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Abstract

Contaminated or adulterated food poses a sub-
stantial risk to human health. Given sets of
labeled web texts for training, Machine Learn-
ing and Natural Language Processing can be
applied to automatically extract pointers to-
wards such risks in order to generate early
warnings. We publish a dataset of 7,619 short
texts describing food recalls. Each text is
manually labeled, on two granularity levels
(coarse and fine), for food products and haz-
ards that the recall corresponds to. We describe
the dataset, also presenting baseline scores
of naive, traditional, and transformer models.
We show that Support Vector Machines based
on a Bag of Words representation outperform
RoBERTa and XLM-R on classes with low sup-
port. We also apply in-context learning with
PalM, leveraging Conformal Prediction to im-
prove it by reducing the number of classes used
to select the few-shots. We call this method
Conformal Prompting.

1 Introduction

Food-bourne illnesses and contaminated food pose
a serious threat to human health and lead to thou-
sands of deaths (Majowicz et al., 2014; de No-
ordhout et al., 2014). Natural Language Process-
ing (NLP) solutions based on Machine and Deep
Learning (ML, DL) or Large Language Models
(LLMs) may enable fast responses to new threats by
generating warnings from publicly available texts
on the internet. These texts, however, as we show,
can be noisy and are characterized by thousands
of classes. While we know about the existence of
singular text-based datasets on the topic of food-
bourne illnesses (Hu et al., 2022), they focus on
the detection of such illnesses rather than their clas-
sification. In this work, we address this topic and
provide the following contributions:

1. We present the first (to our knowledge) text-
based dataset for food hazard classification

comprising labels for food product and food
hazard classification, at two granularities.1

2. We present a benchmark on the introduced
dataset, using naive, traditional ML, and DL-
based classifiers, showing that a Support Vec-
tor Machine outperforms the rest due to its
better performance for low-support classes.

3. We propose a method based on Conformal
Prediction (Vovk et al., 2005, CP) to improve
the shot selection for in-context learning (ICL)
of LLMs, enabling not only feasible but also
more accurate prompting.

In the following sections, we first present some re-
lated work in Section 2 and then describe our meth-
ods, data, and results in Sections 3 and 4. Lastly,
we discuss the results and conclude this paper in
Section 5 followed by a short discussion of limita-
tions to our approach.

2 Background and Related Work

The formulation of the attention mechanism by
Vaswani et al. (2017) has drastically changed the
field of NLP. ML models based on this architecture
and the self-supervised masked language model-
ing pre-training paradigm easily outperform tradi-
tional methods both on monolingual (Devlin et al.,
2019; Liu et al., 2019) and multilingual (Conneau
et al., 2020) data. As training transformers usu-
ally takes enormous amounts of data, already pre-
trained models are typically further trained (fine-
tuned) on smaller amounts of task-specific data.
Although transformers were originally described as
an encoder-decoder architecture (Vaswani et al.,
2017), mapping an input-text to an output-text,
models intended for classification tasks usually
only employ an encoder (Devlin et al., 2019; Liu
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et al., 2019; Conneau et al., 2020), that is fol-
lowed by a number of task-specific layers (called
the head). These heads are usually added to the
pre-trained base model directly before fine-tuning.

Recently, LLMs such as PaLM (Chowdhery
et al., 2022) have been shown to exceed the capabil-
ities of smaller transformers even without further
fine-tuning. That is, by simply providing a context
of a few labeled samples per class, LL.Ms are able
to predict the classes of unseen samples within this
context. As LLMs are usually text-to-text trans-
formers, the context is provided directly in each
prompt. This paradigm is commonly referred to as
Sfew-shot-prompting or in-context learning (Brown
et al., 2020). Since the detection of LLMs’ few-
shot capabilities, many newer LLMs have been
designed for high few-shot performance (Gao et al.,
2021; Chowdhery et al., 2022).

Current work on few-shot prompt engineering
focuses mostly on creating/finding the optimal few-
shot samples from the training data rather than lim-
iting the number of classes these samples are taken
from. Ahmed et al. (2023) proposed a workflow
for automatically finding similar samples from the
pool of labeled “training" samples for code sum-
marization. Shi et al. (2023) focused on automatic
generation of Chain of Thought (CoT) labels for
samples in reasoning tasks. CoT is another prompt-
ing paradigm that asks the LLLM to provide a chain
of reasoning before delivering the prediction and
has been shown to drastically improve reasoning
performance (Wei et al., 2022). Nevertheless, to the
best of our knowledge, there is no previous work on
how to leverage few-shot-prompting in LLMs for
multiclass prediction problems with 100+ classes.

The CP framework (Vovk et al., 2005) is a
methodology for associating predictions of a classi-
fication algorithm with confidence guarantees, e.g.,
if a user in a multi-class setting wants to be sure
that 95% of the predictions are correct, CP will do
this by outputting a set of labels, i.e., multi-label
adhering to the set guarantees. It can be applied to
any classification (or regression) algorithm, as long
as a calibration set is set aside together with a non-
conformity function. In our context, the stronger
the classification algorithm, and the better the non-
conformity function, the fewer labels (hence, shots)
will be produced with the same guarantee. We point
to the work of Vovk et al. (2005); Johansson et al.
(2014); Bostrom et al. (2017) for more on CP.

3 Method

3.1 Problem Description

The basic problem we address in this paper is ex-
treme multi-label classification on heavily imbal-
anced data. More formally, given a number of
training-texts 7;, ¢ € {1,2,..., N} and their vec-
tor of corresponding classes Y; we aim to train
a classifier {(7;,-) = Y; that minimizes the er-
ror |Y; — Yj|. For standard ML classifiers, the
function {(77, -) is usually a two step process with
the first step mapping the text to a machine read-
able embedding vector X; = e(T;), and the sec-
ond one involving the learning process on X;:
f(T;,-) = t'(X;,-). For the class-labels in Y; =
[Yi1,Yi2,---,yim] we have y;; € {0,1}Vi,7,
while V; = [0i1,Ti2,---,Ui,m)| is the vector of
probabilities of 7; belonging to class 7 and there-
fore we have g, ; € [0, 1]V4, j. For all our classes,
we have at least A/ > 10. While only in rare cases,
our data contains samples with |Y;| > 1, i.e. multi-
ple true class-labels (multilabel).

3.2 ML Classifiers

As a naive baseline, we report the performance
of two classifiers. The random classifier (RAN-
DOM) yields each Y; by generating a random num-
ber in [0, 1] for each g; ;. The support-based base-
line (SUPPORT), chooses each ; ; to be the nor-
malized support of the class:
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In order to select a set of predicted classes from
the probabilities in Y;, we first amplify the differ-
ences in our models’ predictions per sample, by
normalizing them according to

~

Y; — maxi<j<m(9i5)
maxi<j<n (i) — mini<j<ar (9i)

Afterwards, we assume all classes j with g; ; > 0.5
to be predicted by the model.

3.2.1 Traditional ML Classifiers

We use Bag-of-Words (BOW) and Term Frequency
- Inverse Document Frequency (Spirck Jones, 1972,
TF-IDF) encodings, combined with LR or SVM
classifiers.” During the training of the SVMs we
use a linear kernel and optimize the parameter

2For the classifiers, we use the implementation from the
Python library scikit-learn (Pedregosa et al., 2011).



C € {0.5,1.0,2.0} for L2 regularization on the
validation splits. For LR we use a ‘liblinear’ solver
and optimize C' € {0.5,1.0,2.0} for both L1 and
L2 regularization. For both classifiers, we use
a one-vs-all approach to multilabel classification,
which means that we train one binary classifier for
each class in the predicted label.

Text pre-processing comprises the applica-
tion of a TreebankWordTokenizer, followed by
PorterStemmer from the nltk (Bird et al., 2009)
Python package. For the BOW representation,’ we
create a vector:

Xi=[zi1, 22, ..., 2 v], Vo, € [0,1]
for each sample ¢, where V' is the vocabulary size,
and x; , is the normalized count of occurrences of
token v in sample ¢. For the TF-IDF embedding,
for each sample ¢ we calculate a vector:

M;
X; = [tfjJ . idfj, tfjjg . idfj, ..
=0

. ,tf]‘JV : idfj}

where N is the number of samples in the training
data, tf; ;, is the count of the samples’ j-th token
in the k-th training sample, and idf; = In % with
n; being the number of documents that contain
token j. In order to make the above embeddings
independent of the sample length we normalize X;
with the L2-norm in both cases.

3.2.2 Encoder-only Transformers

As a more recent counterpart to the previously
described traditional ML classifiers, we fine-tune
two models from huggingface’s transformers®
library: RoOBERTay,s. (Liu et al., 2019) and XLM-
RoBERTa,s. (Conneau et al., 2020, XLM-R) in
their base-sizes (RoOBERTa: 125M params; XLM-
R: 270M params). Both models use the structure
introduced by BERT, 5. (Devlin et al., 2019, L=12,
H=768, A=12), which improves comparability of
their results. The different parameter counts result
mainly from the different vocabulary sizes used
in their Byte-Pair-based encoders (Sennrich et al.,
2016): RoBERTa uses a vocabulary of size 50k,
while XLLM-R uses 250k tokens. For the purposes
of this paper, the most important difference be-
tween the models is that while RoOBERTa is only
pre-trained on English texts, XLLM-R is pre-trained
on 100 different languages.

3We use or own implementation for the representations.
*https://huggingface.co/docs/transformers/index

To fine-tune these two models, we use the stan-
dard sequence classification heads provided by the
transformers library. We optimize training using
AdamW (Loshchilov and Hutter, 2019) in combina-
tion with a learning rate that stays constant for the
first two epochs and then declines linearly towards
1% of its starting value after 20 epochs. Further-
more, we employ early stopping with a patience
of four epochs on the maximum macro F; score
computed on the validation set. We also use the
validation data to optimize the learning rate over
the values 2- 1072, 3-107°, and 5 - 10~5. Due to
hardware limitations, we only use a batch size of
16 samples for training.

3.2.3 Prompting

As a final classifier, we employ few-shot prompting
with PaLM (Chowdhery et al., 2022), a text-to-text
transformer with 540B parameters. We use three
different kinds of prompts: (PaLM-ALL) A con-
text describing the classification task followed by
two randomly ordered text-label pairs taken from
the training data per class; (PaLM-CONF) This
is the basis of Conformal Prompting, where the
context describes the classification task, followed
by two labeled texts per class, ordered most prob-
able first, in a reduced prediction set of length
neon s derived by CP (Vovk et al., 2005); (PaLM-
LIMIT) A context describing the classification
task followed by the first n..,s samples of the
PalLM-ALL prompt. The purpose of the less in-
tuitive PaLM-LIMIT prompt is to provide a base-
line for PALM-CONF. An example of each of these
prompts is shown in Appendix A.

CP uses the concept of a non-conformity mea-
sure §(Y;, Y;) in order to create sets of predicted
classes, which contain the true class with a prob-
ability of p > 1 — «. In our case, this non-
conformity measure is simply the error on the true
class: 6(Y;,Y;) = 1 — Uijlyi; = 1. Here, Y;
are the predictions of the best traditional classifier
(BOW-SVM), scaled so that Zj\i 0%i; =1, and
Y; are the corresponding true labels. If one defines
q= wj\w, and ¢ as the ¢ empirical quan-
tile of {6(Y;,Y;)|1 < i < N}, it can be shown
that for any prediction Y of the classifier on an un-
known sample, a set of classes {j|y; > 1 — ¢} con-
tains the true class with probability p > 1—a (Vovk
et al., 2005). In this paper, we focus on the pure
few-shot performance of PaLM. Therefore, we de-
cided not to employ additional prompt-engineering



techniques, such as CoT or leveraging sample sim-
ilarity. Our code is publicly available (under a CC
BY-NC-SA 4.0 license) at (hidden for anonymity).

4 Empirical Analysis

In the following section, we first introduce our
dataset and, following that, present the classifica-
tion performance of the methods introduced above.

4.1 Data Description

The dataset consists of 7,619 short texts (length
in characters: min=5, avg=84, max=360), which
are the titles of food-recall announcements (there-
fore referred to as “title"), crawled from 24 food-
recall domains (governmental & NGO, see Table 1)
by Agroknow.®> The texts are written in 6 languages,
with English (n = 6, 713) and German (n = 892)
being the most common ones, followed by French
(n = 8), Greek (n = 4), Italian (n = 1) and Danish
(n = 1). As shown in Figure 1, most of the texts
have been authored after 2010. The texts describe
recalls of specific food products due to specific rea-
sons. Each of the texts has been assigned six labels
encoding these foodstuffs and hazards:

1. hazard: A fine-grained description of the haz-
ards mentioned in the texts comprising 409
classes.

2. hazard_category: A categorized version of
the hazard label comprising 11 classes.

3. hazard_title: A collection of character
spans, generated from the LR feature impor-
tance. These are signifying parts of the title
important for the hazard classification.

4. product: A fine-grained description of the
products mentioned in the texts comprising
1,901 classes.

5. product_category: A categorized version
of the product label comprising 29 classes.

6. product_title: A collection of character
spans, generated from the LR feature impor-
tance. These are signifying parts of the title
important for the product classification.

The dataset, publicly released under a Creative
Commons BY-NC-SA 4.0 license, comprises also
metadata, such as the release date of the text
(columns year, month, and day), the language of

Shttps://agroknow. com/

the text (column language), and the country of
issue (column country).
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Figure 1: Languages in the dataset per year.

| Domain | Samples |
www.fda.gov 1760
www.fsis.usda.gov 1131
www.productsafety.gov.au 928
www.food.gov.uk 914
www.lebensmittelwarnung.de 890
www.inspection.gc.ca 864
www.fsai.ie 365
www.foodstandards.gov.au 282
inspection.canada.ca 126
www.CPs.gov.hk 123
recalls-rappels.canada.ca 101
tna.europarchive.org 52
wayback.archive-it.org 23
healthycanadians.gc.ca 18
www.sfa.gov.sg 11
www.collectionscanada.gc.ca 10
securite-alimentaire.public.lu 8
portal.efet.gr 4
www.foodstandards.gov.scot 3
www.ages.at 2
www.accessdata.fda.gov 1
webarchive.nationalarchives.gov.uk 1
www.salute.gov.it 1
www.foedevarestyrelsen.dk 1

Table 1: Data sources, ordered by support number

Quantifying the Noise in the Data

It is important to note that samples were labeled
not only based on the title, but also the con-
tent of the food recall article. This means that
some of the samples will not contain evidence
for all the classes assigned to them. As irregu-
lar samples are common in real-world data, we
decided to not filter the dataset for such samples,
but rather provide a measure for the noise of the
data in the hazard_title and product_title
labels. In order to produce this measure, we
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use the coefficients of the BOW-LR classifiers
for the hazard_category and product_category
classes to extract important terms per class.

For each text-label pair T;,Y;, we split 7; in
tokens {t;1,t;2,...,t; K}, using the process de-
scribed in Section 3.2.1. Afterward, we calcu-
late a score by adding the positive model coeffi-
cients associated with ¢; ;. if y; ; = 1, and sub-
tracting the positive model coefficients associated
with #; . if y; ; = 0. Although the quality of
these terms depends on class support, they can
still help us frame the noise in the data by fo-
cusing on informative tokens, i.e., tokens with a
positive coefficient for a specific class. We find
that each such token corresponds to 1.28 classes
on average for the hazard_category and 1.62
classes for the product_category.® Also, we see
that 14.86% of the terms for hazard_title and
26.78% for product_title are empty, indicating
that evidence for the class is missing in the titles.
A few sample texts are shown in Appendix B.

Ground Truth

The labels were assigned by one human Agroknow
curator per web-domain. Additionally, random-
ized checks of the labels were performed by more
experienced curators. In the unlikely case of dis-
agreement between the experts, the label assigned
by the second more experienced curator is retained.

Class Imbalance

One of the most prominent features of the data is
the heavy class imbalance. Figure 2 shows the sam-
ple counts per class and label. All the labels in
the data show a long-tail distribution, with just a
small number of classes having most of the samples.
Therefore, we extract sets of high-support classes
Chign and low-support classes Cjo,, comprised of
around one third of the total number of samples
in the data for each label. The classes included in
these sets are highlighted by a grey background
in Figure 2. For the hazard_category label, the
Chign 1s comprised of only one class with 2579 sam-
ples, and the Cj,,, consists of nine classes with
2487 samples in total, and for hazard |Chign| =
2654 samples in 3 classes and |Cjyy, | = 2490 sam-
ples in 392 classes. For product_category we
have [Cpign| = 2852 samples in 3 classes and
|Clow| = 2297 samples in 21 classes, and for
product |Chign| = 2538 samples in 73 classes and

®Estimation for the fine-grained labels is difficult because
of low per-class support.

|Ciow| = 2528 samples in 1522 classes.

4.2 Training

In order to train and evaluate our ML-models, we
apply 5-fold Cross-Validation (CV) to create 5
train-test splits. From each of these 5 training sets,
we create a validation set using 10% holdout. For
both of these splitting techniques, we use stratifi-
cation on the hazard_category label as this is the
label with the least number of classes and there-
fore provides a sufficient number of samples for
splitting in each class. We keep the same splits
for all labels, in order to keep the results com-
parable. This implies that, for labels other than
hazard_category, the standard deviation over the
splits may be higher. Our classifiers present base-
line performance on the dataset. In order to demon-
strate the effect of class imbalance on performance,
we do not employ balancing methods like oversam-
pling or class weights during training.

4.3 Experimental Results

In this section, we present the predictive perfor-
mance of the classifiers described in Section 3.

The ML Baselines

The classification scores presented in Table 2
clearly show that all the classifiers outperform both
naive baselines. The overall best-performing clas-
sifier for all four labels is a simple BOW-SVM
model. Nevertheless, when only looking at the
high-support classes, the best position is usually
taken by one of the encoder-only transformers. The
scores on the low-support classes show that BOW-
SVM’s strength is creating acceptable classification
performance with very few training samples. In this
segment, BOW-SVM massively outperforms the
transformers, which need a relatively high num-
ber of samples to achieve good results even with
transfer learning. This theory is supported by the
much lower relative performance of ROBERTa and
XLM-R on labels with more than 100 classes (i.e.
hazard and product), as for these the number of
classes with less than 100 samples is much higher.

Transformers

The good performance of ROBERTa and XLLM-R
on high-support classes in the hazard label can be
explained by the relatively high number of samples
per class in this segment compared to the product
label (see Figure 2). Surprisingly, the multilingual
XLM-R only outperforms RoBERTa in the high-



Scores (all classes) Scores (Chigrn) Scores (Ciow)
Fi (macro) Accuracy Fi (macro) Accuracy Fi (macro) Accuracy

Model

hazard_category 11 classes; o = 0.05
RANDOM | 0.1340.00 0.00 = 0.00 0.47£0.01 0.48 £0.01 0.06 £ 0.00 0.00 £ 0.00
SUPPORT | 0.09 & 0.00 0.00 £ 0.00 0.25 £ 0.00 0.34 £0.00 0.00 £ 0.00 0.67 £ 0.00

BOW-LR | 0.46 +0.02 0.68 £ 0.01 0.81 £0.01 0.82 £0.01 0.38 £0.03 0.76 £ 0.01
BOW-SVM | 0.52+0.03 0.73+0.02 | 0.854+0.01 0.864+0.01 | 0.46+0.04 0.80£0.01
TF-IDF-LR | 0.40 £0.02 0.65 + 0.01 0.78 £ 0.01 0.79 £0.01 0.32 £0.02 0.75£0.01

TF-IDF-SVM | 0.47 4 0.04 0.70 £ 0.01 0.83 £0.01 0.83 +£0.01 0.39 £ 0.05 0.78 £0.01

RoBERTa | 0.47+£0.02 0.734+0.04 | 0.87£0.03 0.88 £0.03 0.39+£0.03 0.78 £0.03

XLM-R | 0.4540.03 0.72£0.02 | 0.89+0.02 0.90+0.02 | 0.36 £0.04 0.78 £0.02
PaLM-ALL | 0.44+0.04 0.6040.01 0.84 £0.01 0.87 £ 0.01 0.36 £ 0.05 0.76 £ 0.01
PaLM-LIMIT | 0.2740.04 0.21 +0.01 0.61 +0.01 0.734+0.01 0.26 £0.05 0.70 £ 0.01
PaLM-CONF | 0.45+0.03 0.68 £ 0.01 0.86 £ 0.01 0.88 £0.01 0.37£0.03 0.77£0.01

hazard 409 classes; o = 0.20
RANDOM | 0.00 4 0.00 0.00 £ 0.00 0.18 £0.00 0.12£0.01 0.00 £ 0.00 0.00 £ 0.00
SUPPORT | 0.00 4 0.00 0.00 £ 0.00 0.21 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.67 £ 0.01

BOW-LR | 0.09+0.01 0.43 +0.01 0.52 +0.02 0.61 +0.01 0.08 +0.01 0.714+0.01
BOW-SVM | 0.11+£0.01 046+0.01 | 0.524+0.03 0.624+0.02 | 0.10+0.01 0.72+0.01
TF-IDF-LR | 0.05£0.01 0.35+0.02 0.47 +0.01 0.48 +0.02 0.04 £0.01 0.69 £ 0.02

TF-IDF-SVM | 0.08 +0.01 0.42 £0.01 0.49 £ 0.01 0.56 £ 0.01 0.07£0.01 0.70 £ 0.01

RoBERTa | 0.03 £0.00 0.20£0.04 | 0.54+0.03 0.58+0.03 0.02 £ 0.00 0.30 £ 0.04

XLM-R | 0.0240.00 0.19 +0.02 0.53 £0.03 0.58 £0.04 0.01 £ 0.00 0.25 £ 0.05
PaLM-LIMIT | 0.144+0.01 0.39 £0.01 0.66 +0.02 0.81+0.01 | 0.12+0.01 0.55+0.02
PaLM-CONF | 0.14+0.01 0.39+£0.01 | 0.67+0.02 0.824+0.01 | 0.124+0.01 0.5440.02

product_category 29 classes; o = 0.05
RANDOM | 0.06 % 0.00 0.00 = 0.00 0.20£0.01 0.13+£0.01 0.03 £0.00 0.00 £ 0.00
SUPPORT | 0.03 4 0.00 0.00 £ 0.00 0.22 £0.01 0.00 £ 0.00 0.00 £ 0.00 0.70 £0.01

BOW-LR | 0.49 +£0.01 0.56 £ 0.01 0.61 £ 0.02 0.70 £ 0.02 0.44 £0.02 0.82 £ 0.01
BOW-SVM | 0.54+0.02 0.62+0.01 0.66 = 0.01 0.754+0.01 | 0.50+0.03 0.83£0.01
TF-IDF-LR | 0.38 £0.02 0.42 +0.01 0.50 +0.02 0.55 £ 0.02 0.32 £0.02 0.78 £ 0.00

TF-IDF-SVM | 0.47 4 0.02 0.54 £0.01 0.58 £0.01 0.66 £+ 0.01 0.43+0.03 0.81 £ 0.01

RoBERTa | 0.50£0.02 0.634+0.01 | 0.72+£0.03 0.79 +0.02 0.43 £0.02 0.80 £ 0.01

XLM-R | 0.4740.01 0.61£0.03 | 0.734+0.03 0.80+0.02 | 0.39+0.01 0.77 £0.02
PaLM-LIMIT | 0.4140.05 0.34 + 0.05 0.41 £0.05 0.69 £ 0.01 0.40 £ 0.05 0.74 £0.01
PaLM-CONF | 0.58 £0.01 0.66+0.01 | 0.744+0.02 0.844+0.01 | 0.53+0.01 0.82+0.01

product 1901 classes; o« = .5
RANDOM | 0.00 4 0.00 0.00 £ 0.00 0.01 £0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
SUPPORT | 0.0040.00 0.03 £0.00 0.00 £ 0.00 0.03 £0.00 0.00 £ 0.00 0.67 £ 0.01

BOW-LR | 0.06 4 0.00 0.25+0.01 | 0.32+0.01 0.424+0.01 0.01 £ 0.00 0.64 £ 0.01
BOW-SVM | 0.07+0.00 0.27+0.01 | 0.304+0.01 0.46+0.01 | 0.02+0.00 0.62+0.01
TF-IDF-LR | 0.02 £0.00 0.15+0.01 0.16 £0.01 0.20 £ 0.01 0.00£0.00 0.66+0.01

TF-IDF-SVM | 0.04 4 0.00 0.20 + 0.01 0.21 +£0.01 0.33 £0.02 0.01 £ 0.00 0.58 £ 0.05

RoBERTa | 0.00 +0.00 0.00 £ 0.00 0.05 £ 0.00 0.04 £0.01 0.00 £ 0.00 0.13£0.05

XLM-R | 0.0040.00 0.01 £0.01 0.02 £ 0.00 0.02 £ 0.01 0.00 £ 0.00 0.15+£0.02
PaLM-LIMIT | 0.12+0.00 0.20£0.01 | 0.484+0.03 0.574+0.02 | 0.05+0.01 0.59£0.01
PaLM-CONF | 0.12+0.00 0.20+0.01 | 0.48+0.02 0.57+0.01 | 0.05+0.01 0.5940.01

Table 2: Average model performance and standard deviation over 5 CV-splits. Bold scores are the best score per
column and label.



hazard_category

product_category

B biological
allergens
B foreign bodies

2000 ~

1000 1

1000 A meat and meat
mmm products (other
than poultry)

750 4 ereals and be
cereals and bakery
products

500 7 fruits and

- vegetables

250 1

hazard product
listeria B ice cream
800 - BN honocytogenes 200 A cheese
salmonella, [ eeales
- milk and products 150 4
600 B ihereof
400 100 -
200 - 50 1

O__

0

Figure 2: Class support with background grayed for high- (on the left) and low-support classes (right) for perfor-
mance analysis. For reasons of better readability, we only name the three most supported classes per task.

support segments of the hazard_category and
product_category labels even though the texts
come in multiple languages. We assume the low
number of per-class samples is not sufficient for
the very large embedding layer of XLM-R.

Prompting

The naive approach to prompting (PaLM-ALL) per-
forms below the average of the non-naive classifiers
on the hazard_category label on all segments. As
in prompting, the predicted class is delivered in free
text, it is possible that the LLM produces output
that is not within the set of class labels. While
these outputs can sometimes be interpreted as be-
longing to one of the class labels, we only count
exact matches. In case of the hazard_category,
prompting failed to predict any class for 22% of
the samples (average over the CV splits).

4.4 Conformal Prompting

Few-shot prompting (e.g., with two samples
per class) is not feasible for the hazard,
product_category, and product labels (even for
product_category, prediction takes around 4 s
per sample) due to the high number of classes. In
order to reduce the number of classes for which
we include shots in the prompt, we leverage CP to
yield Conformal Prompting with the PALM-CONF
model. CP utilizes a classifier’s certainty on each
of the predictions in order to build sets of predicted
classes that statistically contain the true class with a
previously specified probability. As can be seen in
Figure 3, CP leads to more concise prediction sets
than just taking the k classes the classifier is most

certain about (referred to as “max-k"). In contrast
to max-k, CP produces shorter sets if the classifier
has a high certainty on the true class. Neverthe-
less, classifiers with less security will improve on
max-k’s accuracy only at larger sets.

PaLM-LIMIT | PaLM-CONF
size  fails size  fails
hazard_category | 776  67% | 830 9%
product_category | 2043 40% | 2098 5%
hazard | 2324 23% | 2368 15%
product | 2838 13% | 2882 12%

Table 3: Prompt length (avg) in characters and cases (%)
where prompting failed to deliver a valid class label.

As we are aiming for a set size below 40 (i.e.,
20 classes, two shots per class), we select the «
based on Figure 3. For hazard_category and
product_category, we choose o = 0.05 (mean-
ing p = 0.95), as even for this high accuracy we get
set sizes smaller than 10. For the remaining labels
we are limited by set length and choose ov = 0.2
for hazard and « = .5 for product. This means,
that for product we have to accept a chance of at
most 50% that the prediction set does not contain
the ground truth in order to keep the set size low.

Table 3 presents the (sensitive to a) average
prompt length and prompting failure rates. While
the prompts are of comparable size (we attribute
the slight increase in PaLM-CONF to the added
statement on example order, see Appendix A), the
LLM produces more valid class labels when using
CP to create the samples. For hazard_category
the prompt lengths are much lower than for Pal.M-
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ALL (2, 227 characters). The failure rate of PalLM-
CONF is also reduced compared to the 22% fails in
PalLM-ALL. Intuitively, the failure rate of PalLM-
LIMIT is decreasing with increasing prompt length
(more samples lead to fewer failures).

Taking a closer look at the performance of PalLM-
LIMIT and PaLM-CONF (see Table 2), we see that
although PaLM-CONF underperforms compared
to BOW-SVM in hazard_category, it still out-
performs both prompting baselines on all metrics.
For a higher number of classes, the performance of
PalLM-CONEF drastically increases compared to the
other models, making it the best tested classifier
on the hazard, product_category, and product
labels in terms of Fj. This increase can be seen
in both high-support and low-support classes, al-
though performance on Cp;g4, shows a bigger in-
crease compared to BOW-SVM. We attribute the
difference in performance between PaLM-LIMIT
and PaLM-CONF decreases for higher classes
to the higher « in these cases: sacrificing CP-
guarantees for faster prediction.

5 Discussion & Conclusions

We present a novel dataset for multi-label classifi-
cation of short texts describing food recalls. The
dataset contains expert-annotated labels on food
products and hazards on two levels of granular-
ity, coarse (tens) and fine (hundreds). Addition-
ally, the dataset includes computer-generated spans
highlighting possible evidence for the class labels.
While these spans are by no means perfect, they
can give an estimate of the noise in the labels. We
present baseline performance (£ -score and accu-
racy) for naive, traditional, and deep classifiers for
all four classification tasks in the proposed dataset.
The dataset is publicly available under a CC BY-

NC-SA 4.0 license at (hidden for anonymity).

Additionally, we show that reducing the number
of few-shot examples for prompting with PaLM,
by only taking into account classes from a confor-
mal set, reduces prediction time while at the same
time increasing performance in terms of Fj. Our
results suggest that a simple random reduction of
few-shot examples (reflected in the PALM-LIMIT
baseline) already makes prompting a strong ap-
proach compared to our other methods. In this
setting, we leverage the well-documented strong
in-context reasoning capabilities of LLMs (Chowd-
hery et al., 2022; Wei et al., 2022; Shi et al., 2023),
which do not necessarily need a full view of all
the possible classes. Nevertheless, we show that if
the examples are taken from a reduced population
that is very likely to contain the true class, we can
further improve on this performance even without
using other prompting techniques such as example
matching (Ahmed et al., 2023) or CoT.

Our results suggest that Conformal Prompting
(at o < 0.1) outperforms normal prompting. De-
pending on the data and number of possible classes,
this may or may not extend to other classifiers
(Table 2; hazard_category, product_category).
Although it allows PalLM to more accurately pre-
dict the class label (even from o < 0.5), Confor-
mal Prompting is also subject to a trade-off be-
tween predictive and temporal performance, i.e.,
sacrificing accuracy (i.e., due to hardware and time
constraints) when more classes are involved, yet
outperforming other traditional and deep classifiers,
and leading to fewer prompting failures than ran-
dom few-shot sampling. This shows that Confor-
mal Prompting is a promising approach for large-
scale multiclass classification with LLMs, whose
applications to other domains and datasets should
be further explored in future work.


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

6 Limitations

Nevertheless, the dataset and approach discussed
in this paper are subject to limitations. Regarding
the dataset, we identified the following:

* The labels in our dataset are subject to noise.
Specifically, some samples are missing evi-
dence for one or more of the assigned classes,
while tokens important for classification may
indicate more than one class. This may lead
to classifiers trained on the data seeing con-
tradicting examples and therefore limit their
predictive performance.

e The spans in hazard_title and
product_title are machine generated
and not manually curated. This means
that while they give an estimation of word
importance, they are no gold standard for
explainability tasks.

We aim to improve these limitations in future iter-
ations of the dataset. For our approach leveraging
CP for few-shot prompting, we found the following
limitations:

* As visualized in Figure 3, CP represents a
trade-off between high prediction set accuracy
and low set length relative to the total num-
ber of classes. This means that with a rising
total number of classes, we will have to sac-
rifice predictive performance in order to keep
the prompt size feasible, which ultimativelly
might render the approach useless.

* In this paper we used normal conformal pre-
diction, which only guarantees a certain prob-
ability of a single true class being in the pre-
diction set. In order to achieve true multilabel
guarantees we would need to switch to mon-
drian CP.

* We only verify our approach on a single LLM.
This means that our approach might not be
generalizable to other LLMs and perform dif-
ferently or not at all for few-shot prompting
with such models.

While we have to accept the first of these points
as inherent to the approach, we are planning to
address the remaining points in future work. As all
the data used in our dataset was already publicly
available before the publication of this work, we
do not violate anybody’s privacy by republishing
it.
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Appendix
A Sample Prompts:

Sample prompts taken from the hazard_category-
label follow. Examples occurring in multiple
prompts are colour-coded for better visibility. Ob-
serve the addition in PaLM-CONF, stating the or-
dering of the samples (underlined). The order of
the examples in PaLM-ALL and PaLM-LIMIT is
identical, while in PALM-CONF they are sorted by
model certainty (most probable one first). In PalLM-
LIMIT, we avoid getting double examples per class
unless the number of examples in the prompt is
greater than the total number of unique classes.
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PaLM-ALL:

Context start:

We are looking for food hazards in texts. Here are some labelled examples:

"Evermore Group Pty Ltd — New Choice Assorted Jelly Cups” -> food additives and flavourings
"Milbona Gouda jung gerieben, mindestens 7 Wochen gereift, 250 g" -> foreign bodies

"Yekta Foods recalls Achachi Jelly Cups because of a choking hazard” -> other hazard
"Schweppes Lemon Lime and Bitters” -> fraud

"Recall of Sriracha Hot Chili Sauce due to Risk of the Contents Exploding” -> packaging defect

"Recall of a Batch of Global Botanics CBD Paste Due to the Presence of Unsafe Levels of Delta-9-tetrahydrocannabinol (THC)" -> chemical

"NulaCPoods Pty Ltd-No Udder Coconut Yoghurt, Alpine Coconut Yoghurt Natural, Alpine Coconut Yoghurt Passionfruit” -> allergens
"Kraft Heinz Foods Company Recalls Turkey Bacon Products Due To Possible Adulteration” -> organoleptic aspects

"Bamboo Aroma Sip Cup” -> migration

"Sunshine Sprouts — Alfalfa Sprouts” -> biological

"Thuan Phat Supermarket Croydon Park — New Choice Milky Pudding Jelly and taro jelly cups” -> food additives and flavourings

"Wilderness Family Naturals brand Coconut Milk Powder and Coconut Chia Pudding Mix recalled due to undeclared milk"” -> allergens
"IGA—Christmas Kisses (Cream filled sponge cakes)" -> fraud

"PepsiCo recalls Tropicana Trop 50 Multivitamins Juice” -> organoleptic aspects

"USA LESS Issues Voluntary Nationwide Recall of LEOPARD Miracle Honey Due to Presence of Undeclared Sildenafil” -> chemical
"Silikon-Muffinbackform” -> migration

"Deutscher Winzerglihwein, weiss, 0,75 L" -> packaging defect

"Two Brothers Pork Skins Recalls Pork Skin Products Due to Misbranding and Failure to Produce Under A HACCP Plan” -> other hazard
Context end:

Please predict the correct class for the following sample:

"Frickenschmidt Foods LLC Recalls Ready-to-Eat Beef Stick Products Due to Misbranding” ->
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PalLM-LIMIT:

Context start:

We are looking for food hazards in texts. Here are some labelled examples:

"Evermore Group Pty Ltd — New Choice Assorted Jelly Cups” -> food additives and flavourings
"Milbona Gouda jung gerieben, mindestens 7 Wochen gereift, 250 g" -> foreign bodies

"Yekta Foods recalls Achachi Jelly Cups because of a choking hazard” -> other hazard
"Schweppes Lemon Lime and Bitters” -> fraud

"Recall of Sriracha Hot Chili Sauce due to Risk of the Contents Exploding” -> packaging defect

"Recall of a Batch of Global Botanics CBD Paste Due to the Presence of Unsafe Levels of Delta-9-tetrahydrocannabinol (THC)" -> chemical

"NulaCPoods Pty Ltd-No Udder Coconut Yoghurt, Alpine Coconut Yoghurt Natural, Alpine Coconut Yoghurt Passionfruit” -> allergens
Context end:
Please predict the correct class for the following sample:

"Frickenschmidt Foods LLC Recalls Ready-to-Eat Beef Stick Products Due to Misbranding” ->

PaLM-CONF:

Context start:

We are looking for food hazards in texts. Here are some labelled examples sorted from most probable to least probable:

"Schweppes Lemon Lime and Bitters” -> fraud
"IGA—Christmas Kisses (Cream filled sponge cakes)" -> fraud

"Milbona Gouda jung gerieben, mindestens 7 Wochen gereift, 250 g" -> foreign bodies

"NulaCPoods Pty Ltd-No Udder Coconut Yoghurt, Alpine Coconut Yoghurt Natural, Alpine Coconut Yoghurt Passionfruit” -> allergens
"Wilderness Family Naturals brand Coconut Milk Powder and Coconut Chia Pudding Mix recalled due to undeclared milk"” -> allergens
"Recall of a Batch of Global Botanics CBD Paste Due to the Presence of Unsafe Levels of Delta-9-tetrahydrocannabinol (THC)" -> chemical
"USA LESS Issues Voluntary Nationwide Recall of LEOPARD Miracle Honey Due to Presence of Undeclared Sildenafil” -> chemical

Context end:

Please predict the correct class for the following sample:

"Frickenschmidt Foods LLC Recalls Ready-to-Eat Beef Stick Products Due to Misbranding” ->

12



B Data sample:

1.0

alcoholic beverages

bivalve molluscs and products therefor
cephalopods and products thereof

cereals and bakery products

cocoa and cocoa preparations, coffee and tea
confectionery

crustaceans and products thereof

dietetic foods, food supplements, fortified foods
eggs and egg products

fats and oils

feed additives

feed materials

fish and fish products

food additives and flavourings

food contact materials

fruits and vegetables

herbs and spices

honey and royal jelly

ices and desserts

meat and meat products (other than poultry)
milk and milk products

non-alcoholic beverages

nuts, nut products and seeds

other food product / mixed

pet feed

poultry meat and poultry meat products
prepared dishes and snacks

soups, broths, sauces and condiments

sugars and syrups ]
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Label co-occurence for the hazard_category and product_category classes normalized by
a) hazard_category, and b) product_category. While this is not true for all the
hazard_category-product_category pairs, some show strong linkage.

Some labeled sample texts. Colored spans signify the spans in and product_title:
"Butterball LLC Recalls Turkey Products Due to Possible Schwarzengrund Contamination"
salmonella schwarzengrund :  biological
Labels ] g &
product:  fresh minced turkey product_category: poultry meat and poultry meat products

"2009 - peanut corporation of america announces voluntary nationwide recall of peanut butter"

salmonella . biological
Labels ®

product: peanut butter product_category: nuts, nut products and seeds

"V&S Imports and Exports Pty Ltd — Yayla Natural Yoghurt and Try Me Natural Yoghurt"

Labels escherichia coli :  biological

product:  yoghurt product_category: milk and milk products
"Undeclared , Egg, and Soya in O’Dwyer ’s Bakery Chocolate Swiss Roll"
Labels eggs and products thereof : allergens

product:  swiss rolls product_category: cereals and bakery products

"Smilin’ Bob’s Voluntarily Recalls Smilin’ Bob’s Smoked Fish Dip Products Because of Possible

listeria monocytogenes :  biological

Labels

product:  fish products product_category: fish and fish products
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