ (x))EY∼U(Yk

θ (x))
[Kh(f

k
θ (x), Y )] , (44)

where S(Ykθ (x)) is the surface of cell k. Note that we also have

S(Ykθ (x)) = 4πEY∼U(S2)[1(Y ∈ Ykθ (x))] . (45)

In practice, the expectations in (44) and (45) were computed using monte-carlo estimates, i.e.,

EY∼U(Yk
θ (x))

[Kh(f
k
θ (x), Y )] ≃ 1

N ′

∑
yi∼U(Yk

θ (x))

Kh(f
k
θ (x), yi) ,

EY∼U(S2)[1(Y ∈ Ykθ (x))] ≃
1

N ′

∑
yi∼U(S2)

1(yi ∈ Ykθ (x)) ,

where N ′ is the number of sampled points. The uniform sampling on the unit sphere U(S2) has been performed by sampling
the azimuth and elevation angles with ϕ ∼ U([0, 2π]) and θ ∼ arccos[U([−1, 1])]− π/2 (Weisstein, 2002).

The NLL defined in (35) was itself computed using a single sample from the target distribution ρx for each input, which can
be assumed to be known in the synthetic data perturbation setup (which is as a mixture of Gaussians here; see Figure 13 for
an illustration).

For adapting the quantization error to the spherical geometry, (14) was generalized with

R(Z) =

∫
Y
min
z∈Z

dist(y, z)2 ρx(y)dy , (46)

where dist is the spherical distance defined as dist(y, z) = arccos[y⊤z] for y, z ∈ S2 ⊆ R3.

Our implementation was based on Schymura et al. (2021a;b); Letzelter et al. (2023); Polianskii et al. (2022).

C.3.2. ADDITIONAL RESULTS

Additional results complementing those in Table 2 in the ANSYN audio dataset are presented in Figure 12 and in Table 6,
corresponding to 9, 16, 20 and 25 hypotheses, respectively.

In Figure 12 each subplot illustrates the Negative Log-Likelihood (NLL) on the test set as a function of the scaling factor h,
across different baselines. The legends in the figures follow the format of Figure 4: ‘WTA’ denotes methods trained using
the Winner-takes-all scheme, ‘Histogram’ refers to the Histogram baseline, ‘Voronoi’ denotes the application of truncated
kernels based on the ‘Histogram’ or ‘WTA’ hypotheses, and ‘Kernel-WTA’ is defined in Section 4.1. ‘Unif.’ indicates
the utilization of uniform kernels instead of von Mises-Fisher kernels, when using truncated kernels estimators. Here, we
introduce an additional baseline for further discussion: a mixture density network based on the von Mises-Fisher distribution
(M-vMF). It is based on the same training loss as (33), but considering instead a mixture of von Mises-Fisher distribution

ρ̂θ(y|x) =
K∑
k=1

πk(x)
κk(x)

4π sinhκk(x)
exp

(
κk(x)y

⊤µk(x)
)
,
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Figure 12. NLL vs. h results on ANSYN with 9, 16, 20 and 25 hypotheses. NLL on the test set of the spatial audio dataset ANSYN
(see Section 6.5) as a function of the scaling factor h. ‘Von Mises mixture’ corresponds to a von Mises-Fisher-based mixture density
network. The legend is the same as in Figure 4. ‘Truncated-Histogram’ corresponds to the standard Histogram where truncated kernels
are placed on the fixed hypotheses, instead of standard uniform ones. ‘Unif. Histogram’ and ‘Unif. Voronoi WTA’ corresponds to uniform
truncated kernels, which correspond to the limit of their von Mises-Fisher truncated variant as h → ∞. As expected, ‘Kernel-WTA’ and
‘Voronoi-WTA’ coincide as h → 0 (see Section 4.2). Here, dashed lines correspond to baselines that are independent of h.

with parameters {πk(x), µk(x), κk(x)}. Stability issues were observed in M-vMF training, including numerical overflow in
NLL computation. Those were partially reduced, for instance using the following expression, log(sinh(t)) = t+ log(1−
e−2t)− log(2) allowing computation stability for large t ∈ R∗

+.

NLL Comparison. First, it is important to highlight the consistency observed in the results as the scaling factor h approaches
zero. In this limit, the NLL values for both Voronoi-WTA and Kernel-WTA tend to coincide, an outcome that aligns with
expectations; the impact of truncation diminishes in this scenario, as elaborated in Section 6.3. Analogously to observations
made in Figure 4, the NLL values associated with the Histogram baseline (orange squares) demonstrate the fastest divergence
as h→ 0, due to the non-optimal positioning of the hypotheses.

As the scaling factor h increases, a quantitative improvement is observed in the NLL performance of Voronoi-WTA (green
triangles) compared to other baseline methods. Notably, we notice that the Kernel Density Estimation (KDE) approaches,
namely Kernel-WTA and Unweighted Kernel-WTA, exhibit a performance decline with increasing h, in contrast to the
truncated kernel versions (Voronoi-WTA and Voronoi-Histogram, with Indian red color in the plots). This divergence is
attributed to the dispersion of probability mass beyond the boundaries of the Voronoi cells in KDE-variants, leading to a loss
of local geometric properties, as detailed in Section 4.1.

Furthermore, as outlined in Section 6.5, note that the performance gap between Kernel-WTA and Voronoi-WTA tends to
narrow with a decrease in the number of hypotheses. This is because, in scenarios with fewer hypotheses, the impact of
kernel truncation becomes less significant. We see that in those settings, the Voronoi-WTA almost reaches the performance
of the M-vMF mixture density network, which slightly outperforms the other estimators in terms of NLL, with the gap
getting closer when the number of hypotheses is large. This is promising, as von Mises Fisher has three advantages in this
context: 1) it optimizes NLL during training; 2) the audio dataset targets are perturbed with synthetic Gaussian angular noise,
which is similar to the von Mises Fisher kernel; 3) the M-vMF has more parameters than the Voronoi-WTA method, as it
allows for a variable concentration parameter in each cell. For a fairer comparison, experiments on real-world data without
synthetic perturbations were performed in Appendix C.2, showing that Voronoi-WTA can even outperform MDN-based
methods in terms of NLL in some settings.
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Table 6. Quantization Error comparison. Quantization Error (×102) for the compared estimators on the spatial audio dataset ANSYN
(see Section 6.4) with spherical underlying distances (expressed in radians). M-vMF corresponds to a von Mises-Fisher-based mixture
density network.

K

Estimator 9 16 20 25

V-WTA 0.42 0.26 0.27 0.17
K-WTA 0.42 0.26 0.27 0.17
M-vMF 0.62 0.40 0.34 0.29
Hist 1.23 0.72 0.55 0.47

Figure 13. Quantifying Uncertainty in Spatial Audio with WTA Learners. Results for audio clips from the test set of the ANSYN
dataset. Each row corresponds to distinct recordings, while each column represents different time frames. The subplot’s axes correspond
to azimuth and elevation in degrees. The target positions of sound sources, marked by green stars, are within ellipses showing their
theoretical spatial dispersion. The WTA model’s 16 predictions are indicated by blue shaded circles, and the score confidence is indicated
by the shade intensity (the legend is given by the color bar on the right). We can see that the prediction dispersion follows closely the
theoretical dispersion of the sources. This demonstrates that the model successfully grasps input-dependent uncertainty.

Quantization Error comparison. Quantization error results are provided in Table 6, are consistent with the results of
Section 6.5. First, we see that for all methods, the quantization improves with K, which is consistent. Secondly, we see an
advantage in the quantization error between the WTA-based and the M-vMF methods. This is consistent with the third line
of Figure 3, which shows that WTA tends to outperform MDN in terms of quantization error.

Visualizations of the WTA predictions on audio data are also provided in Figure 13.

C.4. Computation details

In this research, we utilized the Python programming language, along with the Pytorch (Paszke et al., 2019) deep learning
framework. We also employed the Hydra and MLFlow libraries for experimental purposes. Our coding was inspired by
several previous works (Adavanne et al., 2019; Makansi et al., 2019; Schymura et al., 2021a; Polianskii et al., 2022; Han
et al., 2022; Letzelter et al., 2023). The training of our neural networks was conducted on NVIDIA A100 GPUs.
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