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ABSTRACT

Formal models are essential to specifying large, complex computer systems and
verifying their correctness, but are notoriously expensive to write and maintain.
Recent advances in generative AI show promise in generating certain forms of
specifications. However, existing work mostly targets small code, not complete
systems. It is unclear whether AI can deal with realistic system artifacts, as this
requires abstracting their complex behavioral properties into formal models. We
present SYSMOBENCH, a benchmark that evaluates AI’s ability to formally model
large, complex systems. We focus on concurrent and distributed systems, which
are keystones of today’s critical computing infrastructures, encompassing oper-
ating systems and cloud infrastructure. We use TLA+, the de facto specification
language for concurrent and distributed systems, though the benchmark can be ex-
tended to other specification languages. We address the primary challenge of eval-
uating AI-generated models by automating metrics like syntactic and runtime cor-
rectness, conformance to system code, and invariant correctness. SYSMOBENCH
currently includes eleven diverse system artifacts: the Raft implementation of Etcd
and Redis, the leader election of ZooKeeper, the Spinlock, Mutex, and Ringbuffer
in Asterinas OS, etc., with more being added. SYSMOBENCH enables us to un-
derstand the capabilities and limitations of today’s LLMs and agents, putting tools
in this area on a firm footing and opening up promising new research directions.

1 INTRODUCTION

Formal models are essential to specifying computer systems and reasoning about their correctness.
They provide a mathematical foundation to document and verify the design of complex systems,
such as distributed protocols and concurrent algorithms (Lamport, 2002; Tasiran et al., 2003; New-
combe et al., 2015; Hackett et al., 2023b). Recently, formal models are used to describe system
implementations—system code that runs on user devices and in production environments. Such
models, which we refer to as system models, enable verification of system code via comprehensive
testing and model checking (Bornholt et al., 2021; Tang et al., 2024; Ouyang et al., 2025; Tang et al.,
2025). For example, system models of Apache ZooKeeper (a distributed coordination system) were
used to detect deep bugs that violate system safety and verify their fixes (Ouyang et al., 2025).

However, system models are notoriously expensive to write and maintain. Different from protocols
and algorithms, system code contains low-level details, is more complex, and constantly evolves.
Hence, synthesis of system models is an open challenge (e.g., TLAi+ Challenge (2025)).

Recent advances in generative AI, represented by large language models (LLMs) and agentic tech-
niques, show promise in generating function-level specifications, in the form of pre- and post-
conditions (Rego et al., 2025; Cao et al., 2025; Xie et al., 2025; Chakraborty et al., 2025; Ma et al.,
2025). It indicates that AI techniques can capture certain behaviors of software programs. However,
it is unclear whether AI could effectively model a complex system, which requires altogether dif-
ferent capabilities than the synthesis of pre- and post-conditions of a function. Modeling a system
requires the AI to understand the system design (e.g., the underlying protocols and algorithms), rea-
soning about safety and liveness under unexpected faults and external events, and abstracting system
behavior into an executable program. It is unclear to what extent AI has such capabilities.

In this paper, we present SYSMOBENCH, a benchmark to evaluate AI’s ability to formally model
complex systems. We target all forms of generative AI, including LLMs and agentic techniques.
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 AI (LLM + Agents)System Artifact

Etcd Raft. Distributed key-value store with
Raft consensus for strong consistency

 Code:  raft.go  storage.go  node.go

 Docs:  leader_election.md  log_replication.md

 Traces:  code_trace1.log

Quality Metrics

Syntax Correctness
Weighted full-model and per-action scores 100%

Runtime Correctness
Specification actions covered without errors 95%

50%Invariant Correctness
Invariant pass fraction

Conformance to System Implementation
Code actions conformed without errors 10%

etcd_raft.tla

1

2

3

4

5

---- MODULE etcd_raft ----

CONSTANTS Server, Value

VARIABLES state, term, log

Init == term = [i \in Server |-> 0]

Next == Timeout \/ Election \/ Heartbeat

Generated Models

 code_trace2.log

Figure 1: SYSMOBENCH sources its tasks from real-world systems (e.g., Etcd Raft in the figure). It
automatically evaluates the system models in TLA+ generated by AI with different metrics.

We focus on concurrent and distributed systems, which are especially difficult to model. They also
underpin today’s critical computing infrastructure, which includes operating systems and cloud com-
puting. We focus on TLA+, the de facto formal specification language for concurrent and distributed
systems (§2). SYSMOBENCH can be easily extended to support other specification languages such
as Alloy (Jackson, 2012), PAT (Sun et al., 2009), P (Desai et al., 2013), and SPIN (Holzmann, 1997).
We have added the support for Alloy and PAT (see Appendix B).

The key challenge of SYSMOBENCH is to automatically evaluate AI-generated models—how can
we tell if a system model is of high quality? We did not find any directly applicable metrics in use
by existing work on TLA+ specification generation. For example, Cao et al. (2025) only check if
the generated TLA+ specification can be run by the TLC model checker (Yu et al., 1999). But,
successfully running TLC is not an indicator of whether the model correctly describes the system.
One approach is to evaluate AI-generated pre-/post-conditions (Rego et al., 2025; Ma et al., 2024)
against human-written reference specifications. However, such a comparison can be brittle, and real-
world systems rarely have such low-level specifications. Writing a system model remains a highly
challenging expert task that requires months to years of effort.

A key contribution of our benchmark is quality metrics that can be automatically checked. These
metrics reflect the fundamental requirements of a formal system model for use cases like formal
verification (Lamport, 2002) and model-driven testing (Clarke et al., 2018).

• Syntax correctness. We statically check whether the generated system model uses valid TLA+

syntax using the SANY Syntactic Analyzer.
• Runtime correctness. We check how much of the generated TLA+ can be executed using the

TLC model checker (Yu et al., 1999), which is a proxy for logical self-consistency.
• Conformance. We measure whether the model conforms to the system implementation via trace

validation (Cirstea et al., 2024; Tang et al., 2025; Hackett & Beschastnikh, 2025).
• Invariant correctness. We model-check the system model against system-specific invariants that

reflect the system’s safety and liveness properties.

SYSMOBENCH currently includes eleven real-world artifacts, including distributed systems like
Etcd, Redis, and ZooKeeper, and concurrent systems like spinlock, mutex, and ringbuffer from
Asterinas OS. We also include system artifacts synthesized by PGo (Hackett et al., 2023a) to evaluate
AI’s ability to comprehend generated system code. More system artifacts are actively being added.

SYSMOBENCH enables us to understand the capabilities and limitations of AI in using TLA+ to
model real-world systems by evaluating different agent designs with various AI models. State-of-
the-art LLMs show good performance in modeling small system artifacts such as a spinlock imple-
mentation. On the other hand, these LLMs show limited ability in comprehending and abstracting
large, complex systems such as a Raft implementation (Ongaro & Ousterhout, 2014). Overall, we
believe that SYSMOBENCH can spur innovative AI approaches in the context of formal system
models, similar to the role of SWE-bench (Jimenez et al., 2024) in software engineering.

Here is a snapshot of SYSMOBENCH: https://anonymous.4open.science/r/SysMoBench-BA9F/.

2 BACKGROUND

SYSMOBENCH focuses on formal models written in TLA+ (Lamport, 2002), which is the de facto
formal specification language for modeling distributed and concurrent systems in practice. The
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1 pub struct SpinLock<T> { lock: AtomicBool }
2 pub struct SpinLockGuard<T, R: SpinLock<T>> {
3 guard: R,
4 }
5 impl<T> SpinLock<T> {
6 pub const fn new(val: T) -> Self {
7 SpinLock { lock: AtomicBool::new(false) }
8 }
9 pub fn lock(&self) -> SpinLockGuard<T> {

10 self.acquire_lock();
11 SpinLockGuard { guard: self }
12 }
13 fn acquire_lock(&self) {
14 while !self.try_acquire_lock() {}
15 }
16 fn try_acquire_lock(&self) -> bool {
17 self.lock.compare_exchange(false, true)
18 .is_ok()
19 }
20 fn release_lock(&self) { // on guard drop
21 self.lock.store(false);
22 }
23 }

1 CONSTANTS Threads
2 VARIABLES lock_state, pc
3 Init ==
4 lock_state = FALSE /\ pc = [t \in Threads |-> "idle"]
5 StartLock(t) ==
6 /\ pc[t] = "idle"
7 /\ pc’ = [pc EXCEPT ![t] = "trying blocking"]
8 /\ lock_state’ = lock_state
9 Acquire(t) ==

10 /\ pc[t] \in {"trying blocking", "spinning"}
11 /\ IF lock_state = FALSE
12 THEN /\ lock_state’ = TRUE
13 /\ pc’ = [pc EXCEPT ![t] = "locked"]
14 ELSE /\ pc’ = [pc EXCEPT ![t] = "spinning"]
15 /\ lock_state’ = lock_state
16 Unlock(t) ==
17 /\ pc[t] = "locked"
18 /\ lock_state’ = FALSE
19 /\ pc’ = [pc EXCEPT ![t] = "idle"]
20 Next == \E t \in Threads:
21 StartLock(t) \/ Acquire(t) \/ Unlock(t)
22 MutualExclusion ==
23 Cardinality({t \in Threads : pc[t] = "locked"}) <= 1

Figure 2: Simplified code that implements a spinlock in Asterinas (left) and an AI-generated TLA+

model (right). A spinlock represents the simplest system in SYSMOBENCH.

choice of TLA+ is made from a practical standpoint, not a language standpoint (SYSMOBENCH sup-
ports other specification languages; Appendix B). TLA+ is widely used by software companies like
Amazon, Microsoft, Nvidia, Google, Oracle, etc (see TLA+ Foundation (2025)) to check and verify
critical infrastructure systems such as distributed consensus systems (e.g., Etcd and ZooKeeper),
confidential consortium frameworks (Howard et al., 2025), databases (e.g., CosmosDB and Mon-
goDB), OS kernel synchronization (Tang et al., 2025), and cache coherence (Beers, 2008).

A TLA+ model specifies system behaviors as a collection of state variables, an initial predicate
that defines their initial values, a next-state relation that determines state transitions, and temporal
properties that specify correctness requirements. The next-state relation is expressed as multiple
actions, each describing an atomic state update of all variables. TLA+ is built upon the Temporal
Logic of Actions (TLA), which includes and extends standard linear temporal logic (LTL) (Pnueli,
1977), providing a rigorous mathematical foundation for reasoning about system behavior over time.
TLA+ models can be verified using explicit-state model checking via TLC (Yu et al., 1999), sym-
bolic model checking via Apalache (Konnov et al., 2019), and deductive verification via the TLA+

Proof System (Chaudhuri et al., 2010). In SYSMOBENCH, we primarily use TLC, the most widely
used TLA+ tool that systematically explores all reachable states of a system model to ensure that
properties hold over the entire state space. These characteristics make TLA+ particularly well-suited
for modeling complex concurrent and distributed systems.

Figure 2 shows simplified code that implements a spinlock in the Asterinas operating system (Peng
et al., 2025) and the corresponding TLA+ model that describes the code. The TLA+ model is
generated by the AI agent we evaluate in §5. The model defines constants such as Threads (line 1)
and system-state variables such as lock state and pc (line 2). The initial state Init (line 3) assigns
initial values to all variables. Three actions are defined (lines 5–19)—StartLock, Acquire, and
Unlock—corresponding to the code logic, where Acquire combines the logic of acquire lock and
try acquire lock. Each action is enabled by certain conditions, e.g., StartLock is enabled when a
thread’s pc is “idle”; it then assigns next-state values to all variables.

To model the spinlock implementation, the AI must first understand the behavior of each function.
Next, it must decide how to represent the system. This involves introducing variables, such as
auxiliary ones like pc, and defining atomic actions that preserve concurrency semantics. Finally,
the AI must specify correctness properties. For example, mutual exclusion (line 22) requires that in
every state, at most one thread can be in the “locked” state.

Note that SYSMOBENCH concerns formal models of system implementations, or system specifica-
tions in the TLA+ and formal method literature. As a specification, a system model enables veri-
fication of system code, but does not necessarily capture requirements of the design (Stoica et al.,
2024). SYSMOBENCH does not target other forms of specifications, such as formal proofs (Chen
et al., 2025) or function-level pre- and post-conditions (Ma et al., 2025).
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3 SYSMOBENCH

SYSMOBENCH is a benchmark that uses real-world distributed and concurrent system artifacts to
evaluate AI’s ability to formally model systems. Table 1 lists the systems that have been integrated
in SYSMOBENCH; we are actively adding more system artifacts (§3.3).

Table 1: System artifacts that have been integrated in the SYSMOBENCH; “TLA+ LoC” refers to
the AI-generated TLA+ models presented in our evaluation results (§5).

System Type Desc. Source Lang. Source LoC TLA+ LoC

Asterinas Spinlock Concurrent Synchronization Rust 213 151
Asterinas Mutex Concurrent Synchronization Rust 186 219
Asterinas Rwmutex Concurrent Synchronization Rust 395 250
Asterinas Ringbuffer Concurrent Data Structure Rust 615 123
Etcd Raft Distributed Consensus (Raft) Go 2,159 385
Redis Raft Distributed Consensus (Raft) C 2,394 349
Xline CURP Distributed Replication (CURP) Rust 4,064 100
ZooKeeper FLE Distributed Leader Election Java 5,360 141
PGo dqueue Distributed Distributed Queue Go 175 75
PGo locksvc Distributed Lock Server Go 281 93
PGo raftkvs Distributed Consensus (Raft) Go 3,163 508

3.1 TASK FORMULATION

A SYSMOBENCH task is to generate a system model for a given system artifact (Table 1). SYS-
MOBENCH does not concern how the system model is generated. It can be generated by prompting
LLMs directly, with few-shot learning, or with agentic techniques that invoke external tools (we
evaluate both in §5). Since system artifacts in SYSMOBENCH are real-world system projects, one
can feed various data sources to the LLMs/agents, such as source code, documents, and runtime
traces. The task mirrors real-world modeling workflows of human engineers.

Each task specifies the granularities at which to model the target system’s essential behavioral prop-
erties and state transitions. The required level of granularity is defined based on target use cases; our
current use case is model-checking based system verification—we require the same level of detail
as in prior work on verification and bug finding. The model must include core actions that interact
with other components, while excluding implementation details unrelated to system behavior. We
evaluate behavioral conformance rather than structural equivalence, allowing fine-grained model-
ing of core actions as long as they preserve semantic obligations needed for verification. To make
requirements concrete, each task lists core actions that must be modeled and actions that should
be excluded. Take Spinlock as an example (Figure 2): the requirements are specified as follows:

Mandatory core actions that must be modeled:

• The model must specify lock() and unlock() actions.
• Atomic compare exchange operation on the lock variable.
• Spinning when the lock is contended.

Actions that should be excluded from the model:

• RAII guard implementation details.
• Non-core details (e.g., debug formatting and trait implementation).

Besides, the task also requires generating a TLC configuration as a part of the model.

3.2 METRICS AND THEIR MEASUREMENT

Key contributions of SYSMOBENCH are to (1) define metrics that can fairly measure the quality of
AI-generated TLA+ models, and (2) design practical techniques to automate metric measurements.
SYSMOBENCH does not rely on human evaluation which is slow and hard to scale, especially for
complex real-world systems. We do not consider LLM-as-a-judge approaches, as we find these
unreliable and difficult to interpret.
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Runtime CorrectnessSyntax Correctness

Score2: Per-action Syntax 

Correctness (%)

Score1: Full-model Syntax 

Correctness (PASS/FAIL)

Model
(No Syntax 

Errors)

TLC
(Model Checker)

Model SANY
(Syntax Checker)

Metric: 
𝐂𝐨𝐯𝐞𝐫𝐞𝐝 ∖ 𝐄𝐫𝐫𝐨𝐫

𝐀𝐥𝐥 𝐦𝐨𝐝𝐞𝐥 𝐚𝐜𝐭𝐢𝐨𝐧𝐬

Invariant Correctness

Conformance to System Implementation

SYSMOBENCH

Model

Timeout

Election

Heartbeat

------- MODULE etcd_raft -------

CONSTANTS Server, Value

VARIABLES state, term

Init ==

  /\ state = [i \in Server |->

              "Follower" ]

  /\ term = [i \in Server |-> 0]

Next == \E i \in Server: 

  \/ Timeout(i)

  \/ Election(i)

  \/ Heartbeat(i)

TLA+ Model

Metric: 0.5 · Score1 + 0.5 · Score2

State 

Space

Error SetCovered Set

Timeout

Election

Heartbeat

Election

Heartbeat

Metric: 
𝐂𝐨𝐧𝐟𝐨𝐫𝐦𝐞𝐝 ∖ 𝐄𝐫𝐫𝐨𝐫

𝐀𝐥𝐥 𝐜𝐨𝐝𝐞 𝐚𝐜𝐭𝐢𝐨𝐧𝐬

Metric: 
𝐕𝐞𝐫𝐢𝐟𝐢𝐞𝐝 𝐢𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭𝐬

𝐀𝐥𝐥 𝐢𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭𝐬

- name: Inv1_LogConsistency

  tla_example:

  Inv1_LogConsistency ==

   \A i, j \in Server:

    \A k \in 1..minCommit:

     log[i][k] = log[j][k]

Invariant Template

Inv1

Concretized
Invariants

Inv2

Inv1

Inv2

Model Checking

Error Set

Heartbeat

Conformed Set

Election

HeartbeatTimeout

AI

System 
(Instrumented)

Model (No 
Runtime Errors)

Harness
(with Mappings)

role -> state

Trace Validation

Code Traces

Figure 3: Metrics and evaluation workflow of SYSMOBENCH. The red dashed boxes denote inputs
provided by the system artifact: instrumented system for code traces and required invariants.

SYSMOBENCH includes four metrics that evaluate a TLA+ model on syntax (§3.2.1), runtime cor-
rectness (§3.2.2), conformance to system code (§3.2.3), and invariant correctness (§3.2.4). The
metrics are not independent, e.g., a model with syntax errors cannot be evaluated for other metrics.
An executable model is evaluated for both conformance and invariant correctness. We design partial
scoring schemes for every metric and normalize results to percentage values, making them easy to
interpret. Figure 3 illustrates the metrics and the evaluation workflow.

3.2.1 SYNTAX CORRECTNESS

SYSMOBENCH uses the TLA+ SANY Syntactic Analyzer (Lamport, 2002) to check the syntax of
the TLA+ models against TLA+ grammar rules, operator usage, module structure, etc. Note that
SANY checks the entire model specification. If the model specification passes the SANY checks,
it earns a full score. However, many AI-generated models fail the SANY check; therefore, we need
fine-grained analysis for partial scoring.

SYSMOBENCH offers per-action analysis for partial scoring by checking how many generated ac-
tions are erroneous (and failed SANY). It encapsulates each action in the model into a per-action
model by adding necessary dependencies (e.g., constant declarations, variable definitions, etc.). It
then uses SANY to check the syntax of per-action model (only syntax correction is concerned in this
step; no equivalence check). A partial score S represents the percentage of correct actions nc among
the total actions nt, i.e., S = nc

nt
. Here, nc is determined by running SANY on each per-action mod-

ule and counting those that pass without syntax errors, while nt is obtained by counting all action
definitions in the original model. Note that the per-action checks do not account for inter-action
dependencies: a model that passes all the per-action checks can still fail. We use a weighted scoring
scheme that gives equal weights to per-action correctness and inter-action correctness. A model that
passes the overall SANY check earns 100%, while only passing all per-action checks earns 50%.
Only system models with 100% syntax scores will be evaluated for other metrics, because models
with syntax errors cannot be compiled or executed (which is required by other metrics).

3.2.2 RUNTIME CORRECTNESS

For a syntactically correct system model, SYSMOBENCH next evaluates if the model can be exe-
cuted correctly. To do so, SYSMOBENCH performs bounded model checking and simulation using
TLC, and then observes covered actions and runtime errors (if any) by parsing TLC’s coverage re-
port and error output. This model checking and simulation explores the state space without any
invariant checking (see §3.2.4). During this state space exploration, SYSMOBENCH records all
covered actions and the actions with runtime errors.

We define a metric Mr that represents the coverage of actions without runtime errors: Mr = nr

nt
,

where nr is the number of covered actions that did not report errors during state exploration, and nt

is the total number of actions in the model.

Models with no runtime errors can then be executed to explore state space. Only such models are
evaluated for conformance and invariant correctness.
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3.2.3 CONFORMANCE TO SYSTEM IMPLEMENTATION

For an executable model, SYSMOBENCH evaluates its conformance to the behavior of the system
implementation using trace validation (Cirstea et al., 2024). Trace validation checks whether a
trace of the system execution corresponds to a path in the model’s state space. SYSMOBENCH
supports trace validation mechanisms used by different systems (Tang et al., 2025; Cirstea et al.,
2024; Hackett & Beschastnikh, 2025).

Specifically, to collect execution traces, system code is instrumented with logging statements. The
instrumentation granularity matches the granularity requirements of the task. If the AI-generated
model is coarser than the trace logs, conformance checking could fail; otherwise, we use missing-
event inference techniques (Tang et al., 2025) to account for uninstrumented actions.

The key challenge of automatic conformance checking of any AI-generated models is to correctly
map the elements in the model to elements in the system execution log. This is because AI will
often use names that differ from those in system code. We solve this problem by using a coding
LLM (e.g., Claude-Sonnet-4) to (1) extract constants, variables, and actions from the input model
and (2) map them to the corresponding elements specified in the task requirement (§3.1).

The use of LLMs for automatic mapping of elements in the model and code may raise reliability
concerns. In our experience, state-of-the-art LLMs accomplish the mapping task reliably (§4). This
is because (1) the mapping task is simple and well-defined; (2) the generated models are derived
from the system artifacts and thus largely follow the naming conventions of the system; and, (3)
our trace validation technique (Tang et al., 2025) can tolerate a certain level of missing variables or
actions though we have not found such cases so far. A similar use of LLMs for mapping is adopted
in TLAi+Bench (2025) (discussed in §6).

During trace validation across all traces, SYSMOBENCH keeps track of code actions that are covered
and those code actions that trigger errors. Specifically, SYSMOBENCH feeds the trace to TLC
along with the model, and records whether TLC successfully validates the trace. If validation fails,
SYSMOBENCH identifies where the mismatch occurred by analyzing TLC’s trace validation output.
To measure conformance, we define Mc as the coverage of code actions without conformance errors:
Mc =

nc

nt
, where nc is the number of code actions that were covered during validation with no errors,

and nt is the total number of actions in the instrumented code. We use instrumented code actions
instead of model actions because this provides a stable, implementation-grounded granularity that is
consistent across different AI-generated models.

3.2.4 INVARIANT CORRECTNESS

SYSMOBENCH also evaluates whether AI-generated models always satisfy invariants that describe
the expected safety and liveness properties of the system. In principle, if a system model fully
conforms to code, violations of these invariants would indicate bugs in system code; in practice,
few AI-generated models achieved fine-grained conformance. Nevertheless, AI-generated models
have demonstrated practical utility by successfully reproducing known bugs from previous system
versions (Appendix C.2). Table 2 lists the invariants for the spinlock code in Figure 2. These
invariants are part of the benchmark defined by the task (§3.3).

Table 2: Example spinlock invariants

Invariants Description Type

Mutual exclusion At most one process can be in the critical section at any time Safety
Lock consistency The lock state accurately reflects critical section occupancy Safety
No deadlock Not all threads can be stuck spinning simultaneously Safety
Guard lifecycle Every thread eventually releases the lock it acquires Liveness
Eventual release The system eventually reaches a state where all threads are idle Liveness

SYSMOBENCH addresses a similar challenge as in §3.2.3: it needs to automatically map the actions,
variables, and data structures in the system model to those expressed in the invariants. For this,
the invariants in SYSMOBENCH are templates that contain a description of the property, formal
definitions, and example TLA+ invariants. We then use an LLM to translate these templates into
model-specific invariants that can be checked against the system model. For example, the following
template defines the mutual exclusion invariant in Table 2:

6
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- name:"MutualExclusion"
type:"safety"
natural language:"Only one thread can access a shared resource at a time"
formal description:"No more than one thread in the critical section"
tla example:MutualExclusion == Cardinality({t \in Threads:pc[t] = "in cs"}) <= 1

SYSMOBENCH prompts the LLM with both the invariant template and the system model and asks it
to concretize the template using the model. This mapping is highly structured: the output substitutes
the template’s variables and constants with those in the model. For example, the mutual exclusion
invariant, Cardinality({t \in Threads: status[t] = "locked"}) <= 1, is a concretization of the
template by replacing pc with status and in cs with locked. We evaluate the reliability of this
LLM-assisted concretization in §4.

The invariants are used by TLC during model checking, and SYSMOBENCH observes whether each
invariant is violated. Specifically, for each invariant, SYSMOBENCH creates a separate model with
that invariant and runs TLC independently. This allows SYSMOBENCH to record whether each
invariant is violated. We define a metric Mi that represents the fraction of invariants passed, denoted
as Mi =

ni

nt
, where ni is the number of invariants that hold across the explored state space, and nt is

the total number of invariants defined for the model. Models with a higher Mi are of higher quality.
When combined with runtime and conformance coverage metrics, a higher Mi increases confidence
in the correctness of the input specification.

3.3 ADDING NEW SYSTEMS AND SPECIFICATION LANGUAGES TO SYSMOBENCH

SYSMOBENCH provides an extensible framework to add more real-world system artifacts. To add
a new artifact to SYSMOBENCH, one needs to (1) prepare the system artifact (e.g., source code and
documents); (2) create a new task that specifies the abstractions and components to model (§3.1); (3)
develop invariant template (§3.2.4) that specifies correctness properties (safety and liveness); and (4)
provide harness for trace validation by instrumenting system code. In our experience, the effort to
add a new system artifact to SYSMOBENCH is manageable. For example, adding Etcd Raft took one
SYSMOBENCH author four days; an Xline CURP contributor with no experience of SYSMOBENCH
added the system to SYSMOBENCH in four days. Most of the effort is spent on instrumenting the
system to collect execution logs for trace validation in order to measure conformance. Unlike other
benchmarks (§6), SYSMOBENCH does not require writing reference models; in fact, we hope that
some of the AI-generated models can eventually be adopted by real-world system projects.

SYSMOBENCH is extensible to formal specification languages other than TLA+. We extended
SYSMOBENCH to support Alloy (Jackson, 2012) and PAT (Sun et al., 2009), demonstrating its
generality. Details of these extensions and preliminary evaluation are presented in Appendix B. The
results show that while our framework is extensible, TLA+ remains the practical choice and can
benefit from AI-driven techniques (existing LLMs are less familiar with Alloy and PAT).

4 EVALUATION SETUP

To evaluate AI’s system modeling abilities, we use three agents powered by LLMs.

• Basic Modeling Agent. This agent reflects the LLM’s raw modeling abilities. The agent prompts
an LLM with the source code of the system and the task requirement (§3.1). The detailed prompts
are documented in Appendix G.

• Code Translation Agent. This agent uses an LLM to translate system code into an equivalent
TLA+ form. The agent translates code statement by statement (from the source language to
TLA+), and then organizes the control flows of the translated statements into a TLA+ model.
The agent reflects the capabilities of LLM-based code translation. We adopt the implementation
of Specula (2025) as our code translation agent.

• Trace Learning Agent. This agent does not use code as input, but tries to learn the system model
from system traces. It prompts LLMs with the traces to infer the system model (see Appendix H).
This agent reflects the capability of automata learning (Biermann & Feldman, 1972) with LLMs.

We follow HumanEval (Chen et al., 2021) to run each agent five times and evaluate the best output
model. The agents can enhance the model with feedback loops (three iterations are allowed) if the
generated model cannot pass compilation or has runtime errors. No human intervention is allowed.
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Table 3: Evaluation results of two AI agents on two representative system artifacts. ✓ and ✗ mark
whether the model is evaluated in the next phase of measurements (see Figure 3).

(a) Asterinas Spinlock

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 80.00% 100.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 80.00% 85.71%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 80.00% 100.00%

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 100.00% 85.71%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 100.00% 100.00%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 100.00% 100.00%

(b) Etcd Raft

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 25.00% ✓ 7.69% 69.23%
GPT-5 47.87% ✗ - - -
Gemini-2.5-Pro 50.00% ✗ - - -
DeepSeek-R1 50.00% ✗ - - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 66.67% ✓ 15.38% 92.31%
GPT-5 100.00% ✓ 20.00% ✗ - -
Gemini-2.5-Pro 44.44% ✗ - - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

We use four different LLMs to power the three agents: Claude-Sonnet-4 (20250514), GPT-5
(20250807), Gemini-2.5-Pro (20250617), and DeepSeek-R1 (20250528). We run the SANY Syn-
tactic Analyzer, TLC model checker, and system code (for conformance checking) on a server with
dual AMD EPYC 7642 48-Core Processors and 256GB RAM running Ubuntu 22.04.

Robustness of LLM-assisted Components. SYSMOBENCH uses LLM-assisted techniques to map
elements in an AI-generated TLA+ model to those in the system logs (§3.2.3), and to concretize
invariant templates (§3.2.4). We inspected the LLM-assisted mapping and concretization, and found
the results to be correct. We also conducted an experiment using the “gold model” for Etcd Raft
and Asterinas spinlock, which are known to be correct. We created 10 models (5 for each system)
by changing the names of the variables and actions and tweaking the model’s granularity. The gold
models achieve a perfect score on all metrics, empirically validating the quality of our metrics.

Training Data Contamination. One may be concerned about the fairness of SYSMOBENCH be-
cause it uses open-source projects where the system code likely already appears in LLM training
data. In fact, it is intended to have system code in LLM training data. The design mirrors how
human engineers write formal models: they first learn system code before writing formal models.
Our goal is to leverage LLMs to write effective TLA+ models for important, safety-critical software
systems, which requires LLMs to have internalized knowledge of these systems. Note that this is
different from coding benchmarks in that we ask LLMs/agents to write existing code.

Second, few system artifacts in SYSMOBENCH have TLA+ system models in their open-source
repositories. The TLA+ models of Asterinas Spinlock/Mutex/Rwmutex are never released. Redis
Raft and Xline CURP do not have any TLA+ models. Etcd Raft and PGo systems do have TLA+
models in the repositories. However, those models are for protocols, not for system code. Our goal
is to use AI to write TLA+ models for all important, safety-critical software systems in the wild.

5 RESULTS

We present evaluation results for the basic modeling agent and the code translation agent on Aster-
inas Spinlock and Etcd Raft (Table 3). Appendix I.2 contains the complete results for all systems in
SYSMOBENCH. We omit the results of the trace learning agent (which fails to pass runtime checks).

Modeling Capability. We focus on the results of the basic modeling agent. The basic modeling
agent can generate high-quality TLA+ models for Spinlock, which is among the simplest artifacts
in SYSMOBENCH (Table 1), showing certain levels of modeling capability. However, for larger
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Figure 4: LLM error attribution regarding the SYSMOBENCH metrics in the basic modeling agent.
The conformance metric is omitted as it has a single attribution.

and more complex systems such as the distributed protocol implementations, the basic modeling
agent performs poorly. For Etcd Raft, only with Claude-Sonnet-4, the modeling agent reaches the
conformance and invariant checking, and scores are low. Clearly, the complexity and size of Etcd
Raft exceed the modeling ability of the LLMs and agents.

For Etcd Raft, the basic modeling agents struggle with (1) code verbosity, (2) protocol complexity,
and (3) abstraction. Etcd Raft has much more code than Spinlock, with low-level utilities (e.g.,
for debugging) and implementation-specific comments, which often cause agents to lose focus on
essential system logic. Moreover, the Raft protocol (Ongaro & Ousterhout, 2014) has more complex
logic than a spinlock in terms of ordering and intricate conditions of state transitions. Both (1) and
(2) make Etcd Raft significantly more challenging for LLMs to comprehend the system artifact.
For (3), Etcd Raft presents significant abstraction challenges: concepts like distributed logs require
nested data structures, demanding LLMs to precisely express them using TLA+ language constructs.

The basic modeling agents also perform poorly on PGo systems (Appendix I.2), indicating limited
LLM ability to comprehend machine-generated systems. Code in PGo-generated systems is a mix
of compiler-generated patterns and a runtime library (Appendix E). The generated code is repetitive,
and, while it borrows some variable names from the source specification, intermediate variables have
synthetic, non-significant names, which provide few semantic clues to an LLM (or a human reader).

Analysis on Agents. For complex systems like Etcd Raft, the code translation agent outperforms
the basic modeling agent. We believe this is due to the powerful translation abilities of LLMs (Yang
et al., 2024b). Specifically, the code translation agent leverages symbolic control-flow analysis to
synthesize a TLA+ model rigorously. The translation approach also prevents LLMs from hallucinat-
ing logic by adhering to system code. These results indicate that leveraging LLMs’ code translation
abilities can assist in model generation. Finally, we observed that LLMs would sometimes imitate
classic TLA+ models from their training set, missing important system-specific content.

Analysis on Invariants. For invariants, LLMs violate very different types of invariants—only 8.3%
of safety properties are violated while 41.9% of liveness properties were violated (Figure 4c). This
indicates the limited ability of LLMs in temporal reasoning. To understand the nature of these
violations, we conducted a fine-grained analysis categorizing them by root causes (Appendix I.1).
We find that while fairness assumption violations (e.g., missing or incorrectly specified fairness
assumptions) are a significant issue across systems, logical and structural errors tend to manifest
earlier and block progress before fairness-related issues emerge.

Analysis on LLMs. We observe that LLMs constantly introduce syntax errors (Figure 4a), espe-
cially GPT-5, Gemini-2.5-Pro, and DeepSeek-R1. For example, DeepSeek-R1 often misuses math-
ematical symbols (e.g., ∩, ∀) instead of ASCII TLA+ operators. Gemini-2.5-Pro and GPT-5 often
mix TLA+ syntax with those of other programming languages like Python. LLMs also misuse op-
erators with incorrect parameters and produce malformed indentation. In terms of runtime errors
(Figure 4b), LLMs frequently generate inconsistent TLC configurations, such as missing constants
or mismatched declarations. Misunderstanding of TLA+ data structures is also a common error,
e.g., comparing incompatible types or applying invalid operations (e.g., set operations on records).

Among all evaluated LLMs, Claude-Sonnet-4 in general outperforms others in most metrics across
evaluated system artifacts. Since only syntax-valid models can proceed to subsequent evaluation
phases, Claude-Sonnet-4’s ability to generate syntactically correct TLA+ models provides an ini-
tial advantage. However, Claude-Sonnet-4’s strength extends beyond syntax correctness. SYS-
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MOBENCH decomposes the evaluation into four distinct metrics that separate syntactic correctness
from reasoning about system behavior. As shown in the Appendix I.2, for models that successfully
pass syntax checks, Claude-Sonnet-4 generally still achieves higher scores on runtime, conformance,
and invariant metrics compared to other LLMs.

Qualitative Assessment. We conducted qualitative evaluation to assess AI-generated system model
quality and utility in terms of bug finding (Appendix C). Comparing with human-written TLA+

models, AI-generated TLA+ models differ in structure and completeness but they capture essential
system behaviors. Despite these limitations, AI-generated models have successfully reproduced
known bugs in five systems, demonstrating their practical utility for partial correctness checking.

6 RELATED WORK

SYSMOBENCH is the first framework that evaluates AI on formally modeling real-world systems.

Benchmarks for Formal Specifications. There are several benchmarks for evaluating AI (including
LLMs and AI agents) on generating function-level pre-/post-conditions and loop invariants (Rego
et al., 2025; Xie et al., 2025; Cao et al., 2025; Chakraborty et al., 2025; Ma et al., 2025; Wen et al.,
2024). Those benchmarks typically use small programs, such as sample programs in VeriFast that
implement data structures (Rego et al., 2025) and LeetCode programs (Ma et al., 2025). There also
exist benchmarks on proof generation for deductive software verification (Yang et al., 2024a) and
on verified code generation (Thakur et al., 2025; Ye et al., 2025). None of these benchmarks target
complex real-world computing systems as in SYSMOBENCH. Fundamentally, those benchmarks
evaluate AI’s abilities of code comprehension and specification, not system modeling. Similarly,
PAT-Agent (Zuo et al., 2025) and Alloy-APR (Alhanahnah et al., 2025) target smaller tasks such as
puzzles and repairing injected errors (see Appendix B.3). As AI for code is becoming mature, the
next step is capturing how AI can benefit practical verification of real-world systems. We developed
SYSMOBENCH with this motivation in mind. The arguably most related benchmark is TLAi+Bench
(2025) which evaluates AI-generated TLA+ specifications. Tasks in TLAiBench are primarily logic
puzzles, not real-world systems. TLAiBench is useful for evaluating AI’s ability in using the TLA+

language, not system comprehension or modeling. Hence, TLAiBench and related benchmarks such
as Cao et al. (2025) only measure the syntax and runtime correctness of the TLA+ specifications. Li
et al. (2025) develop a benchmark for inference of system calls of Hyperkernel; however, the bench-
mark does not consider distributed systems, concurrency, and assumes a ground-truth specification.

Our evaluation aims to establish a baseline using simple, straightforward agents to reflect the status
quo of today’s generative AI technologies. More advanced agents, especially those equipped with
domain-specific knowledge and specialized techniques such as Bhatia et al. (2024); Wang et al.
(2025), can be developed to improve the quality of AI-generated models.

General AI Benchmarks. SYSMOBENCH differs from general AI reasoning benchmarks such as
MMLU (Hendrycks et al., 2021), ARC (Clark et al., 2018), and HELM (Liang et al., 2022). These
benchmarks evaluate generic reasoning, knowledge, and problem-solving capabilities across diverse
domains, while SYSMOBENCH focuses on the specific task of formally modeling large, complex
software systems as a foundation of formal system verification. SYSMOBENCH also differs from
benchmarks targeting AI agent safety such as Agent-SafetyBench (Zhang et al., 2024). It currently
targets traditional distributed and concurrent systems that are implemented in system code without
neural components. The formal system modeling tasks evaluated by SYSMOBENCH are not covered
by existing benchmarks such as EvalScope (EvalScope, 2024).

7 CONCLUDING REMARKS

This paper presents SYSMOBENCH, a new benchmark for evaluating generative AI in formally
modeling real-world computing systems. SYSMOBENCH pushed us to articulate the criteria of for-
mal system models and to develop metrics that can be collected automatically. We find that modern
AI, despite showing strong abilities in coding and bug fixing, is still limited in comprehending, ab-
stracting, and specifying large, complex systems. We hope to use SYSMOBENCH as a vehicle to
advance AI technologies towards software system intelligence, rather than code intelligence.

We are actively adding new system artifacts to SYSMOBENCH and improving the benchmark’s
usability. We encourage others to contribute their system artifacts to SYSMOBENCH. We are also
exploring ways to measure the maintainability of AI-generated system models and considering ways
to include human evaluation as part of SYSMOBENCH.
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correctness of real-world computing systems and infrastructures.

REPRODUCIBILITY STATEMENT

We have made faithful efforts to ensure the reproducibility of our work. We have provided the
details of our work in the paper and its appendix, including the prompts, implementations, and
complete results. We have open-sourced all the research artifacts described in this paper, and created
an anonymous snapshot at https://anonymous.4open.science/r/SysMoBench-BA9F/ for the
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A ALTERNATIVE METRICS

No metric is perfect. Besides the core metrics presented in the paper, SYSMOBENCH also measures
complementary metrics that provide different measures of the system model quality.

A.1 RUNTIME PASS RATE

SYSMOBENCH repeatedly runs an agent to generate multiple TLA+ system models and evaluates
whether each system model passes the runtime checks. The runtime pass rate is defined as Mar =
nar

nat
, where nar is the number of TLA+ models that passed runtime checking, and nat is the total

number of generated TLA+ models. This metric complements the system model’s action-level
coverage metric Mr (see §3.2.2), as it reflects the agent’s ability and reliability to produce fully
executable TLA+ models. Note that a high Mar does not necessarily mean most actions in the
TLA+ models are correct. Even if some actions may contain runtime errors but are never executed
during execution, the TLA+ model can still pass runtime checking. Conversely, a low Mar may
result from a small number of frequently failing actions rather than errors affecting many actions.

A.2 CONFORMANCE PASS RATE

SYSMOBENCH repeatedly executes the system code to generate multiple code traces and checks
which traces fully pass conformance checking. The conformance pass rate is defined as Mac =

nac

nat
,

where nac is the number of traces that passed conformance checking, and nat is the total number of
traces generated. This metric complements the code action-level coverage metric Mc (see §3.2.3)
and provides a coarse-grained empirical measure of the TLA+ model’s overall alignment with ob-
served system behavior. As with runtime correctness, a low Mac does not necessarily indicate that
most actions are unconformed, while a high Mac generally suggests better overall system model
quality, given sufficiently diverse traces.

B EXTENSIBILITY TO OTHER SPECIFICATION LANGUAGES

SYSMOBENCH is general to specification languages beyond TLA+. To demonstrate its extensibil-
ity, we extended SYSMOBENCH to support Alloy (Jackson, 2012) and PAT (Sun et al., 2009).

B.1 SUPPORTING PAT AND ALLOY

PAT. PAT (Process Analysis Toolkit) is a formal verification framework for concurrent and real-time
systems. Supporting PAT in SYSMOBENCH is straightforward because PAT’s tooling provides a
workflow similar to TLA+. We leverage PAT’s parser for syntax checking, its simulator for runtime
evaluation, and its assertion mechanism with model checking for invariant validation. Conformance
is evaluated using PAT’s native trace refinement checker. We implement adaptors to translate our
concrete system traces into the PAT format, which are then validated against the PAT models.

Alloy. Alloy is a declarative specification language based on first-order relational logic. For Alloy
support, evaluating syntax, runtime, and invariant correctness is straightforward using the Alloy An-
alyzer tool. Since Alloy does not provide a built-in notion of “action” as in TLA+, we adapt the
runtime metric by computing the proportion of variables and fields that become instantiated during
bounded execution. This metric is analogous to the action-trigger coverage in TLA+, and it indicates
whether a model executes normally and whether certain branches are unreachable. For the confor-
mance metric, we express a concrete system trace into Alloy facts, which are global constraints over
a bounded sequence of states and must hold in all generated instances, for trace validation.

B.2 EVALUATION RESULTS

We evaluated the basic modeling agent with four LLMs (Claude-Sonnet-4, GPT-5, Gemini-2.5-Pro,
and DeepSeek-R1) on generating Alloy and PAT models for the Spinlock system, with three attempts
per LLM. Table 4 shows the results. For both PAT and Alloy, the four evaluation metrics (syntax,
runtime, conformance, and invariant) remain applicable. However, due to limitations of current
tools, syntax checking for PAT and Alloy does not yet support partial scoring as in TLA+.
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Table 4: Preliminary results of Alloy and PAT support on Asterinas Spinlock using the basic model-
ing agent (3 attempts per LLM).

Language LLM Syntax Runtime Conformance Invariant

Alloy

Claude-Sonnet-4 0.00% 0.00% 0.00% 0.00%
GPT-5 100.00% 0.00% 0.00% 0.00%
Gemini-2.5-Pro 0.00% 0.00% 0.00% 0.00%
DeepSeek-R1 0.00% 0.00% 0.00% 0.00%

PAT

Claude-Sonnet-4 0.00% 0.00% 0.00% 0.00%
GPT-5 0.00% 0.00% 0.00% 0.00%
Gemini-2.5-Pro 0.00% 0.00% 0.00% 0.00%
DeepSeek-R1 0.00% 0.00% 0.00% 0.00%

The AI-generated Alloy and PAT models are poor compared to TLA+ models. For Alloy, only GPT-
5 was able to generate a model that passes the syntax correctness check after multiple attempts, but
the generated model scored 0% on runtime correctness. For PAT, none of the evaluated LLMs
demonstrated familiarity with the PAT syntax—all generated PAT models failed syntax checks.

Our analysis reveals that current LLMs are unfamiliar with the syntax of Alloy and PAT. In practice,
nearly all generated models failed at the parsing or type-checking stage. For PAT, LLMs frequently
produced syntax borrowed from other languages such as C, Promela, or PRISM. For example, chan-
nels were often declared using PRISM-style range expressions (e.g., channel acquire:{0..2};)
which PAT does not support. We also observed the introduction of keywords and type annotations
that do not exist in PAT, such as adding explicit types (int) after variables or using chan instead of
PAT’s actual channel declaration syntax. For Alloy, we observed similarly systematic breakdowns.
A common pattern was referencing signatures (types) that were never declared in the model, such
as using Time in module imports without defining what Time is. The models also wrote constraints
that mixed incompatible language features, which Alloy does not accept.

We believe that the weak model capabilities using PAT and Alloy are primarily because Alloy and
PAT are much less popular than TLA+ in real-world systems. Consequently, LLMs are not exten-
sively trained on these languages, resulting in poor generation quality. These results justify the use
of TLA+ as the specification language of choice for SYSMOBENCH.

B.3 COMPARISON WITH RELATED WORK

PAT-Agent (Zuo et al., 2025) and Alloy-APR (Alhanahnah et al., 2025) also evaluate AI’s ability
to work with formal models using PAT and Alloy, reporting promising results on their benchmarks.
However, their tasks and complexity differ fundamentally from SYSMOBENCH. Table 5 summa-
rizes the task of each work.

Table 5: Summary of the tasks of each work.

Work Task

SYSMOBENCH Generating formal models for real-world software systems from their source code.
PAT-Agent Generating formal models from natural language descriptions.
Alloy-APR Repairing an existing model with injected errors.

Because these tasks are inherently different, it is difficult to compare their complexity directly. In-
stead, we compare the complexity of the generated formal models as shown in Table 6.

Table 6: Complexity comparison across benchmarks measured by lines of code of formal models.

Benchmark Smallest Largest Median Task Type

SYSMOBENCH 75 508 219 Generation
PAT-Agent 16 142 45 Generation
Alloy-APR (ARepair) 15 99 50 Repair
Alloy-APR (Alloy4Fun) 1 234 21 Repair
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Compared with the generation task in PAT-Agent, most models we expect LLMs/agents to generate
in SYSMOBENCH are larger than the largest models in the PAT-Agent paper. PAT-Agent’s tasks
are small samples such as river-crossing puzzles and restaurant workflows, not real-world software
systems. Alloy-APR’s tasks are similar, which come from ARepair and Alloy4Fun; neither of them
uses real-world system artifacts.

To further validate our understanding, we reproduced the results of Alloy-APR and PAT-Agent using
the same LLMs evaluated in SYSMOBENCH. For Alloy-APR, we used the official artifact on the
ARepair benchmark. Table 7 shows the results.

Table 7: Reproduction of Alloy-APR results on ARepair benchmark with LLMs used in SYS-
MOBENCH.

Model Correct Items Success Rate

Claude-Sonnet-4 38 / 38 100.0%
GPT-5 30 / 38 78.9%
Gemini-2.5-Pro 14 / 38 36.8%
DeepSeek-R1 5 / 38 13.2%

Best result in Alloy-APR 28 / 38 73.7%

Our reproduction results show that Claude-Sonnet-4 and GPT-5 outperform the best results reported
in the Alloy-APR paper. This suggests that existing LLMs can solve these repair tasks effectively–
the high scores in the paper are largely due to the fact that the task itself is relatively simple. In
contrast, our results show that these LLMs still struggle to generate syntax-correct Alloy models
from complex system code in SYSMOBENCH (see Table 4).

For PAT-Agent, we ran the NoPlanning workflow using the LLMs evaluated in SYSMOBENCH.
This workflow is similar to our Basic Modeling Agent: it calls the LLM to generate a PAT model
and then iteratively fixes errors. Table 8 shows the results.

Table 8: Reproduction of PAT-Agent results using NoPlanning workflow with LLMs from SYS-
MOBENCH. CSR: Compilation Success Rate, FPR: Full Pass Rate, APR: Average Pass Rate.

Model CSR FPR APR

Claude-Sonnet-4 84.6% 80.8% 87.3%
GPT-5 84.6% 69.2% 76.4%
Gemini-2.5-Pro 84.6% 65.4% 74.8%
DeepSeek-R1 57.7% 50.0% 54.9%

The results are consistent with the original paper’s findings. Similar to Alloy-APR, current LLMs
can solve these relatively simple tasks to a reasonable extent (e.g., Claude-Sonnet-4 achieves 87.3%
APR). However, their ability to generate formal models for real-world software systems is much
weaker, as evidenced by our results (see Table 4).

These results suggest that existing benchmarks such as PAT-Agent and Alloy-APR mostly exercise
simplified modeling tasks. In contrast, SYSMOBENCH targets formal models derived from real sys-
tem code, where current LLMs often fail to produce even syntax-correct specifications (see Table 4).

C QUALITATIVE EVALUATION OF AI-GENERATED MODELS

Beyond the automated quantitative metrics, we performed qualitative evaluation to assess the prac-
tical utility of AI-generated models for human engineers. We evaluated AI-generated models in two
aspects: (1) comparison with human-written ground-truth models from the community, and (2) their
ability to reproduce known bugs in system code.

C.1 COMPARISON WITH HUMAN-WRITTEN MODELS

To assess the quality of AI-generated models, two human experts evaluated models produced by two
different agents: the basic modeling agent and the code translation agent. Each expert compared AI-
generated TLA+ models against human-written models for nine of the systems in SYSMOBENCH.
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The experts identified ten main types of differences between AI-generated and human models (Ta-
bles 9 and 10 summarize their occurrence across systems and LLMs):

1. Unnecessary EXTENDS/INSTANCE statements
2. Topics present in the human model but missing in AI models
3. Topics introduced by AI but absent in the human model
4. Fewer comments compared to human models
5. Properties present in human models but not in AI models
6. Different fairness assumptions compared to human models
7. Longer composite actions in AI models
8. Overly complex or random fairness conditions
9. Overspecialization with hard-coded values instead of parameters

Table 9: Types of differences between AI-generated models (produced by the basic modeling agent)
and human-written models. Numbers refer to the types listed above.

System Claude-Sonnet-4 GPT-5 Gemini-2.5-Pro DeepSeek-R1

Asterinas Spin 1, 3 1, 5, 8 1, 5, 8 1, 5, 8
Asterinas Mutex 1, 5 1, 5 1, 5, 9 5
Asterinas Rwmutex 1, 5 1, 5 1, 5 1, 5
Etcd Raft 1, 2, 4, 5, 7 1, 2, 4, 5 1, 2, 4, 5, 7 1, 2, 4, 5, 7
Redis Raft 1, 4 1, 4, 7 1, 4, 7 1, 4
Xline CURP 1, 2, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 4, 5, 6 1, 2, 4, 5, 6
PGo dqueue 1, 5 1, 5 1, 5 1, 5, 7
PGo locksvc 1, 5 1, 5 1, 5 5, 6, 7, 8
PGo raftkvs 1, 5, 7 1, 5, 7, 8 1, 5, 8 1, 5

Table 10: Types of differences between AI-generated models (produced by the code translation
agent) and human-written models. Numbers refer to the types listed above.

System Claude-Sonnet-4 GPT-5 Gemini-2.5-Pro DeepSeek-R1

Asterinas Spin 1, 2, 3, 5, 6 1, 3, 5, 6, 8 1, 2, 3, 5, 6 1, 2, 3, 5, 6, 8
Asterinas Mutex 1, 2, 5, 8 1, 2, 5 1, 2, 5 1, 2, 5, 8
Asterinas Rwmutex 1, 5, 6 1, 3, 5, 6, 8 1, 3, 5, 6 1, 5, 6, 8
Etcd Raft 1, 2, 4, 5, 6, 8 1, 2, 4, 5, 6 1, 2, 4, 5, 6, 7 1, 2, 4, 5, 6, 7
Redis Raft 1, 3, 4, 5 1, 3, 4, 5 1, 3, 4, 5 1, 2, 4, 5, 6
Xline CURP 1, 4, 5, 6 4, 5, 6 1, 2, 4, 5, 6 1, 4, 5, 6
PGo dqueue 1, 2, 3, 5, 6 1, 5, 6 1, 5, 6 1, 3, 5, 6
PGo locksvc 1, 5 1, 5, 8 1, 5 1, 5, 6, 8
PGo raftkvs 1, 5, 7 1, 5, 7, 8 1, 5, 6, 7, 8 1, 5, 6, 7

We group and discuss these differences below.

Prompt-induced patterns (types 1, 4, 5). For both agents, many AI models include unnecessary
EXTENDS / INSTANCE statements (type 1), lack comments (type 4), and omit certain properties (type
5). These patterns largely result from our prompting and evaluation design. The prompt requires
including common libraries to avoid syntax errors; this does not harm correctness or the evaluation
of AI’s modeling capability, as human experts also sometimes copy-paste EXTENDS with unneces-
sary dependencies. Missing comments and properties are expected, as SYSMOBENCH focuses on
state/action modeling and does not require comment or property generation.

Model utility (types 2, 3, 6, 8, 9). AI-generated models may miss certain variables or actions (type
2) or include extra details (type 3), especially when there is a significant difference in abstraction
levels between the human-written models and AI-generated models. For instance, the code transla-
tion agent tends to produce more concrete specifications compared to human-written ones, leading
to more frequent occurrences of type 2 (missing topics) and type 3 (extra topics). Fairness defini-
tions (types 6 and 8) of AI-generated models often differ from human models or are overly technical
or random, which can affect liveness checking. There are also isolated cases of overspecialization
(type 9). Overall, these differences show that AI models capture the general structure but may vary
in completeness, fairness, and abstraction compared to human models.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Readability and documentation (types 4, 7). For both agents, the issue of fewer comments (type
4) is due to our prompt design; when we removed the instruction not to generate comments, AI
models produced reasonably long comments that are easy to read. Some models also contain long
composite actions (type 7) or use unconventional ordering of structure (e.g., TypeOK checks placed
unusually). Nevertheless, AI-generated models from both agents remain generally readable, with
meaningful variable and action names and understandable structure.

C.2 BUG REPRODUCTION

AI-generated models can be practically useful for partial correctness checking. Without any hints
about specific bugs, AI-generated models successfully reproduced several hard-to-find bugs across
multiple systems in SYSMOBENCH. Table 11 lists these reproduced bugs with links to the corre-
sponding issue reports or pull requests.

Table 11: Bugs successfully reproduced by AI-generated models.

Bug ID Description

Etcd Raft #10998 Learners cannot vote during promotion causing election failure
Xline CURP #402 Cluster will enter a frozen state after multiple crashes and recoveries
Redis Raft #19 Stale reads under process pauses, violating linearizability
Asterinas Mutex #1279 Failed try lock incorrectly unlocks mutex breaking mutual exclusion
Asterinas Rwmutex #1303 Lost wakeup when upgradeable reader releases lock

These bugs were discovered by having AI agents generate TLA+ models from earlier versions of
the system code and then using model checking to identify the issues.

D EXAMPLES OF AI-GENERATED TLA+ MODELS

We present two AI-generated system models. Figures 5 and 6 show the TLA+ model and its cor-
responding TLC configuration for Asterinas Spinlock generated by the basic modeling agent with
Claude-Sonnet-4. Figures 7 and 8 show the TLA+ model and its corresponding TLC configuration
for Etcd Raft generated by the code translation agent with Claude-Sonnet-4.

1 ---- MODULE spin ----
2
3 EXTENDS TLC, Sequences, SequencesExt, Naturals, FiniteSets, Bags
4
5 CONSTANTS Threads
6
7 VARIABLES
8 lock_state,
9 thread_state,

10 guards
11
12 Vars == <<lock_state, thread_state, guards>>
13
14 TypeOK ==
15 /\ lock_state \in BOOLEAN
16 /\ thread_state \in [Threads -> {"idle", "spinning", "locked"}]
17 /\ guards \subseteq Threads
18
19 Init ==
20 /\ lock_state = FALSE
21 /\ thread_state = [t \in Threads |-> "idle"]
22 /\ guards = {}
23
24 TryAcquire(t) ==
25 /\ thread_state[t] \in {"idle", "spinning"}
26 /\ lock_state = FALSE
27 /\ lock_state’ = TRUE
28 /\ thread_state’ = [thread_state EXCEPT ![t] = "locked"]
29 /\ guards’ = guards \cup {t}
30
31 StartSpin(t) ==
32 /\ thread_state[t] = "idle"
33 /\ lock_state = TRUE
34 /\ thread_state’ = [thread_state EXCEPT ![t] = "spinning"]
35 /\ UNCHANGED <<lock_state, guards>>
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36
37 SpinLoop(t) ==
38 /\ thread_state[t] = "spinning"
39 /\ lock_state = TRUE
40 /\ UNCHANGED <<lock_state, thread_state, guards>>
41
42 SpinAcquire(t) ==
43 /\ thread_state[t] = "spinning"
44 /\ lock_state = FALSE
45 /\ lock_state’ = TRUE
46 /\ thread_state’ = [thread_state EXCEPT ![t] = "locked"]
47 /\ guards’ = guards \cup {t}
48
49 TryLock(t) ==
50 /\ thread_state[t] = "idle"
51 /\ IF lock_state = FALSE
52 THEN /\ lock_state’ = TRUE
53 /\ thread_state’ = [thread_state EXCEPT ![t] = "locked"]
54 /\ guards’ = guards \cup {t}
55 ELSE /\ UNCHANGED <<lock_state, thread_state, guards>>
56
57 Unlock(t) ==
58 /\ thread_state[t] = "locked"
59 /\ t \in guards
60 /\ lock_state’ = FALSE
61 /\ thread_state’ = [thread_state EXCEPT ![t] = "idle"]
62 /\ guards’ = guards \ {t}
63
64 Next ==
65 \E t \in Threads:
66 \/ TryAcquire(t)
67 \/ StartSpin(t)
68 \/ SpinLoop(t)
69 \/ SpinAcquire(t)
70 \/ TryLock(t)
71 \/ Unlock(t)
72
73 Spec == Init /\ [][Next]_Vars /\ \A t \in Threads: WF Vars(Unlock(t))
74
75 ====

Figure 5: Asterinas Spinlock TLA+ model generated by the basic modeling agent with Claude-
Sonnet-4.

1 SPECIFICATION Spec
2
3 CONSTANTS
4 Threads = {t1, t2, t3}

Figure 6: Asterinas Spinlock TLC configuration generated by the basic modeling agent with Claude-
Sonnet-4.

1 ---- MODULE etcdraft ----
2 EXTENDS TLC, Sequences, SequencesExt, Naturals, FiniteSets, Bags
3
4 CONSTANTS
5 Server, \* Set of server IDs
6 Value, \* Set of possible values for log entries
7 Nil, \* Constant representing no value/no leader
8 Follower, \* Node state constants
9 PreCandidate,

10 Candidate,
11 Leader
12
13 VARIABLES
14 state, \* state[i] is the state of server i
15 currentTerm, \* currentTerm[i] is the current term of server i
16 votedFor, \* votedFor[i] is who server i voted for in currentTerm[i]
17 log, \* log[i] is the log of server i
18 commitIndex, \* commitIndex[i] is the commit index of server i
19 nextIndex, \* nextIndex[i][j] is the next log index to send to server j from leader i
20 matchIndex, \*matchIndex[i][j]isthehighestlogindexknowntobereplicatedonserverjbyleaderi
21 messages, \* Set of messages in transit
22 electionTimeout, \* electionTimeout[i] tracks election timeout for server i
23 leader \* leader[i] is the current leader known to server i
24
25 vars == <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, messages,

electionTimeout, leader>>↪→

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

26
27 \* Message types
28 MsgHup == "MsgHup"
29 MsgVote == "MsgVote"
30 MsgVoteResp == "MsgVoteResp"
31 MsgPreVote == "MsgPreVote"
32 MsgPreVoteResp == "MsgPreVoteResp"
33 MsgApp == "MsgApp"
34 MsgAppResp == "MsgAppResp"
35 MsgHeartbeat == "MsgHeartbeat"
36 MsgProp == "MsgProp"
37
38 \* Helper functions
39 Min(a, b) == IF a < b THEN a ELSE b
40 Max(a, b) == IF a > b THEN a ELSE b
41
42 LastTerm(xlog) == IF Len(xlog) = 0 THEN 0 ELSE xlog[Len(xlog)].term
43
44 Send(m) == messages’ = messages \cup {m}
45
46 \* Initial state
47 Init ==
48 /\ state = [i \in Server |-> Follower]
49 /\ currentTerm = [i \in Server |-> 0]
50 /\ votedFor = [i \in Server |-> Nil]
51 /\ log = [i \in Server |-> <<>>]
52 /\ commitIndex = [i \in Server |-> 0]
53 /\ nextIndex = [i \in Server |-> [j \in Server |-> 1]]
54 /\ matchIndex = [i \in Server |-> [j \in Server |-> 0]]
55 /\ messages = {}
56 /\ electionTimeout = [i \in Server |-> 0]
57 /\ leader = [i \in Server |-> Nil]
58
59 \* Election timeout - triggers election
60 Timeout(i) ==
61 /\ state[i] \in {Follower, PreCandidate, Candidate}
62 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = 0]
63 /\ state’ = [state EXCEPT ![i] = IF state[i] = Follower THEN PreCandidate ELSE @]
64 /\ IF state[i] = Follower
65 THEN Send([type |-> MsgHup, from |-> i, to |-> i, term |-> currentTerm[i]])
66 ELSE messages’ = messages
67 /\ UNCHANGED <<currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, leader>>
68
69 \* Start prevote campaign
70 StartPreVote(i) ==
71 /\ state[i] = PreCandidate
72 /\ state’ = [state EXCEPT ![i] = PreCandidate]
73 /\ LET lastIndex == Len(log[i])
74 lastTerm == LastTerm(log[i])
75 IN messages’ = messages \cup
76 {[type |-> MsgPreVote,
77 from |-> i,
78 to |-> j,
79 term |-> currentTerm[i] + 1,
80 lastLogIndex |-> lastIndex,
81 lastLogTerm |-> lastTerm] : j \in Server \ {i}}
82 /\ UNCHANGED <<currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, electionTimeout,

leader>>↪→
83
84 \* Handle prevote response
85 HandlePreVoteResponse(i, m) ==
86 /\ m.type = MsgPreVoteResp
87 /\ m.to = i
88 /\ state[i] = PreCandidate
89 /\ m.term = currentTerm[i] + 1
90 /\ LET votes == {msg \in messages : msg.type = MsgPreVoteResp /\
91 msg.to = i /\
92 msg.term = currentTerm[i] + 1 /\
93 msg.voteGranted = TRUE}
94 voteCount == Cardinality({msg.from : msg \in votes}) + 1 \* +1 for self
95 IN IF voteCount > Cardinality(Server) \div 2
96 THEN /\ state’ = [state EXCEPT ![i] = Candidate]
97 /\ currentTerm’ = [currentTerm EXCEPT ![i] = currentTerm[i] + 1]
98 /\ votedFor’ = [votedFor EXCEPT ![i] = i]
99 /\ LET lastIndex == Len(log[i])

100 lastTerm == LastTerm(log[i])
101 IN messages’ = (messages \ {m}) \cup
102 {[type |-> MsgVote,
103 from |-> i,
104 to |-> j,
105 term |-> currentTerm[i] + 1,
106 lastLogIndex |-> lastIndex,
107 lastLogTerm |-> lastTerm] : j \in Server \ {i}}
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108 /\ UNCHANGED <<log, commitIndex, nextIndex, matchIndex, electionTimeout, leader>>
109 ELSE /\ messages’ = messages \ {m}
110 /\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex,

electionTimeout, leader>>↪→
111
112 \* Handle vote request
113 HandleVoteRequest(i, m) ==
114 /\ m.type \in {MsgVote, MsgPreVote}
115 /\ m.to = i
116 /\ LET logOk == \/ m.lastLogTerm > LastTerm(log[i])
117 \/ /\ m.lastLogTerm = LastTerm(log[i])
118 /\ m.lastLogIndex >= Len(log[i])
119 grant == /\ m.term >= currentTerm[i]
120 /\ logOk
121 /\ IF m.type = MsgVote
122 THEN \/ votedFor[i] = Nil
123 \/ votedFor[i] = m.from
124 ELSE TRUE
125 IN /\ IF m.type = MsgVote /\ m.term > currentTerm[i]
126 THEN /\ state’ = [state EXCEPT ![i] = Follower]
127 /\ currentTerm’ = [currentTerm EXCEPT ![i] = m.term]
128 /\ votedFor’ = [votedFor EXCEPT ![i] = IF grant THEN m.from ELSE Nil]
129 /\ leader’ = [leader EXCEPT ![i] = Nil]
130 ELSE IF m.type = MsgVote /\ grant
131 THEN /\ votedFor’ = [votedFor EXCEPT ![i] = m.from]
132 /\ UNCHANGED <<state, currentTerm, leader>>
133 ELSE UNCHANGED <<state, currentTerm, votedFor, leader>>
134 /\ Send([type |-> IF m.type = MsgVote THEN MsgVoteResp ELSE MsgPreVoteResp,
135 from |-> i,
136 to |-> m.from,
137 term |-> IF m.type = MsgPreVote THEN m.term ELSE currentTerm’[i],
138 voteGranted |-> grant])
139 /\ messages’ = messages \ {m}
140 /\ UNCHANGED <<log, commitIndex, nextIndex, matchIndex, electionTimeout>>
141
142 \* Handle vote response
143 HandleVoteResponse(i, m) ==
144 /\ m.type = MsgVoteResp
145 /\ m.to = i
146 /\ state[i] = Candidate
147 /\ m.term = currentTerm[i]
148 /\ LET votes == {msg \in messages : msg.type = MsgVoteResp /\
149 msg.to = i /\
150 msg.term = currentTerm[i] /\
151 msg.voteGranted = TRUE}
152 voteCount == Cardinality({msg.from : msg \in votes}) + 1 \* +1 for self vote
153 IN IF voteCount > Cardinality(Server) \div 2
154 THEN /\ state’ = [state EXCEPT ![i] = Leader]
155 /\ leader’ = [leader EXCEPT ![i] = i]
156 /\ nextIndex’ = [nextIndex EXCEPT ![i] = [j \in Server |-> Len(log[i]) + 1]]
157 /\ matchIndex’ = [matchIndex EXCEPT ![i] = [j \in Server |-> 0]]
158 /\ LET entry == [term |-> currentTerm[i], value |-> Nil]
159 IN /\ log’ = [log EXCEPT ![i] = Append(@, entry)]
160 /\ messages’ = (messages \ {m}) \cup
161 {[type |-> MsgApp,
162 from |-> i,
163 to |-> j,
164 term |-> currentTerm[i],
165 prevLogIndex |-> Len(log[i]),
166 prevLogTerm |-> LastTerm(log[i]),
167 entries |-> <<entry>>,
168 leaderCommit |-> commitIndex[i]] : j \in Server \ {i}}
169 /\ UNCHANGED <<currentTerm, votedFor, commitIndex, electionTimeout>>
170 ELSE /\ messages’ = messages \ {m}
171 /\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex,

electionTimeout, leader>>↪→
172
173 \* Client request (leader only)
174 ClientRequest(i, v) ==
175 /\ state[i] = Leader
176 /\ LET entry == [term |-> currentTerm[i], value |-> v]
177 newLog == Append(log[i], entry)
178 IN /\ log’ = [log EXCEPT ![i] = newLog]
179 /\ messages’ = messages \cup
180 {[type |-> MsgApp,
181 from |-> i,
182 to |-> j,
183 term |-> currentTerm[i],
184 prevLogIndex |-> Len(log[i]),
185 prevLogTerm |-> LastTerm(log[i]),
186 entries |-> <<entry>>,
187 leaderCommit |-> commitIndex[i]] : j \in Server \ {i}}
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188 /\ UNCHANGED <<state, currentTerm, votedFor, commitIndex, nextIndex, matchIndex, electionTimeout,
leader>>↪→

189
190 \* Handle append entries
191 HandleAppendEntries(i, m) ==
192 /\ m.type = MsgApp
193 /\ m.to = i
194 /\ IF m.term > currentTerm[i]
195 THEN /\ currentTerm’ = [currentTerm EXCEPT ![i] = m.term]
196 /\ state’ = [state EXCEPT ![i] = Follower]
197 /\ votedFor’ = [votedFor EXCEPT ![i] = Nil]
198 /\ leader’ = [leader EXCEPT ![i] = m.from]
199 ELSE /\ UNCHANGED <<currentTerm, votedFor>>
200 /\ IF m.term = currentTerm[i]
201 THEN /\ state’ = [state EXCEPT ![i] = Follower]
202 /\ leader’ = [leader EXCEPT ![i] = m.from]
203 ELSE UNCHANGED <<state, leader>>
204 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = 0]
205 /\ LET logOk == \/ m.prevLogIndex = 0
206 \/ /\ m.prevLogIndex <= Len(log[i])
207 /\ log[i][m.prevLogIndex].term = m.prevLogTerm
208 IN IF logOk
209 THEN /\ log’ = [log EXCEPT ![i] = SubSeq(@, 1, m.prevLogIndex) \o m.entries]
210 /\ commitIndex’ = [commitIndex EXCEPT ![i] = IF m.leaderCommit > commitIndex[i]
211 THEN Min(m.leaderCommit, Len(log’[i]))
212 ELSE commitIndex[i]]
213 /\ Send([type |-> MsgAppResp,
214 from |-> i,
215 to |-> m.from,
216 term |-> currentTerm’[i],
217 success |-> TRUE,
218 matchIndex |-> m.prevLogIndex + Len(m.entries)])
219 ELSE /\ Send([type |-> MsgAppResp,
220 from |-> i,
221 to |-> m.from,
222 term |-> currentTerm’[i],
223 success |-> FALSE,
224 matchIndex |-> 0])
225 /\ UNCHANGED <<log, commitIndex>>
226 /\ messages’ = messages \ {m}
227 /\ UNCHANGED <<nextIndex, matchIndex>>
228
229 \* Handle append response
230 HandleAppendResponse(i, m) ==
231 /\ m.type = MsgAppResp
232 /\ m.to = i
233 /\ state[i] = Leader
234 /\ m.term = currentTerm[i]
235 /\ IF m.success
236 THEN /\ matchIndex’ = [matchIndex EXCEPT ![i][m.from] = m.matchIndex]
237 /\ nextIndex’ = [nextIndex EXCEPT ![i][m.from] = m.matchIndex + 1]
238 /\ LET Agree(idx) == {i} \cup {s \in Server : matchIndex’[i][s] >= idx}
239 agreeIndexes == {idx \in 1..Len(log[i]) :
240 Cardinality(Agree(idx)) > Cardinality(Server) \div 2 /\
241 log[i][idx].term = currentTerm[i]}
242 IN commitIndex’ = [commitIndex EXCEPT ![i] = IF agreeIndexes /= {}
243 THEN Max(commitIndex[i], CHOOSE idx \in

agreeIndexes :↪→
244 \A idx2 \in agreeIndexes : idx >=

idx2)↪→
245 ELSE commitIndex[i]]
246 ELSE /\ nextIndex’ = [nextIndex EXCEPT ![i][m.from] = Max(1, nextIndex[i][m.from] - 1)]
247 /\ UNCHANGED <<matchIndex, commitIndex>>
248 /\ messages’ = messages \ {m}
249 /\ UNCHANGED <<state, currentTerm, votedFor, log, electionTimeout, leader>>
250
251 \* Send heartbeat
252 SendHeartbeat(i) ==
253 /\ state[i] = Leader
254 /\ messages’ = messages \cup
255 {[type |-> MsgHeartbeat,
256 from |-> i,
257 to |-> j,
258 term |-> currentTerm[i],
259 leaderCommit |-> commitIndex[i]] : j \in Server \ {i}}
260 /\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex,

electionTimeout, leader>>↪→
261
262 \* Handle heartbeat
263 HandleHeartbeat(i, m) ==
264 /\ m.type = MsgHeartbeat
265 /\ m.to = i
266 /\ IF m.term >= currentTerm[i]
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267 THEN /\ currentTerm’ = [currentTerm EXCEPT ![i] = m.term]
268 /\ state’ = [state EXCEPT ![i] = Follower]
269 /\ votedFor’ = [votedFor EXCEPT ![i] = Nil]
270 /\ leader’ = [leader EXCEPT ![i] = m.from]
271 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = 0]
272 /\ commitIndex’ = [commitIndex EXCEPT ![i] = IF m.leaderCommit > commitIndex[i]
273 THEN Min(m.leaderCommit, Len(log[i]))
274 ELSE commitIndex[i]]
275 ELSE UNCHANGED <<currentTerm, state, votedFor, leader, electionTimeout, commitIndex>>
276 /\ messages’ = messages \ {m}
277 /\ UNCHANGED <<log, nextIndex, matchIndex>>
278
279 \* Advance election timeout
280 AdvanceElectionTimeout(i) ==
281 /\ state[i] \in {Follower, PreCandidate, Candidate}
282 /\ electionTimeout’ = [electionTimeout EXCEPT ![i] = @ + 1]
283 /\ UNCHANGED <<state, currentTerm, votedFor, log, commitIndex, nextIndex, matchIndex, messages,

leader>>↪→
284
285 Next ==
286 \/ \E i \in Server : Timeout(i)
287 \/ \E i \in Server : StartPreVote(i)
288 \/ \E i \in Server, m \in messages : HandlePreVoteResponse(i, m)
289 \/ \E i \in Server, m \in messages : HandleVoteRequest(i, m)
290 \/ \E i \in Server, m \in messages : HandleVoteResponse(i, m)
291 \/ \E i \in Server, v \in Value : ClientRequest(i, v)
292 \/ \E i \in Server, m \in messages : HandleAppendEntries(i, m)
293 \/ \E i \in Server, m \in messages : HandleAppendResponse(i, m)
294 \/ \E i \in Server : SendHeartbeat(i)
295 \/ \E i \in Server, m \in messages : HandleHeartbeat(i, m)
296 \/ \E i \in Server : AdvanceElectionTimeout(i)
297
298 Fairness ==
299 /\ \A i \in Server : WF vars(Timeout(i))
300 /\ \A i \in Server : WF vars(StartPreVote(i))
301 /\ \A i \in Server : WF vars(\E m \in messages : HandlePreVoteResponse(i, m))
302 /\ \A i \in Server : WF vars(\E m \in messages : HandleVoteRequest(i, m))
303 /\ \A i \in Server : WF vars(\E m \in messages : HandleVoteResponse(i, m))
304 /\ \A i \in Server : WF vars(\E m \in messages : HandleAppendEntries(i, m))
305 /\ \A i \in Server : WF vars(\E m \in messages : HandleAppendResponse(i, m))
306 /\ \A i \in Server : WF vars(SendHeartbeat(i))
307 /\ \A i \in Server : WF vars(\E m \in messages : HandleHeartbeat(i, m))
308 /\ \A i \in Server : WF vars(AdvanceElectionTimeout(i))
309
310 Spec == Init /\ [][Next]_vars /\ Fairness
311
312 ====

Figure 7: Etcd Raft TLA+ model generated by the code translation agent with Claude-Sonnet-4.

1 SPECIFICATION Spec
2
3 CONSTANTS
4 Server = {s1, s2, s3}
5 Value = {v1, v2}
6 Nil = "Nil"
7 Follower = "Follower"
8 PreCandidate = "PreCandidate"
9 Candidate = "Candidate"

10 Leader = "Leader"

Figure 8: Etcd Raft TLC configuration generated by the code translation agent with Claude-Sonnet-
4.

E PGO-COMPILED SYSTEMS

Table 1 lists all the system artifacts in SYSMOBENCH. Unlike other open-source systems imple-
mented mostly by human developers, PGo systems represent a special kind of compiler-generated
systems. PGo is a compiler converting distributed systems specifications written in a DSL of TLA+

into executable systems implementations in Go (Hackett et al., 2023a).

These systems reflect production use cases:
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• dqueue is a simple distributed queue with producers and consumers, which represents a common
cloud computing mechanism. Similar distributed queues are available from many cloud platforms,
like Amazon SQS, Cloudflare Queues, or Apache Kafka.

• locksvc is a simple distributed locking system, which represents a common distributed systems
concept.

• raftkvs is a verified distributed key-value store, with competitive performance. For its consensus
implementation, raftkvs specifies Raft (Ongaro & Ousterhout, 2014).

These systems are complex, each requiring several person-days of effort to specify. The raftkvs store
is particularly complex, requiring almost a person-month of effort. While they are developed using
a formal modeling language, these systems also account for practical coding concerns. Each system
compiles to usable, non-trivial Go code. Notably, raftkvs outperforms other formally verified key-
value stores, with 41% higher throughput than the next-best formally verified store implementation,
and similar latency but 21% of the throughput achieved by Etcd.

A challenge unique to system modeling is that PGo-compiled systems contain machine-generated
Go code, which includes unusual abstractions and coding patterns. For instance, the generated code
makes extensive use of abstractions from PGo’s runtime support library, while containing many
synthetically named variables. These issues are representative of realistic engineering scenarios,
such as generated code (macros, parser generators, state machines), or situations where the original
source code is lost (decompilation artifacts). This type of source code input currently leads to poor
performance on our benchmarks.

PGo Trace Validation. For AI-generated system models, we must validate their behavior against
gathered execution traces. PGo’s TraceLink feature provides a different trace validation method than
for hand-written systems, allowing for automatic implementation tracing and TLA+ glue generation.
As a result, no additional work is needed to gather traces. For simplicity, we use traces taken from
TraceLink’s published artifact. From these traces, TraceLink is able to generate its own binding
TLA+, mapping these logs precisely to a TLA+ state space.

F SYSMOBENCH EVALUATION PROMPTS

During SYSMOBENCH evaluation, LLMs are invoked for conformance and invariant correctness
evaluation to extract information, map actions and variables, and concretize invariants based on
invariant templates.

We show the complete prompts used for benchmark evaluation. These prompts are templates with
parameterized fields that are instantiated by task-specific information. For demonstration, we in-
stantiate the fields in the task for modeling Etcd Raft, with the instantiated parts marked in green.

F.1 CONFORMANCE EVALUATION PROMPTS

Two prompts extract model information and map model action and variable names to code, both
generating configuration files for script processing to support trace validation.

Model component extraction. This prompt directs an LLM to extract TLA+ model components,
such as constants, variables, and actions, which are used by a script to generate a trace specifica-
tion (Cirstea et al., 2024). A trace specification constrains state space exploration along the code
trace path to verify whether a model state space path matches the code trace. In the prompt, the
{source code} field is instantiated with the TLA+ model.

Model Component Extraction Prompt
Generate a YAML configuration file from the provided TLA+ model (.tla) and configuration (.cfg) files.

Extract information according to the following rules:

## Task Description

Parse the TLA+ model and configuration files to create a structured YAML configuration that captures the

model name, constants, variables, actions, and interactions.

## Extraction Rules
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### spec name

Extract from the module declaration line: `---- MODULE <ModuleName> ----`
The spec name is the ModuleName between "---- MODULE" and "----".

### constants

Extract from the CONSTANTS section in the .cfg file.

- name: The constant identifier

- value: The assigned value, formatted as:

- Sets: Wrap in single quotes, e.g., ’{s1, s2, s3}’ becomes ’{"s1", "s2", "s3"}’
- Strings: Wrap in single quotes with double quotes inside, e.g., Nil becomes ’"Nil"’

- Numbers: Wrap in single quotes as string, e.g., 5 becomes ’5’

### variables

Extract from the Init operator definition in the .tla file.

For each variable assignment in Init:

- name: The variable name

- default value: The initial value expression (preserve TLA+ syntax, escape backslashes)

### actions

Extract from the Next operator definition. Include only direct action calls (not numbered interactions).

For each action:

- name: The action/operator name

- parameters: List of parameters with:

- name: Parameter variable name

- source: Where the parameter comes from (e.g., Server, messages)

- stmt: The complete statement as it appears in Next (including any conditions)

### interactions

Extract from the Next operator definition. Include only numbered intermediate actions.

Just list the names (e.g., HandletickElection 1, HandletickHeartbeat 1)

## Example

Given this TLA+ model:

---- MODULE SimpleSpec ----

...

Init ==

/\ x = 0

/\ y = [s \in Server |-> 0]

Next ==

\/ \E s \in Server : Action1(s)

\/ \E m \in messages : Action2(m)

\/ IntermediateAction 1

And this configuration:

CONSTANTS

Server = {s1, s2}
MaxValue = 10

Generate this YAML:

```yaml
spec name: SimpleSpec

constants:

- name: Server

value: ’{"s1", "s2"}’
- name: MaxValue

value: ’10’

variables:

- name: x

default value: ’0’

- name: y

default value: ’[s \\in Server |-> 0]’

actions:

- name: Action1

parameters:

- name: s

source: Server

stmt: Action1(s)

- name: Action2

parameters:

- name: m

source: messages

stmt: Action2(m)
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interactions:

- name: IntermediateAction 1

```

## Important Notes

1. Return ONLY the YAML content - no explanations, comments, or natural language

2. Preserve TLA+ syntax exactly in default value fields (escape backslashes)

3. For actions with conditions, include the full stmt as it appears in Next

4. Ignore variables that appear in Init but are not part of the main model (e.g., pc, info, stack)

5. Order matters: spec name, constants, variables, actions, interactions

Generate the YAML configuration based on the provided TLA+ files:

{source code}

Model and code component mapping. This prompt directs an LLM to map code to model vari-
able naming for trace validation comparison. The LLM generates a JSON file storing the mappings,
which is further processed by a script to output a test harness that aligns code trace variable and ac-
tion names with the model. In the prompt, the {TLA SPEC CODE PLACEHOLDER} field is instantiated
with the TLA+ model, and {IMPLEMENTATION CODE PLACEHOLDER} with the corresponding code.

Model and Code Component Mapping Prompt
You are tasked with generating a JSON mapping file that defines how to convert a concurrent or

distributed system traces to TLA+ model format for trace validation.

## System Overview

etcd Raft is a distributed consensus algorithm implementation that supports:

- Leader election with terms and prevoting/voting

- Log replication across multiple nodes

- State transitions between Follower, Candidate, and Leader roles

- Message passing between nodes

## Code Analysis

Before generating the mapping, you need to analyze the relevant code to understand the system behavior:

**CRITICAL**: You MUST base your mapping on the actual TLA+ model content, NOT on the examples below.

The examples are for format reference only. Always use the actual variables and actions defined in the

provided model.

### TLA+ Model Code

```tla+
{TLA SPEC CODE PLACEHOLDER}
```

### Implementation Code

```go
{IMPLEMENTATION CODE PLACEHOLDER}
```

## Input: System Trace Format

System traces are in JSONL format with events like:

```json
{"conf": [["1", "2", "3"], []], "log": 0, "name": "InitState", "nid": "1", "role": "StateFollower",

"state": {"commit": 0, "term": 0, "vote": "0"}}
{"conf": [["1", "2", "3"], []], "log": 1, "name": "BecomeCandidate", "nid": "1", "role":

"StateCandidate", "state": {"commit": 0, "term": 1, "vote": "0"}}
{"conf": [["1", "2", "3"], []], "log": 1, "name": "BecomeCandidate", "nid": "2", "role":

"StateCandidate", "state": {"commit": 0, "term": 1, "vote": "0"}}
```

Common actions in system traces:

- BecomeFollower: Transition to follower role

- BecomeCandidate: Transition to candidate role

- BecomeLeader: Transition to leader role

- Ready: Node is ready for operations

- PreVote/Vote: Cast prevote/vote during election

- AppendEntries: Replicate log entries

- Heartbeat: Send/receive heartbeat messages

## Target: TLA+ Model Variables
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The TLA+ model tracks these state variables:

- currentTerm: Current term number for each node

- state: Node role (Follower, Candidate, Leader)

- votedFor: Which candidate this node voted for in current term

- commitIndex: Index of highest log entry known to be committed

- nextIndex: For leaders, next log entry to send to each server

- matchIndex: For leaders, highest log entry known to be replicated on server

## Required Mapping Structure

Generate a JSON file with this structure:

```json
{
"config": {
"Server": ["Server1", "Server2", "Server3"] // List of node identifiers

},
"events": {
// Map system actions to TLA+ events

"InitState": "Init",

"BecomeFollower": "BecomeFollower",

"BecomeCandidate": "BecomeCandidate",

"BecomeLeader": "BecomeLeader",

"Ready": "Ready",

"Vote": "Vote",

"AppendEntries": "AppendEntries",

"Heartbeat": "Heartbeat",

// Add other mappings as needed based on code analysis

},
"node mapping": {
// Map string node IDs to node names

"1": "Node1",

"2": "Node2",

"3": "Node3",

// Continue as needed

},
"role mapping": {
// Map system roles to TLA+ states

"StateFollower": "Follower",

"StateCandidate": "Candidate",

"StateLeader": "Leader"

}
}
```

## Implementation Notes

1. The mapping will be used by a state tracker that maintains complete system state

2. Server IDs in traces are numeric (0, 1, 2...) and must be mapped to "Server1", "Server2", etc.

3. The state tracker will automatically handle state transitions based on actions

4. Focus on correctly mapping actions and Server states

5. The config section should list all possible Server that might appear in traces

## Your Task

Generate a complete mapping.json file that:

1. Maps all common actions to their TLA+ equivalents

2. Provides server ID mappings for all servers that appear in traces

3. Ensures compatibility with the state tracking implementation

F.2 INVARIANT CORRECTNESS EVALUATION PROMPT

This prompt concretizes invariants from given invariant templates to model-specific forms. It
typically requires the LLM to map different names in an invariant template to the correspond-
ing model elements. The $tla model field is instantiated with the TLA+ model, and the
$invariant templates field with the invariant templates defined in the system artifact (see §3.2.4
for an example).

Invariant Concretization Prompt
You are a TLA+ expert specializing in distributed systems and Raft consensus. Your task is to implement

a set of expert-written invariants for the given etcd TLA+ model.

## Target Model
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$tla model

## Invariants to Implement

$invariant templates

## Implementation Requirements

1. **Deep Analysis**: First, thoroughly understand both the invariant template’s semantic intent

and the model’s modeling approach:

- What distributed consensus property does each template aim to verify?

- How does the model represent server states, logs, terms, and leadership?

- What are the semantic equivalents between template concepts and model implementation?

2. **Semantic Mapping**: For each invariant, identify the conceptual mapping between template and

model:

- Template server state concepts -> Model’s server state representation

- Template log structure -> Model’s log data structures and indexing

- Template leadership concepts -> Model’s leader election and term management

- Template node/server sets -> Model’s server constants and domains

3. **Creative Adaptation**: Translate the invariant while preserving its core safety/liveness meaning:

- **DO NOT** simply replace variable names - understand the underlying distributed systems logic

- **DO** redesign the predicate logic to fit the model’s data structure granularity

- **DO** use equivalent semantic concepts even if data representations differ

- **PRESERVE** the original safety/liveness guarantees without weakening the property

4. **TLA+ Property Type Constraints**:

**FOR SAFETY PROPERTIES** (type: "safety"):

- **MUST** be STATE PREDICATES (describe single states only)

- **NEVER** use primed variables (`currentTerm’`, `log’`)
- **NEVER** use temporal operators (`[]`, `<>`, `˜>`)
- **NEVER** reference actions (like `RequestVote(s)`, `AppendEntries(s,t)`) - only use state variables
- **ONLY** use unprimed variables (`currentTerm[s]`, `log[s]`) and constants
- **CORRECT**: `LeaderUniqueness == \A term \in Terms : Cardinality({s \in Servers : state[s] =

"leader" /\ currentTerm[s] = term}) <= 1`
- **INCORRECT**: `state[s] = "candidate" => RequestVote(s)` (references action RequestVote)

**FOR LIVENESS PROPERTIES** (type: "liveness"):

- **MUST** be TEMPORAL FORMULAS (describe execution traces)

- **MUST** use temporal operators (`<>`, `˜>`) to express "eventually" or "leads-to"
- **CORRECT**: `EventualLeaderElection == <>(\E s \in Servers : state[s] = "leader")`

5. **Constraint Compliance**:

- Use ONLY variables, constants, and operators that exist in the model

- Generate complete, syntactically valid TLA+ invariant definitions

- Maintain the exact invariant names from templates

6. **Output format**: Return a JSON object containing an array of complete TLA+ invariant definitions

7. **EXACT naming requirement**: You MUST use the exact invariant names specified in the templates

above. Do not create your own names.

## Example Output Format

```json
{
"invariants": [

"LeaderUniqueness == \\A term \\in 1..MaxTerm : Cardinality({n \\in Servers : state[n].role =

\"leader\" /\\ state[n].currentTerm = term}) <= 1",
"LogConsistency == \\A n1, n2 \\in Servers : \\A i \\in DOMAIN log[n1] : (i \\in DOMAIN log[n2] /\\

log[n1][i].term = log[n2][i].term) => (\\A j \\in 1..i : log[n1][j] = log[n2][j])"

]

}
```

**CRITICAL REQUIREMENTS**:

- **SEMANTIC PRESERVATION**: Each translated invariant MUST verify the same property as the original

template

- **CREATIVE ADAPTATION**: Do NOT simply omit invariants - find creative ways to express the same

property using available model elements

- **COMPLETENESS**: Aim to translate ALL invariants by understanding their semantic intent, not just

their syntactic form

- Use ONLY variables, constants, and operators that exist in the provided model

- Use EXACTLY the invariant names from the templates (preserve exact names for evaluation consistency)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

- Return ONLY valid JSON, no explanatory text before or after

- Each array element must be a complete TLA+ invariant definition: "InvariantName == <expression>"
- For complex invariants, you may use multiline format within the JSON string (use actual line breaks)

- For simple invariants, single line format is preferred

- **LAST RESORT**: Only omit an invariant if its core concept is fundamentally incompatible with the

model’s design

- **CRITICAL JSON ESCAPING RULES**:

- TLA+ operators like `\A`, `\E`, `\in` contain ONE backslash in the final TLA+ code
- In JSON strings, use EXACTLY ONE backslash escape: write `"\\A"` to get `\A` in TLA+
- **DO NOT double-escape**: `"\\\\A"` is WRONG and will produce `\\A` in TLA+
- **CORRECT**: `"LeaderUniqueness == \\A term \\in 1..MaxTerm : state[term] = \"leader\""`
- **WRONG**: `"LeaderUniqueness == \\\\A term \\\\in 1..MaxTerm : state[term] = \"leader\""`
- Start your response immediately with the opening brace {

G BASIC MODELING AGENT

The basic modeling agent operates in two steps for each system artifact: (1) generating the model,
including both the TLA+ model and its TLC configuration, and (2) using a feedback loop that takes
SYSMOBENCH evaluation results to iteratively improve the generated TLA+ model. We show the
complete prompts of the basic modeling agent (§4) to provide its detailed implementation.

G.1 MODEL GENERATION PROMPTS

TLA+ model generation. This prompt directs an LLM to generate the TLA+ model file, in-
stantiated with the granularity definitions of the system artifact (see §3.1). The {file path} and
{source code} fields are instantiated with the code file path in the repository and source code
content, respectively.

TLA+ Model Generation Prompt
You are an expert in formal verification and TLA+ models with deep expertise in concurrent and

distributed systems, particularly etcd and Raft consensus

.

Convert the following source code to a comprehensive TLA+ model.

System: etcd distributed key-value store

Source Code from {file path}:
```go
{source code}
```

System-specific modeling requirements:

MANDATORY CORE ACTIONS (must include all):

1. [Message Types] MsgHup (election timeout), MsgVote/MsgVoteResp (voting), MsgApp/MsgAppResp (log

replication)

2. [Node States] Four states: StateFollower, StateCandidate, StateLeader, StatePreCandidate (prevote

enabled)

3. [Leader Election] Complete prevote + vote phases: PreCandidate → Candidate → Leader transitions

4. [Log Operations] Log entry appending, consistency checks, commitment with majority quorum

5. [Heartbeat/Timeout] Election timeouts triggering campaigns, heartbeat prevention of elections

6. [Client Proposals] MsgProp message handling and log entry creation by leaders

EXPLICITLY EXCLUDED (do not model):

- Configuration changes and joint consensus (ConfChange messages)

- Log compaction and snapshots (MsgSnap)

- ReadIndex optimizations (MsgReadIndex)

- Async storage operations (LocalAppendThread, LocalApplyThread)

- Advanced flow control and progress tracking details

REQUIRED BEHAVIORAL SCOPE:

- Prevote phase (StatePreCandidate) must be modeled as it’s enabled by default in etcd

- State transition constraints: Follower → PreCandidate → Candidate → Leader (strict transitions)

- Message processing by state: only valid message types handled in each node state

- Term advancement rules: nodes advance term when receiving messages with higher term

- Voting restrictions: one vote per term, term must be current or newer

- Heartbeat mechanism: leaders send heartbeats, followers reset election timeout on receipt

- Log consistency checks: prevLogIndex/prevLogTerm validation in MsgApp processing
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- Majority-based leader election and log commitment

- Basic network message delays and losses

Generate a TLA+ model that accurately models the system’s behavior.

CRITICAL OUTPUT REQUIREMENTS:

1. The MODULE name must be exactly "etcdraft

" (---- MODULE etcdraft ----)

2. Return ONLY pure TLA+ model code - no markdown code blocks (no ```tla or ```)
3. Do not include any explanations, comments, or formatting markers

4. Start your response directly with: ---- MODULE etcdraft

----

5. End your response with the closing ====

6. **DO NOT define invariants** (like MutualExclusion, Invariant, etc.) - focus on modeling the system

behavior

7. **MUST include EXTENDS statement**: The model must extend at least these modules: TLC, Sequences,

SequencesExt, Naturals, FiniteSets, Bags

TLC configuration generation. This prompt directs an LLM to generate a TLC configuration
file. The configuration file requires the LLM’s understanding of the system to make the model
executable, such as designating the initial predicate and next-state relations. The $tla spec field is
instantiated with the TLA+ model generated in the previous step.

TLC Configuration Generation Prompt
You are a TLA+ expert. Generate a complete TLC configuration file (.cfg) for the etcd model that can be

directly saved and used for model checking.

## Input Model:

$tla spec

## Requirements:

1. **Analyze the model** to identify the main model name and all declared constants

2. **Generate complete .cfg file content** with SPECIFICATION, CONSTANTS sections

3. **Use small values for constants** to ensure efficient model checking (2-3 servers, small integers)

4. **Output ONLY the raw .cfg file content** - no explanations, no markdown, no code blocks

## Example Output Format:

SPECIFICATION SpecName

CONSTANTS

...

**CRITICAL: Your response must contain exactly ONE complete .cfg file. Do not repeat any sections.

Start your response immediately with "SPECIFICATION" and include nothing else.**

G.2 MODEL REFINEMENT PROMPT

This prompt provides guidance for the LLM to refine the previously generated model using syn-
tax and runtime evaluation results from SYSMOBENCH. The {current model} field contains
the previous iteration’s model, {current tlc cfg} contains the previous TLC configuration,
{syntax errors} contains the syntax errors reported by SANY, and {runtime errors} contains
the runtime errors reported by TLC.

Model Refinement Prompt
You are an expert TLA+ model specialist with extensive experience in concurrent and distributed systems

modeling.

I need you to fix errors in a TLA+ model for etcdraft system.

## Current TLA+ Model

```tla
{current model}
```

## Current TLC Configuration
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```
{current tlc cfg}
```

## Errors Found

**Detailed Syntax Errors:**

{syntax errors}

**Detailed Runtime Errors:**

{runtime errors}

## Correction Instructions

This is correction attempt {attempt number} of {max attempts}.

Please provide a corrected TLA+ model that fixes these errors. Your corrected model should:

1. **Fix all syntax errors**: Ensure proper TLA+ syntax, correct operator usage, and valid module

structure

2. **Resolve runtime errors**: Define missing variables, operators, and ensure logical consistency

3. **Maintain original intent**: Keep the core distributed system logic and behavior from the source

code

4. **Follow TLA+ best practices**: Use appropriate data structures, actions, and invariants

5. **Be complete and self-contained**: Include all necessary EXTENDS, CONSTANTS, VARIABLES, and

operator definitions

Focus specifically on:

- Defining any missing variables or constants

- Implementing missing operators or functions

- Fixing syntax issues with operators, expressions, or module structure

- Ensuring proper action definitions and state transitions

- Maintaining consistency with etcdraft’s system behavior

**CRITICAL OUTPUT REQUIREMENTS:**

- Return ONLY pure TLA+ model code

- NO markdown code blocks (no ```tla or ```)
- NO explanations, comments, or text outside the model

- NO formatting markers of any kind

- The MODULE name must be exactly "etcdraft"

- Start directly with: ---- MODULE etcdraft ----

H TRACE LEARNING AGENT

The trace learning agent does not use any code as input; instead, it relies on the distributed traces
as context. Similar to the basic modeling agent, we provide an initial prompt analogous to the
basic modeling agent’s prompt (§G.1), but substituting the codebase context with trace information
instead. If the first model generation fails to pass compilation, the model refinement loop will pass
the errors back to the LLM to iteratively fix the model.

Trace formats. The trace-based method works with several types of traces and can be easily ex-
tended to additional systems. For each trace format, we provide a short custom prompt explaining
the format. We currently support:

• .ndjson and .jsonl logs: Newline-delimited JSON, with coarse-grained logs defined by the
specific system. One log file contains multiple nodes’ execution logs.

• PGo-instrumented logs generated by TraceLink (Hackett & Beschastnikh, 2025): Also newline-
delimited JSON and contains PGo-specific concepts like archetype names and vector clocks. Vari-
able updates are logged in fine-grained detail at each PGo-defined critical section. One log file is
output per node; there are multiple log files per distributed execution.

Optimizations. We anecdotally noticed that passing single execution traces results in overfitting by
the model, with generated models closely reflecting the single executed path. Providing more traces
improves context for the model.

One issue we encountered was fitting large traces into models’ context windows. The JSON structure
of traces is expensive in tokens, because each “[”, “:”, and other punctuation represents a separate
token. Most of the models we used had a context window of about 200K tokens; a JSON trace
of several megabytes, such as the Etcd Raft traces, simply could not fit. We solved this with three
workarounds:
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• We support sampling for systems with large traces, randomly choosing a set of execution traces
among all collected traces.

• We convert the nested JSON structure into tab-separated values (TSV) format, which deduplicates
JSON keys into the TSV header and uses only tabs as a separator to save tokens.

• We abbreviate repeated state or action values (e.g., ReceiveRequestVoteResponse) to
acronyms (e.g., RRVR) and provide a mapping in the prompt.

The TSV and abbreviation optimizations significantly save tokens: with the Claude tokenizer, it
reduces token use by 62% for ten lines of Etcd Raft traces (from 645 to 262 tokens), and by 63%
for ten lines of mutex traces (from 866 to 318 tokens). This enabled us to fit multiple traces into the
initial prompt, reducing the impact of overfitting. We did not apply this optimization to the other
methods, since code is less structured and does not have obvious candidates for deduplication.

I COMPLETE EVALUATION RESULTS

I.1 LIVENESS VIOLATION ANALYSIS

We analyzed counterexamples from two representative systems (Asterinas SpinLock and Etcd Raft)
and categorized liveness violations into two main classes:

• Fairness-related issues that prevent progress due to missing fairness declarations, overly narrow
or overly broad constraints (e.g., defined as WF(Next));

• Logical/structural issues that block progress due to conflicting updates or missing/incorrect logic
in action definitions.

Since the modeling task focuses on state/action models of the system implementation and LLMs are
not required to generate temporal operators (e.g., in liveness properties), our categorization does not
include errors related to temporal operators.

Table 12 presents the detailed breakdown of violations by category and LLM. For Asterinas Spin-
Lock, fairness-related issues dominate the violations, particularly “too broad” and “too narrow”
constraints. For instance, Claude-Sonnet-4, generated 26 out of 32 violations due to overly broad
fairness assumptions.

For Etcd Raft, liveness violations are primarily caused by logical/structural issues. The model’s large
state space causes these logical errors to block progress before fairness-related issues can manifest.
Nevertheless, manual inspection confirms that fairness conditions are generally incorrect.

Table 12: Liveness violations by category in Asterinas SpinLock and Etcd Raft for the basic model-
ing agent.

(a) Asterinas SpinLock liveness violations by category

LLM Fairness Fairness Missing Logical Total
too broad too narrow fairness errors violations

Claude-Sonnet-4 26 2 4 0 32
GPT-5 8 10 2 0 20
Gemini-2.5-Pro 4 6 0 0 10
DeepSeek-R1 4 2 0 2 8

(b) Etcd Raft liveness violations by category

LLM Logical missing/errors Conflicting updates Total violations

Claude-Sonnet-4 4 8 12
GPT-5 2 8 20
Gemini-2.5-Pro 0 0 0
DeepSeek-R1 4 4 8

I.2 DETAILED RESULTS BY SYSTEM
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We present the complete evaluation results for all systems in our benchmark using three AI agents:
Basic Modeling, Code Translation, and Trace Learning in Tables 13–23. These tables follow the
same evaluation setup as described in §4.

Table 13: Asterinas Spinlock

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 80.00% 100.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 80.00% 85.71%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 80.00% 100.00%

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 100.00% 85.71%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 100.00% 100.00%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 100.00% 100.00%

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

The trace learning agent underperforms compared to the other two agents, typically failing compilation and
runtime checks. We observe that it is more difficult for LLMs to process structured trace data, in comparison
to source code. Specifically, Claude-Sonnet-4 appears to be particularly weak in this regard, achieving the
lowest syntax scores, despite its coding capabilities. This trend of the trace learning agent is consistent across
all the evaluated system artifacts (Tables 14–23).

Table 14: Etcd Raft

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 25.00% ✓ 7.69% 69.23%
GPT-5 47.87% ✗ - - -
Gemini-2.5-Pro 50.00% ✗ - - -
DeepSeek-R1 50.00% ✗ - - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 66.67% ✓ 15.38% 92.31%
GPT-5 100.00% ✓ 20.00% ✗ - -
Gemini-2.5-Pro 44.44% ✗ - - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 48.78% ✗ - - -
Gemini-2.5-Pro 42.31% ✗ - - -
DeepSeek-R1 47.73% ✗ - - -

Table 15: Asterinas Mutex

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 100.00% 85.71%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 66.67% 85.71%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 66.67% 100.00%

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 100.00% 100.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 100.00% 85.71%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 100.00% 85.71%

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 50.00% ✗ - - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 50.00% ✗ 0.00% ✗ - -
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Table 16: Asterinas Rwmutex

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 90.00%
GPT-5 100.00% ✓ 100.00% ✓ 75.00% 80.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 0.00% 80.00%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 50.00% 90.00%

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 90.00%
GPT-5 100.00% ✓ 100.00% ✓ 100.00% 90.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 100.00% 80.00%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 50.00% 90.00%

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 50.00% ✗ - - -

Table 17: Asterinas Ringbuffer

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 100.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 100.00% 75.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 100.00% 100.00%
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Trace Learning

Claude-Sonnet-4 100.00% ✓ 0.00% ✗ - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Table 18: Redis Raft

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 0.00% ✗ - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 50.00% ✗ - - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 23.81% ✓ 9.09% 75.00%
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 50.00% ✗ - - -
DeepSeek-R1 100.00% ✓ 100.00% ✓ 0.00% 25.00%

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 47.06% ✗ - - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 48.53% ✗ - - -

The system model generated by DeepSeek-R1 is overly simplified; thus, it has high syntax and runtime
correctness, but have low score on invariants (the protocol logic is incorrect) and 0% on conformance.
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Table 19: Xline CURP

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 0.00% ✗ - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 50.00% 100.00%
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 66.67% 100.00%
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 46.15% ✗ - - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Xline CURP is one of the largest system artifacts in SYSMOBENCH (see Table 1). We suspect that the system
model generated by Gemini-2.5-Pro benefits from its 1M-token context window, enabling effective
summarization of the 4000+ line codebase into a concise TLA+ representation.

Table 20: PGo dqueue

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 33.33% ✓ 33.33% 0.00%
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 0.00% 100.00%
GPT-5 100.00% ✓ 100.00% ✓ 0.00% 100.00%
Gemini-2.5-Pro 100.00% ✓ 100.00% ✓ 0.00% 100.00%
DeepSeek-R1 100.00% ✓ 100.00% ✓ 0.00% 100.00%

Trace Learning

Claude-Sonnet-4 100.00% ✓ 0.00% ✗ - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Table 21: PGo locksvc

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 44.45% ✗ - - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 100.00% ✓ 0.00% 83.33%
GPT-5 100.00% ✓ 100.00% ✓ 0.00% 66.67%
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 100.00% ✓ 0.00% 50.00%

Trace Learning

Claude-Sonnet-4 42.31% ✗ - - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 50.00% ✗ - - -
DeepSeek-R1 50.00% ✗ - - -
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Table 22: PGo raftkvs

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 44.57% ✗ - - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 45.84% ✗ - - -
DeepSeek-R1 45.32% ✗ - - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 50.00% ✓ 0.00% 90.91%
GPT-5 100.00% ✓ 100.00% ✓ 0.00% 72.73%
Gemini-2.5-Pro 40.91% ✗ - - -
DeepSeek-R1 100.00% ✓ 22.22% ✗ - -

Trace Learning

Claude-Sonnet-4 50.00% ✗ - - -
GPT-5 46.55% ✗ - - -
Gemini-2.5-Pro 41.67% ✗ - - -
DeepSeek-R1 47.83% ✗ - - -

We observe that the characteristics of LLM performance on PGo-compiled systems are very different from
human-written systems as discussed in Section 5 and Appendix E. We find that GPT-5 performs generally
perform well on PGo systems, indicating its ability of understanding machine-generated code patterns.

Table 23: ZooKeeper Fast Leader Election (FLE)

Agent LLM Syntax Runtime Conformance Invariant

Basic Modeling

Claude-Sonnet-4 100.00% ✓ 0.00% ✗ - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Code Translation

Claude-Sonnet-4 100.00% ✓ 0.00% ✗ - -
GPT-5 100.00% ✓ 0.00% ✗ - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

Trace Learning

Claude-Sonnet-4 44.44% ✗ - - -
GPT-5 47.92% ✗ - - -
Gemini-2.5-Pro 100.00% ✓ 0.00% ✗ - -
DeepSeek-R1 100.00% ✓ 0.00% ✗ - -

ZooKeeper FLE has the largest codebase and implements the complex ZAB protocol, making it the most
challenging system to model among all eleven artifacts.

37


	Introduction
	Background
	SysMoBench
	Task Formulation
	Metrics and Their Measurement
	Syntax Correctness
	Runtime Correctness
	Conformance to System implementation
	Invariant Correctness

	Adding New Systems and Specification Languages to SysMoBench

	Evaluation Setup
	Results
	Related Work
	Concluding Remarks
	Alternative Metrics
	Runtime Pass Rate
	Conformance Pass Rate

	Extensibility to Other Specification Languages
	Supporting PAT and Alloy
	Evaluation Results
	Comparison with Related Work

	Qualitative Evaluation of AI-Generated Models
	Comparison with Human-Written Models
	Bug Reproduction

	Examples of AI-generated TLA+ Models
	PGo-compiled Systems
	SysMoBench Evaluation Prompts
	Conformance Evaluation Prompts
	Invariant Correctness Evaluation Prompt

	Basic Modeling Agent
	Model Generation Prompts
	Model Refinement Prompt

	Trace Learning Agent
	Complete Evaluation Results
	Liveness Violation Analysis
	Detailed Results by System


