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Abstract
Submodular functions, as well as the sub-class
of decomposable submodular functions, and their
optimization appear in a wide range of applica-
tions in machine learning, recommendation sys-
tems, and welfare maximization. However, opti-
mization of decomposable submodular functions
with millions of component functions is computa-
tionally prohibitive. Furthermore, the component
functions may be private (they might represent
user preference function, for example) and cannot
be widely shared. To address these issues, we
propose a federated optimization setting for de-
composable submodular optimization. In this set-
ting, clients have their own preference functions,
and a weighted sum of these preferences needs to
be maximized. We implement the popular con-
tinuous greedy algorithm in this setting where
clients take parallel small local steps towards the
local solution and then the local changes are ag-
gregated at a central server. To address the large
number of clients, the aggregation is performed
only on a subsampled set. Further, the aggre-
gation is performed only intermittently between
stretches of parallel local steps, which reduces
communication cost significantly. We show that
our federated algorithm is guaranteed to provide
a good approximate solution, even in the pres-
ence of above cost-cutting measures. Finally, we
show how the federated setting can be incorpo-
rated in solving fundamental discrete submodular
optimization problems such as Maximum Cover-
age and Facility Location.

1. Introduction
Submodularity of a set function implies a natural dimin-
ishing returns property where the marginal benefit of any
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given element decreases as we select more and more ele-
ments. Formally, a set function F : 2E → R is submod-
ular if for any S ⊆ T ⊆ E and e ∈ E \ T it holds that
F (S∪{e})−F (S) ≥ F (T ∪{e})−F (T ). Decomposable
submodular functions is an important subclass of submodu-
lar functions which can be written as sums of several com-
ponent submodular functions: F (S) =

∑N
i=1 fi(S), for all

S ⊆ E, where each fi : 2
E → R is a submodular function

on the ground set E with |E| = n.

Decomposable submodular functions include some of the
most fundamental and well-studied submodular functions
such as max coverage, graph cuts, welfare maximiza-
tion etc., and have found numerous applications in ma-
chine learning (Dueck and Frey, 2007; Gomes and Krause,
2010; Mirzasoleiman, Badanidiyuru, and Karbasi, 2016a;
Mirzasoleiman, Karbasi, Sarkar, and Krause, 2016b; Mirza-
soleiman, 2017), economics (Dobzinski & Schapira, 2006;
Feige, 2006; Feige & Vondrák, 2006; Papadimitriou et al.,
2008; Vondrák, 2008), and data summarization and recom-
mender systems (Dueck & Frey, 2007; Gomes & Krause,
2010; Tschiatschek et al., 2014; Lin & Bilmes, 2011). The
main approach in these cases is the centralized and sequen-
tial greedy.

The need for scalable and efficient optimization methods,
which do not require collecting raw data in a central server
and ensure secure information collection, is widespread in
applications handling sensitive data such as medical data,
web search queries, salary data, and social networks. In
many such cases, individuals and companies are reluctant to
share their data and collecting their data in a central server
is a violation of their privacy. Moreover, collecting and stor-
ing all data on a single server or cluster is computationally
expensive and infeasible for large-scale datasets, particu-
larly when working with high-dimensional data or complex
models. Thus, there is a widespread demand for scalable
optimization algorithms that are both decentralized and pri-
oritize privacy. Below are some examples that motivate the
focus of this paper.

Example 1.1 (Welfare Maximization). The welfare max-
imization problem aims to maximize the overall utility or
welfare of a group of individuals or agents a1, . . . , aN . In
this problem, there is a set of items or goods E, and each
individual ai has a certain preference or utility expressed as
a submodular function fi : 2

E → R+ that assigns a value
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to each combination of items. The goal is to partition E
into disjoint subsets S1, . . . , SN in order to maximize the
social welfare

∑N
i=1 fi(Si). In an important special case,

called Combinatorial Public Projects (Gupta et al., 2010; Pa-
padimitriou et al., 2008), the goal is to find a subset S ⊆ E
of size at most k maximizing F (S) =

∑N
i=1 fi(S). This

problem appears in different fields, such as resource alloca-
tion, public goods provision, market design, and has been
intensively studied (Khot et al., 2008; Lehmann et al., 2006;
Mirrokni et al., 2008). An optimal approximation algorithm
is known in value oracle model in which it is required to
have access to the value of fi(S) for each agent and any
S ⊆ E (Călinescu et al., 2011). However, in scenarios
where agents are hesitant to disclose their data to a central
server and storing all data on a single server is computation-
ally infeasible, the demand for a decentralized and private
submodular maximization algorithm becomes imperative.
Example 1.2 (Feature Selection). Enabling privacy-
protected data sharing among clinical centers is crucial for
global collaborations. Consider geographically dispersed
hospitals H1, . . . ,HN , with each hospital maintaining its
own data that it is unwilling to share. The goal is to iden-
tify a small subset of features that effectively classifies the
target variable across the entire dataset over all hospitals.
A decentralized and efficient feature selection algorithm is
crucial for uncovering hidden patterns while maintaining
data ownership. By adopting a decentralized approach, hos-
pitals can balance collaborative knowledge discovery and
data privacy. One approach is to maximize a submodular
function capturing the mutual information between features
and the class labels (Krause & Guestrin, 2005).

Federated setting for learning and optimization. Feder-
ated setting (Konečnỳ et al., 2016; McMahan et al., 2017) is
a novel and practical framework that addresses issues regard-
ing privacy, data sharing, and centralized computation. On
one hand, it is a distributed and collaborative approach that
allows multiple parties, such as different organizations or
devices, to train a shared model or collaboratively optimize
an objective function while keeping their data locally. This
approach helps to protect the privacy of data by ensuring
that the raw data is never shared or moved outside of the
individuals’ systems. Instead, only the model updates are
exchanged and aggregated to improve the shared model and
improve the objective value.

On the other hand, the federated framework reduces the
amount of data that needs to be transferred and processed
at any one time, which can significantly reduce the com-
putational complexity of the overall process. Additionally,
federated setting can also take advantage of the computa-
tional resources available at each party, such as the process-
ing power of mobile devices or edge devices, which can
further reduce computational load on the server. This way,
federated learning can train models more efficiently, even

with large-scale datasets and complex models, and provide
a scalable solution for distributed learning.

Problem definition and setting. In this paper, we introduce
the problem of maximizing a submodular function in the
federated setting. Let E be a ground set of size n and
c1, . . . , cN be N clients each of whom has a private interest
over E. Each client’s interest is expressed as a submodular
function. Let fi : 2E → R+ be the associated submodular
function of the i-th client. A central server wants to solve
the following constrained distributed optimization model

max
S∈I

{
F (S) =

N∑
i=1

pifi(S)

}
, (1)

where I is the independent sets of a matroidM with ground
set E, and pi are pre-defined weights such that

∑N
i=1 pi = 1.

For instance, they can be set to 1/N , or the fraction of
data owned by each client. The constraint implies sets of
particular properties, e.g., subsets of size at most k. Note
that, the unconstrained optimization is a special case of this.

In the optimization problem (1) the data can be massively
distributed over the number of clients N , which can be
huge. Moreover unlike the traditional distributed setting,
in the federated setting the server does not have control
over clients’ devices nor on how data is distributed. For
example, when a mobile phone is turned off or WiFi access
is unavailable, the central server will lose connection to
this device. Furthermore, client’s objective can be very
different depending on their local datasets. To minimize
communication overhead and server computation load, the
number of communication rounds need to be minimal.

Constraints. We formally discuss factors of efficiency and
restrictions that should be considered.

1. Privacy: One of the main appeals of decentralized and
federated setting is to preserve the privacy. There are several
models of privacy and security that have been considered in
the literature such as Differential Privacy (DP) and Secure
Aggregator (SecAgg), and a mix of these two. Single-server
SecAgg is a cryptographic secure multi-party computation
(MPC) that enables clients to submit vector inputs, such that
the server (an aggregator) can only decipher the combined
update, not individual updates. This is usually achieved
via additive masking over a finite group (Bell et al., 2020;
Bonawitz et al., 2016). Note that secure aggregation alone
does not provide any privacy guarantees. To achieve a DP-
type guarantee, noise can be added locally, with the server
aggregating the perturbed local information via SecAgg.
This user-level DP framework has recently been adopted
in private federated learning (Agarwal et al., 2018; 2021;
Kairouz et al., 2021; Chen et al., 2022a; Wang et al., 2023).

In this paper we use Single-server SecAgg model of pri-
vacy, a dominant and well-established approach in the field.
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We leave other notions of privacy, such as a mix of DP
and SecAgg, for future works. There has been a recent
and concurrent progress towards this direction in terms of
cardinality constraints (Wang et al., 2023).

2. Communication and bit complexity: There are a few as-
pects to this, firstly the number of communication rounds
should be as small as possible. Second, the information
communicated between should require low bandwidth and
they better require small bit complexity to encode.

3. Convergence and utility: While the above impose strong
restrictions, a good decentralized submodular maximization
algorithm should not scarify the convergence rate by too
much and should yield to an accurate and acceptable result
in comparison to the centeralized methods.

Our contributions. We present the first federated (con-
strained) submodular maximization algorithm converging
close to optimum guarantees known in centralized settings.

•We propose a decentralized version of the popular Con-
tinuous Greedy algorithm Federated Continuous
Greedy (FEDCG) and prove its convergence whenever
the client functions are nonnegative monotone submodular
achieving the optimal multiplicative approximation factor
(1− 1/e) with a small additive (Section 3).

•We incorporate important and practical scenarios that are
relevant for federated setting such as partial client selection,
low communication rounds and computation cost. We give
rigorous theoretical guarantees under each scenarios match-
ing the optimal multiplicative approximation of (1 − 1/e)
and small additive error (Section 4).

•We introduce a new algorithm that serves as a discrete fed-
erated optimization algorithm for submodular maximization.
Its convergence and applications to discrete problems such
as Facility Location and Maximum Coverage
are explored (Section 5).

1.1. Related Work

FedAvg, its convergence, and assumptions. The con-
cept of Federated Learning (FL) (McMahan et al., 2017)
has found application in various domains such as natural
language processing, computer vision, and healthcare. The
popular FL algorithm, Federated Averaging (FEDAvg), is
an extension of Local SGD that aims to reduce communi-
cation costs in distributed settings (Gorbunov et al., 2021;
Stich, 2019; Wang & Joshi, 2021; Yu et al., 2019). How-
ever, despite its practical benefits in addressing privacy, data
heterogeneity, and computational constraints, it may not
converge to a “good enough” solution in general (Pathak &
Wainwright, 2020; Zhang et al., 2020). Analyzing the con-
vergence of FEDAvg and providing theoretical guarantees
is challenging and necessitates making certain assumptions.

Assumptions related to bounded gradients, convexity, Lip-
schitzness, statistical heterogeneity, and bounded variance
of stochastic gradients for each client have been explored
in recent works (Karimireddy et al., 2020; Li et al., 2020;
Woodworth et al., 2020; Wang et al., 2019; Yu et al., 2019).

Decentralized / distributed submodular maximization.
The main approach to submodular maximization is the
greedy approach which in fact, in the centralized setting
yields the tight approximation guarantee in various sce-
narios and constraints e.g., see (Nemhauser et al., 1978;
Vondrák, 2008; Călinescu et al., 2011). Centeralized sub-
modular maximization under privacy constraints is an active
research area (Mitrovic et al., 2017; Rafiey & Yoshida, 2020;
Chaturvedi et al., 2021). However the sequential nature of
the greedy approach makes it challenging to scale it to mas-
sive datasets. This issue is partially addressed by the means
of Map-Reduce style algorithms (Kumar et al., 2015) as
well as several elegant algorithms in the distributed setting
(Mirzasoleiman et al., 2016b; Barbosa et al., 2015). Recent
work of Mokhtari et al. (2018b) ventures towards decentral-
ized submodular maximization for continuous submodular
functions. In general continuous submodular functions are
not convex nor concave and there has been a line of work
to optimize continuous submodular functions using SGD
methods (Hassani et al., 2017). Mokhtari et al. under several
assumptions, such as assuming clients’ local objective func-
tions are monotone, DR-submodular, Lipschitz continuous,
and have bounded gradient norms, prove that Decenteral-
ized Continuous Greedy algorithm yields a feasible solution
with quality O(1 − 1/e) times the optimal solution. The
setting in (Mokhtari et al., 2018b) is fundamentally differ-
ent from the federated setting in a sense that they require
sharing gradient information of the clients with the server
or with the neighboring nodes in an underlying graph. Per-
haps the most closely related method to our work is due
to Dadras et al. (2022); Zhang et al. (2022). Dadras et al.
(2022) consider Frank-Wolfe Algorithm (Frank & Wolfe,
1956) in the federated setting and propose Federated
Frank-Wolfe (FEDFW) algorithm and analyze its conver-
gence for both convex and non-convex functions and under
the L-Lipschitzness and bounded gradients assumptions.

2. Preliminaries
Let E denote the ground set, |E| = n. For a vector x ∈ R|E|

and a set S ⊆ E, x(S) denotes
∑

e∈S x(e). A submodular
function f : 2E → R is monotone if f(S) ≤ f(T ) for every
S ⊆ T ⊆ E. Throughout this paper we assume f(∅) = 0.

Multilinear extension. The multilinear extension f̂ :
[0, 1]|E| → R of a set function f : {0, 1}|E| → R is

f̂(x) =
∑
S⊆E

f(S)
∏
e∈S

x(e)
∏
e ̸∈S

(1− x(e)) = ER∼x[f(R)]
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where R ⊆ E is a random set that contains each element
e ∈ E independently with probability x(e) and excludes it
with probability 1− x(e). We write R ∼ x to denote that
R ⊆ E is a random set sampled according to x.

Observe that for all S ⊆ E we have f̂(1S) = f(S). For
monotone non-decreasing submodular function f , f̂ has the
following properties (Călinescu et al., 2011) that are crucial
in analyses of our algorithms:

1. f̂ is monotone, meaning ∂f̂
∂x(e) ≥ 0. Hence, ∇f̂(x) =

( ∂f̂
∂x(1) , . . . ,

∂f̂
∂x(n) ) is a nonnegative vector.

2. f̂ is concave along any direction d ≥ 0.

Note that ∂f̂
∂x(e) = ER∼x[f(R ∪ {e})− f(R \ {e})]. That

is the expected marginal contribution for e where the expec-
tation is taken over R ⊆ E \ {e} sampled according to x.
By submodularity, for any x ∈ [0, 1]n,

|∇f̂(x)|∞ ≤ max
e∈E

f({e}) := mf . (2)

Matroids and matroid polytopes. A pair M = (E, I)
of a set E and I ⊆ 2E is called a matroid if 1) ∅ ∈ I, 2)
A ∈ I for any A ⊆ B ∈ I, and 3) for any A,B ∈ I with
|A| < |B|, there exists e ∈ B \ A such that A ∪ {e} ∈ I.
We call a set in I an independent set. We sometimes abuse
notation and use S ∈ M. The rank function rM : 2E →
Z+ of M is rM(S) = max{|I| : I ⊆ S, I ∈ I}. An
independent set S ∈ I is called a base if rM(S) = rM(E).
We denote the rank ofM by r(M). The matroid polytope
P(M) ⊆ RE ofM is P(M) = conv{1I : I ∈ I} where
conv denotes the convex hull. Or equivalently (Edmonds,
2001), P(M) = {x ≥ 0 : x(S) ≤ rM(S); ∀S ⊆ E} .

The Continuous Greedy Algorithm. Our algorithms for
maximizing a submodular function in federated settings
are based on the Continuous Greedy (CG) algorithm.
We briefly explain this algorithm. The results mentioned
are from (Călinescu et al., 2011; Vondrák, 2008). Let
M = (E, I) be a matroid and P(M) be its matroid poly-
tope of rank r, let f be a nonnegative and monotone sub-
modular function and f̂ be its multilinear extension. CG
starts with x(0) = 0. For every t ∈ {0, 1, 2, . . . , T − 1} it
computes x(t+1) using the following update step x(t+1) ←
x(t)+ηv(t), where v(t) = argmaxw∈P⟨w,∇f̂(x(t))⟩. For
OPT = maxx∈P f̂(x) we have (1 − (1 − η)T )OPT ≤
f̂(x(T )) + Cη2/2. Here, the constant C depends on the
Lipschitz of the function, and x(T ) ∈ P as it is a convex
combination of vectors from the polytope. For η = 1/T and
large enough T we get (1−1/e)OPT ≤ f̂(x(T ))+ ϵ. Given
x(T ) ∈ P , there are rounding procedures to obtain S ∈ I
with f̂(x(T )) ≤ f(S). The approximation factor 1− 1/e is
the best possible assuming P ̸= NP (Feige, 1998).

3. Federated Continuous Greedy
In this section, we propose our Federated
Continuous Greedy (FEDCG) method. We start
with a simplistic scenario of federated model with full
participation which already shows some of the challenges
that we have to overcome before delving into the partial
participation model which is more computationally feasible.

Consider optimization problem (1) where each fi is a non-
negative monotone submodular function,

∑N
i=1 pi = 1, and

I is the independent sets of matroidM = (E, I) of rank r.

Bit complexity and accuracy trade-off. For ev-
ery client i and every x ∈ P , the vector vi =

argmaxw∈P⟨w,∇f̂i(x)⟩ is determined by maximizing a
linear function ⟨w,∇f̂i(x)⟩ over matroid polytope P . This
problem can be solved very efficiently. We can assume that
vi is a vertex of P and furthermore, since∇f̂i is a nonnega-
tive vector, that this vertex corresponds to a base of matroid
M. Hence, without loss of generality vi is the indicator
vector of a base with r ones and n − r zeros. Thus it can
be encoded using O(r log(n)) bits, sublinear in the size of
the ground set. On the other hand, the vector∇f̂i(x) itself
requires Õ(n) bits for encoding. In what follows we will
see how restricting the bit complexity effects the accuracy,
and the amount of computation that server should do.

FEDCG with full participation. First consider the case
where clients can send their gradients. We proceeds in
rounds. Initially x(0) = 0. On the t-th round, first, the
central server broadcasts the latest model x(t) to all clients.
Each client i after receiving the update sets x

(t)
i = x(t)

and computes ∇f̂i(x(t)). The server then aggregates lo-
cal information via SecAgg, and computes ∇F̂ (x(t)) =∑N

i=1 pi∇f̂i(x(t)). After receiving ∇F̂ (x(t)), the server
computes v(t) = argmaxw∈P⟨w,∇F̂ (x(t))⟩ by maxi-
mizing a linear function subject to the matroid constraint
and produces the new global model with learning rate η:
x(t+1) ← x(t) + ηv(t). It is clear that, similar to the center-
alized CG, large enough T yields F (x(T )) ≥ (1− 1/e)OPT.
This simple framework has an advantage over centralized
CG, it is taking advantage of the computational resources
available at each client.

Second consider a more challenging case where clients can
send at most Õ(r) bits information. We see how this restric-
tion effects the accuracy. Our algorithm, FEDCG, proceeds
in rounds. Initially x(0) = 0. On the t-th round, first, the
central server broadcasts the latest model x(t) to all clients.
Each client i after receiving the update sets x(t)

i = x(t) and
performs one step of continuous greedy approach to find a
direction that best aligns with her local gradient:

v
(t)
i ← argmax

v∈P
⟨v,∇f̂i(x(t)

i )⟩ (3)
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Lastly, clients send their update directions v
(t)
1 , . . . ,v

(t)
N

to the secure aggregator to compute ∆(t) =
∑N

i=1 piv
(t)
i .

After computing ∆(t), the server produces the new global
model with learning rate η:

x(t+1) ← x(t) + η∆(t) (4)

Even in this unrealistic setting where all clients participate in
each round the convergence analysis requires new insights.
In order to provide an approximation guarantee for our algo-
rithm, we shall obtain a lower bound on the function value
improvement by taking the direction ∆(t), that is providing
a lower bound for ⟨∆(t),∇F̂ (x(t))⟩. However, each v

(t)
i is

the projection of the local gradient into the matroid polytope
and it does not carry information about the magnitude of the
expected marginal contributions i.e. ∥∇f̂i(x(t))∥. Without
assuming an assumption on the heterogeneity of local func-
tions one can construct examples where a single element
and corresponding client’s marginal contribution are signifi-
cantly more dominant than others and hence taking direction
∆(t) results in a very bad approximation guarantee.

We therefore need an assumption that acts as a tool in con-
straining the level of heterogeneity which poses a significant
obstacle in federated optimization. A common way to han-
dle heterogeneity is to impose a bound on the magnitude of
gradients over each clients’ local function i.e ∥∇f̂i(x)∥ ≤ γ.
This types of assumption is not only common in the litera-
ture regarding submodular function maximization in decen-
tralized settings (Mokhtari et al., 2018b; Zhang et al., 2020),
but also in studies of convex and non-convex optimization in
federated learning (Chen et al., 2022b; Dadras et al., 2022;
Karimireddy et al., 2020; Yu et al., 2019; Li et al., 2020).

In the case of submodular functions, each coordinate of
the gradient of the multilinear extension corresponds to the
marginal gain of adding one single element. In this paper
we impose the following assumption which is much more
relaxed than assuming a bound on the magnitude of the
gradients from each client.

Assumption 3.1. For all i = 1, . . . , N and t = 1, . . . , T
we have |∇f̂i(x(t)) − ∇F̂ (x(t))|∞ ≤ γt. Note that, by
submodularity and monotonicity we have

max
t∈[T ]

γt ≤ 2max
i

max
e∈E

fi({e}) = 2max
i

mfi . (5)

Monotonicity of fi implies that for every x ≤ y coordinate-
wise, it holds that f̂i(x) ≤ f̂i(x). Additionally, gradients
are antitone i.e., for every x ≤ y coordinate-wise, it holds
that ∇f̂i(x) ≥ ∇f̂i(y). Thus as the algorithm advances
and t grows, γt’s change but never exceed the upper bound
in (5). Additionally, in numerous instances, maxt∈[T ] γt is
relatively small. For instance, in Max Coverage problem

Algorithm 1 Federated Continuous Greedy (FEDCG)
1: Input: Matroid polytope P , number of communication

rounds T , learning rate η, and K.
2: x(0) = 0
3: for t = 0 to T − 1 do
4: Server selects a subset of K active clients A(t) ac-

cording to Client Sampling Scheme, and sends x(t)

to them.
5: for Client i in A(t) in parallel do
6: v

(t)
i ← argmaxv∈P⟨v,∇f̂i(x(t))⟩

7: Send v
(t)
i back to the secure aggregator.

8: end for
9: SecAgg: ∆(t) = 1

|A(t)|
∑

i∈A(t) v
(t)
i

10: Server updates: x(t+1) ← x(t) + η∆(t)

11: end for
12: Apply a proper rounding scheme on x(T ) to obtain a

solution for (1)

each fi(S) is either 0 or 1 , depending if a client is covered
by S or not, thus for this problem γ = 1.

We now have enough ingredients to prove the following con-
vergence theorem for the case where all clients participate
in every communication round. Let D =

∑T
t=1 γt

Theorem 3.2 (Full participation). Let M be a matroid
of rank r and P be its matroid polytope. Under the full
participation assumption and Assumption 3.1, for every
η > 0, Algorithm 1 returns a x(T ) ∈ P such that

(
1− (1− η)T

)
OPT ≤ F̂ (x(T )) + ηr

T∑
t=1

γt +
Tη2r2mF

2

In particular, for large enough T , setting η = 1/T , Algo-
rithm 1 requires at most Õ(r) bits of communication per
user per round (Õ(NTr) in total) and obtains

(1− 1/e)OPT ≤ F̂ (x(T )) +

(
rD

T
+

r2mF

2T

)
.

3.1. Partial Participation and Client Selection

Client sampling in the FL optimization framework is imper-
ative for various practical reasons, including the following:

• Large scale and dynamic nature. In real-world appli-
cations, a server usually serves several billions of de-
vices/clients who can join or leave the federated optimiza-
tion system due to several reasons like intermittent connec-
tivity, technical issue, or simply based on their availability
or preferences. Hence, it is computationally inefficient and
often impossible to get updates from all clients.

• Communication and bandwidth. On one hand, waiting for
the slowest client to finish can increase the expected round
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duration as the number of participating clients per train-
ing increases, a phenomenon known as “straggler’s effect”.
On the other hand, communication can be a primary bot-
tleneck for federated settings because of clients bandwidth
limitation and the possibility of server throttling.

• Small models and redundancy. It is often the case that FL
models are small because of clients limited computational
power or memory, it therefore is unnecessary to train an
FL model on billions of clients. Note that for optimization
problem (1) in many practical scenarios models have smaller
size in comparison to the number of clients, this is because
of the matroid constraint or simply because the size of the
ground set is much smaller than the number of clients.

Here we discuss our sampling scheme which crucially does
not violate clients’ privacy; see Algorithm 1.

Unbiased client sampling scheme. At each commu-
nication round the server chooses an active client from
i ∈ [N ] with probability pi, and repeats this process K
times to obtain a multiset A(t) of size K which may con-
tain a client more than once. Then the aggregation step is
∆(t) = 1

K

∑
i∈A(t) v

(t)
i where v

(t)
i defined in (3).

The next lemma shows that this sampling scheme is unbi-
ased and in expectation the average update from chosen
clients A(t) is equal to the average update from all clients.
Lemma 3.3 (Unbiased sampling scheme). For Client
Sampling Scheme, we have EA(t)

[
⟨∆(t),∇F̂ (x(t))⟩

]
=∑N

i=1 pi⟨v
(t)
i ,∇F̂ (x(t))⟩.

The following lemma allows us to bound the variance
which in turn helps to provide our convergence guaran-
tees. To show the following result, it is required to up-
per bound the difference between the improvement on the
function value by taking the direction suggested by a se-
lected client versus taking the direction obtained by aver-
aging all the directions from the clients. That is bounding
|⟨vs,∇F̂ (x(t))⟩ − ⟨

∑N
i=1 v

(t)
i ,∇F̂ (x(t))⟩|, for a selected

client s in A(t). This in turn needs providing an upper bound
for ⟨v(t)

i ,∇f̂i(x(t))⟩−⟨vs,∇f̂i(x(t))⟩, for all i ̸= s. At the
heart, our proof relies on the properties of multilinear exten-
sions of local submodular functions, the fact that each v

(t)
i

corresponds to a base of the matroid, and Assumption 3.1.
Lemma 3.4 (Bounded variance). Using Client Sampling
Scheme we have Var(⟨∆(t),∇F̂ (x(t))⟩) ≤ 36r2γ2

t /K.

Armed with the above lemmas and concentration inequali-
ties e.g., Chebyshev’s inequality, we can prove the conver-
gence of Algorithm 1. This essentially is done by bounding
the error introduced by the decentralized setting and care-
fully carrying the error through the analysis.
Theorem 3.5. Let M be a matroid of rank r and P be
its matroid polytope. Using Client Sampling Scheme, for

every η, δ > 0, Algorithm 1 returns a x(T ) ∈ P so that with
probability at least 1− δ(
1− (1− η)T

)
OPT ≤

F̂ (x(T )) + η

(
r

T∑
t=1

γt +
6r
∑T

t=1 γt√
Kδ/T

)
+

Tη2r2mF

2

In particular, by setting η = 1/T , Algorithm 1 requires
at most Õ(r) bits of communication per user per round
(Õ(KTr) in total) and yields

(1− 1/e)OPT ≤ F̂ (x(T )) +

(
rD

T
+

6rD√
TKδ

+
r2mF

2T

)

4. Practical Federated Continuous Greedy
One of the main considerations in federated optimization is
the number of communication rounds. In this section, we
show how Algorithm 1 can be further improved to reduce
communication rounds while simultaneously incorporating
partial participation.

Algorithm description. Initially x(0) = 0. On the t-th
round of the Practical Federated Continuous
Greedy (FEDCG+), the central server first broadcasts
the latest model x(t) to a subset of active clients of size K
denoted by A(t). Next, each client i ∈ A(t) sets x

(t,0)
i =

x(t) and performs τ steps of continuous greedy approach
locally. More precisely, let j ∈ {0, 1, . . . , τ − 1} and x

(t,j)
i

denote the i-th client’s local model at communication round
t and local update step j, then the local updates are

ṽ
(t,j)
i ← argmax

v∈P
⟨v,∇f̃i(x(t,j)

i , ζ
(t,j)
i )⟩; (6)

x
(t,j+1)
i = x

(t,j)
i + ṽ

(t,j)
i /τ (7)

Here ζ(t,j)i is a set of subsets from the ground set E sampled
according to x

(t,j)
i , and ∇f̃i(x(t,j)

i , ζ
(t,j)
i ) ∈ Rn

≥0 is an

estimation of the gradient∇f̂i(x(t,j)
i ) (more on this later).

After τ steps of local update, the i-th client from A(t) send
her update ∆̃(t+τ)

i = x
(t,τ)
i −x

(t,0)
i to the secure aggregator

to compute ∆̃(t+τ) = 1
|A(t)|

∑
i∈A(t) ∆̃

(t+τ)
i . Note that

each ∆̃
(t+τ)
i belongs to P since it is a convex combination

of vectors ṽ
(t,j)
i ∈ P . However, ∆̃(t+τ)

i may not be an
integral vector and in the worst case Õ(n) bits are required
to encode it. After receiving ∆̃(t+τ), the server produces
the new global model with learning rate η:

x(t+τ) ← x(t) + η∆̃(t+τ) (8)

Gradient estimation. Evaluating the multilinear extension
involves summing over all subsets S of E, there are 2|E|

such subsets. However, recall ∂f̂/∂x(e) = E[f(R∪{e})]−

6
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E[f(R \ {e})] where R ⊆ E is a random subset sampled
according to x. Hence a simple application of Chernoff’s
bound tells us by sampling sufficiently many subsets we
can obtain a good estimation of ∇f̂(x) (Călinescu et al.,
2011; Vondrák, 2008) (more details in the Appendix). For
large enough m, let ζ(t,j)i = {R(t,j,1)

i , . . . , R
(t,j,m)
i } be sub-

sets of E that are sampled independently according to i-th
client’s local model x(t,j)

i . Let∇f̃i(x(t,j)
i , ζ

(t,j)
i ) denote the

stochastic approximation of ∇f̂i(x(t,j)
i ). Then with proba-

bility 1−δ we have ∥∇f̂i(x(t,j)
i )−∇f̃i(x(t,j)

i , ζ
(t,j)
i )∥ ≤ σ.

In convergence analyses of our algorithm there are two
sources of randomness, one in the sampling schemes for
client selection and the other in data sampling at each clients
local data to estimate the gradients. In Algorithm 2 there are
T
τ communications rounds between the server and clients.
Define Iτ = {τi | i = 1, 2, 3, . . . } to denote the set of com-
munication rounds with the server. Similar to Lemma 3.3:

Lemma 4.1 (Unbiased sampling scheme). For Client
Sampling Scheme, at every communication round t +

τ ∈ Iτ , we have EA(t)

[
⟨∆̃(t+τ),∇F̂ (x(t))⟩

]
=

⟨
∑N

i=1 pi∆̃
(t+τ)
i ,∇F̂ (x(t))⟩.

Bounding the variance of ⟨∆̃(t+τ),∇F̂ (x(t))⟩ is much more
delicate than in Lemma 3.4. The are two main reasons, one
is the deviation caused by local steps, second is the deviation
from the true ∇F̂ (x(t)) caused by gradient estimations. To
handle the deviation cause by local steps we assume all
f̂i have L-Lipschitz continuous gradients i.e., ∥∇f̂i(x) −
∇f̂i(y)∥ ≤ L∥x − y∥, ∀x,y ∈ P . In fact as shown in
Lemma 3 of (Mokhtari et al., 2018a), for each f̂i and local
model x(t,j+1)

i = x
(t,j)
i + ṽ

(t,j)
i /τ , it holds that∥∥∥∇f̂i(x(t,j+1)

i )−∇f̂i(x(t,j)
i )

∥∥∥ ≤ mfi

√
r

τ

∥∥∥ṽ(t,j)
i

∥∥∥
≤ mfir

τ

The factor −mfi is in fact a lower bound on the entries of

the Hessian matrix. That is ∂f̂i
∂x(i)∂x(j) ≥ −mfi (Hassani

et al., 2017).

Let Q =
∑

t∈Iτ
Lt where Lt is such that for all i ∈ [N ]

and j ∈ [τ ] it holds∥∥∥∇f̂i(x(t,j)
i )−∇f̂i(x(t))

∥∥∥ ≤ Lt∥x(t,j)
i − x(t)∥

Observe that Lt is upper bounded by maxi mfi

√
r.

Lemma 4.2 (Bounded variance). For t + τ ∈
Iτ we have Var(⟨∆̃(t+τ),∇F̂ (x(t))⟩) ≤
1
K

(
6rγt + 2(σr + Ltr

1.5)
)2

.

While the variance can be made arbitrary small by sampling
more clients, the additive error caused by local steps cannot

Algorithm 2 Practical FedCG (FEDCG+)

1: Input: Matroid polytope P , number of communication
rounds T/τ , server’s learning rate η, σ, δ > 0, and K.

2: x(0) = 0, m = O(log (TK/δ)/σ2)
3: for t = 0, τ, 2τ, . . . , (T − 1)/τ do
4: Server selects a subset of K active clients A(t) ac-

cording to Client Sampling Scheme, and sends x(t)

to them.
5: for Client i in A(t) in parallel do
6: x

(t,0)
i ← x(t)

7: for j = 0, . . . , τ − 1 do
8: Randomly sample m sets ζ

(t,j)
i =

{R(t,j,1)
i , . . . , R

(t,j,m)
i } according to x

(t,j)
i

9: Let ∇f̃i(x(t,j)
i , ζ

(t,j)
i ) be the estimate of

∇f̂i(x(t,j)
i )

10: ṽ
(t,j)
i ← argmaxv∈P⟨v,∇f̃i(x

(t,j)
i , ζ

(t,j)
i )⟩

11: x
(t,j+1)
i ← x

(t,j)
i + ṽ

(t,j)
i /τ

12: end for
13: ∆̃

(t+τ)
i ← x

(t,τ)
i − x

(t,0)
i {Local model change}

14: Send ∆̃
(t+τ)
i back to the secure aggregator.

15: end for
16: SecAgg: ∆̃(t+τ) = 1

|A(t)|
∑

i∈A(t) ∆̃
(t+τ)
i .

17: Server updates: x(t+τ) ← x(t) + η∆̃(t+τ)

18: end for
19: Apply a proper rounding scheme on x(T ) to obtain a

solution for (1)

be controlled by sampling more clients. This shows up in
the next theorem.

Theorem 4.3. LetM be a matroid of rank r and P be its
matroid polytope. Using Client Sampling Scheme, for every
η, δ > 0, Algorithm 2 returns a x(T/τ) ∈ P such that with
probability at least 1− δ it holds

(1− (1− η)T/τ )OPT

≤ F̂ (x(T/τ)) +
Tη2r2mF

2τ

+ (

heterogeneity︷ ︸︸ ︷
ηr

T/τ∑
t=1

γt +

local steps︷ ︸︸ ︷
2σr + 2ηr1.5

T/τ∑
t=1

Lt)

+

client sampling︷ ︸︸ ︷
√
T (6ηr

T/τ∑
t=1

γt + 2σr + 2ηr1.5
T/τ∑
t=1

Lt))/
√
Kτδ)

In particular, for η = τ/T , Algorithm 2 has at most Õ(n)
bits of communication per user per round (Õ(KTn/τ) in

7
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Algorithm 3 Federated Discrete Greedy
1: Input: Matroid M of rank r, importance factors
{wi}Ni=1, ε ∈ (0, 1).

2: S ← ∅, κ← Õ(rn/ε2)
3: for t = 0 to r − 1 do
4: Server sends S to all clients.
5: for each client i in parallel do
6: κi ← min{κ · wi, 1}
7: for all e such that S ∪ {e} ∈ M do
8: ∆i[e]← (fi(S ∪ {e})− fi(S))/κi

9: end for
{/* Randomized Response */}

10: With probability κi sends ∆i to the secure aggre-
gator

11: With probability 1− κi does nothing
12: end for
13: SecAgg: ∆(t) (the sum of ∆i received in this round.)
14: Server updates: S ← S ∪ { argmax

e:S∪{e}∈M
∆(t)[e]}

15: end for
16: Output: S

total) and yields

(1− 1/e)OPT ≤ F̂ (x(T )) +
τr2mF

2T

+
rDτ

T
+ 2σr(1 +

√
τ√

KTδ
) +

2r1.5Qτ

T

+

√
τ(6Dr + 2r1.5Q)√

TKδ

Remark 4.4. From a fractional solution x(T ) ∈ P returned
by Algorithms 1 and 2 one can obtain a solution for (1) us-
ing appropriate rounding schemes. Rounding schemes such
as pipage rounding (Călinescu et al., 2011), swap rounding
(Chekuri et al., 2010), or greedy rounding are oblivious;
they do not require access to the objective function. There-
fore, the server can utilize these rounding schemes without
needing to know the decomposable function itself.

5. Discrete Algorithm in Federated Setting
While parallel SGD and continuous methods such as ours in
this paper are commonly used as the main tool in federated
optimization, we introduce a rather discrete approach to
the field and believe it will find further applications. Our
approach is inspired by recent works of Rafiey & Yoshida
(2022); Kenneth & Krauthgamer (2023) on a seemingly un-
related topic. Rafiey & Yoshida (2022) introduced a method
to sparsify a sum of submodular functions in a centralized
setting which was improved by (Kenneth & Krauthgamer,
2023). We tailor their approach to the federated setting
and discuss its effectiveness for discrete problems such
as Facility Location and Maximum Coverage

problems. At the heart of this approach is for clients to
know their “importance” without sharing sensitive informa-
tion. In the monotone case, the importance factor for client
i is defined as:

wi = max
e∈E

fi({e})
F ({e})

.

In several cases such as Max Facility Location and
Maximum Coverage computing the importance factor
can be done efficiently and with constant number of com-
munication rounds. For now, let us continue by assuming
each client knows its own importance factor.

Algorithm 3 description. Let ε ∈ (0, 1) and set S = ∅.
The server gradually adds elements to S for only r rounds.
At round t the central server broadcasts the current set S to
all clients (or a subset of active clients). Then each client i
computes the marginal contribution of each element from
E \ S to its local function fi

∆i[e] = fi(S ∪ {e})− fi(S); ∀e : S ∪ {e} ∈ I

Let κ = Õ(rn/ε2). Then each client sends its update in
a randomized response manner, that is, the i-th client with
probability κi = min{1, κ · wi} sends the scaled vector
( 1
κi
)∆i to the secure aggregator, and with the complement

probability does not send anything. The secure aggregator
computes ∆(t); the sum of the update vectors it has received.
The server updates S ← S ∪ {argmaxe:S∪{e}∈M ∆(t)[e]}.
The following theorem follows from the sparsification re-
sults in (Rafiey & Yoshida, 2022; Kenneth & Krauthgamer,
2023) and approximation guarantees of the greedy algorithm
(Nemhauser et al., 1978).

Theorem 5.1. For every ε ∈ (0, 1), Algorithm 3, with
probability at least 1 − 1/n, returns a subset S ∈ I such
that (1/2− ε)OPT ≤ F (S).

Under a cardinality constraint (uniform matroid), Algo-
rithm 3, with probability at least 1− 1/n, returns a subset
S ∈ I such that (1− 1/e− ε)OPT ≤ F (S).

Moreover, in expectation, at each round Õ(rn2/ε2) clients
participate where r is the rank of the matroid.

Facility Location Problem. Let C be a set of N
clients and E be a set of facilities with |E| =
n. For c : C × E → R let the i-th client’s
score function over a subset of facilities be fi(A) =
maxj∈A c(i, j). The objective for Max Facility

Location is maxS⊆E,|S|≤k

∑N
i=1 maxj∈S c(i, j). For

each client i the importance factor is wi = maxj∈E
c(i,j)
F ({j}) .

In several situations computing the importance factors is
straightforward. For instance, in movie recommendation
systems where a facility location objective is used (see Ap-
pendix D), the average rating i.e., F ({j}), for all movies

8
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are publicly available. Hence, each client knows its own
importance factor. Having wi, we can apply Algorithm 3.
Doing so, note that at each round the expected number of
clients participating is Õ(kn2/ε2), independent of N .

In other situations, clients can compute their importance
factors in a federated setting, using a secure aggregator and
without sharing their data with other clients. Further details
on this and discussions about the Max Coverage problem
are presented in Appendix D.

6. Conclusions and Future Work
We present FEDCG, the first algorithm for decomposable
submodular maximization in federated setting under ma-
troid constraints. FEDCG is based on the continuous greedy
algorithm and achieves the best possible approximation fac-
tor i.e., 1 − 1/e under mild assumptions even faced with
client selection and low communication rounds. Addition-
ally, we introduce a new federated framework for discrete
problems. Our work leads to many interesting directions for
future work, such as providing stronger privacy guarantee
using differentially private methods (Mitrovic et al., 2017;
Rafiey & Yoshida, 2020; Chaturvedi et al., 2021), finding
a lower bound on the bit complexity, and improving the
additive errors of our algorithms.
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A. Preliminary Results and Proof of Convergence for Full Participation
Quick overview. At the heart of the analyses for the approximation ratio of the Centralized Continuous Greedy
is to show that at each iteration the algorithm reduces the gap to the optimal solution by a significant amount (Călinescu
et al., 2011). We follow the same general idea although there are several subtleties that we should address. Mainly, it is
required to compare the improvement we obtain by taking direction v versus the improvement obtained by taking direction∑N

i=1 pivi where v = argmaxy∈P⟨y,∇F̂ (x)⟩ and vi = argmaxy∈P⟨y,∇f̂i(x)⟩. To establish a comparison between the
two, we need several intermediate lemmas.

We start off by focusing on providing an upper bound on OPT− F̂ (x).

Lemma A.1. Let F =
∑N

i=1 pifi be a function where each fi : 2
E → R+ is a monotone submodular function. Suppose

P ⊆ [0, 1]n is a polytope and define OPT = maxx∈P F̂ (x). Then for any x ∈ [0, 1]n and vi = argmaxy∈P⟨y,∇f̂i(x)⟩
we have

OPT− F̂ (x) ≤
N∑
i=1

pi⟨vi,∇f̂i(x)⟩.

Proof of Lemma A.1. First, let us derive some observations on the decomposable submodular function F and its multilinear
extension F̂ . By definition F̂ (x) = EX∼x[F (X)]. Then

F̂ (x) = EX∼x[F (X)] = EX∼x

[
N∑
i=1

pifi

]
=

N∑
i=1

pi(EX∼x[fi(X)]) =

N∑
i=1

pif̂i(x)

Then the gradient of F̂ at any point is equal to the average of gradients from local functions. That is ∇F̂ (x) =

∇
(∑N

i=1 pif̂i(x)
)
=
∑N

i=1 pi∇f̂i(x).

Now let w ∈ P be such that F̂ (w) = OPT.

⟨w,∇F̂ (x)⟩ ≤ max
v∈P
⟨v,∇F̂ (x)⟩ = max

v∈P
⟨v,

N∑
i=1

pi∇f̂i(x)⟩ = max
v∈P

N∑
i=1

pi⟨v,∇f̂i(x)⟩

≤
N∑
i=1

pi max
y∈P
⟨y,∇f̂i(x)⟩ =

N∑
i=1

pi⟨vi,∇f̂i(x)⟩

In what follows, we prove OPT− F̂ (x) ≤ ⟨w,∇F̂ (x)⟩. Define d = (x ∨w)− x = (w − x) ∨ 0. By the monotonicity,
we have

OPT = F̂ (w) ≤ F̂ (x ∨w).

Note that d > 0, and hence by concavity of F̂ along any positive direction we get

F̂ (x ∨w) = F̂ (x+ d) ≤ F̂ (x) + ⟨d,∇F̂ (x)⟩.

Combining the above inequalities we obtain

OPT− F̂ (x) ≤ F̂ (x ∨w)− F̂ (x) ≤ ⟨d,∇F̂ (x)⟩

Now, since ∇F̂ (x) is nonnegative and d ≤ w then we get

OPT− F̂ (x) ≤ ⟨w,∇F̂ (x)⟩

This completes the proof.

The following is an immediate consequence of Lemma A.1.
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Corollary A.2. For any polytope P ⊆ [0, 1]n, x(t) ∈ [0, 1]n, and v
(t)
i = argmaxy∈P⟨y,∇f̂i(x(t))⟩, OPT − F̂ (x(t)) ≤∑N

i=1 pi⟨v
(t)
i ,∇f̂i(x(t))⟩.

Next we use Assumption 3.1 to bound the difference between
∑N

i=1 pi⟨v
(t)
i ,∇f̂i(x(t))⟩ and

∑N
i=1 pi⟨v

(t)
i ,∇F̂ (x(t))⟩ at

every iteration t.

Lemma A.3 (Bounded heterogeneity). LetM be a matroid of rank r and P be its corresponding matroid polytope. For
any x(t) ∈ [0, 1]n let v(t)

i = argmaxy∈P⟨y,∇f̂i(x(t))⟩ and v̄(t) =
∑N

i=1 piv
(t)
i . Then, under the bounded gradient

dissimilarity assumption 3.1, we have

⟨v̄(t),∇F̂ (x(t))⟩ ≥
N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − rγt

Proof of Lemma A.3. The proof is straightforward.

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩ =

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ −

N∑
i=1

pi⟨v(t)
i ,∇F̂ (x(t))⟩

=

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))−∇F̂ (x(t))⟩ ≤

N∑
i=1

pirγt = rγt

where in the last inequality we used the fact that each v
(t)
i corresponds to a base in the matroid and we have v

(t)
i ∈ {0, 1}n

and |v(t)
i |1 = r. Given this and Assumption 3.1 we have |⟨v(t)

i ,∇f̂i(x(t))−∇F̂ (x(t))⟩| ≤ rγt.

A.1. Putting Everything Together: Proof of Theorem 3.2

We now are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Recall that x(t+1) ← x(t) + η∆(t) where in the full participation case ∆(t) =
∑N

i=1 piv
(t)
i . Accord-

ing to the Taylor’s expansion of the function F̂ near the point x(t) we can write

F̂ (x(t+1)) = F̂ (x(t)) + ⟨x(t+1) − x(t),∇F̂ (x(t))⟩+ 1

2
⟨x(t+1) − x(t),HF̂ (x

(t+1) − x(t))⟩ (9)

= F̂ (x(t)) + η⟨∆(t),∇F̂ (x(t))⟩+ η2

2
⟨∆(t),HF̂∆

(t)⟩ (10)

where HF̂ is the Hessian matrix i.e., the second derivative matrix. We provide a lower bound on each entry of HF̂ . By the
result of (Călinescu et al., 2011) and definition of the multilinear extension:

∂F̂

∂x(i)∂x(j)
= ER∼x[F (R ∪ {i, j})− F (R ∪ {i} \ {j})]− ER∼x[F (R ∪ {j} \ {i})− F (R \ {i, j})] (11)

≥ −max{F ({i}), F ({j})} ≥ −max
e∈E

F ({e}) = −mF (12)

where the second last inequality is a direct consequence of the submodularity of F . This means every entry of the Hessian is
at least −mF . Thus, we arrive at the following lower bound

⟨∆(t),HF̂∆
(t)⟩ ≥

n∑
i=1

n∑
j=1

∆(t)(i)∆(t)(j)HF̂ (i, j) ≥ −mF

n∑
i=1

n∑
j=1

∆(t)(i)∆(t)(j) = −mF

(
n∑

i=1

∆(t)(i)

)2

≥ −mF r
2

(13)

where in the last inequality we used the fact that ∆(t) ∈ P as it is a convex combination of vectors from P , and hence∑n
i=1 ∆

(t)(i) ≤ r.
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Thus from (10) and (13) it follows that

F̂ (x(t+1)) ≥ F̂ (x(t)) + η⟨∆(t),∇F̂ (x(t))⟩ − η2 ·mF r
2

2
(14)

It is now required to provide a lower bound for ⟨∆(t),∇F̂ (x(t)⟩ in terms of OPT. We prove the following lemma.

Lemma A.4. Let γt be as in Assumption 3.1. Then we have OPT− F̂ (x(t)) ≤ ⟨∆(t),∇F̂ (x(t)⟩+ rγt.

Proof of Lemma A.4. By Corollary A.2 we have that

OPT− F̂ (x(t)) ≤
N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩

Furthermore, by Lemma A.3, we have

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨∆(t),∇F̂ (x(t))⟩ ≤ rγt

These two give the desired result. Moreover, it is worth noting

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨∆(t),∇F̂ (x(t))⟩ ≥ 0

This is because

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨∆(t),∇F̂ (x(t))⟩ =

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ −

N∑
i=1

pi⟨∆(t),∇f̂i(x(t))⟩

=

N∑
i=1

pi

(
⟨v(t)

i ,∇f̂i(x(t))⟩ − ⟨∆(t),∇f̂i(x(t))⟩
)
≥ 0

where in the last inequality by definition of v(t)
i we have ⟨v(t)

i ,∇f̂i(x(t))⟩ − ⟨∆(t),∇f̂i(x(t))⟩ ≥ 0.

Followed by Lemma A.4 and equation 14, we obtain

F̂ (x(t+1))− F̂ (x(t)) ≥ η
(
OPT− F̂ (x(t))− rγt

)
− η2 ·mF r

2

2
(15)

Now, by changing signs and adding OPT to both sides, we get

OPT− F̂ (x(t+1)) ≤ (1− η)
(
OPT− F̂ (x(t))

)
+ ηrγt +

η2 ·mF r
2

2
(16)

Applying the same inequality inductively gives

OPT− F̂ (x(t+1)) ≤ (1− η)t+1
(
OPT− F̂ (0)

)
+ ηr

(
T−1∑
t=0

(1− η)T−t−1γt

)
+

(η2 ·mF r
2)(
∑T−1

t=0 (1− η)T−t−1)

2

(17)

≤ (1− η)t+1
(
OPT− F̂ (0)

)
+ ηr

(
T−1∑
t=0

γt

)
+

Tη2 ·mF r
2

2
((1− η) < 1)

14
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Hence for x(T ) we have (
1− (1− η)T

)
OPT ≤ F̂ (x(T )) + ηr

(
T−1∑
t=0

γt

)
+

Tη2 ·mF r
2

2
(18)

Finally, setting η = 1/T yields (
1− 1

e

)
OPT ≤ F̂ (x(T )) +

r
(∑T−1

t=0 γt

)
T

+
mF r

2

2T
(19)

= F̂ (x(T )) +
rD

T
+

mF r
2

2T
(20)

for
∑T−1

t=0 γt = D. Note that for any ε ≥ 0 by setting T = max{ 2rDε , mF r2

ε } we obtain(
1− 1

e

)
OPT ≤ F̂ (x(T )) + ε (21)

A.2. Upper Bound for γt in Assumption 3.1

Inequality (5) in Assumption 3.1 can be derived using monotonicity and submodularity as follows. For simplicity we drop t.

|∇f̂i(x)−∇F̂ (x)|∞ = max
e∈E
|[∇f̂i(x)]e − [∇F̂ (x)]e|

≤ max
e∈E

[∇f̂i(x)]e + [∇F̂ (x)]e (by monotonicity and submodularity: [∇F̂ (x)]e, [∇f̂i(x)]e ≥ 0)

≤ max
e∈E

max
i

[∇f̂i(x)]e + [∇f̂i(x)]e (using F =
∑

i pifi and
∑

i pi = 1)

= 2max
e∈E

max
i

[∇f̂i(x)]e

= 2max
i

max
e∈E

[∇f̂i(x)]e

= 2max
i

mfi

B. Proof of Convergence for FedCG (Theorem 3.5)
In order to prove the approximation guarantee of Theorem 3.5, several steps are taken. First we show that our client sampling
scheme is unbiased and furthermore we provide an upper bound for the variance.

B.1. Bounding the Variance

Unbiased client selection. Here we prove that our client selection is unbiased (Lemma 3.3).

Proof of Lemma 3.3. Recall that ⟨∆(t),∇F̂ (x(t))⟩ = ⟨ 1
|A(t)|

∑
i∈A(t) v

(t)
i ,∇F̂ (x(t))⟩ where A(t) is a set of size K.

EA(t)

[
⟨∆(t),∇F̂ (x(t))⟩

]
= EA(t)

⟨ 1

|A(t)|
∑

i∈A(t)

v
(t)
i ,∇F̂ (x(t))⟩

 (22)

=
1

K
EA(t)

⟨∑
i∈A(t)

v
(t)
i ,∇F̂ (x(t))⟩

 =
1

K

 ∑
i∈A(t)

EA(t)⟨v(t)
i ,∇F̂ (x(t))⟩

 (23)

=
1

K

[
KEA(t)⟨v(t)

i ,∇F̂ (x(t))⟩
]

(for an arbitrary i ∈ A(t))

= EA(t)

[
⟨v(t)

i ,∇F̂ (x(t))⟩
]
=

N∑
i=1

pi⟨v(t)
i ,∇F̂ (x(t))⟩ = ⟨

N∑
i=1

piv
(t)
i ,∇F̂ (x(t))⟩ (24)
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Bounding the variance. Bounding the variance is at the core of our proof of convergence. Recall the definition of γt in
Assumption 3.1 which plays a pivotal role in bounding the variance.

Proof of Lemma 3.4. Recall ∆(t) = 1
|A(t)|

∑
i∈A(t) v

(t)
i and |A(t)| = K and let v̄(t) =

∑N
i=1 piv

(t)
i . By Lemma 3.3 we

have that EA(t)

[
⟨∆(t),∇F̂ (x(t))⟩

]
= ⟨

∑N
i=1 piv

(t)
i ,∇F̂ (x(t))⟩. Furthermore, our client sampling samples K clients

independently and with replacement. Therefore,

Var
(
⟨∆(t),∇F̂ (x(t))⟩

)
=

1

K
EA(t)

[(
⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩

)2]
(25)

where s corresponds to an arbitrary client in A(t). Note that both terms ⟨s,∇F̂ (x(t))⟩ and ⟨v̄(t),∇F̂ (x(t))⟩ are nonnegative.
We provide an upper bound on the absolute value of |⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩| by considering two cases.
Case 1. In the first case we have ⟨s,∇F̂ (x(t))⟩ ≥ ⟨v̄(t),∇F̂ (x(t))⟩. Therefore,

|⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩| (26)

= ⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩ =
N∑
i=1

pi⟨s,∇f̂i(x(t))⟩ − ⟨
N∑
i=1

piv
(t)
i ,∇F̂ (x(t))⟩ (27)

≤
N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨

N∑
i=1

piv
(t)
i ,∇F̂ (x(t))⟩ =

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))−∇F̂ (x(t))⟩ (28)

≤
N∑
i=1

pirγt = rγt (29)

where in the last inequality we used the fact that for each v
(t)
i we have v

(t)
i ∈ {0, 1}n and |v(t)

i |1 = r, and Assumption 3.1
together yield |⟨vi,∇f̂i(x(t))−∇F̂ (x(t))⟩| ≤ rγt.

Case 2. In the first case we have ⟨s,∇F̂ (x(t))⟩ ≤ ⟨v̄(t),∇F̂ (x(t))⟩. Therefore,

|⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩| = ⟨v̄(t),∇F̂ (x(t))⟩ − ⟨s,∇F̂ (x(t))⟩ (30)

= ⟨v̄(t),∇F̂ (x(t))⟩ −
N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨s,∇F̂ (x(t))⟩+

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ (31)

=

N∑
i=1

pi⟨v(t)
i ,∇F̂ (x(t))⟩ −

N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩+

(
N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨s,∇F̂ (x(t))⟩

)
(32)

≤
N∑
i=1

pi

∣∣∣⟨v(t)
i ,∇F̂ (x(t))−∇f̂i(x(t))⟩

∣∣∣+ N∑
i=1

pi

(
⟨v(t)

i ,∇f̂i(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩
)

(33)

≤ rγ +

N∑
i=1

pi

(
⟨v(t)

i ,∇f̂i(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩
)

(34)

where in the last inequality we used the same argument as the Case 1. Now it is left to provide an upper bound for
⟨v(t)

i ,∇f̂i(x)⟩ − ⟨s,∇f̂i(x(t))⟩, which by definition is nonnegative.

⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩ (35)

= ⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨v(t)

i ,∇f̂s(x(t))⟩+ ⟨v(t)
i ,∇f̂s(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩ (36)

= ⟨v(t)
i ,∇f̂i(x(t))−∇f̂s(x(t))⟩+ ⟨v(t)

i ,∇f̂s(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩ (37)

≤ ⟨v(t)
i ,∇f̂i(x(t))−∇f̂s(x(t))⟩+ ⟨s,∇f̂s(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩ (38)
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= ⟨v(t)
i ,∇f̂i(x(t))−∇f̂s(x(t))⟩+ ⟨s,∇f̂s(x(t))−∇f̂i(x(t))⟩ (39)

By Assumption 3.1 we know that |∇f̂s(x(t)) − ∇F̂ (x(t))|∞ ≤ γt and |∇f̂i(x(t)) − ∇F̂ (x(t))|∞ ≤ γt. Therefore,
|∇f̂s(x(t))−∇f̂i(x(t))|∞ ≤ 2γt. Knowing that both v

(t)
i , s ∈ {0, 1}n and |v(t)

i |1 = |s|1 = r yields

⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨s,∇f̂i(x(t))⟩ (40)

≤ ⟨v(t)
i ,∇f̂i(x(t))−∇f̂s(x(t))⟩+ ⟨s,∇f̂s(x(t))−∇f̂i(x(t))⟩ ≤ 4rγt (41)

Putting together the above inequality and the inequality in equation 34 we obtain the following upper bound for Case 2

|⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩| ≤ 5rγt.

Provided the upper bounds in both cases we have

Var
(
⟨∆(t),∇F̂ (x(t))⟩

)
=

1

K
EA(t)

[(
⟨s,∇F̂ (x(t))⟩ − ⟨v̄(t),∇F̂ (x(t))⟩

)2]
≤ 36r2γ2

t

K
. (42)

B.2. Putting Everything Together: Proof of Theorem 3.5

We now are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Recall that x(t+1) ← x(t) + η∆(t). Similar to the proof of Theorem 3.2 equation (14) we derive that

F̂ (x(t+1)) ≥ F̂ (x(t)) + η⟨∆(t),∇F̂ (x(t))⟩ − η2 ·mF r
2

2
(43)

Given Lemmas 3.3 and 3.4 and using Chebyshev’s inequality, over the random choices of A(t) and for every α > 0 we
obtain

P

[∣∣∣∣∣⟨∆(t),∇F̂ (x(t))⟩ − ⟨
N∑
i=1

piv
(t)
i ,∇F̂ (x(t))⟩

∣∣∣∣∣ ≤ 6rγt/
√
K

α

]
(44)

≥ P

∣∣∣⟨∆(t),∇F̂ (x(t))⟩ − EA(t)

[
⟨∆(t),∇F̂ (x(t))⟩

]∣∣∣ ≤
√

Var
(
⟨∆(t),∇F̂ (x(t))⟩

)
α

 ≥ 1− α2 (45)

Given this, with probability at least 1− α2 and in the worst case it holds that

F̂ (x(t+1)) ≥ F̂ (x(t)) + η⟨∆(t),∇F̂ (x(t))⟩ − η2 ·mF r
2

2
(46)

≥ F̂ (x(t)) + η

(
⟨

N∑
i=1

piv
(t)
i ,∇F̂ (x(t))⟩ − 6rγt/

√
K

α

)
− η2 ·mF r

2

2
(47)

≥ F̂ (x(t)) + η

(
N∑
i=1

pi⟨v(t)
i ,∇f̂i(x(t))⟩ − rγt −

6rγt/
√
K

α

)
− η2 ·mF r

2

2
(by Lemma A.3)

≥ F̂ (x(t)) + η
(
OPT− F̂ (x(t))

)
− η

(
rγt +

6rγt/
√
K

α

)
− η2 ·mF r

2

2
(by Corollary A.2)

Now, by changing signs and adding OPT to both sides, we get

OPT− F̂ (x(t+1)) ≤ (1− η)
(
OPT− F̂ (x(t))

)
+ η

(
rγt +

6rγt/
√
K

α

)
+

η2 ·mF r
2

2
(48)
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Applying the same inequality inductively gives

OPT− F̂ (x(t+1)) ≤ (1− η)t+1
(
OPT− F̂ (0)

)
+ η

(
r

T−1∑
t=0

(1− η)T−t−1γt +
6r
∑T−1

t=0 (1− η)T−t−1γt

α
√
K

)
(49)

+

∑T−1
t=0 (1− η)T−t−1η2 ·mF r

2

2
(50)

≤ (1− η)t+1OPT+ η

(
r

T−1∑
t=0

γt +
6r
∑T−1

t=0 γt

α
√
K

)
+

Tη2 ·mF r
2

2
(51)

Taking the union bound over T steps and α =
√

δ
T , with probability at least 1− T · α2 = 1− δ, we get

(
1− (1− η)T

)
OPT ≤ F̂ (x(T )) + η

(
r

T−1∑
t=0

γt +
6r
∑T−1

t=0 γt√
Kδ/T

)
+

Tη2 ·mF r
2

2
(52)

Setting η = 1/T yields

(1− 1/e)OPT ≤ F̂ (x(T )) +
1

T

(
r

T−1∑
t=0

γt +
6r
∑T−1

t=0 γt√
Kδ/T

)
+

mF r
2

2T
(53)

= F̂ (x(T )) +
rD

T
+

6rD√
KTδ

+
mF r

2

2T
(54)

for
∑T−1

t=0 γt = D. Note that for any ε ≥ 0 by setting T = max{ 3rDε , 3mF r2

2ε , 324r2D2

Kδε } we obtain(
1− 1

e

)
OPT ≤ F̂ (x(T )) + ε (55)

C. Proof of Convergence for FEDCG+ (Theorem 4.3)
C.1. Bounding the variance

Unbiased client selection. Here we prove that our client selection is unbiased (Lemma 4.1). The proof is almost identical
to the one for Lemma 3.3. We present a proof here for the sake of completeness.

Proof of Lemma 4.1. Recall that ⟨∆̃(t+τ),∇F̂ (x(t))⟩ = ⟨ 1
|A(t)|

∑
i∈A(t) ∆̃

(t+τ)
i ,∇F̂ (x(t))⟩ where A(t) is a set of size K.

EA(t)

[
⟨∆̃(t+τ),∇F̂ (x(t))⟩

]
= EA(t)

⟨ 1

|A(t)|
∑

i∈A(t)

∆̃
(t+τ)
i ,∇F̂ (x(t))⟩

 (56)

(|A(t)| = K)

=
1

K
EA(t)

⟨∑
i∈A(t)

∆̃
(t+τ)
i ,∇F̂ (x(t))⟩

 =
1

K

 ∑
i∈A(t)

EA(t)⟨∆̃(t+τ)
i ,∇F̂ (x(t))⟩

 (57)

=
1

K

[
KEA(t)⟨∆̃(t+τ)

i ,∇F̂ (x(t))⟩
]

(for an arbitrary i ∈ A(t))

= EA(t)⟨v(t)
i ,∇F̂ (x(t))⟩ =

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇F̂ (x(t))⟩ = ⟨

N∑
i=1

pi∆̃
(t+τ)
i ,∇F̂ (x(t))⟩ (58)
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Bounding the variance. Bounding the variance is at the core of our proof of convergence. Assumption 3.1 plays a pivotal
role in bounding the variance. The main difficulty and difference between this proof and the proof of Lemma 3.4 is that
firstly the variance is effected by the divergence caused by local steps, and secondly ∆̃

(t+τ)
i may not be integral vectors and

it could potentially have O(n) nonzero entries.

In order to handle the divergence caused by local steps we assume Lipschitzness. First, let us derive useful inequalities
using the Lipschitzness condition.

Consequences of Lipschitzness. Consider t-th iteration and recall the definition of Lt i.e., Lt is such that for all i ∈ [N ]
and j ∈ [τ ] it holds ∥∥∥∇f̂i(x(t,j)

i )−∇f̂i(x(t))
∥∥∥ ≤ Lt∥x(t,j)

i − x(t)∥

where x
(t)
i = x(t) and x

(t,j)
i are the local models for client i at time step t and t + j, respectively. We first bound the

divergence of x(t,τ)
i from x(t).

∥∥∥x(t,τ)
i − x(t)

∥∥∥ =

∥∥∥∥∥∥1τ
τ−1∑
j=0

ṽ
(t,j)
i

∥∥∥∥∥∥ ≤ 1

τ

τ−1∑
j=0

∥∥∥ṽ(t,j)
i

∥∥∥ ≤ √r (59)

Since ṽ(t,j)
i ∈ P , the same upper bound holds for every 0 ≤ j ≤ τ ; ∥x(t,j)

i − x(t)∥ ≤
√
r. Assuming Lt, for all 0 ≤ j ≤ τ ,∥∥∥∇f̂i(x(t,j)

i )−∇f̂i(x(t))
∥∥∥ ≤ L∥x(t,j)

i − x(t)∥ ≤ Lt

√
r (60)

Note ζ(t,j)i are sampled according to x
(t,j)
i , and∇f̃i(x(t,j)

i , ζ
(t,j)
i ) estimates∇f̂i(x(t,j)

i ) within factor σ i.e., ∥∇f̂i(x(t,j)
i )−

∇f̃i(x(t,j)
i , ζ

(t,j)
i )∥ ≤ σ. Hence, given this estimation and equation (60), for every 0 ≤ j ≤ τ it holds that∥∥∥∇f̃i(x(t,j)

i , ζ
(t,j)
i )−∇f̂i(x(t))

∥∥∥ ≤ σ + Lt

√
r (61)

Proof of Lemma 4.2. By Lemma 4.1 we know:

EA(t)

[
⟨∆̃(t+τ),∇F̂ (x(t))⟩

]
= ⟨

N∑
i=1

pi∆̃
(t+τ)
i ,∇F̂ (x(t))⟩

where ∆̃(t+τ) = 1
|A(t)|

∑
i∈A(t) ∆̃

(t+τ)
i . Define ∆

(t+τ)
=
∑N

i=1 pi∆̃
(t+τ)
i . Each client is selected to be in set A(t)

independently and with replacement. Therefore,

Var(⟨∆̃(t+τ),∇F̂ (x(t))⟩) = 1

K
EA(t)

[(
⟨∆̃(t+τ)

s ,∇F̂ (x(t))⟩ − ⟨∆(t+τ)
,∇F̂ (x(t))⟩

)2]
(62)

where ∆̃
(t+τ)
s = x

(t,τ)
s − x

(t,0)
s corresponds to an arbitrary client in A(t). Note that both terms

⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ and ⟨∆(t+τ)

,∇F̂ (x(t))⟩ are nonnegative. We provide an upper bound on the absolute value of∣∣∣⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩
∣∣∣ by considering two cases.

Case 1. In the first case we have ⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ ≥ ⟨∆(t+τ)

,∇F̂ (x(t))⟩. Therefore,∣∣∣⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩
∣∣∣ (63)

= ⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩ (64)

=

N∑
i=1

pi⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩ − ⟨

N∑
i=1

pi∆̃
(t+τ)
i ,∇F̂ (x(t))⟩ (65)
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Observe that ∆̃(t+τ)
s = 1

τ

∑τ−1
j=0 ṽ

(t,j)
s with ṽ

(t,j)
s = argmaxv∈P (M)⟨v,∇f̃s(x

(t,j)
s , ζ

(t,j)
s )⟩.

Therefore, using the Lipschitzness condition we get the following. In what follows let d1 = Lt
√
r1 and d2 = σ1 be vectors

of length n where every components are Lt
√
r and σ, respectively.

⟨∆̃(t+τ)
s ,∇f̂i(x(t)

i )⟩ = 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
s ,∇f̂i(x(t)

i )⟩ (66)

≤ 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
s ,∇f̃i(x(t,j)

i ) + d1 + d2⟩ (by equation (61))

≤ 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
i ,∇f̃i(x(t,j)

i ) + d1 + d2⟩ (by definition of ṽ(t,j)
i )

≤ 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
i ,∇f̂i(x(t)

i )⟩+ 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
i ,d1 + d2⟩ (67)

≤ 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
i ,∇f̂i(x(t)

i )⟩+ (σr + Ltr
1.5) (68)

= ⟨∆̃(t+τ)
i ,∇f̂i(x(t)

i )⟩+ (σr + Ltr
1.5) (69)

= ⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩+ (σr + Ltr

1.5) (x(t)
i = x(t))

Therefore, for Case 1 we get

N∑
i=1

pi⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩ − ⟨

N∑
i=1

pi∆̃
(t+τ)
i ,∇F̂ (x(t))⟩ (70)

≤
N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ − ⟨

N∑
i=1

pi∆̃
(t+τ)
i ,∇F̂ (x(t))⟩+ (σr + Ltr

1.5) (71)

=

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x)−∇F̂ (x)⟩+ (σr + Ltr

1.5) (72)

=

N∑
i=1

pi

1

τ

τ−1∑
j=0

⟨ṽ(t,j)
i ,∇f̂i(x)−∇F̂ (x)⟩

+ (σr + Ltr
1.5) (73)

≤
N∑
i=1

pi

1

τ

τ−1∑
j=0

rγt

+ (σr + Ltr
1.5) (Assumption 3.1)

≤ rγt + (σr + Ltr
1.5) (74)

Note that in the above we used the fact that for each ṽ
(t,j)
i we have ṽ

(t,j)
i ∈ {0, 1}n and |ṽ(t,j)

i |1 = r.

Case 2. In this case we have ⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ ≤ ⟨∆(t+τ)

,∇F̂ (x(t))⟩. Therefore,

|⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩| (75)

= ⟨∆(t+τ)
,∇F̂ (x(t))⟩ − ⟨∆̃(t+τ)

s ,∇F̂ (x(t))⟩ (76)

= ⟨∆(t+τ)
,∇F̂ (x(t))⟩ −

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)

s ,∇F̂ (x(t))⟩ (77)

+

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ (78)
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≤
N∑
i=1

pi

∣∣∣⟨∆̃(t+τ)
i ,∇F̂ (x(t))−∇f̂i(x(t))⟩

∣∣∣ (79)

+

N∑
i=1

pi

(
⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

)
(80)

≤
N∑
i=1

pi
τ

τ−1∑
j=0

∣∣∣⟨ṽ(t,j)
i ,∇F̂ (x(t))−∇f̂i(x(t))⟩

∣∣∣ (81)

+

N∑
i=1

pi

(
⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

)
(82)

≤ rγt +

N∑
i=1

pi

(
⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

)
(83)

where in the last inequality we used the same argument by noting ṽ
(t,j)
i ∈ {0, 1}n and |ṽ(t,j)

i |1 = r. Now it is left to provide

an upper bound for
∣∣∣⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

∣∣∣.
∣∣∣⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

∣∣∣ (84)

=
∣∣∣⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)
i ,∇f̂s(x(t))⟩+ ⟨∆̃(t+τ)

i ,∇f̂s(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

∣∣∣ (85)

=
∣∣∣⟨∆̃(t+τ)

i ,∇f̂i(x(t))−∇f̂s(x(t))⟩+ ⟨∆̃(t+τ)
i ,∇f̂s(x(t))⟩ − ⟨∆̃(t+τ)

s ,∇f̂i(x(t))⟩
∣∣∣ (86)

≤
∣∣∣⟨∆̃(t+τ)

i ,∇f̂i(x(t))−∇f̂s(x(t))⟩
∣∣∣+ ∣∣∣⟨∆̃(t+τ)

i ,∇f̂s(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

∣∣∣ (87)

By Assumption 3.1 we know that |∇f̂s(x(t)) − ∇F̂ (x(t))|∞ ≤ γt and |∇f̂i(x(t)) − ∇F̂ (x(t))|∞ ≤ γt. Therefore,
|∇f̂s(x(t))−∇f̂i(x(t))|∞ ≤ 2γt. This is used to upper bound the first term in (87). In order to bound the second term in
(87) we appeal to equation (69) in Case 1. (Note that there are two cases two consider here because of the absolute value,
however the argument is similar and we argue about one case.) Let 1 be the all one vector of length n, then∣∣∣⟨∆̃(t+τ)

i ,∇f̂i(x(t))−∇f̂s(x(t))⟩
∣∣∣+ ∣∣∣⟨∆̃(t+τ)

i ,∇f̂s(x(t))⟩ − ⟨∆̃(t+τ)
s ,∇f̂i(x(t))⟩

∣∣∣ (88)

≤ 1

τ

τ−1∑
j=0

∣∣∣⟨ṽ(t,j)
i ,∇f̂i(x(t))−∇f̂s(x(t))⟩

∣∣∣+ ∣∣∣⟨∆̃(t+τ)
s ,∇f̂s(x(t))⟩ − ⟨∆̃(t+τ)

s ,∇f̂i(x(t))⟩
∣∣∣ (89)

+ (σr + Ltr
1.5) (90)

≤ 1

τ

τ−1∑
j=0

∣∣∣⟨ṽ(t,j)
i ,∇f̂i(x(t))−∇f̂s(x(t))⟩

∣∣∣+ 1

τ

τ−1∑
j=0

∣∣∣⟨ṽ(t,j)
s ,∇f̂s(x(t))−∇f̂i(x(t))⟩

∣∣∣ (91)

+ (σr + Ltr
1.5) (92)

≤ 1

τ

τ−1∑
j=0

⟨ṽ(t,j)
i , 2γt1⟩+

1

τ

τ−1∑
j=0

⟨ṽ(t,j)
s , 2γt1⟩+ (σr + Ltr

1.5) (93)

≤ 4rγt + (σr + Ltr
1.5) (94)

where in the last inequality we used the fact that each ṽ
(t,j)
i , ṽ

(t,j)
s ∈ {0, 1}n and |ṽ(t,j)

i |1 = |ṽ(t,j)
s |1 = r.

Putting together the above inequality and the inequality in equation 83 we obtain the following upper bound for Case 2∣∣∣⟨∆̃(t+τ)
s ,∇F̂ (x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩
∣∣∣ ≤ 5rγt + (σr + Ltr

1.5).

Finally, we are at the place where we can present our upper bound for the variance

Var(⟨∆̃(t+τ),∇F̂ (x(t))⟩) ≤ 1

K
EA(t)

[(
6rγ + 2(σr + Lr1.5)

)2]
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=
1

K

(
6rγt + 2(σr + Ltr

1.5)
)2

.

C.2. Proof of Theorem 4.3

Convergence of FEDCG+. While at the high level this proof is similar to the previous convergence proofs in Theorems 3.2,
3.5, it still requires taking care of the error caused due to the local steps. (This is an additive error term that cannot be
controlled by sampling more clients at each round.)

Proof of Theorem 4.3. For any t ∈ Iτ we analyze the difference between F̂ (x(t)) and F̂ (x(t+τ)). Recall that x(t+τ) ←
x(t) + η∆̃(t+τ) where η is the server’s learning rate and ∆̃(t+τ) = 1

|A(t)|
∑

i∈A(t) ∆̃
(t+τ)
i = 1

τ |A(t)|
∑

i∈A(t)

∑τ−1
j=0 ṽ

(t,j)
i .

Similar to the proof of Theorem 3.2 equation (14) we derive that

F̂ (x(t+τ))− F̂ (x(t)) ≥ η⟨∆̃(t+τ),∇F̂ (x(t)⟩ − η2 ·mF r
2

2
(95)

Let ∆
(t+τ)

=
∑N

i=1 pi∆̃
(t+τ)
i and by Lemma 4.1 we have that EA(t)

[
η⟨∆̃(t+τ),∇F̂ (x(t))⟩

]
= η⟨∆(t+τ)

,∇F̂ (x(t))⟩.
Given Lemma 4.2 and using Chebyshev’s inequality, over the random choices of A(t) and for every α > 0 and χ2 =
1
K

(
6rγt + 2(σr + Ltr

1.5)
)2

we obtain

P
[∣∣∣⟨∆̃(t+τ),∇F̂ (x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩
∣∣∣ ≤ χ

α

]
≥ 1− α2 (96)

Given this and (95), with probability at least 1− α2 and in the worst case it holds that

F̂ (x(t+τ)) ≥ F̂ (x(t)) + η⟨∆̃(t+τ),∇F̂ (x(t)⟩ − η2 ·mF r
2

2
(97)

≥ F̂ (x(t)) + η
(
⟨∆(t+τ)

,∇F̂ (x(t))⟩ − χ

α

)
− η2 ·mF r

2

2
(98)

Claim C.1. Let γt be as in Assumption 3.1, we have ⟨∆(t+τ)
,∇F̂ (x(t))⟩ ≥

∑N
i=1 pi⟨∆̃

(t+τ)
i ,∇f̂i(x(t))⟩ − rγt.

Proof. Proof is similar to the proof of Lemma A.3.

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ − ⟨∆(t+τ)

,∇F̂ (x(t))⟩ =
N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))−∇F̂ (x(t))⟩

=

N∑
i=1

τ−1∑
j=0

pi
τ
⟨ṽ(t,j)

i ,∇f̂i(x(t))−∇F̂ (x(t))⟩ ≤
N∑
i=1

τ−1∑
j=0

pi
τ
rγt = rγt

Therefore,

F̂ (x(t+τ)) ≥ F̂ (x(t)) + η(

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ − rγt −

χ

α
)− η2 ·mF r

2

2
(99)

Claim C.2. ⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ ≥ ⟨v(t)

i ,∇f̂i(x(t))⟩ − 2(σr + Ltr
1.5).

Hence, by Claim C.2 and equation (99) we have

F̂ (x(t+τ)) ≥ F̂ (x(t)) + η(

N∑
i=1

pi⟨∆̃(t+τ)
i ,∇f̂i(x(t))⟩ − rγt −

χ

α
− 2(σr + Ltr

1.5))− η2 ·mF r
2

2
(100)
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Now, by changing signs and adding OPT to both sides, we get

OPT− F̂ (x(t+τ)) ≤ (1− η)
(
OPT− F̂ (x(t))

)
+ η

(
rγt +

χ

α
+ 2(σr + Ltr

1.5)
)
+

η2 ·mF r
2

2
(101)

Applying the same inequality inductively gives and using 1 > 1− η

OPT− F̂ (x(t+τ)) ≤ (1− η)t+1
(
OPT− F̂ (0)

)
(102)

+ η
(
r
∑
t∈Iτ

γt +
6r
∑

t∈Iτ
γt + 2(σrT/τ +

∑
t∈Iτ

Ltr
1.5)

α
√
K

+ 2(σrT/τ + r1.5
∑
t∈Iτ

Lt)
)
+

Tη2 ·mF r
2

2

(103)

= (1− η)t+1OPT (104)

+ η
(
r
∑
t∈Iτ

γt +
6r
∑

t∈Iτ
γt + 2(σrT/τ +

∑
t∈Iτ

Ltr
1.5)

α
√
K

+ 2(σrT/τ + r1.5
∑
t∈Iτ

Lt)
)
+

Tη2 ·mF r
2

2

(105)

Taking the union bound over T/τ steps and α =
√

δτ
T , with probability at least 1− T · α2/τ = 1− δ, we get(

1− (1− η)T/τ
)
OPT ≤ F̂ (x(T/τ)) (106)

+ η

(
r
∑
t∈Iτ

γt +
6r
∑

t∈Iτ
γt + 2(σrT/τ +

∑
t∈Iτ

Ltr
1.5)√

Kτδ/T
+ 2(σrT/τ + r1.5

∑
t∈Iτ

Lt)

)
(107)

+
Tη2 ·mF r

2

2τ
(108)

Setting η = τ/T yields

(1− 1/e)OPT ≤ F̂ (x(T/τ)) +
τ

T

(
r
∑
t∈Iτ

γt +
6r
∑

t∈Iτ
γt + 2(σrT/τ +

∑
t∈Iτ

Ltr
1.5)√

Kτδ/T
+ 2(σrT/τ + r1.5

∑
t∈Iτ

Lt)

)
(109)

+
τ ·mF r

2

2T
(110)

= F̂ (x(T/τ)) +
τrD

T
+

√
τ(6rD + 2r1.5Q)√

KTδ
+ 2σr(

√
τ√

KTδ
+ 1) +

2τr1.5Q

T
+

τ ·mF r
2

2T
(111)

Proof of Claim C.2

Proof of Claim C.2. Recall the definitions of ∆̃(t+τ)
i and v

(t)
i . For ∆̃(t+τ)

i = 1
τ

∑τ−1
j=0 ṽ

(t,j)
i where for each j we have

ṽ
(t,j)
i = argmaxy∈P⟨y,∇f̃i(x

(t,j)
i )⟩. Furthermore, v(t)

i = argmaxy∈P⟨y,∇f̂i(x
(t)
i )⟩. We have,

⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨∆̃(t+τ)

i ,∇f̂i(x(t))⟩ = 1

τ

τ−1∑
j=0

(⟨v(t)
i ,∇f̂i(x(t))⟩ − ⟨ṽ(t,j)

i ,∇f̂i(x(t))⟩) (112)

On one hand, both∇f̂i(x(t)
i ) and∇f̃i(x(t,j)

i ) are nonnegative vectors and each ṽ
(t,j)
i and v

(t)
i corresponds to a maximum-

weight independent set in the matroid, with respect to the gradient vectors, and they can be found easily by a greedy
algorithm. On the other hand, equation (61) tells us

∥∥∥∇f̃i(x(t,j)
i , ζ

(t,j)
i )−∇f̂i(x(t))

∥∥∥ ≤ σ + Lt
√
r.
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Let A = {e | v(t)
i (e) = 1} be the set of indices where v

(t)
i is one, similarly define B = {e | ṽ(t,j)

i (e) = 1}. Then, by
definition and equation (61) we get:

⟨v(t)
i ,∇f̂i(x(t))⟩ =

∑
a∈A

∇f̂i(x(t))(a) (113)

≥
∑
b∈B

∇f̂i(x(t))(b) ≥
∑
b∈B

∇f̃i(x(t,j)
i , ζ

(t,j)
i )(b)− r(σ + Lt

√
r) (114)

Similarly, we have

⟨ṽ(t,j)
i ,∇f̃i(x(t,j)

i , ζ
(t,j)
i )⟩ =

∑
b∈B

∇f̃i(x(t,j)
i , ζ

(t,j)
i )(b) (115)

≥
∑
a∈A

∇f̃i(x(t,j)
i , ζ

(t,j)
i )(a) ≥

∑
a∈A

∇f̂i(x(t))(a)− r(σ + Lt

√
r). (116)

Putting the above two together gives us the desired bound.

C.3. Gradient Estimation

In terms of computation cost on clients’ devices, we point out that the definition of multilinear extension involves summing
over all subsets S of E. There are 2|E| such subsets, thus even computing ĝ(x) for a single x could take exponential time.
However, we can randomly sample m subsets R1, . . . , Rm of E according to x. Then a simple application of Chernoff’s
bound shows for any multilinear extension ĝ and x,

∣∣ 1
m

∑m
i=1 g(Ri)− ĝ(x)

∣∣ ≤ σmaxS g(S) (Vondrák, 2008; Călinescu
et al., 2011) with probability at least 1− e−mσ2/4. Observe that ∂ĝ

∂x(e) = E[g(R ∪ {e})]− E[g(R)] where R is a random
subset of E \ {e} sampled according to x. Hence, by a similar argument, with m random samples, we can compute an
σ-approximation of∇ĝ(x) with 1− e−mσ2/4 probability. By suitably choosing m as in Algorithm 2, we can assume the
gradients are estimated within (1± σ) accuracy with high probability.

The above discussion yields:

Lemma C.3. Let σ > 0 be an error for gradient estimation and set m = O(log (1/δ)/σ2) for δ > 0. Let ζ(t,j)i =

{R(t,j,1)
i , . . . , R

(t,j,m)
i } be subsets of E that are sampled independently according to i-th client’s local model x(t,j)

i . Let
∇f̃i(x(t,j)

i , ζ
(t,j)
i ) denote the stochastic gradient for the i-th client that approximates∇f̂i(x(t,j)

i ). Then with 1−δ probability
we have ∥∇f̂i(x(t,j)

i )−∇f̃i(x(t,j)
i , ζ

(t,j)
i )∥ ≤ σ.

D. Discrete Algorithm in Federated Setting: Examples
We consider two well-studied problems, namely Facility Location and Maximum Coverage problems and
discuss the details of how to compute importance factors in federated setting efficiently and prove that the expected number
of clients participating in each round is small for these two problems.

D.1. Facility Location Problem

Let C be a set of N clients and E be a set of facilities with |E| = n. For c : C × E → R let the i-th client’s score function
over a subset of facilities be fi(A) = maxj∈A c(i, j). The objective for Max Facility Location is

max
S⊆E,|S|≤k

{
F (A) =

N∑
i=1

max
j∈A

c(i, j)

}

For each client i the importance factor is max
j∈E

c(i,j)
F ({j}) .

In many applications computing importance factors is straightforward. Let us elaborate on this with an real-world application.

Movie recommendation system. Consider a movie recommendation application (Stan et al., 2017) where each client i
has a user-specific utility function fi to evaluate sets of movies. The global task is to find a set of k movies that are most
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Algorithm 4 Computing importance factors for Facility Location

1: Input: Ground set E
2: Let O be a vector of length n. {intention: O[i] = F ({i}).}
3: for each client i in parallel do
4: Compute Oi = [fi({1}), . . . , fi({|E|})]
5: Send Oi back to the secure aggregator.
6: end for
7: SecAgg: O =

∑
i∈[N ]Oi

8: Server sends O to all clients.
9: for each client i in parallel do

10: Compute wi = maxj∈E
c(i,j)
O[j]

11: end for

satisfactory to all the clients. An example is the MovieLens dataset consisting of 1 million ratings by N = 6041 clients for
|E| = n = 4000 movies. It is in the interest of clients that we respect their privacy and they are reluctant to share their rating
with a central server and other clients. We consider a well motivated objective function. Let ri,j denote the rating of client i
for movie j (if such a rating does not exist set ri,j = 0). We associate to each client i a facility location objective function
fi(S) = maxj∈S r(i, j) where S ⊆ E is a subset of movies. The servers objective is maxS⊆E,|S|≤k

1
N

∑
fi(S). In this

example, the average rating of each movie is publicly available. That is F ({j}) = 1/N
∑N

i=1 fi({j}) for each movie j is
publicly available. Hence, it is straightforward for each client to compute its own importance factor.

Computing importance factors in federated setting. It is straightforward to see each client can compute its corresponding
importance factor in a federated setting and using a secure aggregator without sharing its data with other clients. Each
client i sends a vector (c(i, 1), . . . , c(i, n)) to the server and by simply summing up these vectors the server has a histogram
over facilities. This histogram is then broadcasts to the clients where they can compute their own importance factor; see
Algorithm 4). Furthermore, Algorithm 4 requires only two communication rounds.

Theorem D.1. In Algorithm 4, every clients correctly computes its own importance factor. Moreover, Algorithm 4 has only
two communication rounds and during each round each client requires only O(n) local function evaluations.

Having wi on hand we can execute Algorithm 3 for Max Facility Location problem. Note that, in this problem we
are dealing with a uniform matroid of rank k.

Theorem D.2. Suppose clients’ importance factors are computed using Algorithm 4 and let ε ∈ (0, 1). Algorithm 3 after k
communication rounds returns a set S of size k such that with probability at least 1− 1/n

(1− 1/e− ε)OPT ≤ F (S)

Moreover, the expected number of clients participating during each round is Õ(kn2/ε2).

Proof. The approximation guarantee follows from Theorem 5.1. The expected number of clients participating in each round
of Algorithm 3 is Õ(kn2/ε2). This is because

n∑
i=1

κi ≤ κ

n∑
i=1

wi ≤ Õ(kn/ε2)

N∑
i=1

wi = Õ(kn/ε2)

N∑
i=1

max
j∈E

c(i, j)

F ({j})
≤ Õ(kn/ε2)

|E|∑
j=1

∑
i∈I c(i, j)

F ({j})

= Õ(kn/ε2)

|E|∑
j=1

F ({j})
F ({j})

= Õ(kn2/ε2)

D.2. Maximum Coverage Problem

Let C = {C1, . . . , CN} be a set of clients and E = {G1, . . . , Gn} be a family of sets where each Gi ⊆ C is a group of
clients. Given a positive integer k, in the Max Coverage problem the objective is to select at most k groups of clients

25



Decomposable Submodular Maximization in Federated Setting

Algorithm 5 Computing importance factors for Max Coverage

1: Let O be a vector of length n. {intention: O[i] = |Gi|.}
2: for each client i in parallel do
3: Compute vector Oi ∈ {0, 1}n {

Oi[a] = 1 if Ci ∈ Ga

Oi[a] = 0 otherwise

4: Send Oi back to the secure aggregator.
5: end for
6: Secure aggregator computes O =

∑
i∈[N ]Oi and sends it to the server.

7: Server sends O to all clients.
8: for each client i in parallel do
9: Compute wi = max

Ci∈Ga

1
|O[a]|

10: end for

from E such that the maximum number of clients are covered, i.e., the union of the selected groups has maximal size. One
can formulate this problem as follows. For every i ∈ [N ] and A ⊆ [n] define fi(A) as

fi(A) =

{
1 if there exists a ∈ A such that Ci ∈ Ga,

0 otherwise.

Note that fi’s are monotone and submodular. Furthermore, define F (A) =
∑

i∈[N ] fi(A) which is monotone and submodular
as well. Now the Max Coverage problem is equivalent to

max
A⊆[n],|A|≤k

F (A) =
∑
i∈[N ]

fi(A)

 (117)

For each client Ci, its importance factor wi is max
Ga∈E,Ci∈Ga

1
|Ga| .

Computing importance factors in federated setting. Having a histogram over the group sizes suffices for computing the
importance factors. Similar to Facility Location the importance factors can be computed in federated setting by
having the membership histograms over the groups; see Algorithm 5.
Theorem D.3. In Algorithm 5, every clients correctly computes its own importance factor without revealing which groups
they belong to. Moreover, Algorithm 5 has only two communication rounds.
Remark D.4. We point out that a simple algorithm where at each round clients share their membership with the server using
SecAgg protocols is applicable here. However, such algorithm requires full client participation at each round. This can be
resolved by sampling sufficiently many clients at each round.

Having wi, we can execute Algorithm 3 for Max Coverage problem. Note that, in this problem we are dealing with a
uniform matroid of rank k.
Theorem D.5. Suppose clients’ importance factors are computed using Algorithm 5 and let ε ∈ (0, 1). Algorithm 3 after k
communication rounds returns a set S ⊆ E of size k such that with probability at least 1− 1/n

(1− 1/e− ε)OPT ≤ F (S)

Moreover, the expected number of clients participating during each round is Õ(kn2/ε2).

Proof. The approximation guarantee follows from Theorem 5.1. The expected number of clients participating in each round
of Algorithm 3 is Õ(kn2/ε2). This is because

n∑
i=1

κi ≤ κ

n∑
i=1

wi ≤ Õ(kn/ε2)

N∑
i=1

wi = Õ(kn/ε2)

N∑
i=1

max
Ga∈E,Ci∈Ga

1

|Ga|
≤ Õ(kn/ε2)

|E|∑
j=1

|Gj |
|Gj |

= Õ(kn2/ε2)
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