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Abstract

Contaminated or adulterated food poses a sub-001
stantial risk to human health. Given sets of002
labeled web texts for training, Machine Learn-003
ing and Natural Language Processing can be004
applied to automatically extract pointers to-005
wards such risks in order to generate early006
warnings. We publish a dataset of 7,619 short007
texts describing food recalls. Each text is008
manually labeled, on two granularity levels009
(coarse and fine), for food products and haz-010
ards that the recall corresponds to. We describe011
the dataset, also presenting baseline scores012
of naive, traditional, and transformer models.013
We show that Support Vector Machines based014
on a Bag of Words representation outperform015
RoBERTa and XLM-R on classes with low sup-016
port. We also apply in-context learning with017
PaLM, leveraging Conformal Prediction to im-018
prove it by reducing the number of classes used019
to select the few-shots. We call this method020
Conformal Prompting.021

1 Introduction022

Food-bourne illnesses and contaminated food pose023

a serious threat to human health and lead to thou-024

sands of deaths (Majowicz et al., 2014; de No-025

ordhout et al., 2014). Natural Language Process-026

ing (NLP) solutions based on Machine and Deep027

Learning (ML, DL) or Large Language Models028

(LLMs) may enable fast responses to new threats by029

generating warnings from publicly available texts030

on the internet. These texts, however, as we show,031

can be noisy and are characterized by thousands032

of classes. While we know about the existence of033

singular text-based datasets on the topic of food-034

bourne illnesses (Hu et al., 2022), they focus on035

the detection of such illnesses rather than their clas-036

sification. In this work, we address this topic and037

provide the following contributions:038

1. We present the first (to our knowledge) text-039

based dataset for food hazard classification040

comprising labels for food product and food 041

hazard classification, at two granularities.1 042

2. We present a benchmark on the introduced 043

dataset, using naive, traditional ML, and DL- 044

based classifiers, showing that a Support Vec- 045

tor Machine outperforms the rest due to its 046

better performance for low-support classes. 047

3. We propose a method based on Conformal 048

Prediction (Vovk et al., 2005, CP) to improve 049

the shot selection for in-context learning (ICL) 050

of LLMs, enabling not only feasible but also 051

more accurate prompting. 052

In the following sections, we first present some re- 053

lated work in Section 2 and then describe our meth- 054

ods, data, and results in Sections 3 and 4. Lastly, 055

we discuss the results and conclude this paper in 056

Section 5 followed by a short discussion of limita- 057

tions to our approach. 058

2 Background and Related Work 059

The formulation of the attention mechanism by 060

Vaswani et al. (2017) has drastically changed the 061

field of NLP. ML models based on this architecture 062

and the self-supervised masked language model- 063

ing pre-training paradigm easily outperform tradi- 064

tional methods both on monolingual (Devlin et al., 065

2019; Liu et al., 2019) and multilingual (Conneau 066

et al., 2020) data. As training transformers usu- 067

ally takes enormous amounts of data, already pre- 068

trained models are typically further trained (fine- 069

tuned) on smaller amounts of task-specific data. 070

Although transformers were originally described as 071

an encoder-decoder architecture (Vaswani et al., 072

2017), mapping an input-text to an output-text, 073

models intended for classification tasks usually 074

only employ an encoder (Devlin et al., 2019; Liu 075

1Publicly available, hidden for anonymity.
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et al., 2019; Conneau et al., 2020), that is fol-076

lowed by a number of task-specific layers (called077

the head). These heads are usually added to the078

pre-trained base model directly before fine-tuning.079

Recently, LLMs such as PaLM (Chowdhery080

et al., 2022) have been shown to exceed the capabil-081

ities of smaller transformers even without further082

fine-tuning. That is, by simply providing a context083

of a few labeled samples per class, LLMs are able084

to predict the classes of unseen samples within this085

context. As LLMs are usually text-to-text trans-086

formers, the context is provided directly in each087

prompt. This paradigm is commonly referred to as088

few-shot-prompting or in-context learning (Brown089

et al., 2020). Since the detection of LLMs’ few-090

shot capabilities, many newer LLMs have been091

designed for high few-shot performance (Gao et al.,092

2021; Chowdhery et al., 2022).093

Current work on few-shot prompt engineering094

focuses mostly on creating/finding the optimal few-095

shot samples from the training data rather than lim-096

iting the number of classes these samples are taken097

from. Ahmed et al. (2023) proposed a workflow098

for automatically finding similar samples from the099

pool of labeled “training" samples for code sum-100

marization. Shi et al. (2023) focused on automatic101

generation of Chain of Thought (CoT) labels for102

samples in reasoning tasks. CoT is another prompt-103

ing paradigm that asks the LLM to provide a chain104

of reasoning before delivering the prediction and105

has been shown to drastically improve reasoning106

performance (Wei et al., 2022). Nevertheless, to the107

best of our knowledge, there is no previous work on108

how to leverage few-shot-prompting in LLMs for109

multiclass prediction problems with 100+ classes.110

The CP framework (Vovk et al., 2005) is a111

methodology for associating predictions of a classi-112

fication algorithm with confidence guarantees, e.g.,113

if a user in a multi-class setting wants to be sure114

that 95% of the predictions are correct, CP will do115

this by outputting a set of labels, i.e., multi-label116

adhering to the set guarantees. It can be applied to117

any classification (or regression) algorithm, as long118

as a calibration set is set aside together with a non-119

conformity function. In our context, the stronger120

the classification algorithm, and the better the non-121

conformity function, the fewer labels (hence, shots)122

will be produced with the same guarantee. We point123

to the work of Vovk et al. (2005); Johansson et al.124

(2014); Bostrom et al. (2017) for more on CP.125

3 Method 126

3.1 Problem Description 127

The basic problem we address in this paper is ex- 128

treme multi-label classification on heavily imbal- 129

anced data. More formally, given a number of 130

training-texts Ti, i ∈ {1, 2, . . . , N} and their vec- 131

tor of corresponding classes Yi we aim to train 132

a classifier f(Ti, ·) = Ŷi that minimizes the er- 133

ror |Yi − Ŷi|. For standard ML classifiers, the 134

function f(Ti, ·) is usually a two step process with 135

the first step mapping the text to a machine read- 136

able embedding vector Xi = e(Ti), and the sec- 137

ond one involving the learning process on Xi: 138

f(Ti, ·) = f ′(Xi, ·). For the class-labels in Yi = 139

[yi,1, yi,2, . . . , yi,M ] we have yi,j ∈ {0, 1}∀i, j, 140

while Ŷi = [ŷi,1, ŷi,2, . . . , ŷi,M ] is the vector of 141

probabilities of Ti belonging to class j and there- 142

fore we have ŷi,j ∈ [0, 1]∀i, j. For all our classes, 143

we have at least M > 10. While only in rare cases, 144

our data contains samples with |Yi| > 1, i.e. multi- 145

ple true class-labels (multilabel). 146

3.2 ML Classifiers 147

As a naive baseline, we report the performance 148

of two classifiers. The random classifier (RAN- 149

DOM) yields each Ŷi by generating a random num- 150

ber in [0, 1] for each ŷi,j . The support-based base- 151

line (SUPPORT), chooses each ŷi,j to be the nor- 152

malized support of the class: 153

ŷi,j =

∑N
k=1 yk,j
N

. 154

In order to select a set of predicted classes from 155

the probabilities in Ŷi, we first amplify the differ- 156

ences in our models’ predictions per sample, by 157

normalizing them according to 158

Ŷi −max1≤j≤M (ŷi,j)

max1≤j≤M (ŷi,j)−min1≤j≤M (ŷi,j)
. 159

Afterwards, we assume all classes j with ŷi,j > 0.5 160

to be predicted by the model. 161

3.2.1 Traditional ML Classifiers 162

We use Bag-of-Words (BOW) and Term Frequency 163

- Inverse Document Frequency (Spärck Jones, 1972, 164

TF-IDF) encodings, combined with LR or SVM 165

classifiers.2 During the training of the SVMs we 166

use a linear kernel and optimize the parameter 167

2For the classifiers, we use the implementation from the
Python library scikit-learn (Pedregosa et al., 2011).
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C ∈ {0.5, 1.0, 2.0} for L2 regularization on the168

validation splits. For LR we use a ‘liblinear’ solver169

and optimize C ∈ {0.5, 1.0, 2.0} for both L1 and170

L2 regularization. For both classifiers, we use171

a one-vs-all approach to multilabel classification,172

which means that we train one binary classifier for173

each class in the predicted label.174

Text pre-processing comprises the applica-175

tion of a TreebankWordTokenizer, followed by176

PorterStemmer from the nltk (Bird et al., 2009)177

Python package. For the BOW representation,3 we178

create a vector:179

Xi = [xi,1, xi,2, . . . , xi,V ], ∀xi,v ∈ [0, 1]180

for each sample i, where V is the vocabulary size,181

and xi,v is the normalized count of occurrences of182

token v in sample i. For the TF-IDF embedding,183

for each sample i we calculate a vector:184

Xi =

Mi∑
j=0

[tfj,1 · idfj , tfj,2 · idfj , . . . , tfj,N · idfj ]185

where N is the number of samples in the training186

data, tfj,k is the count of the samples’ j-th token187

in the k-th training sample, and idfj = ln N
nj

with188

nj being the number of documents that contain189

token j. In order to make the above embeddings190

independent of the sample length we normalize Xi191

with the L2-norm in both cases.192

3.2.2 Encoder-only Transformers193

As a more recent counterpart to the previously194

described traditional ML classifiers, we fine-tune195

two models from huggingface’s transformers4196

library: RoBERTabase (Liu et al., 2019) and XLM-197

RoBERTabase (Conneau et al., 2020, XLM-R) in198

their base-sizes (RoBERTa: 125M params; XLM-199

R: 270M params). Both models use the structure200

introduced by BERTbase (Devlin et al., 2019, L=12,201

H=768, A=12), which improves comparability of202

their results. The different parameter counts result203

mainly from the different vocabulary sizes used204

in their Byte-Pair-based encoders (Sennrich et al.,205

2016): RoBERTa uses a vocabulary of size 50k,206

while XLM-R uses 250k tokens. For the purposes207

of this paper, the most important difference be-208

tween the models is that while RoBERTa is only209

pre-trained on English texts, XLM-R is pre-trained210

on 100 different languages.211

3We use or own implementation for the representations.
4https://huggingface.co/docs/transformers/index

To fine-tune these two models, we use the stan- 212

dard sequence classification heads provided by the 213

transformers library. We optimize training using 214

AdamW (Loshchilov and Hutter, 2019) in combina- 215

tion with a learning rate that stays constant for the 216

first two epochs and then declines linearly towards 217

1% of its starting value after 20 epochs. Further- 218

more, we employ early stopping with a patience 219

of four epochs on the maximum macro F1 score 220

computed on the validation set. We also use the 221

validation data to optimize the learning rate over 222

the values 2 · 10−5, 3 · 10−5, and 5 · 10−5. Due to 223

hardware limitations, we only use a batch size of 224

16 samples for training. 225

3.2.3 Prompting 226

As a final classifier, we employ few-shot prompting 227

with PaLM (Chowdhery et al., 2022), a text-to-text 228

transformer with 540B parameters. We use three 229

different kinds of prompts: (PaLM-ALL) A con- 230

text describing the classification task followed by 231

two randomly ordered text-label pairs taken from 232

the training data per class; (PaLM-CONF) This 233

is the basis of Conformal Prompting, where the 234

context describes the classification task, followed 235

by two labeled texts per class, ordered most prob- 236

able first, in a reduced prediction set of length 237

nconf derived by CP (Vovk et al., 2005); (PaLM- 238

LIMIT) A context describing the classification 239

task followed by the first nconf samples of the 240

PaLM-ALL prompt. The purpose of the less in- 241

tuitive PaLM-LIMIT prompt is to provide a base- 242

line for PaLM-CONF. An example of each of these 243

prompts is shown in Appendix A. 244

CP uses the concept of a non-conformity mea- 245

sure δ(Yi, Ŷi) in order to create sets of predicted 246

classes, which contain the true class with a prob- 247

ability of p ≥ 1 − α. In our case, this non- 248

conformity measure is simply the error on the true 249

class: δ(Yi, Ŷi) = 1 − ŷi,j |yi,j = 1. Here, Ŷi 250

are the predictions of the best traditional classifier 251

(BOW-SVM), scaled so that
∑M

j=0 ŷi,j = 1, and 252

Ŷi are the corresponding true labels. If one defines 253

q = ⌈(N+1)(1−α)⌉
N , and q̂ as the qth empirical quan- 254

tile of {δ(Yi, Ŷi)|1 ≤ i ≤ N}, it can be shown 255

that for any prediction Ŷ of the classifier on an un- 256

known sample, a set of classes {j|ŷj ≥ 1− q̂} con- 257

tains the true class with probability p ≥ 1−α (Vovk 258

et al., 2005). In this paper, we focus on the pure 259

few-shot performance of PaLM. Therefore, we de- 260

cided not to employ additional prompt-engineering 261
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techniques, such as CoT or leveraging sample sim-262

ilarity. Our code is publicly available (under a CC263

BY-NC-SA 4.0 license) at (hidden for anonymity).264

4 Empirical Analysis265

In the following section, we first introduce our266

dataset and, following that, present the classifica-267

tion performance of the methods introduced above.268

4.1 Data Description269

The dataset consists of 7,619 short texts (length270

in characters: min=5, avg=84, max=360), which271

are the titles of food-recall announcements (there-272

fore referred to as “title"), crawled from 24 food-273

recall domains (governmental & NGO, see Table 1)274

by Agroknow.5 The texts are written in 6 languages,275

with English (n = 6, 713) and German (n = 892)276

being the most common ones, followed by French277

(n = 8), Greek (n = 4), Italian (n = 1) and Danish278

(n = 1). As shown in Figure 1, most of the texts279

have been authored after 2010. The texts describe280

recalls of specific food products due to specific rea-281

sons. Each of the texts has been assigned six labels282

encoding these foodstuffs and hazards:283

1. hazard: A fine-grained description of the haz-284

ards mentioned in the texts comprising 409285

classes.286

2. hazard_category: A categorized version of287

the hazard label comprising 11 classes.288

3. hazard_title: A collection of character289

spans, generated from the LR feature impor-290

tance. These are signifying parts of the title291

important for the hazard classification.292

4. product: A fine-grained description of the293

products mentioned in the texts comprising294

1,901 classes.295

5. product_category: A categorized version296

of the product label comprising 29 classes.297

6. product_title: A collection of character298

spans, generated from the LR feature impor-299

tance. These are signifying parts of the title300

important for the product classification.301

The dataset, publicly released under a Creative302

Commons BY-NC-SA 4.0 license, comprises also303

metadata, such as the release date of the text304

(columns year, month, and day), the language of305

5https://agroknow.com/

the text (column language), and the country of 306

issue (column country). 307

1995 2000 2005 2010 2015 2020

0

200

400
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800
de

dk

en

fr

gr

it

1Figure 1: Languages in the dataset per year.

Domain Samples
www.fda.gov 1760

www.fsis.usda.gov 1131

www.productsafety.gov.au 928

www.food.gov.uk 914

www.lebensmittelwarnung.de 890

www.inspection.gc.ca 864

www.fsai.ie 365

www.foodstandards.gov.au 282

inspection.canada.ca 126

www.CPs.gov.hk 123

recalls-rappels.canada.ca 101

tna.europarchive.org 52

wayback.archive-it.org 23

healthycanadians.gc.ca 18

www.sfa.gov.sg 11

www.collectionscanada.gc.ca 10

securite-alimentaire.public.lu 8

portal.efet.gr 4

www.foodstandards.gov.scot 3

www.ages.at 2

www.accessdata.fda.gov 1

webarchive.nationalarchives.gov.uk 1

www.salute.gov.it 1

www.foedevarestyrelsen.dk 1

Table 1: Data sources, ordered by support number

Quantifying the Noise in the Data 308

It is important to note that samples were labeled 309

not only based on the title, but also the con- 310

tent of the food recall article. This means that 311

some of the samples will not contain evidence 312

for all the classes assigned to them. As irregu- 313

lar samples are common in real-world data, we 314

decided to not filter the dataset for such samples, 315

but rather provide a measure for the noise of the 316

data in the hazard_title and product_title 317

labels. In order to produce this measure, we 318

4
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use the coefficients of the BOW-LR classifiers319

for the hazard_category and product_category320

classes to extract important terms per class.321

For each text-label pair Ti, Yi, we split Ti in322

tokens {ti,1, ti,2, . . . , ti,K}, using the process de-323

scribed in Section 3.2.1. Afterward, we calcu-324

late a score by adding the positive model coeffi-325

cients associated with ti,k if yi,j = 1, and sub-326

tracting the positive model coefficients associated327

with ti,k if yi,j = 0. Although the quality of328

these terms depends on class support, they can329

still help us frame the noise in the data by fo-330

cusing on informative tokens, i.e., tokens with a331

positive coefficient for a specific class. We find332

that each such token corresponds to 1.28 classes333

on average for the hazard_category and 1.62334

classes for the product_category.6 Also, we see335

that 14.86% of the terms for hazard_title and336

26.78% for product_title are empty, indicating337

that evidence for the class is missing in the titles.338

A few sample texts are shown in Appendix B.339

Ground Truth340

The labels were assigned by one human Agroknow341

curator per web-domain. Additionally, random-342

ized checks of the labels were performed by more343

experienced curators. In the unlikely case of dis-344

agreement between the experts, the label assigned345

by the second more experienced curator is retained.346

Class Imbalance347

One of the most prominent features of the data is348

the heavy class imbalance. Figure 2 shows the sam-349

ple counts per class and label. All the labels in350

the data show a long-tail distribution, with just a351

small number of classes having most of the samples.352

Therefore, we extract sets of high-support classes353

Chigh and low-support classes Clow comprised of354

around one third of the total number of samples355

in the data for each label. The classes included in356

these sets are highlighted by a grey background357

in Figure 2. For the hazard_category label, the358

Chigh is comprised of only one class with 2579 sam-359

ples, and the Clow consists of nine classes with360

2487 samples in total, and for hazard |Chigh| =361

2654 samples in 3 classes and |Clow| = 2490 sam-362

ples in 392 classes. For product_category we363

have |Chigh| = 2852 samples in 3 classes and364

|Clow| = 2297 samples in 21 classes, and for365

product |Chigh| = 2538 samples in 73 classes and366

6Estimation for the fine-grained labels is difficult because
of low per-class support.

|Clow| = 2528 samples in 1522 classes. 367

4.2 Training 368

In order to train and evaluate our ML-models, we 369

apply 5-fold Cross-Validation (CV) to create 5 370

train-test splits. From each of these 5 training sets, 371

we create a validation set using 10% holdout. For 372

both of these splitting techniques, we use stratifi- 373

cation on the hazard_category label as this is the 374

label with the least number of classes and there- 375

fore provides a sufficient number of samples for 376

splitting in each class. We keep the same splits 377

for all labels, in order to keep the results com- 378

parable. This implies that, for labels other than 379

hazard_category, the standard deviation over the 380

splits may be higher. Our classifiers present base- 381

line performance on the dataset. In order to demon- 382

strate the effect of class imbalance on performance, 383

we do not employ balancing methods like oversam- 384

pling or class weights during training. 385

4.3 Experimental Results 386

In this section, we present the predictive perfor- 387

mance of the classifiers described in Section 3. 388

The ML Baselines 389

The classification scores presented in Table 2 390

clearly show that all the classifiers outperform both 391

naive baselines. The overall best-performing clas- 392

sifier for all four labels is a simple BOW-SVM 393

model. Nevertheless, when only looking at the 394

high-support classes, the best position is usually 395

taken by one of the encoder-only transformers. The 396

scores on the low-support classes show that BOW- 397

SVM’s strength is creating acceptable classification 398

performance with very few training samples. In this 399

segment, BOW-SVM massively outperforms the 400

transformers, which need a relatively high num- 401

ber of samples to achieve good results even with 402

transfer learning. This theory is supported by the 403

much lower relative performance of RoBERTa and 404

XLM-R on labels with more than 100 classes (i.e. 405

hazard and product), as for these the number of 406

classes with less than 100 samples is much higher. 407

Transformers 408

The good performance of RoBERTa and XLM-R 409

on high-support classes in the hazard label can be 410

explained by the relatively high number of samples 411

per class in this segment compared to the product 412

label (see Figure 2). Surprisingly, the multilingual 413

XLM-R only outperforms RoBERTa in the high- 414
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Model Scores (all classes) Scores (Chigh) Scores (Clow)
F1 (macro) Accuracy F1 (macro) Accuracy F1 (macro) Accuracy

hazard_category 11 classes; α = 0.05

RANDOM 0.13± 0.00 0.00± 0.00 0.47± 0.01 0.48± 0.01 0.06± 0.00 0.00± 0.00

SUPPORT 0.09± 0.00 0.00± 0.00 0.25± 0.00 0.34± 0.00 0.00± 0.00 0.67± 0.00

BOW-LR 0.46± 0.02 0.68± 0.01 0.81± 0.01 0.82± 0.01 0.38± 0.03 0.76± 0.01

BOW-SVM 0.52± 0.03 0.73± 0.02 0.85± 0.01 0.86± 0.01 0.46± 0.04 0.80± 0.01

TF-IDF-LR 0.40± 0.02 0.65± 0.01 0.78± 0.01 0.79± 0.01 0.32± 0.02 0.75± 0.01

TF-IDF-SVM 0.47± 0.04 0.70± 0.01 0.83± 0.01 0.83± 0.01 0.39± 0.05 0.78± 0.01

RoBERTa 0.47± 0.02 0.73± 0.04 0.87± 0.03 0.88± 0.03 0.39± 0.03 0.78± 0.03

XLM-R 0.45± 0.03 0.72± 0.02 0.89± 0.02 0.90± 0.02 0.36± 0.04 0.78± 0.02

PaLM-ALL 0.44± 0.04 0.60± 0.01 0.84± 0.01 0.87± 0.01 0.36± 0.05 0.76± 0.01

PaLM-LIMIT 0.27± 0.04 0.21± 0.01 0.61± 0.01 0.73± 0.01 0.26± 0.05 0.70± 0.01

PaLM-CONF 0.45± 0.03 0.68± 0.01 0.86± 0.01 0.88± 0.01 0.37± 0.03 0.77± 0.01

hazard 409 classes; α = 0.20

RANDOM 0.00± 0.00 0.00± 0.00 0.18± 0.00 0.12± 0.01 0.00± 0.00 0.00± 0.00

SUPPORT 0.00± 0.00 0.00± 0.00 0.21± 0.00 0.00± 0.00 0.00± 0.00 0.67± 0.01

BOW-LR 0.09± 0.01 0.43± 0.01 0.52± 0.02 0.61± 0.01 0.08± 0.01 0.71± 0.01

BOW-SVM 0.11± 0.01 0.46± 0.01 0.52± 0.03 0.62± 0.02 0.10± 0.01 0.72± 0.01

TF-IDF-LR 0.05± 0.01 0.35± 0.02 0.47± 0.01 0.48± 0.02 0.04± 0.01 0.69± 0.02

TF-IDF-SVM 0.08± 0.01 0.42± 0.01 0.49± 0.01 0.56± 0.01 0.07± 0.01 0.70± 0.01

RoBERTa 0.03± 0.00 0.20± 0.04 0.54± 0.03 0.58± 0.03 0.02± 0.00 0.30± 0.04

XLM-R 0.02± 0.00 0.19± 0.02 0.53± 0.03 0.58± 0.04 0.01± 0.00 0.25± 0.05

PaLM-LIMIT 0.14± 0.01 0.39± 0.01 0.66± 0.02 0.81± 0.01 0.12± 0.01 0.55± 0.02

PaLM-CONF 0.14± 0.01 0.39± 0.01 0.67± 0.02 0.82± 0.01 0.12± 0.01 0.54± 0.02

product_category 29 classes; α = 0.05

RANDOM 0.06± 0.00 0.00± 0.00 0.20± 0.01 0.13± 0.01 0.03± 0.00 0.00± 0.00

SUPPORT 0.03± 0.00 0.00± 0.00 0.22± 0.01 0.00± 0.00 0.00± 0.00 0.70± 0.01

BOW-LR 0.49± 0.01 0.56± 0.01 0.61± 0.02 0.70± 0.02 0.44± 0.02 0.82± 0.01

BOW-SVM 0.54± 0.02 0.62± 0.01 0.66± 0.01 0.75± 0.01 0.50± 0.03 0.83± 0.01

TF-IDF-LR 0.38± 0.02 0.42± 0.01 0.50± 0.02 0.55± 0.02 0.32± 0.02 0.78± 0.00

TF-IDF-SVM 0.47± 0.02 0.54± 0.01 0.58± 0.01 0.66± 0.01 0.43± 0.03 0.81± 0.01

RoBERTa 0.50± 0.02 0.63± 0.01 0.72± 0.03 0.79± 0.02 0.43± 0.02 0.80± 0.01

XLM-R 0.47± 0.01 0.61± 0.03 0.73± 0.03 0.80± 0.02 0.39± 0.01 0.77± 0.02

PaLM-LIMIT 0.41± 0.05 0.34± 0.05 0.41± 0.05 0.69± 0.01 0.40± 0.05 0.74± 0.01

PaLM-CONF 0.58± 0.01 0.66± 0.01 0.74± 0.02 0.84± 0.01 0.53± 0.01 0.82± 0.01

product 1901 classes; α = .5

RANDOM 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

SUPPORT 0.00± 0.00 0.03± 0.00 0.00± 0.00 0.03± 0.00 0.00± 0.00 0.67± 0.01

BOW-LR 0.06± 0.00 0.25± 0.01 0.32± 0.01 0.42± 0.01 0.01± 0.00 0.64± 0.01

BOW-SVM 0.07± 0.00 0.27± 0.01 0.30± 0.01 0.46± 0.01 0.02± 0.00 0.62± 0.01

TF-IDF-LR 0.02± 0.00 0.15± 0.01 0.16± 0.01 0.20± 0.01 0.00± 0.00 0.66± 0.01

TF-IDF-SVM 0.04± 0.00 0.20± 0.01 0.21± 0.01 0.33± 0.02 0.01± 0.00 0.58± 0.05

RoBERTa 0.00± 0.00 0.00± 0.00 0.05± 0.00 0.04± 0.01 0.00± 0.00 0.13± 0.05

XLM-R 0.00± 0.00 0.01± 0.01 0.02± 0.00 0.02± 0.01 0.00± 0.00 0.15± 0.02

PaLM-LIMIT 0.12± 0.00 0.20± 0.01 0.48± 0.03 0.57± 0.02 0.05± 0.01 0.59± 0.01

PaLM-CONF 0.12± 0.00 0.20± 0.01 0.48± 0.02 0.57± 0.01 0.05± 0.01 0.59± 0.01

Table 2: Average model performance and standard deviation over 5 CV-splits. Bold scores are the best score per
column and label.
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Figure 2: Class support with background grayed for high- (on the left) and low-support classes (right) for perfor-
mance analysis. For reasons of better readability, we only name the three most supported classes per task.

support segments of the hazard_category and415

product_category labels even though the texts416

come in multiple languages. We assume the low417

number of per-class samples is not sufficient for418

the very large embedding layer of XLM-R.419

Prompting420

The naive approach to prompting (PaLM-ALL) per-421

forms below the average of the non-naive classifiers422

on the hazard_category label on all segments. As423

in prompting, the predicted class is delivered in free424

text, it is possible that the LLM produces output425

that is not within the set of class labels. While426

these outputs can sometimes be interpreted as be-427

longing to one of the class labels, we only count428

exact matches. In case of the hazard_category,429

prompting failed to predict any class for 22% of430

the samples (average over the CV splits).431

4.4 Conformal Prompting432

Few-shot prompting (e.g., with two samples433

per class) is not feasible for the hazard,434

product_category, and product labels (even for435

product_category, prediction takes around 4 s436

per sample) due to the high number of classes. In437

order to reduce the number of classes for which438

we include shots in the prompt, we leverage CP to439

yield Conformal Prompting with the PaLM-CONF440

model. CP utilizes a classifier’s certainty on each441

of the predictions in order to build sets of predicted442

classes that statistically contain the true class with a443

previously specified probability. As can be seen in444

Figure 3, CP leads to more concise prediction sets445

than just taking the k classes the classifier is most446

certain about (referred to as “max-k"). In contrast 447

to max-k, CP produces shorter sets if the classifier 448

has a high certainty on the true class. Neverthe- 449

less, classifiers with less security will improve on 450

max-k’s accuracy only at larger sets. 451

PaLM-LIMIT PaLM-CONF

size fails size fails

hazard_category 776 67% 830 9%

product_category 2043 40% 2098 5%

hazard 2324 23% 2368 15%

product 2838 13% 2882 12%

Table 3: Prompt length (avg) in characters and cases (%)
where prompting failed to deliver a valid class label.

As we are aiming for a set size below 40 (i.e., 452

20 classes, two shots per class), we select the α 453

based on Figure 3. For hazard_category and 454

product_category, we choose α = 0.05 (mean- 455

ing p = 0.95), as even for this high accuracy we get 456

set sizes smaller than 10. For the remaining labels 457

we are limited by set length and choose α = 0.2 458

for hazard and α = .5 for product. This means, 459

that for product we have to accept a chance of at 460

most 50% that the prediction set does not contain 461

the ground truth in order to keep the set size low. 462

Table 3 presents the (sensitive to a) average 463

prompt length and prompting failure rates. While 464

the prompts are of comparable size (we attribute 465

the slight increase in PaLM-CONF to the added 466

statement on example order, see Appendix A), the 467

LLM produces more valid class labels when using 468

CP to create the samples. For hazard_category 469

the prompt lengths are much lower than for PaLM- 470
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ALL (2, 227 characters). The failure rate of PaLM-471

CONF is also reduced compared to the 22% fails in472

PaLM-ALL. Intuitively, the failure rate of PaLM-473

LIMIT is decreasing with increasing prompt length474

(more samples lead to fewer failures).475

Taking a closer look at the performance of PaLM-476

LIMIT and PaLM-CONF (see Table 2), we see that477

although PaLM-CONF underperforms compared478

to BOW-SVM in hazard_category, it still out-479

performs both prompting baselines on all metrics.480

For a higher number of classes, the performance of481

PaLM-CONF drastically increases compared to the482

other models, making it the best tested classifier483

on the hazard, product_category, and product484

labels in terms of F1. This increase can be seen485

in both high-support and low-support classes, al-486

though performance on Chigh shows a bigger in-487

crease compared to BOW-SVM. We attribute the488

difference in performance between PaLM-LIMIT489

and PaLM-CONF decreases for higher classes490

to the higher α in these cases: sacrificing CP-491

guarantees for faster prediction.492

5 Discussion & Conclusions493

We present a novel dataset for multi-label classifi-494

cation of short texts describing food recalls. The495

dataset contains expert-annotated labels on food496

products and hazards on two levels of granular-497

ity, coarse (tens) and fine (hundreds). Addition-498

ally, the dataset includes computer-generated spans499

highlighting possible evidence for the class labels.500

While these spans are by no means perfect, they501

can give an estimate of the noise in the labels. We502

present baseline performance (F1-score and accu-503

racy) for naive, traditional, and deep classifiers for504

all four classification tasks in the proposed dataset.505

The dataset is publicly available under a CC BY-506

NC-SA 4.0 license at (hidden for anonymity). 507

Additionally, we show that reducing the number 508

of few-shot examples for prompting with PaLM, 509

by only taking into account classes from a confor- 510

mal set, reduces prediction time while at the same 511

time increasing performance in terms of F1. Our 512

results suggest that a simple random reduction of 513

few-shot examples (reflected in the PaLM-LIMIT 514

baseline) already makes prompting a strong ap- 515

proach compared to our other methods. In this 516

setting, we leverage the well-documented strong 517

in-context reasoning capabilities of LLMs (Chowd- 518

hery et al., 2022; Wei et al., 2022; Shi et al., 2023), 519

which do not necessarily need a full view of all 520

the possible classes. Nevertheless, we show that if 521

the examples are taken from a reduced population 522

that is very likely to contain the true class, we can 523

further improve on this performance even without 524

using other prompting techniques such as example 525

matching (Ahmed et al., 2023) or CoT. 526

Our results suggest that Conformal Prompting 527

(at α < 0.1) outperforms normal prompting. De- 528

pending on the data and number of possible classes, 529

this may or may not extend to other classifiers 530

(Table 2; hazard_category, product_category). 531

Although it allows PaLM to more accurately pre- 532

dict the class label (even from α ≤ 0.5), Confor- 533

mal Prompting is also subject to a trade-off be- 534

tween predictive and temporal performance, i.e., 535

sacrificing accuracy (i.e., due to hardware and time 536

constraints) when more classes are involved, yet 537

outperforming other traditional and deep classifiers, 538

and leading to fewer prompting failures than ran- 539

dom few-shot sampling. This shows that Confor- 540

mal Prompting is a promising approach for large- 541

scale multiclass classification with LLMs, whose 542

applications to other domains and datasets should 543

be further explored in future work. 544
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6 Limitations545

Nevertheless, the dataset and approach discussed546

in this paper are subject to limitations. Regarding547

the dataset, we identified the following:548

• The labels in our dataset are subject to noise.549

Specifically, some samples are missing evi-550

dence for one or more of the assigned classes,551

while tokens important for classification may552

indicate more than one class. This may lead553

to classifiers trained on the data seeing con-554

tradicting examples and therefore limit their555

predictive performance.556

• The spans in hazard_title and557

product_title are machine generated558

and not manually curated. This means559

that while they give an estimation of word560

importance, they are no gold standard for561

explainability tasks.562

We aim to improve these limitations in future iter-563

ations of the dataset. For our approach leveraging564

CP for few-shot prompting, we found the following565

limitations:566

• As visualized in Figure 3, CP represents a567

trade-off between high prediction set accuracy568

and low set length relative to the total num-569

ber of classes. This means that with a rising570

total number of classes, we will have to sac-571

rifice predictive performance in order to keep572

the prompt size feasible, which ultimativelly573

might render the approach useless.574

• In this paper we used normal conformal pre-575

diction, which only guarantees a certain prob-576

ability of a single true class being in the pre-577

diction set. In order to achieve true multilabel578

guarantees we would need to switch to mon-579

drian CP.580

• We only verify our approach on a single LLM.581

This means that our approach might not be582

generalizable to other LLMs and perform dif-583

ferently or not at all for few-shot prompting584

with such models.585

While we have to accept the first of these points586

as inherent to the approach, we are planning to587

address the remaining points in future work. As all588

the data used in our dataset was already publicly589

available before the publication of this work, we590

do not violate anybody’s privacy by republishing591

it.592
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PaLM-ALL:
Context start:

We are looking for food hazards in texts. Here are some labelled examples:

"Evermore Group Pty Ltd — New Choice Assorted Jelly Cups" -> food additives and flavourings

"Milbona Gouda jung gerieben, mindestens 7 Wochen gereift, 250 g" -> foreign bodies

"Yekta Foods recalls Achachi Jelly Cups because of a choking hazard" -> other hazard

"Schweppes Lemon Lime and Bitters" -> fraud

"Recall of Sriracha Hot Chili Sauce due to Risk of the Contents Exploding" -> packaging defect

"Recall of a Batch of Global Botanics CBD Paste Due to the Presence of Unsafe Levels of Delta-9-tetrahydrocannabinol (THC)" -> chemical

"Mundella Foods—Feta Supreme Mediterranean Style Feta Cheese" -> biological

"NulaCPoods Pty Ltd—No Udder Coconut Yoghurt, Alpine Coconut Yoghurt Natural, Alpine Coconut Yoghurt Passionfruit" -> allergens

"Kraft Heinz Foods Company Recalls Turkey Bacon Products Due To Possible Adulteration" -> organoleptic aspects

"Bamboo Aroma Sip Cup" -> migration

"Sunshine Sprouts — Alfalfa Sprouts" -> biological

"Thuan Phat Supermarket Croydon Park — New Choice Milky Pudding Jelly and taro jelly cups" -> food additives and flavourings

"coles mini classics ice creams" -> foreign bodies

"Wilderness Family Naturals brand Coconut Milk Powder and Coconut Chia Pudding Mix recalled due to undeclared milk" -> allergens

"IGA—Christmas Kisses (Cream filled sponge cakes)" -> fraud

"PepsiCo recalls Tropicana Trop 50 Multivitamins Juice" -> organoleptic aspects

"USA LESS Issues Voluntary Nationwide Recall of LEOPARD Miracle Honey Due to Presence of Undeclared Sildenafil" -> chemical

"Silikon-Muffinbackform" -> migration

"Deutscher Winzerglühwein, weiss, 0,75 L" -> packaging defect

"Two Brothers Pork Skins Recalls Pork Skin Products Due to Misbranding and Failure to Produce Under A HACCP Plan" -> other hazard

Context end:

Please predict the correct class for the following sample:

"Frickenschmidt Foods LLC Recalls Ready-to-Eat Beef Stick Products Due to Misbranding" ->
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PaLM-LIMIT:
Context start:

We are looking for food hazards in texts. Here are some labelled examples:

"Evermore Group Pty Ltd — New Choice Assorted Jelly Cups" -> food additives and flavourings

"Milbona Gouda jung gerieben, mindestens 7 Wochen gereift, 250 g" -> foreign bodies

"Yekta Foods recalls Achachi Jelly Cups because of a choking hazard" -> other hazard

"Schweppes Lemon Lime and Bitters" -> fraud

"Recall of Sriracha Hot Chili Sauce due to Risk of the Contents Exploding" -> packaging defect

"Recall of a Batch of Global Botanics CBD Paste Due to the Presence of Unsafe Levels of Delta-9-tetrahydrocannabinol (THC)" -> chemical

"Mundella Foods—Feta Supreme Mediterranean Style Feta Cheese" -> biological

"NulaCPoods Pty Ltd—No Udder Coconut Yoghurt, Alpine Coconut Yoghurt Natural, Alpine Coconut Yoghurt Passionfruit" -> allergens

Context end:

Please predict the correct class for the following sample:

"Frickenschmidt Foods LLC Recalls Ready-to-Eat Beef Stick Products Due to Misbranding" ->

PaLM-CONF:
Context start:

We are looking for food hazards in texts. Here are some labelled examples sorted from most probable to least probable:

"Schweppes Lemon Lime and Bitters" -> fraud

"IGA—Christmas Kisses (Cream filled sponge cakes)" -> fraud

"Milbona Gouda jung gerieben, mindestens 7 Wochen gereift, 250 g" -> foreign bodies

"coles mini classics ice creams" -> foreign bodies

"NulaCPoods Pty Ltd—No Udder Coconut Yoghurt, Alpine Coconut Yoghurt Natural, Alpine Coconut Yoghurt Passionfruit" -> allergens

"Wilderness Family Naturals brand Coconut Milk Powder and Coconut Chia Pudding Mix recalled due to undeclared milk" -> allergens

"Recall of a Batch of Global Botanics CBD Paste Due to the Presence of Unsafe Levels of Delta-9-tetrahydrocannabinol (THC)" -> chemical

"USA LESS Issues Voluntary Nationwide Recall of LEOPARD Miracle Honey Due to Presence of Undeclared Sildenafil" -> chemical

Context end:

Please predict the correct class for the following sample:

"Frickenschmidt Foods LLC Recalls Ready-to-Eat Beef Stick Products Due to Misbranding" ->
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B Data sample:
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alcoholic beverages
bivalve molluscs and products therefor

cephalopods and products thereof
cereals and bakery products

cocoa and cocoa preparations, coffee and tea
confectionery

crustaceans and products thereof
dietetic foods, food supplements, fortified foods

eggs and egg products
fats and oils

feed additives
feed materials

fish and fish products
food additives and flavourings

food contact materials
fruits and vegetables

herbs and spices
honey and royal jelly

ices and desserts
meat and meat products (other than poultry)

milk and milk products
non-alcoholic beverages

nuts, nut products and seeds
other food product / mixed

pet feed
poultry meat and poultry meat products

prepared dishes and snacks
soups, broths, sauces and condiments

sugars and syrups
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b)
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1

Label co-occurence for the hazard_category and product_category classes normalized by
a) hazard_category, and b) product_category. While this is not true for all the
hazard_category-product_category pairs, some show strong linkage.

Some labeled sample texts. Colored spans signify the spans in hazard_title and product_title:
"Butterball LLC Recalls Turkey Products Due to Possible Salmonella Schwarzengrund Contamination"

Labels
hazard: salmonella schwarzengrund hazard_category: biological

product: fresh minced turkey product_category: poultry meat and poultry meat products

"2009 - peanut corporation of america announces voluntary nationwide recall of peanut butter"

Labels
hazard: salmonella hazard_category: biological

product: peanut butter product_category: nuts, nut products and seeds

"V&S Imports and Exports Pty Ltd — Yayla Natural Yoghurt and Try Me Natural Yoghurt"

Labels
hazard: escherichia coli hazard_category: biological

product: yoghurt product_category: milk and milk products

"Undeclared Wheat , Egg , Milk and Soya in O’Dwyer ’s Bakery Chocolate Swiss Roll"

Labels
hazard: eggs and products thereof hazard_category: allergens

product: swiss rolls product_category: cereals and bakery products

"Smilin’ Bob’s Voluntarily Recalls Smilin’ Bob’s Smoked Fish Dip Products Because of Possible Health Risk"

Labels
hazard: listeria monocytogenes hazard_category: biological

product: fish products product_category: fish and fish products
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