Under review as a conference paper at ICLR 2026

SYSMOBENCH: EVALUATING AI ON FORMALLY
MODELING COMPLEX REAL-WORLD SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal models are essential to specifying large, complex computer systems and
verifying their correctness, but are notoriously expensive to write and maintain.
Recent advances in generative Al show promise in generating certain forms of
specifications. However, existing work mostly targets small code, not complete
systems. It is unclear whether Al can deal with realistic system artifacts, as this
requires abstracting their complex behavioral properties into formal models. We
present SYSMOBENCH, a benchmark that evaluates AI’s ability to formally model
large, complex systems. We focus on concurrent and distributed systems, which
are keystones of today’s critical computing infrastructures, encompassing oper-
ating systems and cloud infrastructure. We use TLA™, the de facto specification
language for concurrent and distributed systems, though the benchmark can be ex-
tended to other specification languages. We address the primary challenge of eval-
uating Al-generated models by automating metrics like syntactic and runtime cor-
rectness, conformance to system code, and invariant correctness. SYSMOBENCH
currently includes eleven diverse system artifacts: the Raft implementation of Etcd
and Redis, the leader election of ZooKeeper, the Spinlock, Mutex, and Ringbuffer
in Asterinas OS, etc., with more being added. SYSMOBENCH enables us to un-
derstand the capabilities and limitations of today’s LLMs and agents, putting tools
in this area on a firm footing and opening up promising new research directions.

1 INTRODUCTION

Formal models are essential to specifying computer systems and reasoning about their correctness.
They provide a mathematical foundation to document and verify the design of complex systems,
such as distributed protocols and concurrent algorithms (Lamport, |2002; Tasiran et al., 2003} |New-
combe et al., [2015; [Hackett et al.l 2023b). Recently, formal models are used to describe system
implementations—system code that runs on user devices and in production environments. Such
models, which we refer to as system models, enable verification of system code via comprehensive
testing and model checking (Bornholt et al.|[2021; |Tang et al.,[2024};/Ouyang et al.|[2025; |Tang et al.,
2025)). For example, system models of Apache ZooKeeper (a distributed coordination system) were
used to detect deep bugs that violate system safety and verify their fixes (Ouyang et al.| 2025)).

However, system models are notoriously expensive to write and maintain. Different from protocols
and algorithms, system code contains low-level details, is more complex, and constantly evolves.
Hence, synthesis of system models is an open challenge (e.g., TLA1+ Challenge| (2025)).

Recent advances in generative Al, represented by large language models (LLMs) and agentic tech-
niques, show promise in generating function-level specifications, in the form of pre- and post-
conditions (Rego et al., 2025} [Cao et al., |2025; |Xie et al., 2025 |Chakraborty et al., 2025; Ma et al.,
2025)). It indicates that Al techniques can capture certain behaviors of software programs. However,
it is unclear whether Al could effectively model a complex system, which requires altogether dif-
ferent capabilities than the synthesis of pre- and post-conditions of a function. Modeling a system
requires the Al to understand the system design (e.g., the underlying protocols and algorithms), rea-
soning about safety and liveness under unexpected faults and external events, and abstracting system
behavior into an executable program. It is unclear to what extent Al has such capabilities.

In this paper, we present SYSMOBENCH, a benchmark to evaluate AI’s ability to formally model
complex systems. We target all forms of generative Al, including LLMs and agentic techniques.

Under review as a conference paper at ICLR 2026

. T " q
System Artifact - = Al (LLM + Agents) Quality Metrics

Etcd Raft. Distributed key-value store with v Syntax Correctness 100%
Weighted full-model and per-action scores

Raft consensus for strong consistency Generated Models
Runtime Correctness 95%

Code: @ raftgo @ storagego @ nodego etcd_raft.tla Specification actions covered without errors o
-- MODULE etcd_raft ---- >

Conformance to System Implementation 10%

Docs: CONSTANTS Server, Value Code actions conformed without errors

VARIABLES state, term, log
Init == term = [i \in Server |-> @] Invariant Correctness

Traces: al code_tracel.log al code_trace2.log P
Next == Timeout \/ Election \/ Heartbeat Invariant pass fraction

Figure 1: SYSMOBENCH sources its tasks from real-world systems (e.g., Etcd Raft in the figure). It
automatically evaluates the system models in TLA™ generated by Al with different metrics.

We focus on concurrent and distributed systems, which are especially difficult to model. They also
underpin today’s critical computing infrastructure, which includes operating systems and cloud com-
puting. We focus on TLA™, the de facto formal specification language for concurrent and distributed
systems (§2). SYSMOBENCH can be easily extended to support other specification languages such
as Alloy (Jackson, 2012)), PAT (Sun et al.,2009), P (Desai et al., 2013)), and SPIN (Holzmann, |1997)).
We have added the support for Alloy and PAT (see Appendix [B)).

The key challenge of SYSMOBENCH is to automatically evaluate Al-generated models—how can
we tell if a system model is of high quality? We did not find any directly applicable metrics in use
by existing work on TLA™ specification generation. For example, (Cao et al.| (2025) only check if
the generated TLA™ specification can be run by the TLC model checker (Yu et al.l [1999). But,
successfully running TLC is not an indicator of whether the model correctly describes the system.
One approach is to evaluate Al-generated pre-/post-conditions (Rego et al., 2025; |[Ma et al., [2024)
against human-written reference specifications. However, such a comparison can be brittle, and real-
world systems rarely have such low-level specifications. Writing a system model remains a highly
challenging expert task that requires months to years of effort.

A key contribution of our benchmark is quality metrics that can be automatically checked. These
metrics reflect the fundamental requirements of a formal system model for use cases like formal
verification (Lamport, [2002) and model-driven testing (Clarke et al.,[2018).

* Syntax correctness. We statically check whether the generated system model uses valid TLA™
syntax using the SANY Syntactic Analyzer.

* Runtime correctness. We check how much of the generated TLA™ can be executed using the
TLC model checker (Yu et al.,|1999)), which is a proxy for logical self-consistency.

* Conformance. We measure whether the model conforms to the system implementation via trace
validation (Cirstea et al.,[2024; [Tang et al., 2025} |Hackett & Beschastnikh) [2025)).

 Invariant correctness. We model-check the system model against system-specific invariants that
reflect the system’s safety and liveness properties.

SYSMOBENCH currently includes eleven real-world artifacts, including distributed systems like
Etcd, Redis, and ZooKeeper, and concurrent systems like spinlock, mutex, and ringbuffer from
Asterinas OS. We also include system artifacts synthesized by PGo (Hackett et al.,[2023a)) to evaluate
Al’s ability to comprehend generated system code. More system artifacts are actively being added.

SYSMOBENCH enables us to understand the capabilities and limitations of Al in using TLA™ to
model real-world systems by evaluating different agent designs with various Al models. State-of-
the-art LLMs show good performance in modeling small system artifacts such as a spinlock imple-
mentation. On the other hand, these LLMs show limited ability in comprehending and abstracting
large, complex systems such as a Raft implementation (Ongaro & Ousterhout, [2014)). Overall, we
believe that SYSMOBENCH can spur innovative Al approaches in the context of formal system
models, similar to the role of SWE-bench (Jimenez et al.,[2024) in software engineering.

Here is a snapshot of SYSMOBENCH: https://anonymous.4open.science/r/SysMoBench-BA9F/.

2 BACKGROUND

SYSMOBENCH focuses on formal models written in TLA™ (Lamport, [2002), which is the de facto
formal specification language for modeling distributed and concurrent systems in practice. The

https://anonymous.4open.science/r/SysMoBench-BA9F/

Under review as a conference paper at ICLR 2026

1 pub struct SpinLock<T> { lock: AtomicBool } CONSTANTS Threads

1
2 pub struct SpinLockGuard<T, R: SpinLock<T>> { 2 VARIABLES lock_state, pc
3 guard: R, 3 Init ==
4} 4 lock_state = FALSE /\ pc = [t \in Threads |[-> "idle"]
5 impl<T> SpinLock<T> { 5 StartLock(t) ==
6 pub const fn new(val: T) -> Self { 6 /\ pc[t] = "idle"
7 SpinLock { lock: AtomicBool::new(false) } 7 /\ pc’ = [pc EXCEPT ![t] = "trying.-blocking"]
8 } 8 /\ lock_state’ = lock_state
9 pub fn lock(&self) -> SpinLockGuard<T> { 9 Acquire(t) ==
10 self.acquire_lock(Q); 10 /\ pc[t] \in {"trying blocking", "spinning"}
11 SpinLockGuard { guard: self } 11 /\ IF lock_state = FALSE
12 } 12 THEN /\ lock_state’ = TRUE
13 fn acquire_lock(&self) { 13 /\ pc’ = [pc EXCEPT ![t] = "locked"]
14 while !self.try_acquire_lock() {} 14 ELSE /\ pc’ = [pc EXCEPT ![t] = "spinning"]
15 } 15 /\ lock_state’ = lock_state
16 fn try_acquire_lock(&self) -> bool { 16 Unlock(t) ==
17 self.lock.compare_exchange(false, true) 17 /\ pclt] = "locked"
18 .is_ok(Q) 18 /\ lock_state’ = FALSE
19 } 19 /\ pc’ = [pc EXCEPT ![t] = "idle"]
20 fn release_lock(&self) { // on guard drop 20 Next == \E t \in Threads:
21 self.lock.store(false); 21 StartLock(t) \/ Acquire(t) \/ Unlock(t)
22 } 22 MutualExclusion ==
23 } 23 Cardinality({t \in Threads : pc[t] = "locked"}) <= 1

Figure 2: Simplified code that implements a spinlock in Asterinas (left) and an Al-generated TLA™
model (right). A spinlock represents the simplest system in SYSMOBENCH.

choice of TLA™ is made from a practical standpoint, not a language standpoint (SYSMOBENCH sup-
ports other specification languages; Appendix |B). TLA™ is widely used by software companies like
Amazon, Microsoft, Nvidia, Google, Oracle, etc (see TLA+ Foundation|(2025)) to check and verify
critical infrastructure systems such as distributed consensus systems (e.g., Etcd and ZooKeeper),
confidential consortium frameworks (Howard et al.l 2025), databases (e.g., CosmosDB and Mon-
goDB), OS kernel synchronization (Tang et al.,[2025), and cache coherence (Beers}, | 2008).

A TLA™ model specifies system behaviors as a collection of state variables, an initial predicate
that defines their initial values, a next-state relation that determines state transitions, and temporal
properties that specify correctness requirements. The next-state relation is expressed as multiple
actions, each describing an atomic state update of all variables. TLA™ is built upon the Temporal
Logic of Actions (TLA), which includes and extends standard linear temporal logic (LTL) (Pnueli}
19°77), providing a rigorous mathematical foundation for reasoning about system behavior over time.
TLA™ models can be verified using explicit-state model checking via TLC (Yu et al., [1999), sym-
bolic model checking via Apalache (Konnov et al.,2019), and deductive verification via the TLA™
Proof System (Chaudhuri et al.| 2010). In SYSMOBENCH, we primarily use TLC, the most widely
used TLA™ tool that systematically explores all reachable states of a system model to ensure that
properties hold over the entire state space. These characteristics make TLAY particularly well-suited
for modeling complex concurrent and distributed systems.

Figure 2] shows simplified code that implements a spinlock in the Asterinas operating system (Peng
et al., 2025) and the corresponding TLAT model that describes the code. The TLA' model is
generated by the Al agent we evaluate in §5] The model defines constants such as Threads (line 1)
and system-state variables such as lock_state and pc (line 2). The initial state Init (line 3) assigns
initial values to all variables. Three actions are defined (lines 5-19)—StartLock, Acquire, and
Unlock—corresponding to the code logic, where Acquire combines the logic of acquire_ lock and
try_acquire_lock. Each action is enabled by certain conditions, e.g., StartLock is enabled when a
thread’s pc is “idle”; it then assigns next-state values to all variables.

To model the spinlock implementation, the Al must first understand the behavior of each function.
Next, it must decide how to represent the system. This involves introducing variables, such as
auxiliary ones like pc, and defining atomic actions that preserve concurrency semantics. Finally,
the Al must specify correctness properties. For example, mutual exclusion (line 22) requires that in
every state, at most one thread can be in the “locked” state.

Note that SYSMOBENCH concerns formal models of system implementations, or system specifica-
tions in the TLA™ and formal method literature. As a specification, a system model enables veri-
fication of system code, but does not necessarily capture requirements of the design (Stoica et al.,
2024). SYSMOBENCH does not target other forms of specifications, such as formal proofs (Chen
et al.| 2025) or function-level pre- and post-conditions (Ma et al.| 2025).

Under review as a conference paper at ICLR 2026

3 SYSMOBENCH

SYSMOBENCH is a benchmark that uses real-world distributed and concurrent system artifacts to
evaluate AI’s ability to formally model systems. Table [T]lists the systems that have been integrated
in SYSMOBENCH; we are actively adding more system artifacts (§3.3).

Table 1: System artifacts that have been integrated in the SYSMOBENCH; “TLA" LoC” refers to
the Al-generated TLA™ models presented in our evaluation results (.

System Type Desc. Source Lang. Source LoC TLA™ LoC
Asterinas Spinlock Concurrent ~ Synchronization Rust 213 151
Asterinas Mutex Concurrent ~ Synchronization Rust 186 219
Asterinas Rwmutex Concurrent Synchronization Rust 395 250
Asterinas Ringbuffer, Concurrent Data Structure Rust 615 123
Etcd Raft Distributed Consensus (Raft) Go 2,159 385
Redis Raft Distributed Consensus (Raft) C 2,394 349
Xline CURP: Distributed Replication (CURP) Rust 4,064 100
ZooKeeper FLE Distributed Leader Election Java 5,360 141
PGo dqueue Distributed Distributed Queue Go 175 75
PGo locksve Distributed Lock Server Go 281 93
PGo raftkvs Distributed Consensus (Raft) Go 3,163 508

3.1 TASK FORMULATION

A SYSMOBENCH task is to generate a system model for a given system artifact (Table [I). Sys-
MOBENCH does not concern how the system model is generated. It can be generated by prompting
LLMs directly, with few-shot learning, or with agentic techniques that invoke external tools (we
evaluate both in §5). Since system artifacts in SYSMOBENCH are real-world system projects, one
can feed various data sources to the LLMs/agents, such as source code, documents, and runtime
traces. The task mirrors real-world modeling workflows of human engineers.

Each task specifies the granularities at which to model the target system’s essential behavioral prop-
erties and state transitions. The required level of granularity is defined based on target use cases; our
current use case is model-checking based system verification—we require the same level of detail
as in prior work on verification and bug finding. The model must include core actions that interact
with other components, while excluding implementation details unrelated to system behavior. We
evaluate behavioral conformance rather than structural equivalence, allowing fine-grained model-
ing of core actions as long as they preserve semantic obligations needed for verification. To make
requirements concrete, each task lists core actions that must be modeled and actions that should
be excluded. Take Spinlock as an example (Figure [2): the requirements are specified as follows:

Mandatory core actions that must be modeled:

¢ The model must specify lock() and unlock() actions.
e Atomic compare_exchange operation on the lock variable.
e Spinning when the lock is contended.

Actions that should be excluded from the model:

¢ RAIT guard implementation details.
¢ Non-core details (e.g., debug formatting and trait implementation).

Besides, the task also requires generating a TLC configuration as a part of the model.

3.2 METRICS AND THEIR MEASUREMENT

Key contributions of SYSMOBENCH are to (1) define metrics that can fairly measure the quality of
Al-generated TLAT models, and (2) design practical techniques to automate metric measurements.
SYSMOBENCH does not rely on human evaluation which is slow and hard to scale, especially for
complex real-world systems. We do not consider LLM-as-a-judge approaches, as we find these
unreliable and difficult to interpret.

https://github.com/asterinas/asterinas
https://github.com/asterinas/asterinas
https://github.com/asterinas/asterinas
https://github.com/asterinas/asterinas
https://github.com/etcd-io/raft
https://github.com/RedisLabs/redisraft
https://github.com/xline-kv/Xline
https://github.com/apache/zookeeper
https://github.com/UBC-NSS/pgo
https://github.com/UBC-NSS/pgo
https://github.com/UBC-NSS/pgo

Under review as a conference paper at ICLR 2026

|m——————————————————— SYSMOBENCH "= — == == —— == ——=———————— 1

Syntax Correctness Runtime Correctness Conformance to System Implementation :

1
Code Traces , Conformed set
5 34 .‘,) g,
e
o UGl . 7777777 "’.(LI ey
1
1

Correctness) ~

Covered \ Error

Allmodel s Metric:
odel action: etric

Metric: 0.5 « Score, + 0.5 « Score, Metric:

1
1
1
1 1
+ ! '
TLA™ Model 1 !
\ Mode] SANY Model TLC Model no @ | role > satg {> \ Error Set 1
; ' (Syntax Checker) \\ Snl (Model ICI\‘clc) untime Errors) \ @ Heartbeat |
1 Score,: Full-model Syntax Tra ‘ ““ S| B
1 Correctness (PAsSTFAIL) o State Metric: Confor: med\»E Tor 1
All code actions
I . Space 1
1 Timeout q 1
\ Invariant Correctness |
1 @ Election 17 Y 1
| | Covered Set Error Set | 1 Invariant Template 1 . Cloncrgtiz‘!sd] 1
. nvarian
1 Model | Heartbeat @ ! & Timcout @ Flection | »! -~ fnvl 1
\ - | @Election @ Heartbeat | : 19 I | m2 e !
1 Score,: Per-action Syntax | © Heartbeat | | [v 1
1 | I
1 1
| 1
1 1

Figure 3: Metrics and evaluation workflow of SYSMOBENCH. The red dashed boxes denote inputs
provided by the system artifact: instrumented system for code traces and required invariants.

SYSMOBENCH includes four metrics that evaluate a TLA™ model on syntax (, runtime cor-
rectness (§3.2.2)), conformance to system code (§3.2.3), and invariant correctness (§3.2.4). The
metrics are not independent, e.g., a model with syntax errors cannot be evaluated for other metrics.
An executable model is evaluated for both conformance and invariant correctness. We design partial
scoring schemes for every metric and normalize results to percentage values, making them easy to
interpret. Figure 3]illustrates the metrics and the evaluation workflow.

3.2.1 SYNTAX CORRECTNESS

SYSMOBENCH uses the TLA™ SANY Syntactic Analyzer to check the syntax of
the TLAT models against TLAT grammar rules, operator usage, module structure, etc. Note that
SANY checks the entire model specification. If the model specification passes the SANY checks,
it earns a full score. However, many Al-generated models fail the SANY check; therefore, we need
fine-grained analysis for partial scoring.

SYSMOBENCH offers per-action analysis for partial scoring by checking how many generated ac-
tions are erroneous (and failed SANY). It encapsulates each action in the model into a per-action
model by adding necessary dependencies (e.g., constant declarations, variable definitions, etc.). It
then uses SANY to check the syntax of per-action model (only syntax correction is concerned in this
step; no equivalence check). A partial score S represents the percentage of correct actions n,. among
the total actions n, i.e., S = Z—Z Here, n. is determined by running SANY on each per-action mod-
ule and counting those that pass without syntax errors, while n; is obtained by counting all action
definitions in the original model. Note that the per-action checks do not account for inter-action
dependencies: a model that passes all the per-action checks can still fail. We use a weighted scoring
scheme that gives equal weights to per-action correctness and inter-action correctness. A model that
passes the overall SANY check earns 100%, while only passing all per-action checks earns 50%.
Only system models with 100% syntax scores will be evaluated for other metrics, because models
with syntax errors cannot be compiled or executed (which is required by other metrics).

3.2.2 RUNTIME CORRECTNESS

For a syntactically correct system model, SYSMOBENCH next evaluates if the model can be exe-
cuted correctly. To do so, SYSMOBENCH performs bounded model checking and simulation using
TLC, and then observes covered actions and runtime errors (if any) by parsing TLC’s coverage re-
port and error output. This model checking and simulation explores the state space without any
invariant checking (see §3.2.4). During this state space exploration, SYSMOBENCH records all
covered actions and the actions with runtime errors.

We define a metric M, that represents the coverage of actions without runtime errors: M, = Z—:,
where n,. is the number of covered actions that did not report errors during state exploration, and 7,

is the total number of actions in the model.

Models with no runtime errors can then be executed to explore state space. Only such models are
evaluated for conformance and invariant correctness.

Under review as a conference paper at ICLR 2026

3.2.3 CONFORMANCE TO SYSTEM IMPLEMENTATION

For an executable model, SYSMOBENCH evaluates its conformance to the behavior of the system
implementation using trace validation (Cirstea et al., 2024). Trace validation checks whether a
trace of the system execution corresponds to a path in the model’s state space. SYSMOBENCH
supports trace validation mechanisms used by different systems (Tang et al.l 2025} (Cirstea et al.,
2024} [Hackett & Beschastnikhl 2025)).

Specifically, to collect execution traces, system code is instrumented with logging statements. The
instrumentation granularity matches the granularity requirements of the task. If the Al-generated
model is coarser than the trace logs, conformance checking could fail; otherwise, we use missing-
event inference techniques (Tang et al., 2025) to account for uninstrumented actions.

The key challenge of automatic conformance checking of any Al-generated models is to correctly
map the elements in the model to elements in the system execution log. This is because Al will
often use names that differ from those in system code. We solve this problem by using a coding
LLM (e.g., Claude-Sonnet-4) to (1) extract constants, variables, and actions from the input model
and (2) map them to the corresponding elements specified in the task requirement (§3.1).

The use of LLMs for automatic mapping of elements in the model and code may raise reliability
concerns. In our experience, state-of-the-art LLMs accomplish the mapping task reliably (§4). This
is because (1) the mapping task is simple and well-defined; (2) the generated models are derived
from the system artifacts and thus largely follow the naming conventions of the system; and, (3)
our trace validation technique (Tang et al.l 2025)) can tolerate a certain level of missing variables or
actions though we have not found such cases so far. A similar use of LLMs for mapping is adopted
in TLAi1+Bench| (2025) (discussed in §@

During trace validation across all traces, SYSMOBENCH keeps track of code actions that are covered
and those code actions that trigger errors. Specifically, SYSMOBENCH feeds the trace to TLC
along with the model, and records whether TLC successfully validates the trace. If validation fails,
SYSMOBENCH identifies where the mismatch occurred by analyzing TLC’s trace validation output.
To measure conformance, we define M. as the coverage of code actions without conformance errors:
M. = Z—j , where n.. is the number of code actions that were covered during validation with no errors,
and n; is the total number of actions in the instrumented code. We use instrumented code actions
instead of model actions because this provides a stable, implementation-grounded granularity that is
consistent across different Al-generated models.

3.2.4 INVARIANT CORRECTNESS

SYSMOBENCH also evaluates whether Al-generated models always satisfy invariants that describe
the expected safety and liveness properties of the system. In principle, if a system model fully
conforms to code, violations of these invariants would indicate bugs in system code; in practice,
few Al-generated models achieved fine-grained conformance. Nevertheless, Al-generated models
have demonstrated practical utility by successfully reproducing known bugs from previous system
versions (Appendix [C.2). Table [2 lists the invariants for the spinlock code in Figure 2] These
invariants are part of the benchmark defined by the task (§3.3).

Table 2: Example spinlock invariants

Invariants Description Type
Mutual exclusion At most one process can be in the critical section at any time Safety
Lock consistency The lock state accurately reflects critical section occupancy Safety
No deadlock Not all threads can be stuck spinning simultaneously Safety
Guard lifecycle Every thread eventually releases the lock it acquires Liveness

Eventual release ~ The system eventually reaches a state where all threads are idle Liveness

SYSMOBENCH addresses a similar challenge as in §3.2.3} it needs to automatically map the actions,
variables, and data structures in the system model to those expressed in the invariants. For this,
the invariants in SYSMOBENCH are templates that contain a description of the property, formal
definitions, and example TLA™ invariants. We then use an LLM to translate these templates into
model-specific invariants that can be checked against the system model. For example, the following
template defines the mutual exclusion invariant in Table

Under review as a conference paper at ICLR 2026

- name: "MutualExclusion"
type:"safety"
natural_language:"Only one thread can access a shared resource at a time"
formal description:"No more than one thread in the critical section"
tla_example:MutualExclusion == Cardinality({t \in Threads:pc[t] = "in.cs"}) <=1

SYSMOBENCH prompts the LLM with both the invariant template and the system model and asks it
to concretize the template using the model. This mapping is highly structured: the output substitutes
the template’s variables and constants with those in the model. For example, the mutual exclusion
invariant, Cardinality({t \in Threads: status[t] = "locked"}) <= 1, is a concretization of the
template by replacing pc with status and in_cs with locked. We evaluate the reliability of this
LLM-assisted concretization in

The invariants are used by TLC during model checking, and SYSMOBENCH observes whether each
invariant is violated. Specifically, for each invariant, SYSMOBENCH creates a separate model with
that invariant and runs TLC independently. This allows SYSMOBENCH to record whether each
invariant is violated. We define a metric M; that represents the fraction of invariants passed, denoted
as M; = %, where n; is the number of invariants that hold across the explored state space, and n; is
the total number of invariants defined for the model. Models with a higher M, are of higher quality.
When combined with runtime and conformance coverage metrics, a higher M, increases confidence
in the correctness of the input specification.

3.3 ADDING NEW SYSTEMS AND SPECIFICATION LANGUAGES TO SYSMOBENCH

SYSMOBENCH provides an extensible framework to add more real-world system artifacts. To add
a new artifact to SYSMOBENCH, one needs to (1) prepare the system artifact (e.g., source code and
documents); (2) create a new task that specifies the abstractions and components to model (@; 3)
develop invariant template (§3.2.4) that specifies correctness properties (safety and liveness); and (4)
provide harness for trace validation by instrumenting system code. In our experience, the effort to
add a new system artifact to SYSMOBENCH is manageable. For example, adding Etcd Raft took one
SYSMOBENCH author four days; an Xline CURP contributor with no experience of SYSMOBENCH
added the system to SYSMOBENCH in four days. Most of the effort is spent on instrumenting the
system to collect execution logs for trace validation in order to measure conformance. Unlike other
benchmarks (§@, SYSMOBENCH does not require writing reference models; in fact, we hope that
some of the Al-generated models can eventually be adopted by real-world system projects.

SYSMOBENCH is extensible to formal specification languages other than TLAT. We extended
SYSMOBENCH to support Alloy (Jackson, 2012) and PAT (Sun et al.l [2009), demonstrating its
generality. Details of these extensions and preliminary evaluation are presented in Appendix [B| The
results show that while our framework is extensible, TLA™ remains the practical choice and can
benefit from Al-driven techniques (existing LLMs are less familiar with Alloy and PAT).

4 EVALUATION SETUP

To evaluate AI’s system modeling abilities, we use three agents powered by LLMs.

* Basic Modeling Agent. This agent reflects the LLM’s raw modeling abilities. The agent prompts
an LLM with the source code of the system and the task requirement (§3.1)). The detailed prompts
are documented in Appendix [G|

* Code Translation Agent. This agent uses an LLM to translate system code into an equivalent
TLA™ form. The agent translates code statement by statement (from the source language to
TLAT™), and then organizes the control flows of the translated statements into a TLA™ model.
The agent reflects the capabilities of LLM-based code translation. We adopt the implementation
of Specula (2025) as our code translation agent.

* Trace Learning Agent. This agent does not use code as input, but tries to learn the system model
from system traces. It prompts LLMs with the traces to infer the system model (see Appendix [H].
This agent reflects the capability of automata learning (Biermann & Feldman, |1972) with LLMs.

We follow HumanEval (Chen et al., 2021)) to run each agent five times and evaluate the best output
model. The agents can enhance the model with feedback loops (three iterations are allowed) if the
generated model cannot pass compilation or has runtime errors. No human intervention is allowed.

Under review as a conference paper at ICLR 2026

Table 3: Evaluation results of two Al agents on two representative system artifacts. v and X mark

whether the model is evaluated in the next phase of measurements (see Figure E[)
(a) Asterinas Spinlock

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 100.00%
Basic Modelin GPT-5 100.00% v 100.00% v 80.00% 100.00%
& Gemini-2.5-Pro 100.00% v 100.00% v 80.00% 85.71%
DeepSeek-R1 100.00% v 100.00% v 80.00% 100.00%
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 100.00%
Code Translation GPT-5 100.00% v 100.00% v 100.00% 85.71%
Gemini-2.5-Pro 100.00% v 100.00% v 100.00% 100.00%
DeepSeck-R1 100.00% v 100.00% v 100.00% 100.00%
(b) Etcd Raft
Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 25.00% v 7.69% 69.23%
. . GPT-5 47.87% X - - -
Basic Modeling . iin S pro 50.00% X . - -
DeepSeek-R1 50.00% X - - -
Claude-Sonnet-4 100.00% v 66.67% v/ 15.38% 92.31%
Code Translation GPT-5 100.00% v 20.00% X - -
Gemini-2.5-Pro 44.44% X - - -
DeepSeek-R1 100.00% v 0.00% X - -

We use four different LLMs to power the three agents: Claude-Sonnet-4 (20250514), GPT-5
(20250807), Gemini-2.5-Pro (20250617), and DeepSeek-R1 (20250528). We run the SANY Syn-
tactic Analyzer, TLC model checker, and system code (for conformance checking) on a server with
dual AMD EPYC 7642 48-Core Processors and 256GB RAM running Ubuntu 22.04.

Robustness of LLLM-assisted Components. SYSMOBENCH uses LL.M-assisted techniques to map
elements in an Al-generated TLAT model to those in the system logs (, and to concretize
invariant templates (§3.2.4). We inspected the LLM-assisted mapping and concretization, and found
the results to be correct. We also conducted an experiment using the “gold model” for Etcd Raft
and Asterinas spinlock, which are known to be correct. We created 10 models (5 for each system)
by changing the names of the variables and actions and tweaking the model’s granularity. The gold
models achieve a perfect score on all metrics, empirically validating the quality of our metrics.

Training Data Contamination. One may be concerned about the fairness of SYSMOBENCH be-
cause it uses open-source projects where the system code likely already appears in LLM training
data. In fact, it is intended to have system code in LLM training data. The design mirrors how
human engineers write formal models: they first learn system code before writing formal models.
Our goal is to leverage LLMs to write effective TLAT models for important, safety-critical software
systems, which requires LLMs to have internalized knowledge of these systems. Note that this is
different from coding benchmarks in that we ask LLMs/agents to write existing code.

Second, few system artifacts in SYSMOBENCH have TLA™ system models in their open-source
repositories. The TLAT models of Asterinas Spinlock/Mutex/Rwmutex are never released. Redis
Raft and Xline CURP do not have any TLA+ models. Etcd Raft and PGo systems do have TLA+
models in the repositories. However, those models are for protocols, not for system code. Our goal
is to use Al to write TLA+ models for all important, safety-critical software systems in the wild.

5 RESULTS

We present evaluation results for the basic modeling agent and the code translation agent on Aster-
inas Spinlock and Etcd Raft (Table[3). Appendix[[.2]contains the complete results for all systems in
SYSMOBENCH. We omit the results of the trace learning agent (which fails to pass runtime checks).

Modeling Capability. We focus on the results of the basic modeling agent. The basic modeling
agent can generate high-quality TLA™ models for Spinlock, which is among the simplest artifacts
in SYSMOBENCH (Table [I), showing certain levels of modeling capability. However, for larger

Under review as a conference paper at ICLR 2026

39.8%

&
S

41.9%

5
'S
S

30

W
S

[}

S

IS}
S

20

5}
S

13.3%

Percentage (%)
Percentage (%)
Percentage (%)

S

8.3%

0 0 0
Token Symbol Operator Indentation Other Config Structure State Structure Safety Liveness
Errors Definition Errors Errors Syntax Errors Comparison Enumeration ~ Operation
Errors Errors Errors Errors Errors
(a) Syntax Errors (b) Runtime Errors (c) Invariant Violations

Figure 4: LLM error attribution regarding the SYSMOBENCH metrics in the basic modeling agent.
The conformance metric is omitted as it has a single attribution.

and more complex systems such as the distributed protocol implementations, the basic modeling
agent performs poorly. For Etcd Raft, only with Claude-Sonnet-4, the modeling agent reaches the
conformance and invariant checking, and scores are low. Clearly, the complexity and size of Etcd
Raft exceed the modeling ability of the LLMs and agents.

For Etcd Raft, the basic modeling agents struggle with (1) code verbosity, (2) protocol complexity,
and (3) abstraction. Etcd Raft has much more code than Spinlock, with low-level utilities (e.g.,
for debugging) and implementation-specific comments, which often cause agents to lose focus on
essential system logic. Moreover, the Raft protocol (Ongaro & Ousterhout,[2014)) has more complex
logic than a spinlock in terms of ordering and intricate conditions of state transitions. Both (1) and
(2) make Etcd Raft significantly more challenging for LLMs to comprehend the system artifact.
For (3), Etcd Raft presents significant abstraction challenges: concepts like distributed logs require
nested data structures, demanding LLMs to precisely express them using TLA™ language constructs.

The basic modeling agents also perform poorly on PGo systems (Appendix [[.2)), indicating limited
LLM ability to comprehend machine-generated systems. Code in PGo-generated systems is a mix
of compiler-generated patterns and a runtime library (Appendix [E). The generated code is repetitive,
and, while it borrows some variable names from the source specification, intermediate variables have
synthetic, non-significant names, which provide few semantic clues to an LLM (or a human reader).

Analysis on Agents. For complex systems like Etcd Raft, the code translation agent outperforms
the basic modeling agent. We believe this is due to the powerful translation abilities of LLMs
2024D). Specifically, the code translation agent leverages symbolic control-flow analysis to
synthesize a TLA" model rigorously. The translation approach also prevents LLMs from hallucinat-
ing logic by adhering to system code. These results indicate that leveraging LLMs’ code translation
abilities can assist in model generation. Finally, we observed that LLMs would sometimes imitate
classic TLA' models from their training set, missing important system-specific content.

Analysis on Invariants. For invariants, LLMs violate very different types of invariants—only 8.3%
of safety properties are violated while 41.9% of liveness properties were violated (Figure). This
indicates the limited ability of LLMs in temporal reasoning. To understand the nature of these
violations, we conducted a fine-grained analysis categorizing them by root causes (Appendix [L.T)).
We find that while fairness assumption violations (e.g., missing or incorrectly specified fairness
assumptions) are a significant issue across systems, logical and structural errors tend to manifest
earlier and block progress before fairness-related issues emerge.

Analysis on LLMs. We observe that LLMs constantly introduce syntax errors (Figure fh), espe-
cially GPT-5, Gemini-2.5-Pro, and DeepSeek-R1. For example, DeepSeek-R1 often misuses math-
ematical symbols (e.g., N, V) instead of ASCII TLA™ operators. Gemini-2.5-Pro and GPT-5 often
mix TLA™ syntax with those of other programming languages like Python. LLMs also misuse op-
erators with incorrect parameters and produce malformed indentation. In terms of runtime errors
(Figure [dp), LLM:s frequently generate inconsistent TLC configurations, such as missing constants
or mismatched declarations. Misunderstanding of TLA™ data structures is also a common error,
e.g., comparing incompatible types or applying invalid operations (e.g., set operations on records).

Among all evaluated LLMs, Claude-Sonnet-4 in general outperforms others in most metrics across
evaluated system artifacts. Since only syntax-valid models can proceed to subsequent evaluation
phases, Claude-Sonnet-4’s ability to generate syntactically correct TLAT models provides an ini-
tial advantage. However, Claude-Sonnet-4’s strength extends beyond syntax correctness. SYS-

Under review as a conference paper at ICLR 2026

MOBENCH decomposes the evaluation into four distinct metrics that separate syntactic correctness
from reasoning about system behavior. As shown in the Appendix for models that successfully
pass syntax checks, Claude-Sonnet-4 generally still achieves higher scores on runtime, conformance,
and invariant metrics compared to other LLMs.

Qualitative Assessment. We conducted qualitative evaluation to assess Al-generated system model
quality and utility in terms of bug finding (Appendix . Comparing with human-written TLA™
models, Al-generated TLAT models differ in structure and completeness but they capture essential
system behaviors. Despite these limitations, Al-generated models have successfully reproduced
known bugs in five systems, demonstrating their practical utility for partial correctness checking.

6 RELATED WORK
SYSMOBENCH is the first framework that evaluates Al on formally modeling real-world systems.

Benchmarks for Formal Specifications. There are several benchmarks for evaluating Al (including
LLMs and Al agents) on generating function-level pre-/post-conditions and loop invariants (Rego
et al., 2025} |Xie et al., 2025} |Cao et al., 2025; (Chakraborty et al., 2025; Ma et al., 2025; Wen et al.,
2024). Those benchmarks typically use small programs, such as sample programs in VeriFast that
implement data structures (Rego et al., 2025) and LeetCode programs (Ma et al., [2025)). There also
exist benchmarks on proof generation for deductive software verification (Yang et al., [2024a) and
on verified code generation (Thakur et al., |2025; |Ye et al.,[2025). None of these benchmarks target
complex real-world computing systems as in SYSMOBENCH. Fundamentally, those benchmarks
evaluate AD’s abilities of code comprehension and specification, not system modeling. Similarly,
PAT-Agent (Zuo et al.| 2025) and Alloy-APR (Alhanahnah et al.| 2025) target smaller tasks such as
puzzles and repairing injected errors (see Appendix [B.3). As Al for code is becoming mature, the
next step is capturing how Al can benefit practical verification of real-world systems. We developed
SYSMOBENCH with this motivation in mind. The arguably most related benchmark is TLAi+Bench
(2025)) which evaluates Al-generated TLA™T specifications. Tasks in TLAiBench are primarily logic
puzzles, not real-world systems. TLAiBench is useful for evaluating AI’s ability in using the TLA™
language, not system comprehension or modeling. Hence, TLAiBench and related benchmarks such
as|Cao et al.| (2025) only measure the syntax and runtime correctness of the TLA™ specifications. [Li
et al|(2025) develop a benchmark for inference of system calls of Hyperkernel; however, the bench-
mark does not consider distributed systems, concurrency, and assumes a ground-truth specification.

Our evaluation aims to establish a baseline using simple, straightforward agents to reflect the status
quo of today’s generative Al technologies. More advanced agents, especially those equipped with
domain-specific knowledge and specialized techniques such as [Bhatia et al.| (2024); Wang et al.
(2025)), can be developed to improve the quality of Al-generated models.

General AI Benchmarks. SYSMOBENCH differs from general Al reasoning benchmarks such as
MMLU (Hendrycks et al., 2021), ARC (Clark et al., 2018), and HELM (Liang et al., [2022). These
benchmarks evaluate generic reasoning, knowledge, and problem-solving capabilities across diverse
domains, while SYSMOBENCH focuses on the specific task of formally modeling large, complex
software systems as a foundation of formal system verification. SYSMOBENCH also differs from
benchmarks targeting Al agent safety such as Agent-SafetyBench (Zhang et al., [2024). It currently
targets traditional distributed and concurrent systems that are implemented in system code without
neural components. The formal system modeling tasks evaluated by SYSMOBENCH are not covered
by existing benchmarks such as EvalScope (EvalScope} 2024).

7 CONCLUDING REMARKS

This paper presents SYSMOBENCH, a new benchmark for evaluating generative Al in formally
modeling real-world computing systems. SYSMOBENCH pushed us to articulate the criteria of for-
mal system models and to develop metrics that can be collected automatically. We find that modern
Al, despite showing strong abilities in coding and bug fixing, is still limited in comprehending, ab-
stracting, and specifying large, complex systems. We hope to use SYSMOBENCH as a vehicle to
advance Al technologies towards software system intelligence, rather than code intelligence.

We are actively adding new system artifacts to SYSMOBENCH and improving the benchmark’s
usability. We encourage others to contribute their system artifacts to SYSMOBENCH. We are also
exploring ways to measure the maintainability of Al-generated system models and considering ways
to include human evaluation as part of SYSMOBENCH.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We strictly obeyed the principles outlined in the ICLR Code of Ethics, and carefully examined
potential ethical concerns, including potential impacts on human subjects, practices to data set re-
leases, potentially harmful insights, methodologies and applications, potential conflicts of interest
and sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal compli-
ance, and research integrity issues. We do not identify any potential risks. In fact, we believe
that the work, together with its artifacts (e.g., the TLA™ models) will have positive impacts on the
correctness of real-world computing systems and infrastructures.

REPRODUCIBILITY STATEMENT

We have made faithful efforts to ensure the reproducibility of our work. We have provided the
details of our work in the paper and its appendix, including the prompts, implementations, and
complete results. We have open-sourced all the research artifacts described in this paper, and created
an anonymous snapshot athttps://anonymous . 4open.science/r/SysMoBench-BA9F/ for the
paper review, which documents how to use and extend different parts of the benchmark. We expect
that readers can easily reproduce our results reported in the paper. We also maintain an active forum
to assist with reproduction problems and questions on how to use and build on SYSMOBENCH.

REFERENCES

Mohannad Alhanahnah, Md Rashedul Hasan, Lisong Xu, and Hamid Bagheri. An empirical evalu-
ation of pre-trained large language models for repairing declarative formal specifications. Empir-
ical Software Engineering (ESE), 30(5):1-38, July 2025.

Robert Beers. Pre-rtl formal verification: an intel experience. In Proceedings of the 45th Annual
Design Automation Conference (DAC), June 2008.

Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit A Seshia, and Alvin Cheung. Verified Code Tran-
spilation with LLMs. In Proceedings of the 38th Annual Conference on Neural Information
Processing Systems (NeurIPS), September 2024.

A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Machines from Samples of
Their Behavior. IEEE Transactions on Computers (ToC), C-21(6):592-597, June 1972.

James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle,
Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield.
Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP),
October 2021.

Jialun Cao, Yaojie Lu, Meiziniu Li, Haoyang Ma, Haokun Li, Mengda He, Cheng Wen, Le Sun,
Hongyu Zhang, Shengchao Qin, Shing-Chi Cheung, and Cong Tian. From Informal to Formal
— Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal
Proofs. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguis-
tics (ACL), July 2025.

Madhurima Chakraborty, Peter Pirkelbauer, and Qing Yi. FormalSpecCpp: A Dataset of C++ For-
mal Specifications created using LLMs. In Proceedings of 2025 IEEE/ACM 22nd International
Conference on Mining Software Repositories (MSR), April 2025.

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. The TLA+ Proof System:
Building a Heterogeneous Verification Platform. In Proceedings of the International Colloquium
on Theoretical Aspects of Computing, September 2010.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,

11

https://anonymous.4open.science/r/SysMoBench-BA9F/

Under review as a conference paper at ICLR 2026

Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code. arXiv:2107.03374, July 2021.

Tianyu Chen, Shuai Lu, Shan Lu, Yeyun Gong, Chenyuan Yang, Xuheng Li, Md Rakib Hossain
Misu, Hao Yu, Nan Duan, Peng Cheng, Fan Yang, Shuvendu K. Lahiri, Tao Xie, and Lidong
Zhou. Automated Proof Generation for Rust Code via Self-Evolution. In Proceedings of the 13th
International Conference on Learning Representations (ICLR), April 2025.

Horatiu Cirstea, Markus A Kuppe, Benjamin Loillier, and Stephan Merz. Validating Traces of
Distributed Programs against TLA+ Specifications. In Proceedings of the 2024 International
Conference on Software Engineering and Formal Methods (SEFM), November 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv.:1803.05457, March 2018.

E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model Checking. MIT Press, 2
edition, 2018.

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien Zufferey.
P: Safe Asynchronous Event-Driven Programming. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), June 2013.

EvalScope. A framework for efficient large model evaluation and performance benchmarking.
https://github.com/modelscope/evalscope, 2024.

A. Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh. Compiling
Distributed System Models with PGo. In Proceedings of the 28th ACM International Conference
on Architecture Support for Programming Languages and Operating Systems (ASPLOS), March
2023a.

Finn Hackett and Ivan Beschastnikh. TraceLinking Implementations with Their Verified Designs.
Proc. ACM Program. Lang., 9(OOPSLA), October 2025.

Finn Hackett, Joshua Rowe, and Markus Alexander Kuppe. Understanding Inconsistency in Azure
Cosmos DB with TLA+. In Proceedings of the 45th International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP), May 2023b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), May 2021.

Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering (TSE),
23(5):279-295, May 1997.

Heidi Howard, Markus A. Kuppe, Edward Ashton, Amaury Chamayou, and Natacha Crooks. Smart
Casual Verification of the Confidential Consortium Framework. In Proceedings of the 22nd
USENIX Symposium on Networked Systems Design and Implementation (NSDI), April 2025.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, February
2012.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In Proceedings
of the 12th International Conference on Learning Representations (ICLR), March 2024.

Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ Model Checking Made Symbolic. Pro-
ceedings of the ACM on Programming Languages, 3(OOPSLA):1-30, October 2019.

12

https://github.com/modelscope/evalscope

Under review as a conference paper at ICLR 2026

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Pearson Education, 2002.

Shangyu Li, Juyong Jiang, Tiancheng Zhao, and Jiasi Shen. OSVBench: Benchmarking LLMs on
Specification Generation Tasks for Operating System Verification. arXiv:2504.20964, April 2025.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, November 2022.

Lezhi Ma, Shangqing Liu, Lei Bu, Shangru Li, Yida Wang, and Yang Liu. SpecEval: Evaluating
Code Comprehension in Large Language Models via Program Specifications. arXiv:2409.12866,
September 2024.

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. SpecGen: Automated Generation of
Formal Program Specifications via Large Language Models. In Proceedings of the IEEE/ACM
47th International Conference on Software Engineering (ICSE), September 2025.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff.
How Amazon Web Services Uses Formal Methods. Communications of the ACM (CACM), 58
(4):66-73, March 2015.

Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm. In
Proceedings of the 2014 USENIX Annual Technical Conference (ATC), June 2014.

Lingzhi Ouyang, Xudong Sun, Ruize Tang, Yu Huang, Madhav Jivrajani, Xiaoxing Ma, and Tianyin
Xu. Multi-Grained Specifications for Distributed System Model Checking and Verification. In
Proceedings of the 20th European Conference on Computer Systems (EuroSys), March 2025.

Yuke Peng, Hongliang Tian, Junyang Zhang, Ruihan Li, Chengjun Chen, Jianfeng Jiang, Jinyi Xian,
Xiaolin Wang, Chenren Xu, Diyu Zhou, Yingwei Luo, Shoumeng Yan, and Yingian Zhang. As-
terinas: A Linux ABI-Compatible, Rust-Based Framekernel OS with a Small and Sound TCB. In
Proceedings of the 2025 USENIX Annual Technical Conference (ATC), July 2025.

Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (FOCS), September 1977.

Marilyn Rego, Wen Fan, Xin Hu, Sanya Dod, Zhaorui Ni, Danning Xie, Jenna DiVincenzo, and
Lin Tan. Evaluating the Ability of GPT-40 to Generate Verifiable Specifications in VeriFast.
In Proceedings of the 2nd IEEE/ACM International Conference on Al Foundation Models and
Software Engineering (FORGE), April 2025.

Specula. A Framework for Synthesizing High-Quality TLA+ Specifications from Source Code.
https://github.com/specula-org/Specula, 2025.

Ion Stoica, Matei Zaharia, Joseph Gonzalez, Ken Goldberg, Koushik Sen, Hao Zhang, Anastasios
Angelopoulos, Shishir G. Patil, Lingjiao Chen, Wei-Lin Chiang, and Jared Q. Davis. Specifica-
tions: The missing link to making the development of LLM systems an engineering discipline.
arXiv:2412.05299, December 2024.

Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards Flexible Verification Under Fair-
ness. In International conference on computer aided verification (CAV), June 2009.

Ruize Tang, Xudong Sun, Yu Huang, Yuyang Wei, Lingzhi Ouyang, and Xiaoxing Ma. SandTable:
Scalable Distributed System Model Checking with Specification-Level State Exploration. In Pro-
ceedings of the 19th European Conference on Computer Systems (EuroSys), April 2024.

Ruize Tang, Minghua Wang, Xudong Sun, Lin Huang, Yu Huang, and Xiaoxing Ma. Converos:
Practical Model Checking for Verifying Rust OS Kernel Concurrency. In Proceedings of the
2025 USENIX Annual Technical Conference (ATC), July 2025.

Serdar Tasiran, Yuan Yu, and Brannon Batson. Using a Formal Specification and a Model Checker to
Monitor and Direct Simulation. In Proceedings of the 40th Annual Design Automation Conference
(DAC), June 2003.

13

https://github.com/specula-org/Specula

Under review as a conference paper at ICLR 2026

Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche,
Greg Durrett, Yisong Yue, and Swarat Chaudhuri. CLEVER: A Curated Benchmark for Formally
Verified Code Generation. arXiv preprint arXiv:2505.13938, May 2025.

TLA+ Foundation. Industrial Use of TLA+. https://foundation.tlapl.us/industry/
index.html, 2025.

TLAi+ Challenge. GenAl-accelerated TLA+ Challenge. https://foundation.tlapl.us/
challenge/, 2025.

TLAi+Bench. TLAi+ Benchmarks on TLA+ Formal Specification Tasks. https://github.com/
tlaplus/TLAiBench, 2025.

Bo Wang, Tianyu Li, Ruishi Li, Umang Mathur, and Prateek Saxena. Program Skeletons for Auto-
mated Program Translation. Proc. ACM Program. Lang., 9(PLDI), June 2025.

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi
Cheung, and Cong Tian. Enchanting Program Specification Synthesis by Large Language Models
Using Static Analysis and Program Verification. In International Conference on Computer Aided
Verification (CAV), July 2024.

Danning Xie, Byoung-Joo Yoo, Nan Jiang, Mijung Kim, Lin Tan, Xiangyu Zhang, and Judy S.
Lee. How Effective are Large Language Models in Generating Software Specifications? In
Proceedings of the 2025 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), March 2025.

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong, Chris
Hawblitzel, Shuvendu Labhiri, Jacob R Lorch, Shuai Lu, Fan Yang, Zigiao Zhou, and Shan Lu.
AutoVerus: Automated Proof Generation for Rust Code. arXiv:2409.13082, September 2024a.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and Unleashing the Power of Large Language Models in Automated
Code Translation. Proceedings of the ACM on Software Engineering, 1(FSE), July 2024b.

Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang, and Dawn Song. VERINA:
Benchmarking Verifiable Code Generation. arXiv preprint arXiv:2505.23135, May 2025.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking TLA+ Specifications. In Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, September 1999.

Zhexin Zhang, Shiyao Cui, Yida Lu, Jingzhuo Zhou, Junxiao Yang, Hongning Wang, and Minlie
Huang. Agent-safetybench: Evaluating the safety of llm agents. arXiv preprint arXiv:2412.14470,
December 2024.

Xinyue Zuo, Yifan Zhang, Hongshu Wang, Yufan Cai, Zhe Hou, Jing Sun, and Jin Song Dong.
Pat-agent: Autoformalization for model checking. In Proceedings of the 40th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), November 2025.

14

https://foundation.tlapl.us/industry/index.html
https://foundation.tlapl.us/industry/index.html
https://foundation.tlapl.us/challenge/
https://foundation.tlapl.us/challenge/
https://github.com/tlaplus/TLAiBench
https://github.com/tlaplus/TLAiBench

Under review as a conference paper at ICLR 2026

A ALTERNATIVE METRICS

No metric is perfect. Besides the core metrics presented in the paper, SYSMOBENCH also measures
complementary metrics that provide different measures of the system model quality.

A.1 RUNTIME PASS RATE

SYSMOBENCH repeatedly runs an agent to generate multiple TLAT system models and evaluates
whether each system model passes the runtime checks. The runtime pass rate is defined as M,, =
Rar where ng, is the number of TLA™ models that passed runtime checking, and n,; is the total

Nat

number of generated TLAT models. This metric complements the system model’s action-level
coverage metric M, (see §3.2.2), as it reflects the agent’s ability and reliability to produce fully
executable TLA' models. Note that a high M, does not necessarily mean most actions in the
TLA™T models are correct. Even if some actions may contain runtime errors but are never executed
during execution, the TLAT model can still pass runtime checking. Conversely, a low M, may
result from a small number of frequently failing actions rather than errors affecting many actions.

A.2 CONFORMANCE PASS RATE

SYSMOBENCH repeatedly executes the system code to generate multiple code traces and checks
which traces fully pass conformance checking. The conformance pass rate is defined as M, = ZZ; ,
where n,, is the number of traces that passed conformance checking, and n,; is the total number of
traces generated. This metric complements the code action-level coverage metric M, (see §3.2.3)
and provides a coarse-grained empirical measure of the TLA' model’s overall alignment with ob-
served system behavior. As with runtime correctness, a low M, . does not necessarily indicate that
most actions are unconformed, while a high M. generally suggests better overall system model

quality, given sufficiently diverse traces.

B EXTENSIBILITY TO OTHER SPECIFICATION LANGUAGES

SYSMOBENCH is general to specification languages beyond TLA™". To demonstrate its extensibil-
ity, we extended SYSMOBENCH to support Alloy (Jackson,2012)) and PAT (Sun et al., 2009).

B.1 SUPPORTING PAT AND ALLOY

PAT. PAT (Process Analysis Toolkit) is a formal verification framework for concurrent and real-time
systems. Supporting PAT in SYSMOBENCH is straightforward because PAT’s tooling provides a
workflow similar to TLA™. We leverage PAT’s parser for syntax checking, its simulator for runtime
evaluation, and its assertion mechanism with model checking for invariant validation. Conformance
is evaluated using PAT’s native trace refinement checker. We implement adaptors to translate our
concrete system traces into the PAT format, which are then validated against the PAT models.

Alloy. Alloy is a declarative specification language based on first-order relational logic. For Alloy
support, evaluating syntax, runtime, and invariant correctness is straightforward using the Alloy An-
alyzer tool. Since Alloy does not provide a built-in notion of “action” as in TLA™, we adapt the
runtime metric by computing the proportion of variables and fields that become instantiated during
bounded execution. This metric is analogous to the action-trigger coverage in TLA™, and it indicates
whether a model executes normally and whether certain branches are unreachable. For the confor-
mance metric, we express a concrete system trace into Alloy facts, which are global constraints over
a bounded sequence of states and must hold in all generated instances, for trace validation.

B.2 EVALUATION RESULTS

We evaluated the basic modeling agent with four LLMs (Claude-Sonnet-4, GPT-5, Gemini-2.5-Pro,
and DeepSeek-R1) on generating Alloy and PAT models for the Spinlock system, with three attempts
per LLM. Table] shows the results. For both PAT and Alloy, the four evaluation metrics (syntax,
runtime, conformance, and invariant) remain applicable. However, due to limitations of current
tools, syntax checking for PAT and Alloy does not yet support partial scoring as in TLA™T.

15

Under review as a conference paper at ICLR 2026

Table 4: Preliminary results of Alloy and PAT support on Asterinas Spinlock using the basic model-
ing agent (3 attempts per LLM).

Language LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 0.00% 0.00% 0.00% 0.00%
Allo GPT-5 100.00% 0.00% 0.00% 0.00%

y Gemini-2.5-Pro 0.00% 0.00% 0.00% 0.00%
DeepSeek-R1 0.00% 0.00% 0.00% 0.00%
Claude-Sonnet-4 0.00% 0.00% 0.00% 0.00%

PAT GPT-5 0.00% 0.00% 0.00% 0.00%
Gemini-2.5-Pro 0.00% 0.00% 0.00% 0.00%
DeepSeek-R1 0.00% 0.00% 0.00% 0.00%

The Al-generated Alloy and PAT models are poor compared to TLAT models. For Alloy, only GPT-
5 was able to generate a model that passes the syntax correctness check after multiple attempts, but
the generated model scored 0% on runtime correctness. For PAT, none of the evaluated LLMs
demonstrated familiarity with the PAT syntax—all generated PAT models failed syntax checks.

Our analysis reveals that current LLMs are unfamiliar with the syntax of Alloy and PAT. In practice,
nearly all generated models failed at the parsing or type-checking stage. For PAT, LLMs frequently
produced syntax borrowed from other languages such as C, Promela, or PRISM. For example, chan-
nels were often declared using PRISM-style range expressions (e.g., channel acquire:{0..2};)
which PAT does not support. We also observed the introduction of keywords and type annotations
that do not exist in PAT, such as adding explicit types (int) after variables or using chan instead of
PAT’s actual channel declaration syntax. For Alloy, we observed similarly systematic breakdowns.
A common pattern was referencing signatures (types) that were never declared in the model, such
as using Time in module imports without defining what Time is. The models also wrote constraints
that mixed incompatible language features, which Alloy does not accept.

We believe that the weak model capabilities using PAT and Alloy are primarily because Alloy and
PAT are much less popular than TLA™ in real-world systems. Consequently, LLMs are not exten-
sively trained on these languages, resulting in poor generation quality. These results justify the use
of TLA™ as the specification language of choice for SYSMOBENCH.

B.3 COMPARISON WITH RELATED WORK

PAT-Agent (Zuo et al [2025)) and Alloy-APR (Alhanahnah et al.| 2025)) also evaluate AI’s ability
to work with formal models using PAT and Alloy, reporting promising results on their benchmarks.

However, their tasks and complexity differ fundamentally from SYSMOBENCH. Table [5] summa-
rizes the task of each work.

Table 5: Summary of the tasks of each work.

Work Task

SYSMOBENCH Generating formal models for real-world software systems from their source code.
PAT-Agent Generating formal models from natural language descriptions.

Alloy-APR Repairing an existing model with injected errors.

Because these tasks are inherently different, it is difficult to compare their complexity directly. In-
stead, we compare the complexity of the generated formal models as shown in Table[6]

Table 6: Complexity comparison across benchmarks measured by lines of code of formal models.

Benchmark Smallest Largest Median Task Type
SYSMOBENCH 75 508 219 Generation
PAT-Agent 16 142 45 Generation
Alloy-APR (ARepair) 15 99 50 Repair
Alloy-APR (Alloy4Fun) 1 234 21 Repair

16

Under review as a conference paper at ICLR 2026

Compared with the generation task in PAT-Agent, most models we expect LLMs/agents to generate
in SYSMOBENCH are larger than the largest models in the PAT-Agent paper. PAT-Agent’s tasks
are small samples such as river-crossing puzzles and restaurant workflows, not real-world software
systems. Alloy-APR’s tasks are similar, which come from ARepair and Alloy4Fun; neither of them
uses real-world system artifacts.

To further validate our understanding, we reproduced the results of Alloy-APR and PAT-Agent using
the same LLMs evaluated in SYSMOBENCH. For Alloy-APR, we used the official artifact on the
ARepair benchmark. Table [7]shows the results.

Table 7: Reproduction of Alloy-APR results on ARepair benchmark with LLMs used in SYS-
MOBENCH.

Model Correct Items Success Rate
Claude-Sonnet-4 38/38 100.0%
GPT-5 30/38 78.9%
Gemini-2.5-Pro 14 /38 36.8%
DeepSeek-R1 5/38 13.2%
Best result in Alloy-APR 28 /38 73.7%

Our reproduction results show that Claude-Sonnet-4 and GPT-5 outperform the best results reported
in the Alloy-APR paper. This suggests that existing LLMs can solve these repair tasks effectively—
the high scores in the paper are largely due to the fact that the task itself is relatively simple. In
contrast, our results show that these LLMs still struggle to generate syntax-correct Alloy models
from complex system code in SYSMOBENCH (see Table).

For PAT-Agent, we ran the NoPlanning workflow using the LLMs evaluated in SYSMOBENCH.
This workflow is similar to our Basic Modeling Agent: it calls the LLM to generate a PAT model
and then iteratively fixes errors. Table[§]shows the results.

Table 8: Reproduction of PAT-Agent results using NoPlanning workflow with LLMs from SYS-
MOBENCH. CSR: Compilation Success Rate, FPR: Full Pass Rate, APR: Average Pass Rate.

Model CSR FPR APR
Claude-Sonnet-4 84.6% 80.8% 87.3%
GPT-5 84.6% 692% 76.4%

Gemini-2.5-Pro 84.6% 654% 74.8%
DeepSeek-R1 577% 50.0% 54.9%

The results are consistent with the original paper’s findings. Similar to Alloy-APR, current LLMs
can solve these relatively simple tasks to a reasonable extent (e.g., Claude-Sonnet-4 achieves 87.3%
APR). However, their ability to generate formal models for real-world software systems is much
weaker, as evidenced by our results (see Table E[)

These results suggest that existing benchmarks such as PAT-Agent and Alloy-APR mostly exercise
simplified modeling tasks. In contrast, SYSMOBENCH targets formal models derived from real sys-
tem code, where current LLMs often fail to produce even syntax-correct specifications (see Table[d).

C QUALITATIVE EVALUATION OF AI-GENERATED MODELS

Beyond the automated quantitative metrics, we performed qualitative evaluation to assess the prac-
tical utility of Al-generated models for human engineers. We evaluated Al-generated models in two
aspects: (1) comparison with human-written ground-truth models from the community, and (2) their
ability to reproduce known bugs in system code.

C.1 COMPARISON WITH HUMAN-WRITTEN MODELS
To assess the quality of Al-generated models, two human experts evaluated models produced by two

different agents: the basic modeling agent and the code translation agent. Each expert compared Al-
generated TLA™ models against human-written models for nine of the systems in SYSMOBENCH.

17

Under review as a conference paper at ICLR 2026

The experts identified ten main types of differences between Al-generated and human models (Ta-
bles [9]and [I0] summarize their occurrence across systems and LLMs):

. Unnecessary EXTENDS/INSTANCE statements

. Topics present in the human model but missing in AI models

. Topics introduced by Al but absent in the human model

. Fewer comments compared to human models

. Properties present in human models but not in AI models

. Different fairness assumptions compared to human models

. Longer composite actions in Al models

. Overly complex or random fairness conditions

. Overspecialization with hard-coded values instead of parameters

O 00 1O\ N AW

Table 9: Types of differences between Al-generated models (produced by the basic modeling agent)
and human-written models. Numbers refer to the types listed above.

System Claude-Sonnet-4 GPT-5 Gemini-2.5-Pro DeepSeek-R1
Asterinas Spin 1,3 1,5,8 1,5,8 1,5,8
Asterinas Mutex 1,5 1,5 1,5,9 5
Asterinas Rwmutex 1,5 1,5 1,5 1,5

Etcd Raft 1,2,4,5,7 1,2,4,5 1,2,4,5,7 1,2,4,5,7
Redis Raft 1,4 1,4,7 1,4,7 1,4
Xline CURP 1,2,4,5,6 1,2,3,4,5,6 1,2,4,5,6 1,2,4,5,6
PGo dqueue 1,5 1,5 1,5 1,5,7
PGo locksvce 1,5 1,5 1,5 5,6,7,8
PGo raftkvs 1,5,7 1,5,7,8 1,5,8 1,5

Table 10: Types of differences between Al-generated models (produced by the code translation
agent) and human-written models. Numbers refer to the types listed above.

System Claude-Sonnet-4 GPT-5 Gemini-2.5-Pro DeepSeek-R1
Asterinas Spin 1,2,3,5,6 1,3,5,6,8 1,2,3,5,6 1,2,3,5,6,8
Asterinas Mutex 1,2,5,8 1,2,5 1,2,5 1,2,5,8
Asterinas Rwmutex 1,5,6 1,3,5,6,8 1,3,5,6 1,5,6,8
Etcd Raft 1,2,4,5,6,8 1,2,4,5,6 1,2,4,5,6,7 1,2,4,5,6,7
Redis Raft 1,3,4,5 1,3,4,5 1,3,4,5 1,2,4,5,6
Xline CURP 1,4,5,6 4,5,6 1,2,4,5,6 1,4,5,6
PGo dqueue 1,2,3,5,6 1,5,6 1,5,6 1,3,5,6
PGo locksve 1,5 1,5,8 1,5 1,5,6,8
PGo raftkvs 1,5,7 1,5,7,8 1,5,6,7,8 1,5,6,7

We group and discuss these differences below.

Prompt-induced patterns (types 1, 4, 5). For both agents, many Al models include unnecessary
EXTENDS / INSTANCE statements (type 1), lack comments (type 4), and omit certain properties (type
5). These patterns largely result from our prompting and evaluation design. The prompt requires
including common libraries to avoid syntax errors; this does not harm correctness or the evaluation
of AI’s modeling capability, as human experts also sometimes copy-paste EXTENDS with unneces-
sary dependencies. Missing comments and properties are expected, as SYSMOBENCH focuses on
state/action modeling and does not require comment or property generation.

Model utility (types 2, 3, 6, 8, 9). Al-generated models may miss certain variables or actions (type
2) or include extra details (type 3), especially when there is a significant difference in abstraction
levels between the human-written models and Al-generated models. For instance, the code transla-
tion agent tends to produce more concrete specifications compared to human-written ones, leading
to more frequent occurrences of type 2 (missing topics) and type 3 (extra topics). Fairness defini-
tions (types 6 and 8) of Al-generated models often differ from human models or are overly technical
or random, which can affect liveness checking. There are also isolated cases of overspecialization
(type 9). Overall, these differences show that AI models capture the general structure but may vary
in completeness, fairness, and abstraction compared to human models.

18

Under review as a conference paper at ICLR 2026

Readability and documentation (types 4, 7). For both agents, the issue of fewer comments (type
4) is due to our prompt design; when we removed the instruction not to generate comments, Al
models produced reasonably long comments that are easy to read. Some models also contain long
composite actions (type 7) or use unconventional ordering of structure (e.g., TypeOK checks placed
unusually). Nevertheless, Al-generated models from both agents remain generally readable, with
meaningful variable and action names and understandable structure.

C.2 BUG REPRODUCTION

Al-generated models can be practically useful for partial correctness checking. Without any hints
about specific bugs, Al-generated models successfully reproduced several hard-to-find bugs across
multiple systems in SYSMOBENCH. Table [TT]lists these reproduced bugs with links to the corre-
sponding issue reports or pull requests.

Table 11: Bugs successfully reproduced by Al-generated models.

Bug ID Description

Etcd Raft #10998 Learners cannot vote during promotion causing election failure

Xline CURP #402 Cluster will enter a frozen state after multiple crashes and recoveries
Redis Raft #19 Stale reads under process pauses, violating linearizability

Asterinas Mutex #1279 Failed try_lock incorrectly unlocks mutex breaking mutual exclusion

Asterinas Rwmutex #1303 Lost wakeup when upgradeable reader releases lock

These bugs were discovered by having Al agents generate TLAT models from earlier versions of
the system code and then using model checking to identify the issues.

D EXAMPLES OF AI-GENERATED TLA+ MODELS

We present two Al-generated system models. Figures |5|and |§| show the TLA™ model and its cor-
responding TLC configuration for Asterinas Spinlock generated by the basic modeling agent with
Claude-Sonnet-4. Figures and show the TLA™ model and its corresponding TLC configuration
for Etcd Raft generated by the code translation agent with Claude-Sonnet-4.

---- MODULE spin ----
EXTENDS TLC, Sequences, SequencesExt, Naturals, FiniteSets, Bags
CONSTANTS Threads
VARIABLES
lock_state,

9 thread_state,
10 guards

Lo B Y N T

12 Vars == <<lock_state, thread_state, guards>>

14 TypeOK ==

15 /\ lock_state \in BOOLEAN

16 /\ thread_state \in [Threads -> {"idle", "spinning", "locked"}]
17 /\ guards \subseteq Threads

18

19 Init ==

20 /\ lock_state = FALSE

21 /\ thread_state = [t \in Threads |-> "idle"]

22 /\ guards = {}

24 TryAcquire(t) ==

25 /\ thread_state[t] \in {"idle", "spinning"}

26 /\ lock_state = FALSE

27 /\ lock_state’ = TRUE

28 /\ thread_state’ = [thread_state EXCEPT ![t] = "locked"]
29 /\ guards’ = guards \cup {t}

30

31 StartSpin(t) ==

32 /\ thread_state[t] = "idle"

33 /\ lock_state = TRUE

34 /\ thread_state’ = [thread_state EXCEPT ![t] = "spinning"]
35 /\ UNCHANGED <<lock_state, guards>>

19

https://github.com/etcd-io/etcd/pull/10998
https://github.com/xline-kv/Xline/issues/402
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/asterinas/asterinas/pull/1279
https://github.com/asterinas/asterinas/issues/1303

Under review as a conference paper at ICLR 2026

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

SpinLoop(t) ==
/\ thread_state[t] = "spinning"
/\ lock_state = TRUE
/\ UNCHANGED <<lock_state, thread_state, guards>>

SpinAcquire(t) ==
/\ thread_state[t] = "spinning"
/\ lock_state = FALSE
/\ lock_state’ = TRUE
/\ thread_state’ = [thread_state EXCEPT ![t] = "locked"]
/\ guards’ = guards \cup {t}

TryLock(t) ==
/\ thread_state[t] = "idle"
/\ IF lock_state = FALSE
THEN /\ lock_state’ = TRUE
/\ thread_state’ = [thread_state EXCEPT ![t] = "locked"]
/\ guards’ = guards \cup {t}
ELSE /\ UNCHANGED <<lock_state, thread_state, guards>>

Unlock(t) ==
/\ thread_state[t] = "locked"
/\ t \in guards
/\ lock_state’ = FALSE
/\ thread_state’ = [thread_state EXCEPT ![t] = "idle"]
/\ guards’ = guards \ {t}

Next ==

\E t \in Threads:
\/ TryAcquire(t)
\/ StartSpin(t)
\/ SpinLoop(t)
\/ SpinAcquire(t)
\/ TryLock(t)
\/ Unlock(t)

Spec == Init /\ [][Next]_Vars /\ \A t \in Threads: WF_Vars(Unlock(t))

Figure 5: Asterinas Spinlock TLA™ model generated by the basic modeling agent with Claude-
Sonnet-4.

1
2
3
4

SPECIFICATION Spec

CONSTANTS
Threads = {t1, t2, t3}

Figure 6: Asterinas Spinlock TLC configuration generated by the basic modeling agent with Claude-

Sonnet-4.

1 ---- MODULE etcdraft ----

2 EXTENDS TLC, Sequences, SequencesExt, Naturals, FiniteSets, Bags

3

4 CONSTANTS

5 Server, * Set of server IDs

6 Value, * Set of possible values for log entries

7 Nil, “ Constant representing no value/no leader

8 Follower, * Node state constants

9 PreCandidate,

10 Candidate,

11 Leader

12

13 VARIABLES

14 state, * state[i] is the state of server i

15 currentTerm, * currentTerm[i] is the current term of server 1

16 votedFor, * votedFor[i] is who server i voted for in currentTerm[i]

17 log, * log[i] is the log of server i

18 commitIndex, “ conmitIndex[i] is the commit index of server i

19 nextIndex, * nextIndex[i][j] is the next log index to send to server j from leader i
20 matchIndex, *matchIndex[i][j]isthehighestlogindexknowntobereplicatedonserverjbyleaderi
21 messages, * Set of messages in transit
22 electionTimeout, * electionTimeout[i] tracks election timeout for server i
23 leader * leader[i] is the current leader known to server i
24
25 vars == <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, messages,

< electionTimeout, leader>>

20

Under review as a conference paper at ICLR 2026

26

27 * Message types

28 MsgHup == "MsgHup"

29 MsgVote == "MsgVote"

30 MsgVoteResp == "MsgVoteResp"
31 MsgPreVote == "MsgPreVote"

32 MsgPreVoteResp == "MsgPreVoteResp"
33 MsgApp == "MsgApp"

34 MsgAppResp == "MsgAppResp"

35 MsgHeartbeat == "lMsgHeartbeat"
36 MsgProp == "MsgProp"

37

38 * Helper functions
39 Min(a, b) == IF a < b THEN a ELSE b
40 Max(a, b) == IF a > b THEN a ELSE b

41

42 LastTerm(xlog) == IF Len(xlog) = ® THEN O ELSE xlog[Len(xlog)].term
43

44 Send(m) == messages’ = messages \cup {m}

45

46 * Initial state

47 Init ==

48 /\ state = [i \in Server |-> Follower]

49 /\ currentTerm = [i \in Server |-> 0]

50 /\ votedFor = [i \in Server |-> Nil]

51 /\ log = [i \in Server |-> <<>>]

52 /\ commitIndex = [i \in Server |-> 0]

53 /\ nextIndex = [i \in Server |-> [j \in Server |[-> 1]]
54 /\ matchIndex = [i \in Server |-> [j \in Server |[-> 0]]
55 /\ messages = {}

56 /\ electionTimeout = [i \in Server |-> 0]

57 /\ leader = [i \in Server |[-> Nil]

58

59 * Election timeout - triggers election
60 Timeout(i) ==

61 /\ state[i] \in {Follower, PreCandidate, Candidate}

62 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = 0]

63 /\ state’ = [state EXCEPT ![i] = IF state[i] = Follower THEN PreCandidate ELSE @]

64 /\ IF state[i] = Follower

65 THEN Send([type |-> MsgHup, from |-> i, to |-> i, term |-> currentTerm[i]])

66 ELSE messages’ = messages

67 /\ UNCHANGED <<currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, leader>>
68

69 * Start prevote campaign
70 StartPreVote(i) ==

71 /\ state[i] = PreCandidate

72 /\ state’ = [state EXCEPT ![i] = PreCandidate]

73 /\ LET lastIndex == Len(log[i])

74 lastTerm == LastTerm(log[i])

75 IN messages’ = messages \cup

76 {[type |-> MsgPreVote,

77 from |-> i,

78 to |-> j,

79 term |-> currentTerm[i] + 1,

80 lastLogIndex |-> lastIndex,

81 lastLogTerm |-> lastTerm] : j \in Server \ {i}}
82 /\ UNCHANGED <<currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, electionTimeout,

— leader>>
83
84 * Handle prevote response
85 HandlePreVoteResponse(i, m) ==

86 /\ m.type = MsgPreVoteResp

87 /\ m.to = i

88 /\ state[i] = PreCandidate

89 /\ m.term = currentTerm[i] + 1

90 /\ LET votes == {msg \in messages : msg.type = MsgPreVoteResp /\

91 msg.to = i /\

92 msg.term = currentTerm[i] + 1 /\
93 msg.voteGranted = TRUE}

94 voteCount == Cardinality({msg.from : msg \in votes}) + 1 * +1 for self
95 IN IF voteCount > Cardinality(Server) \div 2

96 THEN /\ state’ = [state EXCEPT ![i] = Candidate]

97 /\ currentTerm’ = [currentTerm EXCEPT ![i] = currentTerm[i] + 1]
98 /\ votedFor’ = [votedFor EXCEPT ![i] = i]

99 /\ LET lastIndex == Len(log[i])

100 lastTerm == LastTerm(log[i])

101 IN messages’ = (messages \ {m}) \cup

102 {[type |-> MsgVote,

103 from |-> i,

104 to |-> j,

105 term |-> currentTerm[i] + 1,

106 lastLogIndex |-> lastIndex,

107 lastLogTerm |-> lastTerm] : j \in Server \ {i}}

21

Under review as a conference paper at ICLR 2026

108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

/\ UNCHANGED <<log, commitIndex, nextIndex, matchIndex, electionTimeout, leader>>

ELSE /\ messages’ = messages \ {m}

/\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex,

< electionTimeout, leader>>

\#* Handle vote request
HandleVoteRequest(i, m) ==

/\ m.type \in {MsgVote, MsgPreVote}
/\ m.to = i
/\ LET logOk == \/ m.lastLogTerm > LastTerm(log[i])
\/ /\ m.lastLogTerm = LastTerm(log[i])
/\ m.lastLogIndex >= Len(log[i])
grant == /\ m.term >= currentTerm[i]
/\ logOk
/\ IF m.type = MsgVote
THEN \/ votedFor[i] = Nil
\/ votedFor[i] = m.from
ELSE TRUE
IN /\ IF m.type = MsgVote /\ m.term > currentTerm[i]
THEN /\ state’ = [state EXCEPT ![i] = Follower]
/\ currentTerm’ = [currentTerm EXCEPT ![i] = m.term]
/\ votedFor’ = [votedFor EXCEPT ![i] = IF grant THEN m.from ELSE Nil]
/\ leader’ = [leader EXCEPT ![i] = Nil]
ELSE IF m.type = MsgVote /\ grant
THEN /\ votedFor’' = [votedFor EXCEPT ![i] = m.from]
/\ UNCHANGED <<state, currentTerm, leader>>
ELSE UNCHANGED <<state, currentTerm, votedFor, leader>>
/\ Send([type |-> IF m.type = MsgVote THEN MsgVoteResp ELSE MsgPreVoteResp,
from |-> i,
to |[-> m.from,
term |-> IF m.type = MsgPreVote THEN m.term ELSE currentTerm’[i],
voteGranted |-> grant])
/\ messages’ = messages \ {m}
/\ UNCHANGED <<log, commitIndex, nextIndex, matchIndex, electionTimeout>>

* Handle vote response
HandleVoteResponse(i, m) ==

/\ m.type = MsgVoteResp
/\ m.to = i
/\ state[i] = Candidate
/\ m.term = currentTerm[i]
/\ LET votes == {msg \in messages : msg.type = MsgVoteResp /\
msg.to = i /\
msg.term = currentTerm[i] /\
msg.voteGranted = TRUE}
voteCount == Cardinality({msg.from : msg \in votes}) + 1 * +1 for self vote
IN IF voteCount > Cardinality(Server) \div 2
THEN /\ state’ = [state EXCEPT ![i] = Leader]
/\ leader’ = [leader EXCEPT ![i] = i]

/\ nextIndex’ = [nextIndex EXCEPT ![i] = [j \in Server |-> Len(log[i]) + 1]]

/\ matchIndex’ = [matchIndex EXCEPT ![i] = [j \in Server |-> 0]]

/\ LET entry == [term |-> currentTerm[i], value |-> Nil]
IN /\ log’ = [log EXCEPT ![i] = Append(@, entry)]
/\ messages’ = (messages \ {m}) \cup

{[type |-> MsgApp,
from |-> i,
to |-> j,
term |-> currentTerm[i],
prevLogIndex |-> Len(log[i]),
prevLogTerm |-> LastTerm(log[i]),
entries |[-> <<entry>>,
leaderCommit |-> commitIndex[i]] : j \in Server \ {i}}
/\ UNCHANGED <<currentTerm, votedFor, commitIndex, electionTimeout>>
ELSE /\ messages’ = messages \ {m}

/\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex,

< electionTimeout, leader>>

* Client request (leader only)
ClientRequest(i, v) ==

/\ state[i] = Leader
/\ LET entry == [term |-> currentTerm[i], value |-> v]
newLog == Append(log[i], entry)
IN /\ log’ = [log EXCEPT ![i] = newLog]
/\ messages’ = messages \cup
{[type |-> MsgApp,
from |-> i,
to |-> j,
term |-> currentTerm[i],
prevLogIndex |-> Len(log[i]),
prevLogTerm |-> LastTerm(log[i]),
entries |-> <<entry>>,
leaderCommit |-> commitIndex[i]] : j \in Server \ {i}}

22

Under review as a conference paper at ICLR 2026

188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

w0

244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266

/\ UNCHANGED <<state, currentTerm, votedFor, commitIndex, nextIndex, matchIndex, electionTimeout,

— leader>>

* Handle append entries
HandleAppendEntries(i, m) ==

/\ m.type = MsgApp

/\ m.to =i

/\ IF m.term > currentTerm[i]

THEN /\ currentTerm’ = [currentTerm EXCEPT ![i] = m.term]
/\ state’ = [state EXCEPT ![i] = Follower]
/\ votedFor’ = [votedFor EXCEPT ![i] = Nil]
/\ leader’ = [leader EXCEPT ![i] = m.from]

ELSE /\ UNCHANGED <<currentTerm, votedFor>>

/\ IF m.term = currentTerm[i]

THEN /\ state’ = [state EXCEPT ![i] = Follower]
/\ leader’ = [leader EXCEPT ![i] = m.from]
ELSE UNCHANGED <<state, leader>>
/\ electionTimeout’ = [electionTimeout EXCEPT ![i] = 0]

/\ LET logOk == \/ m.prevLogIndex = @

\/ /\ m.prevLogIndex <= Len(log[i])
/\ log[i][m.prevLogIndex].term = m.prevLogTerm

IN IF logOk

THEN /\ log’ = [log EXCEPT ![i] = SubSeq(@, 1, m.prevLogIndex) \o m.entries]

/\ commitIndex’ = [commitIndex EXCEPT ![i] = IF m.leaderCommit > commitIndex[i]

/\ Send([type |-> MsgAppResp,
from |-> i,
to |-> m.from,

THEN Min(m.leaderCommit, Len(log’[i]))

ELSE commitIndex[i]]

term |-> currentTerm’[i],

success |-> TRUE,

matchIndex |-> m.prevLogIndex + Len(m.entries)])

ELSE /\ Send([type |-> MsgAppResp,
from |-> i,
to |[-> m.from,

term |-> currentTerm’[i],

success |-> FALSE,
matchIndex |[-> 0])

/\ UNCHANGED <<log, commitIndex>>

/\ messages’ = messages \ {m}
/\ UNCHANGED <<nextIndex, matchIndex>>

* Handle append response
HandleAppendResponse(i, m) ==
/\ m.type = MsgAppResp

/\ m.to = i

/\ state[i] = Leader

/\ m.term = currentTerm[i]
/\ IF m.success

THEN /\ matchIndex’ = [matchIndex EXCEPT ![i][m.from] = m.matchIndex]
/\ nextIndex’ = [nextIndex EXCEPT ![i][m.from] = m.matchIndex + 1]
/\ LET Agree(idx) == {i} \cup {s \in Server : matchIndex’ [i][s] >= idx}
agreeIndexes == {idx \in 1..Len(log[i])
Cardinality(Agree(idx)) > Cardinality(Server) \div 2 /\
log[i][idx].term = currentTerm[i]}
IN commitIndex’ = [commitIndex EXCEPT ![i] = IF agreeIndexes /= {}
THEN Max(commitIndex[i], CHOOSE idx \in

ELSE /\ nextIndex’ = [nextIndex EXCEPT ![i][m.from] = Max(l, nextIndex[i][m.from] - 1)]

< agreelndexes :

\A idx2 \in agreeIndexes :

— idx2)
ELSE commitIndex[i]]

/\ UNCHANGED <<matchIndex, commitIndex>>

/\ messages’ = messages \ {m}

/\ UNCHANGED <<state, currentTerm, votedFor, log, electionTimeout, leader>>

* Send heartbeat

SendHeartbeat(i) ==
/\ state[i] = Leader
/\ messages’ = messages \cup
{[type |-> MsgHeartbeat,
from |-> i,
to [-> j,

term |-> currentTerm[i],
leaderCommit |-> commitIndex[i]]

: j \in Server \ {i}}

/\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex,

< electionTimeout, leader>>

* Handle heartbeat
HandleHeartbeat(i, m) ==

/\ m.type = MsgHeartbeat

/\ m.to =i

/\ IF m.term >= currentTerm[i]

23

idx >=

Under review as a conference paper at ICLR 2026

267 THEN /\ currentTerm’ = [currentTerm EXCEPT ![i] = m.term]

268 /\ state’ = [state EXCEPT ![i] = Follower]

269 /\ votedFor’ = [votedFor EXCEPT ![i] = Nil]

270 /\ leader’ = [leader EXCEPT ![i] = m.from]

271 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = 0]

272 /\ commitIndex’ = [commitIndex EXCEPT ![i] = IF m.leaderCommit > commitIndex[i]
273 THEN Min(m.leaderCommit, Len(log[il))
274 ELSE commitIndex[i]]

275 ELSE UNCHANGED <<currentTerm, state, votedFor, leader, electionTimeout, commitIndex>>
276 /\ messages’ = messages \ {m}

277 /\ UNCHANGED <<log, nextIndex, matchIndex>>

278

279 * Advance election timeout
280 AdvanceElectionTimeout(i) ==

281 /\ state[i] \in {Follower, PreCandidate, Candidate}

282 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = @ + 1]

283 /\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, messages,
— leader>>

284

285 Next ==

286 \/ \E i \in Server : Timeout(i)

287 \/ \E i \in Server : StartPreVote(i)

288 \/ \E i \in Server, m \in messages : HandlePreVoteResponse(i, m)

289 \/ \E i \in Server, m \in messages : HandleVoteRequest(i, m)

290 \/ \E i \in Server, m \in messages : HandleVoteResponse(i, m)

291 \/ \E i \in Server, v \in Value : ClientRequest(i, v)

292 \/ \E i \in Server, m \in messages : HandleAppendEntries(i, m)

293 \/ \E i \in Server, m \in messages : HandleAppendResponse(i, m)

294 \/ \E i \in Server : SendHeartbeat(i)

295 \/ \E i \in Server, m \in messages : HandleHeartbeat(i, m)

296 \/ \E i \in Server : AdvanceElectionTimeout (i)

297

298 Fairness ==

299 /\ \A i \in Server : WF_vars(Timeout(i))

300 /\ \A i \in Server : WF_vars(StartPreVote(i))

301 /\ \A i \in Server : WF_vars(\E m \in messages : HandlePreVoteResponse(i, m))

302 /\ \A i \in Server : WF_vars(\E m \in messages : HandleVoteRequest(i, m))

303 /\ \A i \in Server : WF.vars(\E m \in messages : HandleVoteResponse(i, m))

304 /\ \A i \in Server : WF_vars(\E m \in messages : HandleAppendEntries(i, m))

305 /\ \A i \in Server : WF_vars(\E m \in messages : HandleAppendResponse(i, m))

306 /\ \A i \in Server : WF_vars(SendHeartbeat(i))

307 /\ \A i \in Server : WF_vars(\E m \in messages : HandleHeartbeat(i, m))

308 /\ \A i \in Server : WF._ vars(AdvanceElectlonTlmeout(1))

309

310 Spec == Init /\ [][Next]_vars /\ Fairness

311

312 ====

Figure 7: Etcd Raft TLA' model generated by the code translation agent with Claude-Sonnet-4.

SPECIFICATION Spec

1

2

3 CONSTANTS

4 Server = {sl, s2, s3}

5 Value = {v1, v2}

6 Nil = "Nil"

7 Follower = "Follower"

8 PreCandidate = "PreCandidate"
9 Candidate = "Candidate"

10 Leader = "Leader"

Figure 8: Etcd Raft TLC configuration generated by the code translation agent with Claude-Sonnet-
4.

E PGO-COMPILED SYSTEMS

Table [T] lists all the system artifacts in SYSMOBENCH. Unlike other open-source systems imple-
mented mostly by human developers, PGo systems represent a special kind of compiler-generated
systems. PGo is a compiler converting distributed systems specifications written in a DSL of TLA™
into executable systems implementations in Go (Hackett et al.,2023a).

These systems reflect production use cases:

24

Under review as a conference paper at ICLR 2026

* dqueue is a simple distributed queue with producers and consumers, which represents a common
cloud computing mechanism. Similar distributed queues are available from many cloud platforms,
like Amazon SQS, Cloudflare Queues, or Apache Kafka.

* locksvce is a simple distributed locking system, which represents a common distributed systems
concept.

* raftkvs is a verified distributed key-value store, with competitive performance. For its consensus
implementation, raftkvs specifies Raft (Ongaro & Ousterhout, [2014).

These systems are complex, each requiring several person-days of effort to specify. The raftkvs store
is particularly complex, requiring almost a person-month of effort. While they are developed using
a formal modeling language, these systems also account for practical coding concerns. Each system
compiles to usable, non-trivial Go code. Notably, raftkvs outperforms other formally verified key-
value stores, with 41% higher throughput than the next-best formally verified store implementation,
and similar latency but 21% of the throughput achieved by Etcd.

A challenge unique to system modeling is that PGo-compiled systems contain machine-generated
Go code, which includes unusual abstractions and coding patterns. For instance, the generated code
makes extensive use of abstractions from PGo’s runtime support library, while containing many
synthetically named variables. These issues are representative of realistic engineering scenarios,
such as generated code (macros, parser generators, state machines), or situations where the original
source code is lost (decompilation artifacts). This type of source code input currently leads to poor
performance on our benchmarks.

PGo Trace Validation. For Al-generated system models, we must validate their behavior against
gathered execution traces. PGo’s TraceLink feature provides a different trace validation method than
for hand-written systems, allowing for automatic implementation tracing and TLA™ glue generation.
As a result, no additional work is needed to gather traces. For simplicity, we use traces taken from
TraceLink’s published artifact. From these traces, TraceLink is able to generate its own binding
TLA™, mapping these logs precisely to a TLA™ state space.

F SYSMOBENCH EVALUATION PROMPTS

During SYSMOBENCH evaluation, LLMs are invoked for conformance and invariant correctness
evaluation to extract information, map actions and variables, and concretize invariants based on
invariant templates.

We show the complete prompts used for benchmark evaluation. These prompts are templates with
parameterized fields that are instantiated by task-specific information. For demonstration, we in-
stantiate the fields in the task for modeling Etcd Raft, with the instantiated parts marked in green.

F.1 CONFORMANCE EVALUATION PROMPTS

Two prompts extract model information and map model action and variable names to code, both
generating configuration files for script processing to support trace validation.

Model component extraction. This prompt directs an LLM to extract TLA' model components,
such as constants, variables, and actions, which are used by a script to generate a trace specifica-
tion (Cirstea et al.| [2024). A trace specification constrains state space exploration along the code
trace path to verify whether a model state space path matches the code trace. In the prompt, the
{source_code} field is instantiated with the TLA™ model.

Model Component Extraction Prompt

Generate a YAML configuration file from the provided TLA+ model (.tla) and configuration (.cfg) files.
Extract information according to the following rules:

Task Description
Parse the TLA+ model and configuration files to create a structured YAML configuration that captures the

model name, constants, variables, actions, and interactions.

Extraction Rules

25

Under review as a conference paper at ICLR 2026

spec_name
Extract from the module declaration line: °---- MODULE <ModuleName> ----"
The specname is the ModuleName between "---- MODULE" and "----".

constants

Extract from the CONSTANTS section in the .cfg file.

- name: The constant identifier

- value: The assigned value, formatted as:

- Sets: Wrap in single quotes, e.g., ’{sl, s2, s3}’ becomes ’{"s1", "s2", "s3"}’

- Strings: Wrap in single quotes with double quotes inside, e.g., Nil becomes ’"Nil"’
- Numbers: Wrap in single quotes as string, e.g., 5 becomes ’5’

variables

Extract from the Init operator definition in the .tla file.

For each variable assignment in Init:

- name: The variable name

- default_value: The initial value expression (preserve TLA+ syntax, escape backslashes)

actions

Extract from the Next operator definition. Include only direct action calls (not numbered interactions).
For each action:

- name: The action/operator name

parameters: List of parameters with:

- name: Parameter variable name

source: Where the parameter comes from (e.g., Server, messages)

- stmt: The complete statement as it appears in Next (including any conditions)

interactions
Extract from the Next operator definition. Include only numbered intermediate actions.
Just list the names (e.g., HandletickElection-1, HandletickHeartbeat_1)

Example
Given this TLA+ model:

---- MODULE SimpleSpec ----

Init ==
/\Nx=0
/\ y = [s \in Server |-> 0]

Next ==

\/ \E s \in Server : Actionl(s)
\/ \E m \in messages : Action2(m)
\/ IntermediateAction_1

And this configuration:

CONSTANTS
Server = {sl, s2}
MaxValue = 10

Generate this YAML:

Syl
specname: SimpleSpec
constants:

- name: Server

value: ’{"s1", "s2"}’
- name: MaxValue

value: 10’

variables:

- name: X

default.value: '@’

- name: y

default.value: ’[s \\in Server |-> 0]’
actions:

- name: Actionl

parameters:

- name: s

source: Server
stmt: Actionl(s)
- name: Action2
parameters:

- name: m
source: messages
stmt: Action2(m)

26

Under review as a conference paper at ICLR 2026

interactions:
- name: IntermediateAction_1

Important Notes

Return ONLY the YAML content - no explanations, comments, or natural language

Preserve TLA+ syntax exactly in default.value fields (escape backslashes)

For actions with conditions, include the full stmt as it appears in Next

Ignore variables that appear in Init but are not part of the main model (e.g., pc, info, stack)
Order matters: spec.name, constants, variables, actions, interactions

VR WN e

Generate the YAML configuration based on the provided TLA+ files:

{source_code}

Model and code component mapping. This prompt directs an LLM to map code to model vari-
able naming for trace validation comparison. The LLM generates a JSON file storing the mappings,
which is further processed by a script to output a test harness that aligns code trace variable and ac-
tion names with the model. In the prompt, the {TLA_SPEC_CODE_PLACEHOLDER} field is instantiated
with the TLA™ model, and {IMPLEMENTATION_CODE_PLACEHOLDER} with the corresponding code.

Model and Code Component Mapping Prompt

You are tasked with generating a JSON mapping file that defines how to convert a concurrent or
distributed system traces to TLA+ model format for trace validation.

System Overview

etcd Raft is a distributed consensus algorithm implementation that supports:
- Leader election with terms and prevoting/voting

- Log replication across multiple nodes

- State transitions between Follower, Candidate, and Leader roles

- Message passing between nodes

Code Analysis
Before generating the mapping, you need to analyze the relevant code to understand the system behavior:

CRITICAL: You MUST base your mapping on the actual TLA+ model content, NOT on the examples below.
The examples are for format reference only. Always use the actual variables and actions defined in the
provided model.

TLA+ Model Code

T tla+
{TLA_SPEC_CODE_PLACEHOLDER }

Implementation Code
sSSem
{IMPLEMENTATION,CODE,PLACEHOLDER}

Input: System Trace Format

System traces are in JSONL format with events like:

json
"conf": [["1", "2", "3"], [1], "log": O, "name": "InitState", "nid": "1", "role": "StateFollower",
"state": {"commit": @, "term": 0, "vote": "0"}}
"conf": [["1", "2", "3"], [1], "log": 1, "name": "BecomeCandidate", "nid": "1", "role":
"StateCandidate", "state": {"commit": O, "term": 1, "vote": "0"}}
"conf": [["1", "2", "3"1, [1], "log": 1, "name": "BecomeCandidate", "nid": "2", "role":
"StateCandidate", "state": {"commit": O, "term": 1, "vote": "0"}}

Common actions in system traces:

- BecomeFollower: Transition to follower role
BecomeCandidate: Transition to candidate role

- BecomeLeader: Transition to leader role

- Ready: Node is ready for operations

- PreVote/Vote: Cast prevote/vote during election
AppendEntries: Replicate log entries

- Heartbeat: Send/receive heartbeat messages

Target: TLA+ Model Variables

27

Under review as a conference paper at ICLR 2026

The TLA+ model tracks these state variables:

- currentTerm: Current term number for each node

- state: Node role (Follower, Candidate, Leader)

- votedFor: Which candidate this node voted for in current term

- commitIndex: Index of highest log entry known to be committed

- nextIndex: For leaders, next log entry to send to each server

matchIndex: For leaders, highest log entry known to be replicated on server

Required Mapping Structure

Generate a JSON file with this structure:

*json
"config": {
"Server": ["Serverl", "Server2", "Server3"] // List of node identifiers
b
"events": {
// Map system actions to TLA+ events
"InitState": "Init",
"BecomeFollower": "BecomeFollower",
"BecomeCandidate": "BecomeCandidate",
"BecomeLeader": "BecomeLeader",
"Ready": "Ready",

"Vote": "Vote",

"AppendEntries": "AppendEntries",
"Heartbeat": "Heartbeat",
// Add other mappings as needed based on code analysis
}

"nodemapping": {
// Map string node IDs to node names
"1": "Nodel",

"2": "Node2",

"3": "Node3",
// Continue as needed
}

olemapping": {
// Map system roles to TLA+ states

"StateFollower": "Follower",
"StateCandidate": "Candidate",
"StateLeader": "Leader"

}

.

Implementation Notes

The mapping will be used by a state tracker that maintains complete system state

Server IDs in traces are numeric (0, 1, 2...) and must be mapped to "Serverl", "Server2", etc.
The state tracker will automatically handle state transitions based on actions

Focus on correctly mapping actions and Server states

The config section should list all possible Server that might appear in traces

G W N e

Your Task

Generate a complete mapping.json file that:

1. Maps all common actions to their TLA+ equivalents

2. Provides server ID mappings for all servers that appear in traces
3. Ensures compatibility with the state tracking implementation

F.2 INVARIANT CORRECTNESS EVALUATION PROMPT

This prompt concretizes invariants from given invariant templates to model-specific forms. It
typically requires the LLM to map different names in an invariant template to the correspond-
ing model elements. The $tlamodel field is instantiated with the TLAT model, and the
$invariant_templates field with the invariant templates defined in the system artifact (see §3.2.4]
for an example).

Invariant Concretization Prompt

You are a TLA+ expert specializing in distributed systems and Raft consensus. Your task is to implement
a set of expert-written invariants for the given etcd TLA+ model.

Target Model

28

Under review as a conference paper at ICLR 2026

$tlamodel

Invariants to Implement
$invariant_templates

Implementation Requirements

1. **Deep Analysis**: First, thoroughly understand both the invariant template’s semantic intent
and the model’s modeling approach:

- What distributed consensus property does each template aim to verify?

- How does the model represent server states, logs, terms, and leadership?

- What are the semantic equivalents between template concepts and model implementation?

2. **Semantic Mapping**: For each invariant, identify the conceptual mapping between template and
model:

- Template server state concepts -> Model’s server state representation

- Template log structure -> Model’s log data structures and indexing

- Template leadership concepts -> Model’s leader election and term management

- Template node/server sets -> Model’s server constants and domains

3. **Creative Adaptation**: Translate the invariant while preserving its core safety/liveness meaning:
- **D0 NOT** simply replace variable names - understand the underlying distributed systems logic

- **D0** redesign the predicate logic to fit the model’s data structure granularity

- **D0** use equivalent semantic concepts even if data representations differ

- **PRESERVE** the original safety/liveness guarantees without weakening the property

4. **TLA+ Property Type Constraints*¥:

FOR SAFETY PROPERTIES (type: '“safety"):
- **MUST** be STATE PREDICATES (describe single states only)

- **NEVER** use primed variables (" currentTerm’", “log’’)

- **NEVER** use temporal operators (' []°, <>, ">7)

- **NEVER** reference actions (like 'RequestVote(s) , 'AppendEntries(s,t)’) - only use state variables
- **QNLY** use unprimed variables (currentTerm[s]', ‘log[s]’) and constants

- **CORRECT**: ‘LeaderUniqueness == \A term \in Terms : Cardinality({s \in Servers : state[s] =

"

leader" /\ currentTerm[s] = term}) <= 1
- **INCORRECT**: “state[s] = "candidate" => RequestVote(s) (references action RequestVote)

FOR LIVENESS PROPERTIES (type: "liveness"):

- **MUST** be TEMPORAL FORMULAS (describe execution traces)

- **MUST** use temporal operators (<>, '">') to express "eventually" or "leads-to"

- **CORRECT**: “EventualLeaderElection == <>(\E s \in Servers : state[s] = "leader")’

@]

Constraint Compliance:
Use ONLY variables, constants, and operators that exist in the model
- Generate complete, syntactically valid TLA+ invariant definitions
Maintain the exact invariant names from templates

6. **Output format**: Return a JSON object containing an array of complete TLA+ invariant definitions

7. **EXACT naming requirement**: You MUST use the exact invariant names specified in the templates
above. Do not create your own names.

Example Output Format

**json
{
"invariants": [
"LeaderUniqueness == \\A term \\in 1..MaxTerm : Cardinality({n \\in Servers : state[n].role =

\"leader\" /\\ state[n].currentTerm = term}) <= 1",

"LogConsistency == \\A nl, n2 \\in Servers : \\A i \\in DOMAIN log[nl] : (i \\in DOMAIN log[n2] /\\
log[nl][i].term = log[n2][i].term) => (\\A j \\in 1..i : 1log[nl][j] = log[n2][j1)"

]

.

CRITICAL REQUIREMENTS:

- **SEMANTIC PRESERVATION**: Each translated invariant MUST verify the same property as the original
template

- **CREATIVE ADAPTATION**: Do NOT simply omit invariants - find creative ways to express the same
property using available model elements

- **COMPLETENESS**: Aim to translate ALL invariants by understanding their semantic intent, not just
their syntactic form

- Use ONLY variables, constants, and operators that exist in the provided model

- Use EXACTLY the invariant names from the templates (preserve exact names for evaluation consistency)

29

Under review as a conference paper at ICLR 2026

- Return ONLY valid JSON, no explanatory text before or after

- Each array element must be a complete TLA+ invariant definition: "InvariantName == <expression>'

- For complex invariants, you may use multiline format within the JSON string (use actual line breaks)
- For simple invariants, single line format is preferred

- **LAST RESORT**: Only omit an invariant if its core concept is fundamentally incompatible with the
model’s design

- **CRITICAL JSON ESCAPING RULES**:

- TLA+ operators like "\A", "\E', "\in" contain ONE backslash in the final TLA+ code

- In JSON strings, use EXACTLY ONE backslash escape: write ""\\A" ' to get "\A' in TLA+

- **D0 NOT double-escape**: “"\\\\A" ' is WRONG and will produce “\\A' in TLA+
- **CORRECT**: ""LeaderUniqueness == \\A term \\in 1..MaxTerm : state[term] = \"leader\"""
- **WRONG**: " "LeaderUniqueness == \\\\A term \\\\in 1..MaxTerm : state[term] = \"leader\"""

- Start your response immediately with the opening brace {

G BASIC MODELING AGENT

The basic modeling agent operates in two steps for each system artifact: (1) generating the model,
including both the TLAT model and its TLC configuration, and (2) using a feedback loop that takes
SYSMOBENCH evaluation results to iteratively improve the generated TLA' model. We show the
complete prompts of the basic modeling agent (§4) to provide its detailed implementation.

G.1 MODEL GENERATION PROMPTS

TLA™' model generation. This prompt directs an LLM to generate the TLA™ model file, in-
stantiated with the granularity definitions of the system artifact (see . The {file_path} and
{source_code} fields are instantiated with the code file path in the repository and source code
content, respectively.

TLA' Model Generation Prompt

You are an expert in formal verification and TLA+ models with deep expertise in concurrent and
distributed systems, particularly etcd and Raft consensus

Convert the following source code to a comprehensive TLA+ model.
System: etcd distributed key-value store

Source Code from {file path}:
“““go
{source_code}

System-specific modeling requirements:

MANDATORY CORE ACTIONS (must include all):

1. [Message Types] MsgHup (election timeout), MsgVote/MsgVoteResp (voting), MsgApp/MsgAppResp (log
replication)

2. [Node States] Four states: StateFollower, StateCandidate, StateLeader, StatePreCandidate (prevote
enabled)

3. [Leader Election] Complete prevote + vote phases: PreCandidate — Candidate — Leader transitions
4. [Log Operations] Log entry appending, consistency checks, commitment with majority quorum

5. [Heartbeat/Timeout] Election timeouts triggering campaigns, heartbeat prevention of elections

6. [Client Proposals] MsgProp message handling and log entry creation by leaders

EXPLICITLY EXCLUDED (do not model):

- Configuration changes and joint consensus (ConfChange messages)
- Log compaction and snapshots (MsgSnap)

- ReadIndex optimizations (MsgReadIndex)

- Async storage operations (LocalAppendThread, LocalApplyThread)
- Advanced flow control and progress tracking details

REQUIRED BEHAVIORAL SCOPE:

- Prevote phase (StatePreCandidate) must be modeled as it’s enabled by default in etcd

- State transition constraints: Follower — PreCandidate — Candidate — Leader (strict transitions)
Message processing by state: only valid message types handled in each node state

- Term advancement rules: nodes advance term when receiving messages with higher term

- Voting restrictions: one vote per term, term must be current or newer

- Heartbeat mechanism: leaders send heartbeats, followers reset election timeout on receipt

- Log consistency checks: prevLogIndex/prevLogTerm validation in MsgApp processing

30

Under review as a conference paper at ICLR 2026

- Majority-based leader election and log commitment
- Basic network message delays and losses

Generate a TLA+ model that accurately models the system’s behavior.

CRITICAL OUTPUT REQUIREMENTS:
1. The MODULE name must be exactly "etcdraft

" (---- MODULE etcdraft ----)

2. Return ONLY pure TLA+ model code - no markdown code blocks (no "~ “tla or "' °)
3. Do not include any explanations, comments, or formatting markers

4. Start your response directly with: ---- MODULE etcdraft

5. End your response with the closing ====

6. **DO NOT define invariants** (like MutualExclusion, Invariant, etc.) - focus on modeling the system
behavior
7. **MUST include EXTENDS statement**: The model must extend at least these modules: TLC, Sequences,

SequencesExt, Naturals, FiniteSets, Bags

TLC configuration generation. This prompt directs an LLM to generate a TLC configuration
file. The configuration file requires the LLM’s understanding of the system to make the model
executable, such as designating the initial predicate and next-state relations. The $tla_spec field is
instantiated with the TLA™ model generated in the previous step.

TLC Configuration Generation Prompt

You are a TLA+ expert. Generate a complete TLC configuration file (.cfg) for the etcd model that can be
directly saved and used for model checking.

Input Model:

$tla_spec

Requirements:

Analyze the model to identify the main model name and all declared constants
Generate complete .cfg file content with SPECIFICATION, CONSTANTS sections

Use small values for constants to ensure efficient model checking (2-3 servers, small integers)
Qutput ONLY the raw .cfg file content - no explanations, no markdown, no code blocks

AW N e

Example Output Format:

SPECIFICATION SpecName

CONSTANTS

**CRITICAL: Your response must contain exactly ONE complete .cfg file. Do not repeat any sections.
Start your response immediately with "SPECIFICATION" and include nothing else.**

G.2 MODEL REFINEMENT PROMPT

This prompt provides guidance for the LLM to refine the previously generated model using syn-
tax and runtime evaluation results from SYSMOBENCH. The {current model} field contains
the previous iteration’s model, {current_tlc_cfg} contains the previous TLC configuration,
{syntax_errors} contains the syntax errors reported by SANY, and {runtime_errors} contains
the runtime errors reported by TLC.

Model Refinement Prompt

You are an expert TLA+ model specialist with extensive experience in concurrent and distributed systems
modeling.

I need you to fix errors in a TLA+ model for etcdraft system.
Current TLA+ Model

e ila
{current_model}

Current TLC Configuration

31

Under review as a conference paper at ICLR 2026

{current_tlc_cfg}

Errors Found

Detailed Syntax Errors:
{syntax_errors}

Detailed Runtime Errors:
{runtime_errors}

Correction Instructions
This is correction attempt {attemptnumber} of {max_attempts}.

Please provide a corrected TLA+ model that fixes these errors. Your corrected model should:

1. **Fix all syntax errors**: Ensure proper TLA+ syntax, correct operator usage, and valid module
structure

2. **Resolve runtime errors**: Define missing variables, operators, and ensure logical consistency
3. **Maintain original intent**: Keep the core distributed system logic and behavior from the source
code

4. **Follow TLA+ best practices**: Use appropriate data structures, actions, and invariants

5. **Be complete and self-contained**: 1Include all necessary EXTENDS, CONSTANTS, VARIABLES, and
operator definitions

Focus specifically on:

- Defining any missing variables or constants

- Implementing missing operators or functions

Fixing syntax issues with operators, expressions, or module structure
- Ensuring proper action definitions and state transitions

- Maintaining consistency with etcdraft’s system behavior

CRITICAL OUTPUT REQUIREMENTS:

- Return ONLY pure TLA+ model code

- NO markdown code blocks (no " “tla or ")

- NO explanations, comments, or text outside the model
- NO formatting markers of any kind

- The MODULE name must be exactly "etcdraft"

- Start directly with: ---- MODULE etcdraft ----

H TRACE LEARNING AGENT

The trace learning agent does not use any code as input; instead, it relies on the distributed traces
as context. Similar to the basic modeling agent, we provide an initial prompt analogous to the
basic modeling agent’s prompt (§G.I)), but substituting the codebase context with trace information
instead. If the first model generation fails to pass compilation, the model refinement loop will pass
the errors back to the LLM to iteratively fix the model.

Trace formats. The trace-based method works with several types of traces and can be easily ex-
tended to additional systems. For each trace format, we provide a short custom prompt explaining
the format. We currently support:

* .ndjson and . jsonl logs: Newline-delimited JSON, with coarse-grained logs defined by the
specific system. One log file contains multiple nodes’ execution logs.

* PGo-instrumented logs generated by TraceLink (Hackett & Beschastnikhl [2025): Also newline-
delimited JSON and contains PGo-specific concepts like archetype names and vector clocks. Vari-
able updates are logged in fine-grained detail at each PGo-defined critical section. One log file is
output per node; there are multiple log files per distributed execution.

Optimizations. We anecdotally noticed that passing single execution traces results in overfitting by
the model, with generated models closely reflecting the single executed path. Providing more traces
improves context for the model.

One issue we encountered was fitting large traces into models’ context windows. The JSON structure
of traces is expensive in tokens, because each “[”, “:”, and other punctuation represents a separate
token. Most of the models we used had a context window of about 200K tokens; a JSON trace
of several megabytes, such as the Etcd Raft traces, simply could not fit. We solved this with three

workarounds:

32

Under review as a conference paper at ICLR 2026

* We support sampling for systems with large traces, randomly choosing a set of execution traces
among all collected traces.

* We convert the nested JSON structure into tab-separated values (TSV) format, which deduplicates
JSON keys into the TSV header and uses only tabs as a separator to save tokens.

* We abbreviate repeated state or action values (e.g., ReceiveRequestVoteResponse) to
acronyms (e.g., RRVR) and provide a mapping in the prompt.

The TSV and abbreviation optimizations significantly save tokens: with the Claude tokenizer, it
reduces token use by 62% for ten lines of Etcd Raft traces (from 645 to 262 tokens), and by 63%
for ten lines of mutex traces (from 866 to 318 tokens). This enabled us to fit multiple traces into the
initial prompt, reducing the impact of overfitting. We did not apply this optimization to the other
methods, since code is less structured and does not have obvious candidates for deduplication.

I COMPLETE EVALUATION RESULTS

I.1 LIVENESS VIOLATION ANALYSIS

We analyzed counterexamples from two representative systems (Asterinas SpinLock and Etcd Raft)
and categorized liveness violations into two main classes:

 Fairness-related issues that prevent progress due to missing fairness declarations, overly narrow
or overly broad constraints (e.g., defined as WF(Next));

* Logical/structural issues that block progress due to conflicting updates or missing/incorrect logic
in action definitions.

Since the modeling task focuses on state/action models of the system implementation and LLMs are
not required to generate temporal operators (e.g., in liveness properties), our categorization does not
include errors related to temporal operators.

Table [T2] presents the detailed breakdown of violations by category and LLM. For Asterinas Spin-
Lock, fairness-related issues dominate the violations, particularly “too broad” and “too narrow”
constraints. For instance, Claude-Sonnet-4, generated 26 out of 32 violations due to overly broad
fairness assumptions.

For Etcd Raft, liveness violations are primarily caused by logical/structural issues. The model’s large
state space causes these logical errors to block progress before fairness-related issues can manifest.
Nevertheless, manual inspection confirms that fairness conditions are generally incorrect.

Table 12: Liveness violations by category in Asterinas SpinLock and Etcd Raft for the basic model-
ing agent.
(a) Asterinas SpinLock liveness violations by category

LLM Fairness Fairness Missing Logical Total
too broad too narrow fairness errors violations
Claude-Sonnet-4 26 2 4 0 32
GPT-5 8 10 2 0 20
Gemini-2.5-Pro 4 6 0 0 10
DeepSeek-R1 4 2 0 2 8

(b) Etcd Raft liveness violations by category

LLM Logical missing/errors Conflicting updates Total violations
Claude-Sonnet-4 4 8 12

GPT-5 2 8 20
Gemini-2.5-Pro 0 0 0
DeepSeek-R1 4 4 8

1.2 DETAILED RESULTS BY SYSTEM

33

Under review as a conference paper at ICLR 2026

We present the complete evaluation results for all systems in our benchmark using three Al agents:
Basic Modeling, Code Translation, and Trace Learning in Tables [[3H23] These tables follow the
same evaluation setup as described in §4]

Table 13: Asterinas Spinlock

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 100.00%
Basic Modelin GPT-5 100.00% v 100.00% v 80.00% 100.00%
& Gemini-2.5-Pro 100.00% v 100.00% v 80.00% 85.71%
DeepSeek-R1 100.00% v 100.00% v 80.00% 100.00%
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 100.00%
Code Translation GPT-5 100.00% v 100.00% v/ 100.00% 85.71%
ode Hansialion - Gemini-2.5-Pro 100.00% v 100.00% v/ 100.00% 100.00%
DeepSeek-R1 100.00% v 100.00% v 100.00% 100.00%
Claude-Sonnet-4 ~ 50.00% X - - -
Trace Learnin GPT-5 100.00% v 0.00% X - -
& Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -

The trace learning agent underperforms compared to the other two agents, typically failing compilation and
runtime checks. We observe that it is more difficult for LLMs to process structured trace data, in comparison
to source code. Specifically, Claude-Sonnet-4 appears to be particularly weak in this regard, achieving the
lowest syntax scores, despite its coding capabilities. This trend of the trace learning agent is consistent across
all the evaluated system artifacts (Tables [[4H23).

Table 14: Etcd Raft

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 25.00% v 7.69% 69.23%
Basic Modelin GPT-5 S 0)))
£ Gemini-25-Pro 50.00% X - - -
DeepSeek-R1 50.00% X - - -
Claude-Sonnet-4 100.00% v 66.67% v/ 15.38% 92.31%
GPT-5 100.00% v 20.00% X - -

Code Translation Geini25Pro 44.44% X

DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 50.00% X - - -

Trace Learmin GPT-5 48.78% X - - -
€ Gemini-2.5-Pro 42.31% X - - -
DeepSeek-R1 47.73% X - - -

Table 15: Asterinas Mutex

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 100.00%
Basic Modelin GPT-5 100.00% v 100.00% v/ 100.00% 85.71%
& Gemini-2.5-Pro 100.00% v 100.00% v 66.67% 85.71%
DeepSeek-R1 100.00% v 100.00% v/ 66.67% 100.00%
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 100.00%
Code Translation GPT-5 100.00% v 100.00% v/ 100.00% 100.00%
Gemini-2.5-Pro 100.00% v 100.00% v 100.00% 85.71%
DeepSeek-R1 100.00% v 100.00% v/ 100.00% 85.71%
Claude-Sonnet-4 ~ 50.00% X - - -
Trace Learnin GPT-5 50.00% X - - -
ace LealiNg Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeck-R1 50.00% X 0.00% X - -

34

Under review as a conference paper at ICLR 2026

Table 16: Asterinas Rwmutex

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 90.00%
Basic Modelin GPT-5 100.00% v 100.00% v 75.00% 80.00%
& Gemini-2.5-Pro 100.00% v 100.00% v 0.00% 80.00%
DeepSeek-R1 100.00% v 100.00% v/ 50.00% 90.00%
Claude-Sonnet-4 100.00% v 100.00% v 100.00% 90.00%
Code Translation GPT-5 100.00% v 100.00% v/ 100.00% 90.00%
! Gemini-2.5-Pro 100.00% v 100.00% v 100.00% 80.00%
DeepSeek-R1 100.00% v 100.00% v/ 50.00% 90.00%

Claude-Sonnet-4 ~ 50.00% X -
GPT-5 100.00% v 0.00% X

Trace Learning 0 0 SPro 100.00% ~ 0.00% X - -
DeepSeek-R1 50.00% X - - -

Table 17: Asterinas Ringbuffer

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 100.00% 100.00% 100.00%
Basic Modelin GPT-5 100.00% v 0.00% X - -
€ Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 100.00% « 100.00% 100.00% 100.00%
Code Translation GP T3 100.00% « 100.00% 100.00% 75.00%
ode fransiaion e mini-2.5-Pro 100.00% v 100.00% 100.00% 100.00%

DeepSeek-R1 100.00% v 0.00% X

Claude-Sonnet-4 100.00% v 0.00% X

Trace Learnin GPT-5 100.00% v/ 0.00% X - -
& Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v/ 0.00% X - -

Table 18: Redis Raft

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 0.00% X - -
. . GPT-5 100.00% v 0.00% X - -
BasicModeling . iin S pro 50.00% X - - -
DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 100.00% v 23.81% v/ 9.09% 75.00%
Code Translation GPT-5 100.00% v 0.00% X - -
Gemini-2.5-Pro 50.00% X - - -
DeepSeek-R1 100.00% v 100.00% v 0.00% 25.00%

Claude-Sonnet-4 50.00% X -

Trace Learning GPT-5 LA § i i
Gemini-2.5-Pro 100.00% v/ 0.00% X - -
DeepSeek-R1 48.53% X - - -

The system model generated by DeepSeek-R1 is overly simplified; thus, it has high syntax and runtime
correctness, but have low score on invariants (the protocol logic is incorrect) and 0% on conformance.

35

Under review as a conference paper at ICLR 2026

Table 19: Xline CURP

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v/ 0.00% X - -
Basic Modelin GPT-5 100.00% v 0.00% X - -
& Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 100.00% v 100.00% v 50.00% 100.00%
Code Translation GPT-5 100.00% v 0.00% X - -
! Gemini-2.5-Pro 100.00% v 100.00% v 66.67% 100.00%

DeepSeek-R1 100.00% v 0.00% X - -

Claude-Sonnet-4 ~ 50.00% X -
GPT-5 100.00% v 0.00% X - -
Gemini-2.5-Pro 46.15% X -
DeepSeek-R1 100.00% v 0.00% X - -

Trace Learning

Xline CURP is one of the largest system artifacts in SYSMOBENCH (see Table[T)). We suspect that the system
model generated by Gemini-2.5-Pro benefits from its 1M-token context window, enabling effective
summarization of the 4000+ line codebase into a concise TLA™ representation.

Table 20: PGo dqueue

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v~ 33.33% v/ 33.33% 0.00%
Basic Modelin GPT-5 100.00% v 0.00% X - -
€ Gemini-2.5-Pro 100.00% v/ 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 100.00% v 100.00% v 0.00% 100.00%
Code Translation GPT-5 100.00% v~ 100.00% v 0.00% 100.00%
ode Hransiation - gemini-2.5-Pro 100.00% v 100.00% 0.00% 100.00%
DeepSeek-R1 100.00% v~ 100.00% v 0.00% 100.00%
Claude-Sonnet-4 100.00% v 0.00% X - -
Trace Learnin GPT-5 100.00% v 0.00% X - -
g Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -

Table 21: PGo locksvc

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 44.45% X - - -
Basic Modelin GPT-5 100.00% v 0.00% X - -
& Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 100.00% v 100.00% v 0.00% 83.33%
Code Translation GPT-5 100.00% v 100.00% v/ 0.00% 66.67%
Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 100.00% v/ 0.00% 50.00%
Claude-Sonnet-4 42.31% X - - -
Trace Learnin GPT-5 100.00% v 0.00% x - -
£ Gemini-25-Pro 50.00% X - - -
DeepSeek-R1 50.00% X - - -

36

Under review as a conference paper at ICLR 2026

Table 22: PGo raftkvs

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 44.57% X - - -
Basic Modelin GPT-5 100.00% v 0.00% X - -
& Gemini-25-Pro 45.84% X - - -
DeepSeek-R1 45.32% X - - -
Claude-Sonnet-4 100.00% v~ 50.00% v/ 0.00% 90.91%
GPT-5 100.00% v 100.00% v/ 0.00% 72.73%

Code Translation . o0 5 pro 40.91% X

DeepSeek-R1 100.00% v 22.22% X - -
Claude-Sonnet-4 ~ 50.00% X - - -

Trace Learning GPT-5 46.55% X i} - -
Gemini-2.5-Pro 41.67% X - - -
DeepSeek-R1 47.83% X - - -

We observe that the characteristics of LLM performance on PGo-compiled systems are very different from
human-written systems as discussed in Section[5]and Appendix[E} We find that GPT-5 performs generally
perform well on PGo systems, indicating its ability of understanding machine-generated code patterns.

Table 23: ZooKeeper Fast Leader Election (FLE)

Agent LLM Syntax Runtime Conformance Invariant
Claude-Sonnet-4 100.00% v 0.00% X - -
Basic Modelin GPT-5 100.00% v 0.00% X - -
£ Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -
Claude-Sonnet-4 100.00% v 0.00% X - -
GPT-5 100.00% v 0.00% X - -

Code Translation 55 5 pro 100.00% ¢ 0.00% X ; ;

DeepSeek-R1 100.00% v 0.00% X - -

Claude-Sonnet-4 44.44% X - - -
GPT-5 47.92% X -
Gemini-2.5-Pro 100.00% v 0.00% X - -
DeepSeek-R1 100.00% v 0.00% X - -

Trace Learning

ZooKeeper FLE has the largest codebase and implements the complex ZAB protocol, making it the most
challenging system to model among all eleven artifacts.

37

	Introduction
	Background
	SysMoBench
	Task Formulation
	Metrics and Their Measurement
	Syntax Correctness
	Runtime Correctness
	Conformance to System implementation
	Invariant Correctness

	Adding New Systems and Specification Languages to SysMoBench

	Evaluation Setup
	Results
	Related Work
	Concluding Remarks
	Alternative Metrics
	Runtime Pass Rate
	Conformance Pass Rate

	Extensibility to Other Specification Languages
	Supporting PAT and Alloy
	Evaluation Results
	Comparison with Related Work

	Qualitative Evaluation of AI-Generated Models
	Comparison with Human-Written Models
	Bug Reproduction

	Examples of AI-generated TLA+ Models
	PGo-compiled Systems
	SysMoBench Evaluation Prompts
	Conformance Evaluation Prompts
	Invariant Correctness Evaluation Prompt

	Basic Modeling Agent
	Model Generation Prompts
	Model Refinement Prompt

	Trace Learning Agent
	Complete Evaluation Results
	Liveness Violation Analysis
	Detailed Results by System

