
CodeComplex: Dataset for Worst-Case Time Complexity Prediction

Anonymous ACL submission

Abstract

Analyzing the worst-case time complexity of001
a code is a crucial task in computer science002
and software engineering for ensuring the effi-003
ciency, reliability, and robustness of software004
systems. However, it is well-known that the005
problem of determining the worst-case time006
complexity of a program is theoretically un-007
decidable. In response to this challenge, we008
introduce CodeComplex, a novel source code009
dataset where each code is manually anno-010
tated with a corresponding worst-case time011
complexity. CodeComplex comprises 4,900012
Java codes and an equivalent number of Python013
codes, all sourced from programming compe-014
titions and annotated with complexity labels015
by a panel of algorithmic experts. To the best016
of our knowledge, CodeComplex stands as the017
most extensive code dataset tailored for pre-018
dicting complexity. Subsequently, we present019
the outcomes of our experiments employing020
various baseline models, leveraging state-of-021
the-art neural models in code comprehension022
like CodeBERT, GraphCodeBERT, UniXcoder,023
PLBART, CodeT5, CodeT5+, and ChatGPT.024
We analyze how the dataset impacts the model’s025
learning in predicting time complexity. We re-026
lease our dataset1 and baseline models2 pub-027
licly to encourage the relevant (NLP, SE, and028
PL) communities to participate in this research.029

1 Introduction030

The assessment of computational complexity in031

algorithms, indicated by their worst-case computa-032

tional complexity, remains crucial for estimating033

an algorithm’s efficiency based on input size. An-034

alyzing the worst-case computational complexity035

gives us an understanding of how long a task will036

take for a given instance. The worst-case compu-037

tational complexity is often referred to as the time038

1https://anonymous.4open.science/r/
CodeComplex-Data-1209

2https://anonymous.4open.science/r/
CodeComplex-Models-1209

complexity. Worst-case time complexity, expressed 039

through Big-O notation, offers insights into an al- 040

gorithm’s performance. Unfortunately, it is unde- 041

cidable to precisely determine the time complexity 042

for an algorithm (Turing, 1936). This limitation 043

leads to the exploration of alternative approaches 044

like static and dynamic code analysis techniques. 045

Static analysis techniques, encompassing metrics 046

like cyclomatic complexity (McCabe, 1976) and 047

the Master theorem (Bentley et al., 1980), provide 048

tractable ways to gauge efficiency. Conversely, dy- 049

namic code analysis, involving real-time execution 050

and test cases, offers insights into execution time 051

and bugs but necessitates adequate test cases and 052

code execution (Burnim et al., 2009; Noller et al., 053

2018; Wei et al., 2018; Saumya et al., 2019; Koo 054

et al., 2019). The evolution of programming com- 055

prehension models and AI-assisted programming 056

tools, exemplified by GitHub Copilot3 and Alpha- 057

Code (Li et al., 2022), has altered the landscape 058

of coding practices and education. Despite this 059

advancement, current models still suffer in predict- 060

ing the time complexities and cannot be used for 061

optimization or education. Recognizing the signifi- 062

cant hardness of predicting code complexity, one 063

practical difficulty is that the CoRCoD (Sikka et al., 064

2020) dataset with 929 codes was the sole dataset 065

available that aimed to facilitate code complexity 066

prediction research. 067

We introduce the CodeComplex dataset, com- 068

prising 9,800 program codes (4,900 Java and 4,900 069

Python) annotated with complexity classes by algo- 070

rithm experts. Our paper delineates the challenge 071

of predicting worst-case time complexity for pro- 072

gram codes, leveraging cutting-edge deep neural 073

network models and learning algorithms. Base- 074

line performances are established and tested using 075

classical machine learning algorithms and state-of- 076

the-art deep learning models like CodeBERT (Feng 077

3https://copilot.github.com/

1

https://anonymous.4open.science/r/CodeComplex-Data-1209
https://anonymous.4open.science/r/CodeComplex-Data-1209
https://anonymous.4open.science/r/CodeComplex-Models-1209
https://anonymous.4open.science/r/CodeComplex-Models-1209
https://copilot.github.com/

CodeContests

Retrieve
contest codes

Get metadata
from origin source

Problem A

• Input: size n
• Output: size 1

Educate annotators
with guidelines

CodeComplex

Choose a diverse
set of problems

Analyze code
time complexity

Cross-validation
among annotators

CodeComplex
Dataset

Source: …
Problem: …
Time
complexity:
…

O(n)!
O(1)!
O(n)!

A: O(n)

O(1)?

Find optimal codes
for problems

NPC

DP

Greedy

Backtracking

Problem A

Annotation
Guidelines

Solution

Problem B Solution

⋮

Figure 1: Overview of the CodeComplex dataset creation process.

et al., 2020), GraphCodeBERT (Guo et al., 2021),078

UniXcoder (Guo et al., 2022), PLBART (Ahmad079

et al., 2021), CodeT5 (Yue Wang and Hoi, 2021),080

CodeT5+ (Wang et al., 2023), ChatGPT (OpenAI,081

2024), and Gemini (Google, 2024).082

In summary, our contributions are as follows:083

1. We have created the large-scale worst-case084

time complexity dataset for a learning-based085

complexity prediction task;086

2. We have performed experiments with tra-087

ditional machine learning-based methods,088

pre-trained programming language models089

(PLMs), and closed-source LLMs such as090

ChatGPT and Gemini; and091

3. We have carefully analyzed experimental re-092

sults and suggested limitations of current ap-093

proaches with promising future directions.094

We believe that this paper can fuel advancements095

in predicting worst-case time complexity for pro-096

grams which is crucial for both automated opti-097

mization of programs and effective education for098

people who study algorithms and programming.099

2 Related Work100

In the realm of quantifying program complex-101

ity, Bentley et al. (1980) introduced the Master102

theorem—–a useful tool specifically for analyzing103

the time complexity of divide-and-conquer algo-104

rithms. This theorem facilitates the expression of105

an algorithm’s time complexity as a recurrence re-106

lation and offers methods to solve this relation.107

Recently, Sikka et al. (2020) delved into code108

complexity prediction using machine learning-109

based methods. They curated the CoRCoD dataset110

comprising 929 annotated Java codes. These 111

codes were enriched with various hand-engineered 112

features extracted from the code, encompassing 113

counts of loops, methods, variables, jumps, breaks, 114

switches, and the identification of specific data 115

structures or algorithms like priority queues, hash 116

maps, hash sets, and sorting functions. Employing 117

machine learning classification algorithms such as 118

K-means, random forest, decision tree, SVM, and 119

more, they made predictions based on these diverse 120

features. Additionally, they explored graph2vec, 121

a neural graph embedding framework that oper- 122

ates on a program’s AST, and achieved comparable 123

performance results. 124

Another exploration by Prenner and 125

Robbes (2021) scrutinized the potential of 126

pre-trained programming language understanding 127

models, particularly CodeBERT, for predicting 128

code complexity. Their experiments showcased 129

promising results, suggesting that pre-trained 130

models could serve as a viable solution in this do- 131

main. In the most recent development, Moudgalya 132

et al. (2023) tackled the analysis of time and 133

space complexity using language models. They 134

leveraged codes sourced from GeeksForGeeks4 135

and CoRCoD, alongside a dataset comprising 136

3,803 Java codes. Their work showcased the 137

viability of fine-tuning pre-trained language 138

models such as GraphCodeBERT for predicting 139

both time and space complexity, thereby opening 140

new avenues for exploration in this field. 141

3 The CodeComplex Dataset 142

The CodeComplex dataset contains a collection of 143

codes written in two languages, Java and Python, 144

4https://www.geeksforgeeks.org/

2

https://www.geeksforgeeks.org/

Table 1: Statistical difference between CoRCoD and
CodeComplex. Numbers in parentheses imply the num-
ber of codes from CoRCoD.

Class CoRCoD CodeComplex
Java Java Python

O(1) 143 750 (+ 62) 791
O(n) 382 779 (+ 117) 853
O(n2) 200 765 (+ 48) 657
O(n3) 0 601 606
O(lnn) 54 700 (+ 18) 669
O(n lnn) 150 700 (+ 72) 796
NP-hard 0 605 528

Total 929 4,900 (+ 317) 4,900

from a competitive programming platform. Our145

dataset originates from Codeforces and collects146

data from CodeContests, a competitive program-147

ming dataset tailored for machine learning appli-148

cations created by DeepMind. It comprises 9,800149

codes, evenly split between Java and Python, with150

4,900 codes each. We have categorized these codes151

into seven distinct complexity classes: constant152

(O(1)), linear (O(n)), quadratic (O(n2)), cubic153

(O(n3)), logarithmic (O(lnn), O(n lnn)), and154

NP-hard. Each class contains a minimum of 500155

Java and Python codes.156

Among the 9,800 codes, we annotated 9,483157

codes, as we have confirmed that the remaining 317158

Java codes are also found in the CoRCoD dataset.159

It is worth mentioning that the CoRCoD, a previ-160

ous dataset used for code complexity prediction,161

categorizes Java codes into five complexity classes:162

O(1), O(n), O(n2), O(lnn), and O(n lnn). How-163

ever, it suffers from imbalanced class distribution,164

evident in Table 1, with a relatively small size of165

929 Java code samples in total. To address this,166

we expanded the dataset by including both Java167

and Python languages and extended the complexity168

classes to seven, representing the most commonly169

encountered complexities in algorithmic problems.170

Each class now comprises at least 500 codes, re-171

sulting in a dataset of 4,900 codes. This expansion172

significantly enhances the dataset’s value for re-173

search, particularly concerning recent DL-based174

models outlined in Section 4.175

3.1 Data Collection176

The original corpus of code is from CodeContests,177

which collected 128 million codes from Code-178

forces. The corpus only contained information179

about the contest ID, problem, username, language,180

acceptance, and statistics (runtime and memory).181

We extracted the selected problems from this cor- 182

pus and identified each code’s complexity. 183

Code samples were selected within the matching 184

candidates with the following conditions. First, we 185

checked the relevance of the problem. There are 186

many problems within a coding competition, but 187

not all of them fall into the scope of complexities 188

we seek to compromise. Therefore, the problems 189

were first analyzed to check whether or not they 190

were in the complexity class of our dataset. If the 191

problem was determined to be in one of the seven 192

complexity classes, then we marked the problem as 193

a candidate for the dataset. This helps to establish a 194

clear base dataset for the complexity domain. Sec- 195

ond, we checked the completeness and correctness 196

of the code. We filtered codes that are available to 197

pass the given problem in the contest, meaning that 198

the code is functional, self-contained, and correct 199

on the given task. One of the reasons for using code 200

competition data is that we can check if the code is 201

correct for the problem. Lastly, we wanted a large 202

pool of code samples for a given problem. We 203

took code samples from problems with abundant 204

submissions. This helped to clarify the problem’s 205

robustness and variation. 206

Consider the following Python program that 207

solves a problem with O(1) time complexity: 208

buf = input()
hand = buf.split()
t = []
for i in range(3):

t.append([])
for j in range(9):

t[i].append(0)
for x in hand:

idx = 0
Following lines are omitted.

209

Despite the short length of the code, it is not 210

trivial to understand that the time complexity of the 211

above code is actually constant, which implies that 212

the number of instructions for executing the pro- 213

gram does not depend on the input size. In fact, the 214

problem description says that the input always con- 215

sists of three strings separated by whitespace and, 216

therefore, the size of the list hand is actually con- 217

stant. Hence, it is impossible to correctly calculate 218

the time complexity of a code only by analyzing 219

the code, as the problem description sometimes has 220

a big hint to determine the time complexity. 221

3.2 Data Preprocessing 222

Data preprocessing is an important step in prepar- 223

ing datasets for analysis or machine learning tasks. 224

3

5

10

15
feature = #Functions

0

50

100

150

feature = #Lines

0

20

40
feature = #Variables

10

20

feature = DoC

0

5

10

feature = DoI

0

5

10

0

50

100

0

20

40

0

2

4

6

0

2

4

constant logn linear nlogn quadratic cubic np

Figure 2: Basic statistics of codes in CodeComplex dataset. The first and second lines show statistics of Java and
Python codes, respectively.

In this process, we utilize dead code elimination225

and comment removal. Dead code elimination226

involves removing any code that does not con-227

tribute to the functionality or output of the program,228

thereby reducing unnecessary clutter. From each229

code, we marked irrelevant codes and unreachable230

codes as dead codes. Irrelevant code involves vari-231

ables, functions, and classes that were never used or232

never called, and unreachable code involves condi-233

tional statements that cannot be satisfied and state-234

ments that cannot be reached because of control235

statements such as continue and return.236

On the other hand, comment removal entails237

stripping out any comments within the codebase,238

which are meant for human understanding. We239

removed the comments since the fragments could240

be exploited by the models to improve the accuracy241

of predicting the time complexity of models.242

3.3 Annotation Process243

Our primary objective is to create a solid founda-244

tion for accurately classifying time complexities.245

To achieve this, we have meticulously designed a246

procedure to generate a robust dataset with minimal247

noise and high quality. We specifically filter ‘cor-248

rect’ Java and Python codes, ensuring they pass all249

test cases, including hidden ones. These codes form250

the basis of our statistical population. Categorizing251

problems based on problem-solving strategies in-252

volves leveraging annotations from CodeContests.253

Each problem in the dataset is associated with a254

plausible problem-solving strategy, such as brute255

force, dynamic programming, or backtracking, as256

outlined in CodeContests. Following this initial257

categorization, a detailed analysis of each problem258

is conducted. This analysis considers input and259

output variables, utilized data structures, and the 260

overall workflow of the code. Subsequently, the 261

code for each problem is annotated based on its 262

specific input characteristics. More precisely, we 263

take the largest input variable as the main factor in 264

calculating the overall time complexity. By analyz- 265

ing the code, we consider each control sequence 266

on the code to determine if the input impacts a con- 267

trol segment or is constant. Note that we assume 268

a unit-cost RAM model that requires the same cost 269

for accessing all memory locations for calculating 270

the time complexity. Our core annotation process 271

adheres to four key rules: 272

1. Consider the input size and the output size as 273

parameters to determine time complexity, with 274

measurement based on the largest parameter 275

among the input variables. 276

2. Account the impact of used packages and li- 277

braries, such as hashmap, sorting, and string- 278

matching algorithms, on time complexity. 279

3. Treating each test case within a single input 280

separately for complexity measurement. 281

4. Classifying cases with fixed constants as hav- 282

ing a constant time complexity. 283

The annotation was held by three annotators who 284

have expertise in the algorithm. In the initial anno- 285

tation step, each annotator annotated each problem 286

independently. Each reasoned on how we judged 287

the input and annotated the time complexity. 288

During the agreement process, the annotators 289

collaborated closely to reconcile any discrepan- 290

cies in their annotations. We engaged in thorough 291

discussions, sharing our reasoning and insights to 292

4

reach a consensus on the appropriate time com-293

plexity classification for each problem. In cases294

where disagreements arose, the annotators carefully295

evaluated the evidence and considered alternative296

perspectives before arriving at a mutually accept-297

able classification. The involvement of ChatGPT298

serves as a neutral advisor to validate the annota-299

tions and offer additional perspectives on complex300

cases. Through open communication and collab-301

orative decision-making, the annotators achieved302

a high level of agreement, ensuring the accuracy303

and reliability of the final dataset. However, it is304

essential to note the significant impact of input for-305

mats and constraints on the actual time complexity306

of algorithmic problems. These constraints often307

lead to deviations from the ideal time complexity.308

Think of a scenario in which the input exploits the309

problem constraints in time complexity. Despite310

the problem of having a quadratic time complexity,311

the provided input constraints may result in linear312

running time. Moreover, determining the parameter313

for complexity measurement becomes crucial when314

faced with multiple input parameters. Additionally,315

certain code submissions optimize execution based316

on problem constraints, thus influencing code com-317

plexity assessment.318

3.4 Dataset Analysis319

The CodeComplex dataset offers a meticulously320

curated collection of algorithmic problems and cor-321

responding Java and Python code submissions. It322

serves as a foundation for accurately classifying323

time complexities and problem-solving strategies.324

Figure 2 demonstrates basic statistics of the325

codes for the number of Lines, number of func-326

tions, number of variables, depth of code (DoC)327

and depth of iterations (DoI). Moreover, when con-328

sidering the depth of iterations, reflecting nested329

loops, both Java and Python solutions displayed330

comparable characteristics. However, a distinc-331

tive trait of Python code was its abundance of vari-332

ables, potentially attributed to Python’s lack of ex-333

plicit variable declaration requirements. This inher-334

ent difference in variable declaration mechanisms335

might contribute to the observed discrepancy in336

variable counts between the two languages within337

our dataset.338

4 Experiments339

As a preliminary study on code complexity predic-340

tion using a large-scale dataset, we conduct exper-341

iments with well-known machine learning-based 342

solutions. First, we try to replicate the result by 343

Sikka et al. (2020) by employing traditional models 344

such as decision tree (DT), random forest (RF), and 345

support vector machine (SVM). Second, we use 346

pre-trained programming language models (PLMs) 347

such as CodeBERT, GraphCodeBERT, UniXcoder, 348

PLBART, CodeT5, and CodeT5+. Note that we can 349

further categorize these models into two groups 350

where the first group (CodeBERT, GraphCode- 351

BERT, and UniXcoder) only uses encoder architec- 352

ture, and the second group (PLBART, CodeT5, and 353

CodeT5+) exploits encoder-decoder architecture. 354

4.1 Experimental Settings 355

We divide the CodeComplex into training and test 356

datasets using two distinct manners: random split 357

and problem split. As the name implies, the random 358

split involves randomly allocating the data in a 4:1 359

ratio for both Java and Python. As a result, the 360

training and test datasets comprise 3,920 and 980 361

codes, respectively. In the case of the problem split, 362

we also randomly split the data in a similar ratio 363

but ensured that the training and test datasets did 364

not share any common problems. The k-fold cross- 365

validation technique is used to avoid any bias by 366

the selected problems. 367

Code Data Augmentation To deal with the data 368

scarcity problem, we perform several elementary 369

code data augmentations such as the conversion 370

of ‘for’ loops to ‘while’ loops, ternary operators 371

to ‘if’ statements, and loop constructs to out-line 372

list comprehension expressions. We apply these 373

augmentation techniques to resolve the class im- 374

balance without altering the original code’s time 375

complexity. 376

Hyperparameters For all pre-trained models, 377

we use the AdamW (Loshchilov and Hutter, 2019) 378

optimizer with a warmup linear scheduler. The 379

learning rate was set to 2e-6, epsilon to 1e-8, and 380

the weight decay to 1e-2. We applied either the Au- 381

toTokenizer or the RobertaTokenizer. The models 382

were fine-tuned for 15 epochs before using them 383

for evaluation. 384

4.2 Results 385

We present the following experimental results for 386

various scenarios in Tables 2, 3, and 4. Full exper- 387

imental results can be found in Appendix D. 388

5

Table 2: Performance comparison with two different
dataset splits: random split and problem split.

Model Problem Random
Ja Py Ja Py

Decision Tree 48.6 38.8 49.0 44.5
Random Forest 43.9 40.8 47.8 50.0
SVM 28.1 23.6 28.6 42.8

CodeBERT 60.5 51.2 73.7 73.5
GraphCodeBERT 60.4 58.1 86.0 83.7
UniXcoder 57.7 55.0 89.2 86.6
PLBART 62.1 54.0 88.7 82.7
CodeT5 60.7 48.9 85.3 77.3
CodeT5+ 58.0 49.8 85.6 84.3

5 Analysis & Discussion389

5.1 Comparison of Java and Python390

Java and Python are both popular programming391

languages, each with its unique features and char-392

acteristics that influence code structures and de-393

velopment practices. One key difference between394

Java and Python is the syntax typing. Java needs to395

declare variables with their data types beforehand,396

but Python variables can be assigned without ex-397

plicit type declarations. Also, Python has explicit398

expressions such as list comprehensions that give399

easy access to elements in the code. This makes the400

Java code more verbose while Python code tends401

to be more concise and readable to humans. On the402

other hand, this difference seems to make it harder403

for models to understand the underlying structure404

of the code and predict the time complexity of the405

code. Since Python gives more freedom in writ-406

ing code it makes a diverse range of coding styles.407

Also, users can easily compress or decompress their408

solution giving the models a harder time getting409

the right features from the codes.410

5.2 Effect of Code Length411

Intuitively, it is natural to assume that the shorter412

the code is, the easier it is to predict the complexity.413

To confirm our assumption, we categorize codes414

into four groups according to the number of tokens415

of the codes. If a code has less than or equal to416

128 tokens, then the code falls into the first group417

(G1). If a code has more than 128 tokens and less418

than or equal to 256 tokens, then it falls into the419

second group (G2). The third group (G3) has codes420

with more than 256 tokens and less than or equal to421

512 tokens. Lastly, group G4 has the longest codes,422

where each code has more than 512 tokens.423

Figure 3 shows the experimental results on the424

four groups. It is easy to see that the experimental425

G1 G2 G3 G4
Code Length Group

20

40

60

80

Ac
cu

ra
cy

DecisionTree(java)
DecisionTree(python)
RandomForest(java)
RandomForest(python)
SVM(java)
SVM(python)

CodeBERT(java)
CodeBERT(python)
GraphCodeBERT(java)
GraphCodeBERT(python)
CodeT5(java)
CodeT5(python)

CodeT5+(java)
CodeT5+(python)
PLBART(java)
PLBART(python)
UniXcoder(java)
UniXcoder(python)

Figure 3: Classification performance of models for dif-
ferent length groups of codes.

results confirm our assumption as the performance 426

gets worse as the code becomes longer. 427

5.3 Performance Per Complexity Class 428

As we can see in Tables 3 and 8, models predict 429

the constant class most accurately. Linear time 430

complexities are also relatively accurate since there 431

are direct correlation between the input size and 432

the number of iterations. However, models still 433

face challenges in predicting the complexity of self- 434

referential algorithms and control flows that are not 435

in the main part of the algorithm, such as predicting 436

the O(n log n) class and O(n2) class. Many codes 437

in these classes have dedicated function definitions 438

or control variables that decide the exit condition 439

for the loop. This is well seen in the confusion 440

matrix in Figure 4, where we can see many wrong 441

predictions are between classes O(n), O(n log n), 442

and O(n2). 443

5.4 Effect of Dead Code Elimination 444

Table 4 shows the effect of dead code elimination 445

on prediction performance. Given the nature of 446

codes submitted to competitive programming plat- 447

forms, there are a lot of redundant variables, meth- 448

ods and even classes in the codes. Due to Java’s 449

complicated IO functions and limited built-in data 450

structures, there are many codes related to the im- 451

plementation of IO and data structures. Removing 452

such fragments helps the models concentrate on 453

the program structure and results in enhanced pre- 454

diction accuracy. On the other hand, it appears that 455

the dead code elimination does not help improve 456

the performance on Python as the Python codes are 457

already more concise than the Java codes due to its 458

own language design principle. 459

6

Table 3: Complexity prediction accuracy of classification methods for each complexity class on Java.

Method O(1) O(lnn) O(n) O(n lnn) O(n2) O(n3) NP-hard Micro Macro

Decision Tree 64.4 55.9 15.2 65.2 68.8 32.9 34.4 48.6 48.1
Random Forest 66.2 57.7 28.2 68.6 60.2 36.0 62.6 43.9 54.2
SVM 49.7 40.0 65.1 42.7 74.6 23.5 18.0 28.1 44.8

CodeBERT 86.1 60.9 68.1 18.8 33.6 73.1 84.8 60.5 59.4
GraphCodeBERT 88.7 53.5 51.9 28.9 38.8 78.1 85.5 60.4 60.0
UniXCoder 83.1 54.8 54.1 15.9 33.9 76.9 88.1 57.7 56.6

PLBART 86.6 52.7 61.9 34.8 36.4 76.2 88.1 52.1 61.9
CodeT5 81.8 43.7 69.4 40.7 33.9 72.0 85.6 60.7 60.3
CodeT5+ 90.7 50.8 64.2 14.1 27.0 74.9 86.8 58.0 56.1

ChatGPT 3.55 54.0 55.8 74.1 28.0 67.7 79.8 0.0 43.6 35.6
ChatGPT 4.06 64.2 43.4 70.9 72.8 56.2 67.2 0.1 54.8 45.7
Gemini Pro7 33.2 15.4 59.4 7.1 72.4 8.1 0.0 30.1 21.4

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

606 84 28 8 9 6 0

114 482 39 7 9 18 26

52 49 338 162 130 38 5

13 18 80 500 53 16 14

5 16 204 160 309 53 12

19 11 94 34 163 202 73

4 21 0 9 9 43 513
0

100

200

300

400

500

600

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

545 52 106 13 26 26 23

206 298 78 5 14 16 52

84 27 402 160 98 42 40

28 10 204 412 72 38 32

28 3 132 95 272 106 21

29 2 57 59 143 264 52

60 47 56 32 62 69 202
100

200

300

400

500

Figure 4: Confusion matrices of prediction results by CodeT5 on Java (left) and Python (right) datasets.

Table 4: Performance comparison before and after dead
code processing.

Model After Before
Ja Py Ja Py

Decision Tree 48.6 38.8 47.6 21.1
Random Forest 43.9 40.8 43.2 23.0
SVM 28.1 23.6 27.1 21.5

CodeBERT 60.5 51.2 59.7 52.0
GraphCodeBERT 60.4 58.1 57.8 60.2
UniXcoder 57.7 55.0 57.2 55.3
PLBART 62.1 54.0 61.2 55.4
CodeT5 60.7 48.9 60.2 49.8
CodeT5+ 58.0 49.8 57.4 50.0
ChatGPT 3.5 43.6 41.8 43.3 43.1
ChatGPT 4.0 54.8 51.7 55.4 51.5
Gemini Pro 30.1 35.1 31.2 33.5

5.5 Experiments with Closed-Source LLMs460

We use two well-known closed-source LLMs,461

OpenAI’s ChatGPT (in version 3.5 and 4.0) and462

Google’s Gemini-Pro, to predict the time complex-463

ity of the codes. The prompt used for ChatGPT464

experiments is given in Figure 5 and the prompt465

for Gemini is provided in Appendix due to space466

restriction. To summarize the experimental results467

with LLMs, both models do not perform well on 468

the complexity prediction task as shown in Table 3. 469

In particular, they completely fail to predict NP- 470

hard class. We assume that it is because there is not 471

much available source on the Internet for learning 472

to predict the NP-hardness of a given code. 473

ChatGPT prompt example

You are a world expert in investigating properties
of a code that influences the time complexity.
The given code: "[code]"
Print "ONLY the time complexity in ONE
WORD" of the given code in the answer from
np, logn, quadratic, constant, cubic, linear and
nlogn, do not print any other words in a json
format.

Figure 5: LLM prompt examples used in our experi-
ments with ChatGPT.

5.6 Qualitative Error Analysis 474

After investigating the common errors from exten- 475

sive experiments with many baseline models, we 476

7

find that the following problems are the root causes477

of most of error cases.478

Unused Boilerplate Code Patterns Codes can479

include parts of codes that are irrelevant to the op-480

eration of the code. This can be because of coding481

habits or template codes for handy development.482

There are cases where the writer puts in ascii art483

in the comments. These methods add to the over-484

all recognition load of understanding the codebase485

and can obscure the true flow of execution. Codes486

that include unused methods introduce noise, mak-487

ing it harder for models to recognize the structure488

of the code. Tabel 4 shows that there is some in-489

crease in performance when the testing dataset is490

preprocessed.491

Logarithmic Loops The most common error are492

from the logarithmic complexity class. Loops with493

logarithmic sizes, such as those found in binary494

search algorithms, can significantly affect the pre-495

diction of a code’s time complexity. These loops496

has similar structures as normal linear loops, but497

inside the loop they have additional variables or498

conditions that control the algorithm’s flow. Un-499

like linear loops, this needs a thorough analysis500

of all contributing factors, ensuring a comprehen-501

sive understanding of the algorithm’s performance502

characteristics. It seems like deep learning models503

yet lack the power of determining the contributing504

factors and figure out its meaning and impact.505

Too Much Conciseness of Python Despite the506

famous zen of Python8, it offers various ways to507

implement a loop such as classical for or while508

loop, list comprehension, and even lambda func-509

tion. While the usage of list comprehension and510

lambda function makes Python codes much more511

concise and leads to statistics as in Figure 2, it also512

makes the complexity prediction task more chal-513

lenging. The tendency is clearly seen especially514

when compared to Java in Table 2.515

5.7 Does Problem Description Help?516

A critical aspect in accurately determining the517

worst-case time complexity of a given code is the518

comprehensive understanding of the problem spec-519

ifications. In certain instances, these specifications520

may indicate that some inputs are constant, signif-521

icantly influencing the complexity analysis. The522

absence of a full and detailed specification can lead523

8There should be one—and preferably only one—obvious
way to do it.

to an incomplete or incorrect assessment of the 524

worst-case time complexity. Table 5 shows that 525

problem descriptions actually help LLMs perform 526

better as ChatGPT 4.0 is known to have real-time 527

access to the information on the web. Note that 528

the performance becomes worse for ChatGPT 3.5 529

when problem IDs are provided, as ChatGPT 3.5 530

does not utilize the problem descriptions, only from 531

problem IDs. 532

Table 5: Complexity prediction performances of LLMs
with and without a problem description in the prompt
by the help of information retrieval.

Model w/o Desc. with Desc.
Ja Py Ja Py

ChatGPT 3.5 43.38 43.14 42.51 36.55
ChatGPT 4.0 55.42 51.57 57.61 54.28

6 Conclusions 533

We have presented CodeComplex, the first large- 534

scale bilingual benchmark dataset for predicting the 535

worst-case time complexity of programs. We have 536

demonstrated the experimental results of several 537

classical machine learning algorithms, pre-trained 538

programming language models, and closed-source 539

LLMs for benchmarking the complexity prediction 540

performance. The results show that while the cur- 541

rent state-of-the-art techniques provide promising 542

baselines, there is still a long way to go to achieve 543

a reliable performance for practical use cases. 544

7 Limitations 545

There are the following limitations we noticed from 546

our analysis that follow-up research contributions 547

should resolve. First, problem descriptions should 548

be provided as part of the input for the complete- 549

ness of the specification. As shown in examples 550

in Section 3.1, it is necessary to consider prob- 551

lem specification to determine the intended time 552

complexity of the problem, which will apply to 553

most of the solution codes for the problem. Sec- 554

ond, we need to deal with the unintended biases 555

towards problem-specific information rather than 556

implementation details learned due to the charac- 557

teristics of our dataset. We expect that the code 558

data augmentation that changes an original com- 559

plexity to an intended complexity would be helpful 560

to increase the diversity of complexities within the 561

pool of solution codes for a single problem and 562

help reduce unintended biases. 563

8

References564

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and565
Kai-Wei Chang. 2021. Unified pre-training for pro-566
gram understanding and generation. In Proceedings567
of the 2021 Conference of the North American Chap-568
ter of the Association for Computational Linguistics:569
Human Language Technologies, pages 2655–2668.570

Jon Louis Bentley, Dorothea Haken, and James B. Saxe.571
1980. A general method for solving divide-and-572
conquer recurrences. SIGACT News, 12(3):36–44.573

Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009.574
WISE: automated test generation for worst-case com-575
plexity. In 31st International Conference on Software576
Engineering, ICSE 2009, May 16-24, 2009, Vancou-577
ver, Canada, Proceedings, pages 463–473. IEEE.578

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-579
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,580
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-581
bert: A pre-trained model for programming and nat-582
ural languages. In Findings of the Association for583
Computational Linguistics: EMNLP 2020, volume584
EMNLP 2020 of Findings of ACL, pages 1536–1547.585
Association for Computational Linguistics.586

Google. 2024. Gemini. https://gemini.google.587
com/. Accessed: 2023.02.12.588

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming589
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-590
modal pre-training for code representation. In Pro-591
ceedings of the 60th Annual Meeting of the Associa-592
tion for Computational Linguistics (Volume 1: Long593
Papers), pages 7212–7225, Dublin, Ireland. Associa-594
tion for Computational Linguistics.595

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu596
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-597
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun598
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-599
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.600
Graphcodebert: Pre-training code representations601
with data flow. In 9th International Conference on602
Learning Representations, ICLR 2021, Virtual Event.603
OpenReview.net.604

Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and605
Saurabh Bagchi. 2019. Pyse: Automatic worst-case606
test generation by reinforcement learning. In 12th607
IEEE Conference on Software Testing, Validation and608
Verification, ICST 2019, Xi’an, China, April 22-27,609
2019, pages 136–147. IEEE.610

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-611
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-612
cles, James Keeling, Felix Gimeno, Agustin Dal613
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-614
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-615
Sen Huang, Johannes Welbl, Sven Gowal, Alexey616
Cherepanov, James Molloy, Daniel J. Mankowitz,617
Esme Sutherland Robson, Pushmeet Kohli, Nando618
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.619
2022. Competition-level code generation with alpha-620
code. CoRR, abs/2203.07814.621

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 622
Weight Decay Regularization. In 7th International 623
Conference on Learning Representations, ICLR. 624

T. McCabe. 1976. A complexity measure. IEEE Trans- 625
actions on Software Engineering, 2(04):308–320. 626

Kaushik Moudgalya, Ankit Ramakrishnan, Vamsikr- 627
ishna Chemudupati, and Xing Han Lu. 2023. Tasty: 628
A transformer based approach to space and time com- 629
plexity. 630

Yannic Noller, Rody Kersten, and Corina S. Pasareanu. 631
2018. Badger: complexity analysis with fuzzing 632
and symbolic execution. In Proceedings of the 27th 633
ACM SIGSOFT International Symposium on Soft- 634
ware Testing and Analysis, ISSTA 2018, Amsterdam, 635
The Netherlands, July 16-21, 2018, pages 322–332. 636
ACM. 637

OpenAI. 2024. ChatGPT. https://openai.com/ 638
chatgpt/. Accessed: 2024.02.12. 639

Julian Aron Aron Prenner and Romain Robbes. 2021. 640
Making the most of small software engineering 641
datasets with modern machine learning. IEEE Trans- 642
actions on Software Engineering, pages 5050–5067. 643

Charitha Saumya, Jinkyu Koo, Milind Kulkarni, and 644
Saurabh Bagchi. 2019. XSTRESSOR : Automatic 645
generation of large-scale worst-case test inputs by in- 646
ferring path conditions. In 12th IEEE Conference on 647
Software Testing, Validation and Verification, ICST 648
2019, Xi’an, China, April 22-27, 2019, pages 1–12. 649
IEEE. 650

Jagriti Sikka, Kushal Satya, Yaman Kumar, Shagun Up- 651
pal, Rajiv Ratn Shah, and Roger Zimmermann. 2020. 652
Learning based methods for code runtime complexity 653
prediction. In Advances in Information Retrieval - 654
42nd European Conference on IR Research, ECIR 655
2020, Proceedings, Part I, volume 12035 of Lecture 656
Notes in Computer Science, pages 313–325. Springer. 657

Alan M. Turing. 1936. On computable numbers, with an 658
application to the Entscheidungsproblem. Proceed- 659
ings of the London Mathematical Society, 2(42):230– 660
265. 661

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi 662
D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 2023. 663
Codet5+: Open code large language models for code 664
understanding and generation. 665

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil 666
Dillig. 2018. Singularity: pattern fuzzing for worst 667
case complexity. In Proceedings of the 2018 ACM 668
Joint Meeting on European Software Engineering 669
Conference and Symposium on the Foundations of 670
Software Engineering, ESEC/SIGSOFT FSE 2018, 671
Lake Buena Vista, FL, USA, November 04-09, 2018, 672
pages 213–223. ACM. 673

9

https://doi.org/10.1109/ICSE.2009.5070545
https://doi.org/10.1109/ICSE.2009.5070545
https://doi.org/10.1109/ICSE.2009.5070545
https://gemini.google.com/
https://gemini.google.com/
https://gemini.google.com/
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1109/ICST.2019.00023
https://doi.org/10.1109/ICST.2019.00023
https://doi.org/10.1109/ICST.2019.00023
http://arxiv.org/abs/2305.05379
http://arxiv.org/abs/2305.05379
http://arxiv.org/abs/2305.05379
http://arxiv.org/abs/2305.05379
http://arxiv.org/abs/2305.05379
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3213846.3213868
https://openai.com/chatgpt/
https://openai.com/chatgpt/
https://openai.com/chatgpt/
https://doi.org/10.1109/ICST.2019.00011
https://doi.org/10.1109/ICST.2019.00011
https://doi.org/10.1109/ICST.2019.00011
https://doi.org/10.1109/ICST.2019.00011
https://doi.org/10.1109/ICST.2019.00011
http://arxiv.org/abs/2305.07922
http://arxiv.org/abs/2305.07922
http://arxiv.org/abs/2305.07922
https://doi.org/10.1145/3236024.3236039
https://doi.org/10.1145/3236024.3236039
https://doi.org/10.1145/3236024.3236039

Shafiq Joty Yue Wang, Weishi Wang and Steven C.H.674
Hoi. 2021. CodeT5: Identifier-aware unified pre-675
trained encoder-decoder models for code understand-676
ing and generation. In Proceedings of the 2021 Con-677
ference on Empirical Methods in Natural Language678
Processing, EMNLP 2021, pages 8696–8708.679

10

A Overview on CodeComplex Dataset 680

Our dataset construction process owes much to the recently released dataset called the CodeContests9, 681

a competitive programming dataset for machine learning by DeepMind. We constructed a dataset with 682

the codes from the CodeContests dataset that are again sourced from the coding competition platform 683

Codeforces. Our dataset contains 4,120 codes in seven complexity classes, where there are new 500 Java 684

source codes annotated with each complexity class. The seven complexity classes are constant (O(1)), 685

linear (O(n)), quadratic (O(n2)), cubic (O(n3)), O(lnn), O(n lnn), and NP-hard. We also re-use 317 686

Java codes from CoRCoD as we confirmed that they also belong to the CodeContests dataset as the other 687

3803 codes during the dataset creation process. 688

For constructing the dataset, we asked twelve human annotators who have more than five years of 689

programming experience and algorithmic expertise to inspect the codes manually and classify them into 690

one of the seven complexity classes. Once each human annotator reported the initial result, we collected 691

the annotation results and inspected them once again by assigning the initial result to two different 692

annotators other than the initial annotator. Finally, we have collected 3803 complexity annotated codes in 693

which there are 500 codes for each complexity class. 694

First, we selected several problems that are expected to belong to one of the considered complexity 695

classes and submitted codes for the problems from Codeforces. The submitted codes contain both correct 696

and incorrect solutions, and they are implemented in various programming languages such as C, C++, 697

Java, and Python. We sorted out only the correct Java codes for our dataset construction. 698

In the second step, before delving into the time complexity of problems, we divide the problems by 699

the problem-solving strategy such as sorting, DP (dynamic programming), divide-and-conquer, DFS 700

(depth-first search), BFS (breadth-first search), A*, and so on. This is because it is helpful to know the 701

type of problem-solving strategy used to solve the problem for human annotators to analyze the time 702

complexity, and problems solved by the same strategy tend to have similar time complexity. 703

Third, we uniformly assign problems and correct codes for the problems to human annotators and let 704

them carefully examine the problem-code pairs to label the time complexity of the codes. Notice that there 705

can be solutions with different time complexities for a problem depending on how to actually implement 706

the solutions. We, therefore, provide a specific guideline that contains instructions and precautions to 707

annotators so that human annotators can assign correct and consistent labels to the assigned codes. 708

After the initial annotation process, we collect the results and assign them to different annotators to 709

carefully cross-check the correctness of the initial annotation results. Primarily, we instruct the annotators 710

again to carefully verify the results in accordance with the precautions provided in the annotation guideline. 711

A.1 Further Details on CodeComplex Dataset Construction 712

We gathered 128,000,000 submissions of Codeforces, where 4,086,507 codes are implemented in Java 713

language. After discarding the incorrect codes (that do not pass all the test cases), there are 2,034,925 714

codes and 7,843 problems. Then the problems are split with their tags (e.g. sorting, dfs, greedy, etc) and 715

given to the annotators with the guidelines in Section A.2. We were able to gather around 500 problems 716

and 15,000 codes for the seven complexity classes. 717

As the complexity of codes for the same problem can vary depending on the implemented algorithms, 718

it is obvious that the codes we inspect also have various complexity classes. However, we only target 719

seven complexity classes that are the most frequently used complexity classes for algorithmic problems. 720

Accordingly, there were some codes we inspected which belong to other complexity classes such as 721

O(n5) or O(ln lnn). We inspected around 800 problems and found out that the complexity classes of 722

approximately 15 of the problems belong outside the chosen complexity classes. Although it is still 723

possible that one might implement codes with complexity class that falls into the seven complexity classes, 724

we simply rule out the problems from our dataset to ease the annotation process. 725

During this process, we found out that many codes are not optimal for the given problem and some 726

codes are too difficult to analyze due to their complex code structure. Moreover, there are many codes 727

with a number of methods that are never used, mainly because the codes come from a coding competition 728

9https://github.com/deepmind/code_contests

11

https://github.com/deepmind/code_contests

platform and participants prefer just to include the methods that are frequently used in problem-solving729

regardless of the actual usage of the methods.730

In the section below, we share the detailed guidelines provided to human annotators for a consistent731

and accurate annotation process.732

A.2 Guideline of Production733

Annotator Guideline

1. Check the variables that are described in the algorithm problems. Each algorithm implemen-
tation can have many variable instances and we only consider the variables that are given as
inputs from the problems for calculating the time complexity.

* For convenience, we use n and m in the guideline to denote the input variable and |n| and |m|
to denote the size of n and m.

2. Considering the input variable from the prior step, follow the below instructions for each input
type and calculate the time complexity.

(a) When only a number n is given as an input, calculate the time complexity proportional to
n. Do the same thing when there are two or more variables. For instance, when only n is
given as an input, the variable used to denote the time complexity of a code is n.

(b) When a number n and m numeric instances are given as inputs, calculate the time com-
plexity proportional to the one with higher complexity. For instance, when m = n2,
we compute the complexity of a code with m. If the implemented algorithm runs in
O(n2) = O(m), it belongs to the linear complexity class.

(c) If the input is given as constant values, the complexity of a given code also belongs to
the constant class. For instance, if an algorithm problem states that exactly 3 numeric
values are given as inputs, the solution code only uses the constant number of operations.
Therefore, the code belongs to the constant class.

3. Consider the case where the code utilizes the input constraints of the problem. When the input
is given by n ≤ a, the code can use the fixed value a in the problem instead of using n. Mark
these codes as unsuitable.

4. Consider the built-in library that the implemented algorithm is using (e.g. HashMap, sort, etc.)
to calculate the time complexity of an entire code. For instance, given n numeric instances as
inputs, when an implemented algorithm uses O(n) iterations of built-in sort algorithm for n
numeric instances, the time complexity for the algorithm is O(n2 lnn).

5. When the code has unreachable codes, only consider the reachable code.

6. Mark the item that does not belong to any of the 7 complexity classes.
734

A.3 Statistics of CodeComplex735

Table 6 shows basic statistics in numbers of our CodeComplex dataset.736

B Failure Cases737

The following example exhibits a failure example where our model predicts O(2n) for a code with O(lnn)738

complexity. We suspect that the primary reason is the usage of bitwise operators. When we filter the codes739

that use any bitwise operator at least once from our CodeComplex dataset, about 56 of the codes belong to740

the class O(2n), which implies NP-hardness. We find that many implementations for NP-hard problems741

rely on bitwise operators as they can efficiently manage the backtracking process by manipulating bit-level742

flags.743

12

Table 6: Statistics of codes from CodeComplex dataset. There are two values in each cell where the first value is
about the Java codes and the second value is about the Python codes.

Property O(1) O(n) O(n2) O(n3) O(lnn) O(n lnn) NP-hard Total
Ja Py Ja Py Ja Py Ja Py Ja Py Ja Py Ja Py Ja Py

#Problems 38 50 94 104 12 16 41 46 10 22 60 63 23 36 269 277
#Lines 31.7 19.7 60.9 29.3 72.7 36.6 82.3 48.3 66.0 22.2 59.4 30.7 85.6 43.6 64.5 31.9
#Functions 2.6 1.3 4.5 1.7 5.9 2.0 6.0 3.4 6.0 1.3 4.7 1.6 6.0 2.6 5.0 1.9
#Variables 5.3 9.7 12.2 15.5 15.2 18.6 19.4 24.3 11.2 12.3 11.6 16.0 19.4 24.5 13.2 16.7
DoC 5.7 1.5 10.2 2.5 12.2 3.4 13.6 4.2 9.4 2.3 8.5 2.6 14.2 3.5 10.4 2.8
DoI 0.6 0.5 2.7 1.0 4.0 1.0 5.5 1.0 1.8 0.8 2.4 0.9 5.6 0.9 3.1 0.9

public class mad {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
int cura = 0, curb = 0;
int ver;
System.out.println("? 0 0");
System.out.flush();
ver = sc.nextInt();
for (int i = 29; i >= 0; i--) {

System.out.println("? " + (cura + (1 << i)) + " " + curb);
System.out.flush();
int temp1 = sc.nextInt();
System.out.println("? " + cura + " " + (curb + (1 << i)));
System.out.flush();
int temp2 = sc.nextInt();
if (temp1 != temp2) {

if (temp2 == 1) {
cura += (1 << i);
curb += (1 << i);

}
} else {

if (ver == 1) cura += (1 << i);
if (ver == -1) curb += (1 << i);
ver = temp1;

}
}
System.out.println("! " + cura + " " + curb);

}
}

744

The following example demonstrates the case when our model predicts constant time complexity O(1) 745

for a code that runs in O(n) time. We suspect that our model may have ignored the existence of the check 746

method which actually determines the O(n) time complexity or considered the argument of check as 747

constant. 748

public class abc {
public static int check(StringBuilder s) {

int countRemove = 0;
if (!s.toString().contains("xxx")) return countRemove;
else {

for (int i = 1; i < s.length() - 1; i++) {
if (s.charAt(i - 1) == 'x' && s.charAt(i) == 'x' && s.charAt(i + 1) == 'x') {

countRemove++;
}

}
return countRemove;

}
}

749

13

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
String s = sc.next();
StringBuilder sb = new StringBuilder("");
sb.append(s);
System.out.println(check(sb));

}
}

750

The following is the case where our model predicts the quadratic time complexity O(n2) when the751

ground-truth label is O(n lnn). We guess that our model simply translates the nested for loops into the752

quadratic time complexity. However, the outer loop is to repeat each test case and therefore should be753

ignored. Then, the O(n lnn) complexity can be determined by the sort function used right before the754

nested loops.755

public class round111A {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] coins = new int[n];
for (int i = 0; i < n; ++i) coins[i] = sc.nextInt();
Arrays.sort(coins);
int ans = (int) 1e9;
for (int i = 1; i <= n; ++i) {

int sum1 = 0;
int c = 0;
int j = n - 1;
for (j = n - 1; j >= 0 && c < i; --j, ++c) {

sum1 += coins[j];
}
int sum2 = 0;
for (int k = 0; k <= j; ++k) sum2 += coins[k];
if (sum1 > sum2) {

System.out.println(i);
return;

}
}

}
}

756

The following is the case when our model is confused exponential complexity O(2n) with quadratic757

complexity O(n2). The code actually runs in exponential time in the worst-case but our model simply758

returns quadratic time complexity as it does not take into account the recursive nature of the method759

solve.760

public class D {
static int n, KA, A;
static int[] b;
static int[] l;
static double ans = 0;

public static void main(String[] args) throws IOException {
Scanner in = new Scanner(System.in);
n = in.nextInt();
KA = in.nextInt();
A = in.nextInt();
b = new int[n];
l = new int[n];
for (int i = 0; i < l.length; i++) {

b[i] = in.nextInt();
l[i] = in.nextInt();

}
dp = new double[n + 2][n + 2][n * 9999 + 2];

761

14

go(0, KA);
System.out.printf("%.6f\n", ans);

}

public static void go(int at, int k) {
if (at == n) {

ans = Math.max(ans, solve(0, 0, 0));
return;

}
for (int i = 0; i <= k; i++) {

if (l[at] + i * 10 <= 100) {
l[at] += i * 10;
go(at + 1, k - i);
l[at] -= i * 10;

}
}

}

static double dp[][][];

public static double solve(int at, int ok, int B) {
if (at == n) {

if (ok > n / 2) {
return 1;

} else {
return (A * 1.0) / (A * 1.0 + B);

}
}
double ret = ((l[at]) / 100.0) * solve(at + 1, ok + 1, B) + (1.0 - ((l[at]) / 100.0)) *

solve(at + 1, ok, B + b[at]);↪→
return ret;

}

}

762

The following is the case when our model predicts O(lnn) for a code with O(n2) complexity. It is 763

easily seen that the inversions function determines the quadratic time complexity by the nested for 764

loops. We suspect that somehow our model does not take into account the inversions function in the 765

complexity prediction and instead focuses on the modulo () operator to draw the wrong conclusion that 766

the complexity is in O(lnn). 767

public class maestro {
public static long inversions(long[] arr) {

long x = 0;
int n = arr.length;
for (int i = n - 2; i >= 0; i--) {

for (int j = i + 1; j < n; j++) {
if (arr[i] > arr[j]) {

x++;
}

}
}
return x;

}

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; i++) arr[i] = sc.nextLong();
long m = sc.nextLong();
long x = inversions(arr) % 2;
for (int i = 0; i < m; i++) {

int l = sc.nextInt() - 1;
int r = sc.nextInt() - 1;
if ((r - l + 1) % 4 > 1) x = (x + 1) % 2;

768

15

if (x == 1) System.out.println("odd");
else System.out.println("even");

}
}

}

769

C Further Details on Dead Code Elimination770

In a broad sense, the dead code includes redundant code, unreachable code, oxbow code, and so on. We771

only focus on eliminating unreachable codes, mainly methods and classes that are declared but used772

nowhere in the code. In order to find such dead codes, we first parse a Java code into an AST and773

discover methods and classes that do not exist in any method call, class declaration, and arguments of774

methods. Once we discover such unused methods and classes, we remove the codes corresponding to the775

declarations of these methods and classes.776

The following codes are a running example of the dead code elimination process. From the first code,777

we can obtain the second code by applying the dead code elimination. It is readily seen that the number778

of lines decreases from 211 to 101 by the elimination process. In fact, our model predicts O(lnn) and779

O(1) for the complexity of the code before and after dead code elimination, respectively, while the actual780

complexity of the code is O(1).781

public class Main {
static long mod = ((long) 1e9) + 7;

public static int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a % b);

}

public static long pow_mod(long x, long y) {
long res = 1;
x = x % mod;
while (y > 0) {

if ((y & 1) == 1) res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;

}
return res;

}

public static int lower_bound(int[] arr, int val) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {

int mid = lo + ((hi - lo + 1) / 2);
if (arr[mid] == val) {

return mid;
} else if (arr[mid] > val) {

hi = mid - 1;
} else lo = mid;

}
if (arr[lo] <= val) return lo;
else return -1;

}

public static int upper_bound(int[] arr, int val) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {

int mid = lo + ((hi - lo) / 2);
if (arr[mid] == val) {

return mid;
} else if (arr[mid] > val) {

hi = mid;

782

16

;
} else lo = mid + 1;

}
if (arr[lo] >= val) return lo;
else return -1;

}

public static void main(String[] args) throws java.lang.Exception {
Reader sn = new Reader();
Print p = new Print();
int n = sn.nextInt();
while ((n--) > 0) {

int a = sn.nextInt();
int b = sn.nextInt();
int small = Math.min(a, b);
int large = Math.max(a, b);
long steps = 0;
while (small != 0) {

steps += (long) (large / small);
int large1 = small;
small = large % small;
large = large1;

}
p.printLine(Long.toString(steps));

}
p.close();

}
}

class Pair implements Comparable<Pair> {
int val;
int in;

Pair(int a, int b) {
val = a;
in = b;

}

@Override
public int compareTo(Pair o) {

if (val == o.val) return Integer.compare(in, o.in);
else return Integer.compare(val, o.val);

}
}

class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;

public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;

}

public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;

}

public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;

}

public String readLine() throws IOException {

783

17

byte[] buf = new byte[64];
int cnt = 0, c;
while ((c = read()) != -1) {

if (c == '\n') break;
buf[cnt++] = (byte) c;

}
return new String(buf, 0, cnt);

}

public String readWord() throws IOException {
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {

res.appendCodePoint(c);
c = read();

} while (!isSpaceChar(c));
return res.toString();

}

public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {

ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;

}

public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {

ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;

}

public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {

ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {

while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);

}
}
if (neg) return -ret;
return ret;

}

private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;

}

784

18

private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];

}

public void close() throws IOException {
if (din == null) return;
din.close();

}
}

class Print {
private final BufferedWriter bw;

public Print() {
bw = new BufferedWriter(new OutputStreamWriter(System.out));

}

public void print(String str) throws IOException {
bw.append(str);

}

public void printLine(String str) throws IOException {
print(str);
bw.append("\n");

}

public void close() throws IOException {
bw.close();

}
}

785

Code after Dead Code Elimination: 786

static long mod = ((long) 1e9 + 7);

public static int gcd(int a, int b) {
if ((b == 0)) return a;
else return gcd(b, (a % b));

}

public static void main(String[] args) throws java.lang.Exception {
Reader sn = new Reader();
Print p = new Print();
int n = sn.nextInt();
while ((n > 0)) {

int a = sn.nextInt();
int b = sn.nextInt();
int small = Math.min(a, b);
int large = Math.max(a, b);
long steps = 0;
while ((small != 0)) {

steps += (long) (large / small);
int large1 = small;
small = (large % small);
large = large1;

}
p.printLine(Long.toString(steps));

}
p.close();

}
}

class Reader {
final private int BUFFER_SIZE = (1 << 16);
private DataInputStream din;
private byte[] buffer;

787

19

private int bufferPointer, bytesRead;

public boolean isSpaceChar(int c) {
return (((((c == ' ') || (c == '\n')) || (c == '\r')) || (c == '\t')) || (c == -1));

}

public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;

}

public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;

}

public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while ((c <= ' ')) c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {

ret = (((ret * 10) + c) - '0');
} while ((((c = read()) >= '0') && (c <= '9')));
if (neg) return -ret;
return ret;

}

private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if ((bytesRead == -1)) buffer[0] = -1;

}

private byte read() throws IOException {
if ((bufferPointer == bytesRead)) fillBuffer();
return buffer[bufferPointer++];

}

public void close() throws IOException {
if ((din == null)) return;
din.close();

}
}

class Print {
final private BufferedWriter bw;

public Print() {
bw = new BufferedWriter(new OutputStreamWriter(System.out));

}

public void print(String str) throws IOException {
bw.append(str);

}

public void printLine(String str) throws IOException {
print(str);
bw.append("\n");

}

public void close() throws IOException {
bw.close();

}
}

788

20

D Full Experimental Results 789

Method G1 G2 G3 G4 G1 G2 G3 G4
Java Python

Decision Tree 57.2 45.6 40.0 38.2 57.2 45.6 40.0 38.2
Random Forest 62.3 46.8 40.6 26.4 62.3 46.8 40.6 26.4
SVM 48.9 18.1 18.1 16.6 48.9 18.1 18.1 16.6

CodeBERT 72.4 62.8 60.7 48.0 56.9 46.9 37.5 22.8
GraphCodeBERT 74.6 61.7 49.8 39.4 60.3 57.8 44.1 30.8
UniXCoder 58.6 54.4 43.2 31.2 58.6 54.4 43.2 31.2

PLBART 74.3 65.1 62.5 52.8 60.6 49.4 39.9 23.2
CodeT5 69.5 56.5 52.4 42.4 53.6 48.1 36.5 19.5
CodeT5+ 72.8 63.5 53.0 44.4 56.4 42.4 30.7 29.8

Table 7: Prediction performance on different code length groups.

E Confusion Matrices for PLM Models 790

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

638 68 21 8 2 4 0

154 473 38 4 2 11 13

50 57 471 97 53 45 1

13 28 86 507 25 26 9

4 28 284 153 143 140 7

9 35 120 51 168 200 13

6 23 3 6 10 43 508
0

100

200

300

400

500

600

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

538 50 137 16 28 14 8

252 212 162 1 12 8 22

58 21 564 87 90 22 11

21 7 153 508 69 25 13

27 0 191 59 308 53 19

18 0 49 86 171 246 36

77 6 106 36 109 59 135
0

100

200

300

400

500

Figure 6: Confusion matrices of prediction results by CodeBERT on Java (left) and Python (right) datasets.

F Classification Results on Python Codes 791

G LLM Prompt for Gemini 792

21

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l
657 43 21 12 2 6 0

199 361 64 6 6 13 46

61 33 414 147 99 20 0

13 16 74 542 31 11 7

4 18 319 164 219 31 4

7 4 150 75 111 231 18

7 15 6 9 16 34 512
0

100

200

300

400

500

600

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

542 103 80 17 31 12 6

106 414 70 0 19 14 46

75 40 485 109 104 19 21

16 16 119 542 58 29 16

22 12 132 67 338 73 13

3 9 32 80 114 344 24

58 42 93 39 58 54 184
0

100

200

300

400

500

Figure 7: Confusion matrices of prediction results by GraphCodeBERT on Java (left) and Python (right) datasets.

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

616 80 25 9 6 5 0

221 376 61 1 4 5 27

64 44 424 112 105 24 1

10 16 82 534 20 19 13

18 10 339 192 121 73 6

9 19 171 62 104 202 29

4 15 3 8 9 32 528
0

100

200

300

400

500

600

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

498 95 123 25 33 17 0

194 346 67 2 6 12 42

54 44 510 81 115 29 20

10 25 140 508 61 27 25

12 9 157 61 331 65 22

5 3 34 101 133 309 21

31 41 102 27 59 73 195
0

100

200

300

400

500

Figure 8: Confusion matrices of prediction results by UniXcoder on Java (left) and Python (right) datasets.

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

606 84 28 8 9 6 0

114 482 39 7 9 18 26

52 49 338 162 130 38 5

13 18 80 500 53 16 14

5 16 204 160 309 53 12

19 11 94 34 163 202 73

4 21 0 9 9 43 513
0

100

200

300

400

500

600

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

545 52 106 13 26 26 23

206 298 78 5 14 16 52

84 27 402 160 98 42 40

28 10 204 412 72 38 32

28 3 132 95 272 106 21

29 2 57 59 143 264 52

60 47 56 32 62 69 202
100

200

300

400

500

Figure 9: Confusion matrices of prediction results by CodeT5 on Java (left) and Python (right) datasets.

22

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

672 31 23 7 6 2 0

168 446 35 16 6 8 16

78 47 393 149 77 20 10

18 20 89 520 30 12 5

25 24 337 216 107 38 12

8 9 154 43 125 161 96

5 5 16 10 6 37 520
0

100

200

300

400

500

600

c log n n nlog n n2 n3 NP-h
Predicted label

c

log n

n

nlog n

n2

n3

NP-h

Tr
ue

 la
be

l

521 121 108 17 10 9 5

182 394 65 5 6 4 13

84 61 468 133 76 15 16

26 15 181 528 27 6 13

47 15 264 113 154 46 18

38 20 106 97 62 244 39

45 108 93 60 43 49 130
100

200

300

400

500

Figure 10: Confusion matrices of prediction results by CodeT5+ on Java (left) and Python (right) datasets.

Table 8: Complexity prediction accuracy of classification methods for each complexity class on Python.

Method O(1) O(lnn) O(n) O(n lnn) O(n2) O(n3) NP-hard Micro Macro

Decision Tree 45.0 39.8 37.0 62.4 42.1 65.8 6.6 38.8 42.7
Random Forest 52.9 53.4 44.8 63.4 42.0 69.4 18.5 40.8 49.2
SVM 43.1 25.3 78.6 52.1 14.0 20.7 13.7 23.6 35.4

CodeBERT 68.0 66.1 31.7 46.9 40.6 63.8 25.6 51.2 49.2
GraphCodeBERT 68.5 56.9 61.9 51.4 56.8 68.1 34.8 58.1 57.3
UniXCoder 63.0 59.8 51.7 50.4 51.0 63.8 36.9 55.0 54.4

PLBART 72.1 62.3 51.9 46.3 48.5 59.3 24.2 54.0 52.4
CodeT5 68.9 47.1 44.5 41.4 43.6 51.8 38.3 48.9 48.4
CodeT5+ 65.9 54.9 58.9 23.4 40.3 66.3 24.6 49.8 47.7

ChatGPT 3.5 44.4 46.4 83.0 12.3 60.6 29.8 0.0 41.8 35.6
ChatGPT 4.0 54.7 33.0 80.0 39.6 61.4 78.3 0.0 51.7 41.9
Gemini Pro 35.9 19.5 72.0 8.4 61.3 23.2 1.5 35.1 28.5

Gemini prompt example

You are the best programmer in the world.
The given code: "[code]"
Print "ONLY the time complexity in ONE WORD" of the given code in the answer from np, logn,
quadratic, constant, cubic, linear and nlogn, do not print any other words in a json format.

Figure 11: LLM prompt examples used in our experiments with Gemini.

23

	Introduction
	Related Work
	The CodeComplex Dataset
	Data Collection
	Data Preprocessing
	Annotation Process
	Dataset Analysis

	Experiments
	Experimental Settings
	Results

	Analysis & Discussion
	Comparison of Java and Python
	Effect of Code Length
	Performance Per Complexity Class
	Effect of Dead Code Elimination
	Experiments with Closed-Source LLMs
	Qualitative Error Analysis
	Does Problem Description Help?

	Conclusions
	Limitations
	Overview on CodeComplex Dataset
	Further Details on CodeComplex Dataset Construction
	Guideline of Production
	Statistics of CodeComplex

	Failure Cases
	Further Details on Dead Code Elimination
	Full Experimental Results
	Confusion Matrices for PLM Models
	Classification Results on Python Codes
	LLM Prompt for Gemini

