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Abstract

Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identify-
ing equivalent entity pairs. Existing methods can be categorized into symbolic
and neural models. Symbolic models, while precise, struggle with substructure
heterogeneity and sparsity, whereas neural models, although effective, generally
lack interpretability and cannot handle uncertainty. We propose NeuSymEA, a
unified neuro-symbolic reasoning framework that combines the strengths of both
methods to fully exploit the cross-KG structural pattern for robust entity align-
ment. NeuSymEA models the joint probability of all possible pairs’ truth scores
in a Markov random field, regulated by a set of rules, and optimizes it with the
variational EM algorithm. In the E-step, a neural model parameterizes the truth
score distributions and infers missing alignments. In the M-step, the rule weights
are updated based on the observed and inferred alignments, handling uncertainty.
We introduce an efficient symbolic inference engine driven by logic deduction,
enabling reasoning with extended rule lengths. NeuSymEA achieves a significant
7.6% hit@ 1 improvement on DBP15Kzy gy compared with strong baselines and
demonstrates robustness in low-resource settings, achieving 73.7% hit@1 accuracy
on DBP15Kgg gy with only 1% pairs as seed alignments. Codes are released at
https://github.com/chensyCN/NeuSymEA-NeurIPS25.

1 Introduction

Knowledge graphs (KGs) are crucial for organizing structured knowledge about entities and their
relationships, enhancing search capabilities across various applications. They are widely used in
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question-answering systems [1} 2], recommendation systems [3} 4], SQL generation [5. 6], nat-
ural language processing [[7H9], etc.. Despite their utility, real-world KGs often face issues like
incompleteness, domain specificity, and language constraints, which hinder their effectiveness in
cross-disciplinary or multilingual contexts [[10}[11]. To address these issues, entity alignment (EA)
aims to merge disparate KGs into a unified, comprehensive knowledge base by identifying and linking
equivalent entities across different KGs. For example, aligning entities between a biomedical KG and
a pharmaceutical KG allows for mining cross-discipline relationships through the aligned entities,
such as identifying the same drugs and their effects on different diseases to enhance drug repurposing
efforts. This alignment enables more nuanced exploration and interrogation of interconnected data,
providing richer insights into how entities function across multiple domains.

Entity alignment models aim to determine the equivalence of two entities by assessing their alignment
probability. Existing methods can be broadly categorized into symbolic models and neural models.
Symbolic models [[12H14]] provide interpretable and precise inference by mining ground rules, but
they struggle with aligning low-degree entities, especially those without aligned neighbors. In such
cases, the lack of supporting rules leads to low recall. Conversely, neural models, such as translation
models [[15,[16] and graph convolutional networks (GCNs) [[17H23]], excel in recalling similar entities
by embedding them in a continuous space, yet they often fail to distinguish entities with similar
representations, causing a drop in precision as the entity pool grows. Neuro-symbolic models aim to
combine the strengths of both approaches, offering robust reasoning ability for entity alignment in
challenging scenarios.

However, neuro-symbolic reasoning in entity alignment (EA) faces several challenges. First, combin-
ing symbolic and neural models into a unified framework is suboptimal due to the difficulty in aligning
their objectives. Current approaches either use neural models as auxiliary modules for symbolic
models to measure entity similarity [14] or employ symbolic models to refine pseudo-labels [24, [25].
Second, in EA task, the search space for rules is large. Deriving ground rules from both intra-KG and
inter-KG structural patterns results in an exponentially growing search space as rule length increases,
complicating efficient rule weight estimation and inference. Finally, generating interpretations for
EA remains underexplored. Effective interpretations should not only generate supporting rules but
also quantify their confidence through rule weights.

To overcome these challenges, we propose NeuSymEA, a neuro-symbolic framework that combines
the strengths of both symbolic and neural models. NeuSymEA models the joint probability of
truth score assignment for all possible entity pairs using a Markov random field, regulated by a
set of weighted rules. This joint probability is optimized via a variational EM algorithm. During
the E-step, a neural model parameterizes the truth scores and infers the missing alignments. In
the M-step, the rule weights are updated based on both observed and inferred alignments. To
leverage long rules without suffering from the exponential search space, we employ logic deduction
to decompose rules of any length into a set of unit-length sub-rules. This allows for efficient inference
and weight updates for long rules. After training, the missing alignments are jointly inferred by both
components. Additionally, we introduce an explainer to enhance interpretability. By reversing the
rule decomposition process, we extract long rules as explicit supporting evidence for alignments and
recover rule weights as quantified confidence scores. Our contributions are summarized as below:

A principled neuro-symbolic reasoning framework via variational EM: While variational EM
has been utilized in KG completion tasks [26, |27]], adapting it directly to the EA task is nontrivial
because they only consider single-KG structures. We bridge this gap by formulating truth scores
and weighted cross-KG rules, and modeling the joint probability of the truth scores in a Markov
random field regulated by the weighted cross-KG rules.

« Efficient optimization via logical decomposition: We introduce a logic deduction mechanism that
decomposes long rules into shorter ones, significantly reducing the complexity of rule inference
and enabling efficient reasoning over large knowledge graphs.

* Interpretable inference: The explainer utilizes learned rules to generate support paths for inter-
preting both aligned and misaligned pairs. It offers two modes: (1) Hard-anchor mode—generates
supporting paths from prealigned anchor pairs; and (2) Soft-anchor mode—incorporates inferred
anchor pairs for more informative interpretation.

* Empirical validation and superior results: NeuSymEA demonstrates state-of-the-art perfor-
mance on benchmark datasets, delivering robust alignment accuracy and rule-based interpretations.
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Figure 1: Framework illustration of NeuSymEA. The yellow solid line represents a pre-aligned entity
pair. The symbolic model computes the path-level matching probability of entity pairs by mining
rules with learned weights. The neural model learns embeddings and calculates entity-level matching
scores. NeuSymEA models their agreement using a joint probability distribution over observed pairs
and parameterized truth scores for hidden pairs, optimizing through a variational EM algorithm.

Neural modeling

2 Preliminaries

2.1 Problem statement

A knowledge graph G comprises a set of entities £, a set of relations R, and a set of relation
triples 7 where each triple (e;, 7, e;) € T represents a directional relationship between its head
entity and tail entity. Given two KGs G = {€,R, T}, G’ = {£’,R/,T'}, and a set of observed
aligned entity pairs O = {(e;, e})|e; € &, ¢} € £}, the goal of entity alignment is to infer the
missing alignments by reasoning with the existing alignments. This problem can be formulated in
a probabilistic way: each pair (e, e’),e € £, ¢’ € £’ is associated with a binary indicator variable
V(e,e’)- V(e,e’y = 1 mMeans (e, €') is an aligned pair, and V(e,ery = 0 otherwise. Given some observed
alignments vp = {v(e’e/) = 1}(676/)60, we aim to predict the labels of the remaining hidden entity
pairs H = £ x E'\O, i.e., vy = {V(c,e') }(e,e)en-

2.2 Symbolic reasoning for entity alignment

Given an aligned pair (e, €}), a new aligned pair (e;, e;) can be inferred with confidence score w,
if they are each connected to the existing pair via a relational path p and p’ respectively, formally:

Wy (e =€) Ap(es,ej) Ap'(e}, €)) == (ei =€), (1)
where p = |R|Y,p’ = |R’|¥ are a pair of paths each consisting of L connected relations, and w,, ;s
measures the rule quality that considers the intra-KG structure and inter-KG structure, such as the
indicative of each path, and the similarity between two paths. By instantiating such rule with the
constants (real entities and relations) in the KG pair, a symbolic model predicts the label distribution
of an entity pair (e, €’) by:

Pw(V(e,en|G.G'), for(e,e') e {OUH}. )

Using logic rules to infer the alignment probability can leverage the high-order structural information
for effective alignment as well as provide interpretability. However, exact inference is intractable due
to the massive amount of possible instantiated rules (exponential to L), limiting its applicability to
real-world KGs.

3 Neuro-symbolic reasoning framework for entity alignment

3.1 Variational EM

Given a set of observed labels vp, our goal is to maximize the log-likelihood of these labels, i.e.,
log pw(vo). Directly optimizing this objective is intractable because it requires computing an



integral over all the hidden variables. Instead, we optimize the evidence lower bound (ELBO) of the
log-likelihood as follows:

Pw(V0) 2 Equy) [l0g puw(vo,vr) — log q(ve)] = ELBO(q, vo; w), 3)
here, g(vy) is a variational distribution of the hidden variables vy . This inequality holds for all ¢
because p,(vo) = ELBO(q, vo;w) + Dk r(¢(ve)|pw(ve | vo)), where Dir(q(vir)||pw(ve |
vo)) > 0 is the KL-divergence between q(vy) and py,(vy | vo). Under this framework, the
log-likelihood p,,(vo) can be optimized using an EM algorithm, an efficient method to find the
maximum likelihood where the model depends on unobserved hidden variables: during the E-step,
we fix w and update the variational distribution ¢; during the M-step, we update w to maximize the
log-likelihood of all the entity pairs, i.e., Ey(y,,)[log pw(vo, va)], as illustrated in Figure

Explicitly representing the variational distribution ¢ is parameter intensive, which requires = |£||£’|
variables because the observed pairs are very sparse. To this end, we parameterize ¢ with a neural
model as gy, with 0 being the parameters of the neural model.

3.2 E-step: inference

In this step, we fix w and update gy to minimize the KL divergence D . Directly minimizing the
KL divergence is intractable, as it involves computing the entropy of ¢qy. Therefore, we follow [26]]
and optimize the reverse KL divergence of gy and p,,, leading to the following objective:

So0 = O By oo vo)@(vn)- )
(e,e’)eEH
To optimize this objective, we first use the symbolic model with weighted rules to predict p,, (v(e,e/) |
vo) for each (e, e’) € H. If py(V(c,er) | o) > 0, where 0 is a threshold, we treat this entity pair as
a positive label; otherwise, we regard the pair as a negative pair that can be selected during negative
sampling process of the neural model.

The observed labels can also be used as training data for supervised optimization. The objective is:

¢vo,6 = Z log q@(v(e,c’) = 1) )
(e,e’)eO
The final objective for gy is obtained by combining these two objectives: ¢g = Pu,; .0 + Dup 6-

3.3 M-step: rule weight update

In this step, we fix gy and update the rule weight w to maximize ELBO(q, vo;w). Since the right
term of the ELBO in Equation[3]is constant when gy is fixed, the objective is equivalent to maximizing
the left term Ey, (,,,,)[log pw (vo, va)], which is the log-likelihood function.

Specifically, we start by predicting the labels of hidden variables using the current neural model.
For each (e,e’) € H, we predict the labels ¥, .)(¢) and obtain the prediction set vy () =
{D(e,e)(0)}(e,eryen- In this way, maximizing the likelihood practically becomes maximizing the
following objective:

¢w = IOg Pw (U07 vy (9)) (6)

To obtain the pseudo-label 9, .y using gg, we employ the trained neural model to compute the
matching score of any entity pair (e,e’) € H. However, this strategy can easily introduce false
positives into the pseudo-label set especially when the number of entities is large. To mitigate this, we
consider one-to-one matching to sift only the most confident pairs. Practically, we first sort all pairs
by their confidence score, then we annotate the pairs as positive following the order of the confidence.
If a pair contains an entity observed in the annotated pairs, then this pair is skipped. This simple
greedy strategy significantly reduces the amount of false positives.

4 Optimization and inference

4.1 Efficient optimization via logical deduction

Inference and learning with logic rules of length L can be intractable, as the search space for paths
grows exponentially with increasing L. To enhance reasoning efficiency, we decompose a rule in



Equation [T]using logic deduction, inspired by [28]] in KG completion:

L L
Wy (ej =€) A (/\ Tk(ek_l,ek)> A (/\ T;(€21,62)> = (e; =¢}). 7

k=1 k=1

Here /\ﬁz1 T (€ek—1, ex) represents the path formed by 71,72, ..., 7, connecting e; to e; with eg = ¢;
and ey, = e;. This long rule can be reorganized as the combination of a series of unit-length logic
reasoning:

L
Wy (€5 = e;-) A (/\ [rk(ek_l,ek) A rfc(eﬁg_l,efc)]> = (e; =¢}). 8
k=1
In this way, each logic rule of length L can be viewed as a deductive combination of L short rules of
length 1. At each step, following [12]], we perform one-step inference to update p., (v.,e)) for each
(e,e') € H by aggregating the alignment probability from neighbors:

1- H (1 - U(T)psub(T - T/)pw(v(et,e;))) X (1 - n(rl)psub('r/ - T)pw('v(et,eg))) , 9

(e,rer)ET,
(e/,r',e)eT’

where 7)(r) is a relation pattern of r measuring the uniqueness of e through relation  given a specified

tail entity e;, quantified by n(r) = | {(e‘;{eigf(he ”T’jte)fe)z}ﬂ - psupn(r C ') denotes the probability that

relation r is a subrelation of 7/. This technique enables inference with confidence by explicitly
quantifying confidence w during each inference step by introducing 1 and ps,,(r C 7/). Moreover,
in this way, the update of the weight w simplifies to updating ps.,(r C ') during the M-step
(Equation|[6), as 7(r) for each relation r is constant. In practice, the update of ps,,(r C /) can be

computed by:
2 (1 B H(ehﬂ”,ei)GT’ (1 B "(Eh,e'h,)v(et,EQ)))

Z (1 - Heg,eéeg’ (1 - 'v(eh,eg)v(ehe;)))

where v(e,, ¢r ) and v(e, ;) are labels (or pseudo-labels) from vo U vy (6).

; (10)

After optimization, rule weights can be computed by taking the product of the importance scores 7 of
relations and the sub-relation probabilities of the corresponding relation pair:

L / /
Dsub(Tk © 73) + Dsub(ry, € Tk
Wp,p' = I | n(ry) 'W(T;s)' ( ) 92 el ) (11)
k=1

In Appendix[A.2] we provided a detailed complexity analysis, demonstrating that parameter complex-
ity scales linearly with dataset size, while computational complexity is quadratic. Our implementation
enables efficient execution through parallel computing and batch processing.

4.2 Inference with interpretability

To predict new alignments, there are two approaches: using the symbolic model or the neural
model. The symbolic model infers alignment probabilities with the optimized weights w. Due to
scalability concerns, symbolic methods generally adopt a lazy inference strategy that only preserves
the confidently inferred pairs during inference. On the other hand, the neural model computes
similarity scores for all entity pairs (e, e’) € H using the learned parameters 6, generating a ranked
candidate list for each entity.

The evaluation of these models thus differs. Symbolic models are generally evaluated by precision,
recall, and F1-score for their binary outputs, while neural models are assessed using hit@k and mean
reciprocal ranks (MRR) for their ranked candidate lists. Following the practices in [14] and [24], we
unify the evaluation metrics by treating the recall metric of symbolic models as equivalent to hit@1,
facilitating comparison with neural models.

To enhance the interpretability of predictions, we adapt the optimized symbolic model into an
explainer. For any given entity pair, the explainer generates a set of supporting rule path pairs that



justify their alignment, each associated with a confidence score indicating its significance. The
explainer operates in two modes: @ hard-anchor mode, which generates supporting paths only from
prealigned pairs, and @ soft-anchor mode, which includes paths from both prealigned and inferred
pairs, providing more informative interpretations.

By integrating a breadth-first search algorithm (detailed in Appendix [A.3)), the explainer efficiently
generates high-quality interpretations. For truly aligned pairs, it typically produces high-confidence
interpretations, while for non-aligned pairs, the interpretations may result in an empty set (indicating
no supporting evidence) or have low confidence scores. See Figure [d for a visualized comparison.

5 Experiments

5.1 Experimental settings

Datasets. Main experiments use the DBP15K dataset, comprising three cross-lingual KG pairs:
JA-EN, FR-EN, and ZH-EN. The original full version [29] of DBP15K resembles real-world KGs,
posing challenges for GCN-based models due to sparsity and scale. Recent GCN-based models [19}
16} [17} 24] remove low-degree entities to get a smaller version with higher average degree. For
thorough evaluation, we utilize both full and condensed versions. Dataset statistics are provided in
Appendix [B.1] For additional experiments on large KGs, we employ OpenEA [30] and DBPIM.

Two different dataset split strategies are used in the EA literature: @ a 3:7 train/test split, and @ a
5-fold cross-validation scheme with a 2:1:7 ratio for training, validation, and test sets, as used in
OpenEA [30]. We adopt the latter for all algorithms to ensure fair comparison.

Baselines and metrics. Baseline models include seven neural models — GCNAlign [19], AlignE,
BootEA [16]], RREA [17], Dual-AMN [18]], LightEA [20], PEEA [31], one symbolic models —
PARIS [[12]], and two neuro-symbolic models — PRASE [14], EMEA [24]. We use Hit@1, Hit@ 10,
and MRR as the evaluation metrics. For PARIS and PRASE that have binary outputs, we report their
recall as Hit@ 1, following [24]. For RREA, Dual-AMN, and LightEA, which offer both basic and
iterative versions, we adopt the iterative ones due to their generally superior performance.

Hyperparameters. NeuSymEA involves two main hyperparameters: the number of EM iterations
and the symbolic model’s threshold § for selecting positive pairs. We tune them on the validation set,
searching § in 0.6,0.7,0.8,0.9,0.95,0.98,0.99 and the number of iterations from 1 to 9. As shown
in Section NeuSymEA is robust to ¢ and converges quickly.

5.2 Results
5.2.1 Comparison with baselines

Table [1|compares NeuSymEA with baseline models on two versions of the DBP15K dataset: the full
and the condensed version. Results for PRASE and EMEA on the condensed DBP15K are sourced
from the original EMEA paper. The results yield three key observations:

First, NeuSymEA surpasses both symbolic and neural models. By integrating symbolic reasoning
with neural representations, it: 1) captures multi-hop relational structures across KGs using rules;
and 2) learns effective entity representations to compute pairwise similarities. Second, NeuSymEA
outperforms other neuro-symbolic models. This improvement can be largely attributed to the
model objective design in our framework. While PRASE and EMEA treat the symbolic and neural
models as separate components, NeuSymEA unifies them under a joint probability objective. This
enables joint optimization via Variational EM, yielding a more coherent and convergent solution
with superior performance. Finally, NeuSymEA demonstrates robustness across both full and
condensed datasets. Comparisons between two groups of results offer an interesting insight: neural
models experience significant performance degradation in the full version of DBP15K (e.g., MRR
of Dual-AMN decreases from 0.815 to 0.717 on JA-EN), while symbolic models, in contrast, show
improvements. We attribute this to their different matching mechanisms: (1) neural models rely on
entity-level matching, which is sensitive to dataset size. The full DBP15K includes more low-degree
entities, increasing similar embeddings and reducing precision. (2) Symbolic models use path-level
matching, which is less affected by dataset size but vulnerable to substructure heterogeneity. The
full DBP15K’s additional connections via long-tail entities enhance rule-mining, boosting symbolic



Table 1: Entity alignment results on DBP15K dataset. The suffixes "-D" and "-L" indicate the use of
Dual-AMN and LightEA as the neural models. The results of RREA and EMEA are omitted on the
full dataset due to an OOM (Out of Memory) error.

Categor Model JA-EN FR-EN ZH-EN
gory Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
Results on the full DBP15K dataset

GCNAlign 0.221 0461 0302 0205 0475 0295 0.189 0438 0.271
BootEA 0.454 0.782 0.564 0.443 0.799 0.564 0486 0.814 0.600
Neural AlignE 0.356 0.715 0476 0346 0.731 0475 0333 0.690 0.453
Dual-AMN 0.627 0.883 0.717 0.652 0.908 0.744 0.650 0.884 0.732
LightEA 0.736 0.894 0.793 0.782 0.919 0.832 0.725 0.874 0.779

Symbolic PARIS 0.589 - - 0.618 - - 0.603 - -

Neuro-symbolic PRASE 0.611 - - 0.647 - - 0.652 - -
Ours NeuSymEA-D| 0.806 0.942 0.855 0.827 0952 0.871 0.801 0.925 0.843
NeuSymEA-L| 0.781 0.907 0.826 0.834 0.937 0.871 0.785 0.894 0.825

Results on the condensed DBP15K dataset

GCNAlign 0.331 0.662 0.443 0325 0.688 0446 0335 0.653 0.442
BootEA 0.530 0.829 0.631 0.579 0.872 0.961 0.575 0.847 0.668
Neural AlignE 0.433 0.783 0.552 0.457 0.821 0.580 0474 0.806 0.587
RREA 0.749 0.935 0.818 0.797 0.958 0859 0.762 0.938 0.827
Dual-AMN 0.750 0.927 0.815 0.793 0.954 0854 0.756 0.919 0.816
LightEA 0.778 0911 0.828 0.827 0.943 0.830 0.770 0.894 0.816
PEEA 0.703 0912 0.777 0.748 0.937 0.815 0.726 0.905 0.790

Symbolic PARIS 0.565 - - 0.584 - - 0.543 - -

Neuro-symbolic PRASE 0.580 - - 0.622 - - 0.593 - -
Yy EMEA 0.736 - 0.807 0.773 - 0.841 0.748 - 0.815
Ours NeuSymEA-D| 0.805 0.930 0.849 0.835 0.953 0.879 0.815 0.926 0.855
NeuSymEA-L| 0.811 0928 0.854 0.858 0.954 0.894 0.804 0.904 0.840

model performance. By integrating symbolic reasoning with KG embeddings, NeuSymEA overcomes
these limitations, ensuring robustness to variations in dataset scale and structure.

5.2.2 Evolution of rules and embeddings
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Figure 2: (Left) Evolution of rule inferred pairs, with solid lines representing total inferred pairs and
dashed lines representing true inferred. The shaded areas indicate the number of false pairs. Precision
values are annotated at each data point. (Right) Convergence of MRR of the neural model.

We study how rules and embeddings evolve and interact with each other during the EM steps, with
results shown in Figure[2] Results in the left subplot indicate that in each EM iteration, the number
of rule-inferred pairs grows consistently with high precision, implying that the embedding model
continuously improves the inference performance of rules. These precise pairs, in turn, enhance the
performance of the neural model. As shown in the right subfigure, the MRR of the neural model
converges within a few iterations.

5.2.3 Scalability on large datasets

Figure [3] illustrate the scalability of NeuSymEA. We evaluated its hit@1 accuracy and runtime
efficiency across datasets of varying entity sizes, namely DBP15K, OpenEA100K, and DBP1M.
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Figure 3: Scalability analysis on large scale KGs. (Left) Hit@1 alignment performance on large KGs.
(Right) Per-second processed entities of neural and symbolic components on different scales of KGs.

Performance scalability. In the left subfigure, we compare NeuSymEA with LightEA - the only
strong baseline capable of processing large-scale knowledge graphs with million-scale entities. The
results demonstrate NeuSymEA’s superior scalability in terms of performance.

Runtime Scalability. We separately evaluate the runtime performance of NeuSymEA’s neural
and symbolic reasoning components. For the neural component, efficiency (entities processed per
second) increases with dataset size. We attribute this to higher GPU utilization on larger datasets,
which enhances computational efficiency. Conversely, the symbolic component’s efficiency initially
increases but then slightly decreases. Upon investigation, we found that this phenomenon is related
to the multiprocessing and batch-processing implementation. For smaller datasets (e.g., DBP15K),
the overhead from process initialization and termination is significant. As dataset size grows to
OpenEA 100K, this overhead becomes negligible relative to inference runtime, leading to an efficiency
improvement. When moving from OpenEA100K to DBP1M, the per-second processed entities
slightly decline as the quadratic complexity of inference computation dominates.

5.2.4 Interpretations by the explainer
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Figure 4: (Left) Probability density of the top supporting rule’s confidence; (Middle) Number of
supporting rules relative to the maximum rule lengths under the soft anchor mode; (Right) Number
of supporting rules relative to the maximum rule lengths under the hard anchor mode.

We investigate the interpretations generated by the explainer on the FR-EN dataset in Figure[d The
left subfigure displays the probability density of confidence scores for supporting rules associated
with entity pairs. Positive pairs come from the test set, while negative pairs are generated by randomly
replacing one entity in each positive pair. The distinct confidence distributions show that positive
pairs generally have stronger alignment evidence, as expected. Upon further examination, we found
that many test pairs are isolated, i.e., they lack directly aligned neighbors. Despite this, NeuSymEA
successfully generates supporting rules for isolated pairs by exploiting multi-hop dependencies.

The middle and right subfigures examine the impact of rule length on the explainer’s effectiveness,
showing the number of supporting rules for positive pairs as the maximum rule length increases. In
soft anchor mode, the explainer produces more high-quality supporting rules than in hard anchor
mode by using inferred pairs as complementary anchors, mitigating substructure sparsity. While
longer maximum rule lengths yield more high-quality supporting rules, however, the long rules have
a lower confidence distribution compared to short rules. This can be attributed to our method for
calculating confidence: the logical deduction-based approach computes a rule’s confidence as the



product of the confidences of its decomposed unit-length sub rules (as in Equation[TT). For instance,
a rule comprising two unit-length sub-rules, each with a confidence of 0.8, has a combined confidence
of 0.8 x 0.8 = 0.64. Thus, confidence scores typically decrease as rule length increases.

Table 2: Examples of supporting rules for query pairs in FR-EN. Anchor pairs are shown in bold.

Query Pair Supporting Rule | Confidence

House_of_Savoy (Umberto_II_of_Italy, house, House_of_Savoy), (Umberto_II_of_Italy, spouse, Marie_José_of_Belgium) ‘ 0.80

Légion_espagnole
Spanish_Legion

(Légion_espagnole, commandantHistorique, Francisco_Franco), (Francisco_Franco, conjoint, Carmen_Polo)

(Spanish_Legion, notableCommanders, Francisco_Franco), (Francisco_Franco, spouse, Carmen_Polo,_1st_Lady_of Meiras)

\
Maison_de_Savoie ‘ (Humbert_II_(roi_d’Italie), dynastie, Maison_de_Savoie), (Humbert_II_(roi_d’Italie), conjoint, Marie-José_de_Belgique)
‘ 0.59

Premier_ministre_du_Danemark
Prime_Minister_of_Denmark

(Premier_ministre_du_Danemark, titulaireActuel, Lars_Lgkke_Rasmussen)
(Prime_Minister_of_Denmark, incumbent, Lars_Lgkke_Rasmussen)

‘ 0.79

5.2.5 Robustness in low resource scenario

Table 3: Comprehensive results with different ratios of training data, with best shown in bold.

Dataset ‘ Model ‘ 1% ‘ 5% ‘ 10% ‘ 20%
| He1 H@I0 MRR | He1 H@10 MRR | H@l H@I0 MRR | H@1 H@10 MRR
AlignE 0.007 0.034 0.016 | 0.080 0.268 0.143 | 0.244 0.588 0.356 | 0.433 0.783 0.552
BootEA 0.010 0.040 0.021 | 0.379 0.683 0481 | 0468 0.779 0.573 | 0.530 0.829 0.631
GCNAlign 0.029 0.128 0.063 | 0.127 0.368 0.206 | 0.209 0.515 0310 | 0.331 0.662 0.443
PARIS 0.145 - - 0.340 - - 0.450 - - 0.565 - -
PRASE 0.163 - - 0.432 - - 0.508 - - 0.580 - -
JA-EN | Dual-AMN 0.239 0519 0.334 | 0.509 0.795 0.611 | 0.652 0.887 0.738 | 0.750 0.927 0.815
RREA 0.253 0486 0.332 | 0.558 0.830 0.653 | 0.672 0.903 0.756 | 0.789 0.956 0.853
LightEA 0.291 0514 0.363 | 0.627 0.806 0.689 | 0.714 0.874 0.771 | 0.778 0911 0.828
EMEA 0411 - 0.488 | 0.630 - 0.710 | 0.688 - 0.764 | 0.736 - 0.807
PEEA 0242 0.519 0.333 | 0490 0.785 0.589 | 0.612 0.834 0.679 | 0.703 0912 0.777

NeuSymEA-D | 0.481 0.684 0.550 | 0.692 0.855 0.749 | 0.742 0.895 0.796 | 0.835 0.953 0.879
NeuSymEA-L | 0.632 0.779 0.683 | 0.733 0.870 0.781 | 0.773 0.900 0.818 | 0.858 0.954 0.894

AlignE 0.008 0.040 0.019 | 0.127 0.408 0217 | 0.347 0.733 0.475 | 0.457 0.821  0.580
BootEA 0.009 0.041 0.020 | 0418 0.746  0.529 | 0.490 0.809 0.598 | 0.579 0.872 0.681
GCNAlign 0.027 0.119 0.058 | 0.133 0.388 0.215 | 0.215 0.539 0321 | 0.325 0.688 0.446
PARIS 0.195 - - 0.401 - - 0.479 - - 0.584 - -
PRASE 0.227 - - 0.514 - - 0.575 - - 0.633 - -
FR-EN | Dual-AMN 0.293  0.631 0.407 | 0.598 0.886 0.703 | 0.717 0.928 0.797 | 0.793 0.954 0.854
RREA 0.289 0.583 0.389 | 0.628 0.895 0.725 | 0.717 0.932 0.796 | 0.789  0.956 0.853
LightEA 0430 0.663 0.509 | 0.723 0.885 0.781 | 0.779 0914 0.828 | 0.827 0.943  0.870
EMEA 0.480 - 0.565 | 0.677 - 0.757 | 0.727 - 0.802 | 0.773 - 0.841
PEEA 0.285 0.588 0.385 | 0.552 0.812 0.642 | 0.665 0.875 0.738 | 0.748 0.937 0.815

NeuSymEA-D | 0.642 0.833 0.709 | 0.768 0916 0.820 | 0.811 0.939 0.856 | 0.835 0.953 0.879
NeuSymEA-L | 0.737 0.874 0.785 | 0.806 0.921 0.848 | 0.827 0937 0.867 | 0.858 0.954 0.894

AlignE 0.006 0.033 0.016 | 0.127 0.368 0.206 | 0296 0.635 0.407 | 0.474 0.806 0.587
BootEA 0.006 0.029 0.014 | 0.396 0.689 0.495 | 0498 0.782 0.594 | 0.575 0.847 0.668
GCNAlign 0.041 0.155 0.080 | 0.147 0396 0.229 | 0.225 0.519 0323 | 0.335 0.653  0.442
PARIS 0.059 - - 0.333 - - 0.429 - - 0.543 - -
PRASE 0.241 - - 0.461 - - 0.522 - - 0.593 - -
ZH-EN | Dual-AMN 0375 0.666 0.480 | 0.582 0.830 0.672 | 0.676 0.892 0.755 | 0.756  0.918 0.816
RREA 0316 0.564 0.403 | 0.605 0.858 0.696 | 0.686 0.901 0.765 | 0.760 0.934  0.823
LightEA 0.507 0.673 0.565 | 0.670 0.819 0.723 | 0.727 0.860 0.775 | 0.770  0.894  0.816
EMEA 0.517 - 0.591 | 0.665 - 0.738 | 0.706 - 0.777 | 0.748 - 0.815
PEEA 0.288 0.586 0.388 | 0.532 0.801 0.622 | 0.649 0.871 0.710 | 0.725 0.905 0.790

NeuSymEA-D | 0.589 0.750 0.645 | 0.704 0.856 0.757 | 0.763 0.897 0.809 | 0.815 0.926 0.855
NeuSymEA-L | 0.676 0.799 0.720 | 0.735 0.858 0.779 | 0.773 0.882 0.811 | 0.804 0.934 0.841

Table [3] demonstrates the model performance under low-resource settings. As the percentage of
training data decreases, all models experience noticeable drops in Hit@1 performance. Despite this,
NeuSymEA exhibits remarkable robustness across all datasets, consistently outperforming other
models. Notably, with only 1% of pairs used as training data, NeuSymEA achieves a Hit@1 score
exceeding 0.7 on FR-EN, rivaling or even surpassing the performance of some state-of-the-art models
trained on 20% of the data.

5.3 Parameter analysis

We present the hit@1 performance of NeuSymEA across three datasets, varying hyperparameters,
illustrated by a three-dimensional graph. The threshold hyperparameter ¢ is explored within the
set {0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99}, while the number of EM iterations ranges from 1 to 9.
Performance levels are indicated using a colormap. Performance sensitivity analysis in Figure [3]



reveals that for all datasets, performance generally improves as the iteration increases. On the other
hand, the performance is less sensitive to the threshold §.

Hit@] for ja-en Hit@] for fr-en Hit@] for zh-en

0.800

0.795

0.790

Figure 5: Performance sensitivity to hyperparameters iteration and threshold 4.

6 Related work

Neuro-symbolic reasoning on knowledge graphs. Neuro-symbolic methods aim to combine
symbolic reasoning with neural representation learning, leveraging the precision and interpretability
of symbolic approaches alongside the scalability and high recall of neural methods. In KG completion
task, [32] and [33]] employ horn rules to regularize the learning of KG embeddings; [34] and [28]]
model the rule-based predictions as distributions conditioned on the input relational sequences, and
parameterize these distributions using a recurrent neural network; [26]], [27] and [35]] models the joint
probability of the neural model and the symbolic model with a Markov random field, and employ
gradient descent for weight updates. Despite extensive advancements of neuro-symbolic reasoning in
KG completion, these studies only consider single-KG structures, thus cannot be directly adopted to
entity alignment which requires consideration of inter-KG structures.

Entity alignment. Recent models have sought to combine symbolic and neural approaches for entity
alignment. For instance, [14] enhances probabilistic reasoning with KG embeddings to measure
entity-level and relation-level similarities. [24] implements self-bootstrapping with pseudo-labeling
in a neural framework, using rules to choose confident pseudo-labels. However, it relies solely
on unit-length rules, which restricts its effectiveness for long-tail entities. In contrast, we employ
logic deduction to scale symbolic reasoning with long rules of any length. Unlike existing work
that separately handles two reasoning components, our work models the unified joint probability of
symbolic and neural inference within a markov random field. The symbolic component captures
intra-KG and inter-KG structures using weighted logic rules, while the neural model learn expressive
patterns in the embedding space.

7 Limitations

NeuSymEA is currently designed for EA between two KGs. Extending it to align multiple KGs
simultaneously may require iterative pairwise alignments, which could be inefficient. A more
sophisticated optimization paradigm is needed to adapt NeuSymEA for scalable multi-KG alignment.

8 Conclusions

We presented NeuSymEA, a unified and extensible neuro-symbolic framework for entity alignment.
By unifying neural and symbolic reasoning, NeuSymEA addresses the challenges of substructure het-
erogeneity, sparsity, and uncertainty in real-world KGs. Empirical results demonstrate NeuSymEA’s
clear improvements over baselines and robustness under limited resources. By delivering interpretable
alignment predictions with uncertainty scores, NeuSymEA advances knowledge fusion, enabling
effective and trustworthy entity alignment.
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A Notations and algorithms

A.1 Notations

Table 4: Notations

Notation Description

Gg,g The source and target knowledge graphs, respectively

EE The sets of entities in G and G’, respectively

R, R The sets of relations in G and G’, respectively

T, T The sets of relational triplets in G and G’, respectively

O The set of observed aligned entity pairs between two knowledge graphs G and G’

H Set of unobserved entity pairs, i.e., £ x £'\O

V(e,e!) Binary indicator variable for an entity pair (e, ¢’), where v(, .-y = 1 indicates alignment
Wp,p' Confidence score of a rule-inferred alignment based on paths p and p’

Puw(V(e,e)|G,G")  Probability distribution of the alignment indicator v, .-y given knowledge graphs G and G’
0 Parameters of the neural model

1) Threshold to select positive pair from the symbolic model

n(r) Relation pattern measuring the uniqueness of an entity through relation

A.2 Complexity analysis of the symbolic reasoning

In the following, we present the analysis of runtime complexity and parameter complexity one by
one.

A.2.1 Runtime complexity

In variational inference, the process of learning and inferring long rules (Equation|/) is simplified
by decomposing them into unit-length rules (Equation [8). Consequently, rule weight learning
(Equation [I0) is only conducted for unit-length rules. The inference process for an L-length rule
is then estimated by iteratively applying inference steps with unit-length rules (Equation [9) for L
iterations. This strategy effectively avoids the exponential search space associated with longer rules,
making the computational complexity of the inference linear with respect to the rule length L.

Each iteration of reasoning with unit-length rules comprises an inference step (Equation[J)) and a
rule-weight learning step (Equation[I0). These steps require computing the matching probability for
all possible entity pairs and relation pairs, respectively. As a result, the computational complexity of
the inference step and the weight updating step are O(|€||E’|) and O(|R||R’|), respectively.

Thus, the total computational complexity for reasoning with an L-length rule is O(L - (|€]|E’| +
|R|IR’|)). Given that entity sizes are typically much larger than relation sizes, this complexity can be
approximated as O(L - |£]|E’]).

Notably, the computations involved in Equation[9]and Equation [I0]can be accelerated through parallel
processing, which we have implemented. This optimization reduces the runtime complexity to

0] (L . %) , where n represents the number of CPU cores available for parallelization.

A.2.2 Parameter complexity

The total number of alignment probabilities for all entity pairs is |£||E’|, which is large when the
entity sizes increase. We adopt a lazy inference strategy to enhance parameter efficiency. This strategy
involves only saving the alignment probabilities of the most probable alignments:

{pw(v(e“eg))a |7 e; € 57 6; € glypw(v(ei,eé)) = max (I?ggxpw(v(e,eé))v ?gg{,pw(v(ei,e’))) } (12)

Probabilities of other entity pairs can be inferred from these saved alignment probabilities using
Equation[9] In this way, parameter complexity is reduced to O(max (|| + |£'])).
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A.3 Pseudo-code of Explainer

Below is the pseudo-code of how the explainer generates supporting rules as interpretations for the
query pair. It consists of two stages: searching reachable anchor pairs, and parsing rule paths as well
as calculating rule confidences.

Algorithm 1 Generating Interpretations for the Queried Entity Pair with Weighted Rules

Inputs: Subrelation probabilities psus(r C '), psup(r’ C ) for r, 7’ € R; Knowledge Graph pair (G, G’);
Maximum rule length £; Anchor pairs A with source-to-target mapping S2T and target-to-source mapping
T2S; Query entity pair (eq, e;,)
QOutputs: Ranked rules based on confidence
1. Search Reachable Anchor Pairs within Max Depth £
RN < BFS(eq,G, L) /* Search reachable neighbors of e, using breadth-first search, max depth £ */
RN’ + BFS(e;,G’,£)  /* Search reachable neighbors of e using breadth-first search, max depth £ */
RN, + RN UT2s(RN’; A) /* Find source nodes of reachable anchor pairs using hash mapping */
RA < {(e,S2T(e; A)) | e € RNy} /* Identify reachable anchor pairs */
2. Parse and Rank Rules Based on Confidence
for V(e,e') € RAdo

Extract paths: p(e,eq) =r1 Ara A...,p'(e',eq) =ri Arg AL ..

if [p(e, eq)| # [p' (€, ;)| then

Wp(e,eq),p’ (') <= 0 /* If path lengths don’t match, rule confidence is 0 */
else

Ip 1\ Psub (i Cri)+Psub (riCri)
Wp(e,eq),p’ (e’ e}) < Hz:‘l n(ri) - n(ri) - = =

products of subrelation probabilities and relation functionalities */
end if
end for
Sort the rules (p, p’) by w,,, in descending order
Return the ranked rules

/* Compute rule confidence by

B Experimental details

B.1 Dataset statistics

The DBP15K dataset, designed for cross-lingual knowledge graph alignment, has two versions:
full and condensed. The original full version resembles real-world knowledge graphs, including
comprehensive data across three language pairs with many sparsely connected low-degree entities.
The condensed version, derived by JAPE and adopted by later methods (GCNALlign, RREA, Dual-
AMN, LightEA), removes these low-degree entities and their connected triples to create a smaller (and
higher average degree) dataset suitable for GCN-based methods. Detailed information about the two
dataset versions can be found in the "dataset" section of readme in JAPE’s official implementatior’|

The dataset statistics of them are shown in Table[5]and Table[6] In this paper, we adopt both versions
of DBP15K for comprehensive evaluation. Specifically, the full dataset is sparser and larger in scale
in scale due to the inclusion of low-degree entities, thus suitable for evaluating the models’ robustness
to sparsity and large scale.

Table 5: Data statistics of the full DBP15K dataset.

Datasets KG Entities Relations Rel. Triplets Aligned Entity Pairs
mex Gmeh GOm0 Dm s
VBN D hem  oS60 2096 233319 15,000
FREN g o 105680 2209 27590 15,000

“https://github.com/nju-websoft/JTAPE
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Table 6: Data statistics of the condensed DBP15K dataset.

Datasets KG Entities Relations Rel. Triplets Aligned Entity Pairs
A g UEO am sw
ne gl o 1 gwm e
FREN gl 1999 1o 11372 15,000

B.2 Efficiency analysis

To provide a comprehensive understanding of the computational efficiency of our model, we report
the runtime and memory usage during the experiments. The results, as summarized in Table Table
demonstrate that our model achieves efficient performance with a runtime of 15 minutes, a memory
consumption of 868 MB, and a GPU memory usage of 4.33 GB. These metrics highlight the practi-
cality of our approach in terms of resource utilization. Hardware configurations of the experiments
are presented in Table[§]

Table 7: Runtime and Memory Usage

Runtime Memory GPU Memory
15 minutes 868 MB 433 GB

Table 8: Machine configuration.

Component  Specification

GPU NVIDIA GeForce RTX 3090
CPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to the abstract and the introduction section. Our claims are
supported by the experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitation section at Section[7]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

17



Justification: Our theoretical analysis of complexity analysis is included in the Appendix[A.2]
The analysis includes contextual information to help understand each step. We provide no
theorems in this paper, so no assumption is made.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We illustrate the information in the experimental settings section Section[5.1]
and provide information for datasets in Appendix [B.1] Codes are also provided in the
supplementary material for verifying reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide codes in the supplementary material, with a readme file as guidance
for setting up the environment and reproducing experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental setting details in Section[5.1] The default setting
in the provided code also aligns with the experimental setting described in this paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments in Figure [3] right subfigure report the runtime efficiency by
reporting the mean and std (shown in error bars) from three rounds of repeated experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the machine configurations at the end of the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We checked and ensured that our paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on technical improvements in entity alignment and does not
introduce direct societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks, we have not released datasets nor high-risk
models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers of the datasets and EA models used in our
experiments, ensuring proper credit and respect for their licenses and terms of use. For the
open-source code and datasets, we have also stated the licenses they use in the readme file
in our code repository.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code of the proposed framework is released and accessible at the supplemen-
tary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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