
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFINESTAT: EFFICIENT EXPLORATION FOR PROBA-
BILISTIC PROGRAM SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Probabilistic programming offers a powerful framework for modeling uncertainty,
yet statistical model discovery in this domain entails navigating an immense search
space under strict domain-specific constraints. When small language models are
tasked with generating probabilistic programs, they frequently produce outputs that
suffer from both syntactic, and semantic errors, such as flawed inference constructs.
Motivated by probabilistic programmers’ domain expertise and debugging strate-
gies, we introduce REFINESTAT, a language model–driven framework that enforces
semantic constraints ensuring synthesized programs contain valid distributions,
well-formed parameters, and then applies diagnostic-aware refinement by resam-
pling prior or likelihood components whenever reliability checks fail. We evaluate
REFINESTAT on multiple probabilistic-programming code-generation tasks using
smaller language models (SLMs) and find that it produces programs that are both
syntactically sound and statistically reliable, often matching or surpassing those
from closed-source large language models (e.g., OpenAI o3).

1 INTRODUCTION

Scientific discovery often requires expressing complex systems as statistical models. Finding appro-
priate models that are both interpretable and computationally efficient is challenging. The vision of
automating model discovery has a long-standing history. Past approaches have demonstrated success
across various domains, such as identifying physical laws (Bongard & Lipson, 2007; McKinney
et al., 2006; Linka et al., 2023), recovering the structure of nonlinear dynamical systems (Schmidt &
Lipson, 2009), performing structure-aware nonparametric regression (Duvenaud et al., 2013), and
tackling unsupervised learning problems (Grosse, 2014). However, they typically relied on significant
manual effort – experts were required to define a domain-specific language (DSL) for representing
models and engineer custom search algorithms for exploring compositions within that DSL.

Large Language Models (LLMs) have the potential to automate the model discovery by leveraging
their extensive knowledge across various domains, enabling them to propose modeling approaches
that were traditionally developed by human experts. However, using LLMs comes with significant
challenges. Directly querying LLMs to generate statistical models often produces semantically
flawed and unreliable programs, particularly in probabilistic programming languages like PyMC and
NumPyro that evolve rapidly. These bugs hinder the correct execution of programs and constrain the
effective exploration of the search space of working solutions. Further, running LLMs is costly, as
expressive models (e.g., GPT-4) incur high API fees.

These limitations motivate Small Language Models (SLMs) as a practical alternative. Despite recent
gains on coding tasks, they still produce semantic bugs code that runs but violates the intended
statistical meaning. For example, in PyMC (Salvatier et al., 2016), an SLM can generate code that
places variance where a standard deviation is expected – pm.Normal(..., sigma=sigma**2)
instead of pm.Normal(..., sigma=sigma). This change encodes the wrong statistical model,
often inflating uncertainty and even triggering errors such as SamplingError. In addition, SLMs
may produce other semantic mistakes, such as using an invalid argument name sd in place of sigma,
which raises a TypeError at model construction time. These cases illustrate the need for our
constraints and Bayesian-workflow checks (Gelman et al., 2020) to ensure correctness.

Our Work: REFINESTAT We present REFINESTAT, a novel probabilistic programming synthesis
framework that efficiently guides a language model to generate probabilistic programs. REFINESTAT

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is the first to demonstrate that open-weight SLMs can synthesize reliable probabilistic programs in
the Bayesian-workflow sense i.e., they satisfy standard checks, such as adequate effective sample
size, low number of MCMC divergences and strong out-of-sample fit (Section 2 presents the full list).

REFINESTAT produces reliable statistical programs through a two-phase approach: (1) semantically
constrained generation and (2) diagnostic-aware refinement (Section 3). In this context, semantically
constrained denotes adherence to programming-language semantics (e.g., distribution validity, pa-
rameter consistency, proper data types), rather than the linguistic semantics of natural languages.
Our semantic constraining ensures that synthesized probabilistic programs contain valid distributions
with well-formed parameters, proper variable dependencies, and adherence to PyMC semantics. The
diagnostic-aware refinement systematically resamples prior specifications or likelihood models when
generated programs fail to meet established reliability criteria within the Bayesian workflow, thereby
ensuring efficient search of probabilistic models using small language models.

We evaluate REFINESTAT on a suite of five representative probabilistic datasets, and five open-
weight LLMs, with up to 8 billion weights. Our comparison shows that REFINESTAT significantly
improves over directly querying LLMs in an unconstrained manner or only syntactic constraining
with Syncode (Ugare et al., 2024c). We show that the programs generated by REFINESTAT often
pass the diagnostic metrics that indicate high quality to represent and explain the data. We also show
that the REFINESTAT’s performance is comparable to a recent LLM-based generation algorithm
BoxLM (Li et al., 2024), which uses two GPT-4 LLM instances to iteratively propose a likely program
and refine it, respectively; yet REFINESTAT obtains those results with a single small language model.

Contributions: The main contributions of this paper are:
• Approach: We present REFINESTAT, a novel SLM-based framework for synthesis of probabilistic

programs that are semantically correct and have high predictive performance.
• Constrained decoding: We propose using semantic constrained decoding to help generate syntac-

tically and semantically valid probabilistic programs, at a small overall cost.
• Iterative program search: We present an iterative refinement loop that leverages a single, un-

modified open-weights SLM to generate probabilistic programs with improved diagnostic metrics,
refining statistical reliability by selectively resampling the likelihood and prior.

• Evaluation: We demonstrate that REFINESTAT performs significantly better than baseline language
models, in terms of different diagnostic metrics, and in some cases performs equally well as GPT-4
and hand-written developer programs.

2 BACKGROUND

Language Models. Current autoregressive language models (LMs) operate on a vocabulary V ⊆ Σ∗

of tokens. A tokenizer converts an input prompt O0 ∈ Σ∗ into a sequence of tokens t1, t2, . . . , tk.
The LM M : V ∗ → R|V | takes this sequence and outputs scores S over the vocabulary: S =
M(t1, t2, . . . , tk). A softmax function transforms these scores into a probability distribution, from
which tk+1 is sampled. Appendix A.1 has more details on decoding and grammar-guided generation.

Bayesian Workflow. A robust Bayesian analysis follows an iterative workflow of model specification,
posterior inference, diagnostic checking, and model comparison (Gelman et al., 2020). This process
can be summarized as: (1) specify the model (likelihood and priors, in our case using an LLM), (2)
perform posterior inference, (3) conduct posterior predictive checks and convergence diagnostics,
(4) if diagnostics pass, estimate out-of-sample fit (i.e., how well the model would predict data not
used in fitting), and (5) compare and rank models by their relative out-of-sample performance (with
uncertainty). Further details about diagnostics and predictive evaluation in Appendix A.2.

Probabilistic Programming. Statistical modeling aims to describe relationships between variables
in data through joint probability distributions that capture both observed phenomena and underlying
latent structure. In probabilistic modeling, we formalize this as a joint distribution p(x, z|η), where
x = x1:n represents n observed data points, z = z1:m denotes m latent variables, and η corresponds
to fixed model parameters. The inferential goal is to compute the posterior distribution p(z|x), which
quantifies uncertainty in the latent variables conditional on observed data. Probabilistic programming
languages (PPL) provide a flexible computational substrate for specifying joint distributions p(x, z | η)
as programs while leveraging automated inference methods (e.g., MCMC, variational inference) to
compute the posterior p(z | x) (van de Meent et al., 2021). Further details in Appendix A.3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Probabilistic Programming Diagnostics We briefly define the standard probabilistic programming
diagnostics and metrics used in our framework. Detailed formal definitions are in Appendix B:

1. R̂ϕ: Split-R̂ statistic for parameter ϕ, measuring MCMC chain convergence.
2. ESSbulk,ϕ: The effective bulk sample size for the parameter ϕ, estimating the sampling efficiency

across the central mass of the posterior.
3. ESStail,ϕ: Tail effective sample size for parameter ϕ, measuring sampling efficiency in tails.
4. Divergences(M): Count of divergent NUTS (Hoffman et al., 2014) transitions in model M .
5. BFMI(M): Bayesian Fraction of Missing Information for model M , assessing energy transition

efficiency in Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) algorithm.
6. k̂i(M): Pareto shape parameter for observation i in PSIS-LOO (Pareto-smoothed importance

sampling leave-one-out cross-validation), quantifying reliability of importance sampling estimates.
PSIS-LOO approximates exact LOO predictive densities by smoothing raw importance weights
with a generalized Pareto fit to stabilize high-variance weights (Definition 1 below).

7. êlpd: Expected Log Pointwise Predictive Density under Leave-One-Out cross-validation, measur-
ing model’s out-of-sample predictive accuracy.

To evaluate out-of-sample predictive accuracy, we rely on the expected log pointwise predictive
density under leave-one-out cross-validation (ELPD-LOO). A direct computation of LOO requires
refitting the model n times (once for each observation), which is often too costly in practice. To
avoid this, we use Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-
LOO) (Vehtari et al., 2017), which provides a fast approximation to ELPD-LOO and also gives
diagnostics on influential observations via the Pareto k̂ values:

Definition 1 (PSIS-LOO) Let D = {yi}ni=1 be the observed data and M a model. Draw {θ(s)}Ss=1

from p(θ | D), compute raw weights w
(s)
i = 1/p(yi | θ(s)), and let w̃(s)

i be the Pareto-smoothed

weights. Then, the PSIS-LOO estimate is êlpdPSIS−LOO =
∑n

i=1 log
[
1
S

∑S
s=1 w̃

(s)
i p(yi | θ(s))

]
.

Instead of refitting the model n times, PSIS-LOO needs only a single full-data fit plus simple
weight calculations. The fitted Pareto shape parameters ki check reliability of this method of ELPD
computation; commonly, the estimate is considered unreliable if 20% of the ki exceed 0.7.

3 REFINESTAT

Figure 1: REFINESTAT workflow: (1) Data and prompt are provided to the language model, which
generates a probabilistic program. (2) Constrained semantic decoding enforces syntactic and semantic
validity of the generated program. (3) A Bayesian reliability check diagnoses convergence, diver-
gences, and predictive validity. If failures are detected, the model is refined by backtracking and re-
sampling priors or likelihoods. (4) Upon passing checks, we get final reliable probabilistic program.

Figure 1 presents REFINESTAT’s two main ideas. First, we prune the search space of possible
probabilistic programs by enforcing semantic validity during generation, mapping validation rules to
nodes in the partial parse tree and resampling problematic program fragments when constraints are
violated. Second, we implement diagnostic-aware refinement, systematically resampling components
of statistically unsound models to satisfy Bayesian Workflow guidelines. This integrated approach

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

aims to improve semantic correctness, statistical reliability, and yield strong predictive performance.
An illustrative example is provided in Appendix C.

Problem Statement. Let D denote the dataset for a given statistical modeling task. The objective
of REFINESTAT is to construct a statistical model M in a probabilistic programming language that
provides accurate predictive performance while quantifying uncertainty in a fully Bayesian manner.

Our approach to finding a model M that explains the data will follow the standard Bayesian work-
flow (Gelman et al., 2020) The key challenge to finding such a model M is to automatically compare
various candidate models that an LLM produces. To automate this task, we will use a battery of
diagnostics from statistical literature (Section 2), computed during the posterior inference in the
standard Bayesian workflow (Gelman et al., 2020).

Definition 2 (Bayesian Workflow Reliability Score) LetM be the set of candidate models, and
fix thresholds αR, βbulk, βtail, γ, Lcd, ϵ. For each M ∈ M, we define seven binary indicators
sj(M) ∈ {0, 1} listed below (see Section 2 for the metrics definitions):

1. maxϕ R̂ϕ(M) ≤ αR, 2. BFMI(M) > γ, 3. minϕ ESSbulk,ϕ(M) ≥ βbulk

4. divergences(M) = 0., 5. minϕ ESStail,ϕ(M) ≥ βtail, 6. 1
n

∑n
i=1 I[k̂i(M) ≤ Lcd] ≥ 1− ϵ,

7. êlpd(M) is finite. Then the reliability score is B(M) =
∑7

j=1 sj(M)

These diagnostics can be extracted directly from the MCMC engines (e.g. Stan (Carpenter et al.,
2017a), PyMC (Salvatier et al., 2016)). Although êlpd provides a principled Bayesian measure of
out-of-sample predictive accuracy, its Monte Carlo estimate can be unreliable if the sampler has
not fully converged or if the importance weights are unstable (Gelman et al., 1995). To mitigate
these risks, we consider elpd estimates for models that satisfy standard convergence thresholds, thus
ensuring that predictive comparisons rest on reliable posterior samples.

We require each model to pass most of these seven checks: if any check fails, the corresponding
sj(M) is zero, and the total score reflects how many diagnostics remain satisfactory. In particular, if
êlpd(M) cannot be computed (or is infinite), then sELPD(M) = 0. A higher score means that more
diagnostics have been verified, and the resulting êlpd estimate can be trusted with greater confidence.
We consider a model sufficiently reliable once its score exceeds a cutoff ζ. We will use ζ = 5, to
accommodate for marginal diagnostic failures while maintaining confidence in êlpd.

Definition 3 (Valid model space) For a set of candidate modelsM, a valid model space is:

Mvalid =
{
M ∈M : B(M) ≥ ζ

}
.

Definition 4 (REFINESTAT Objective) We finally define our objective to identify the model that
attains the highest ELPD-LOO estimate within the space of modelsMvalid:

M∗ = argmaxM∈Mvalid
êlpd(M),

3.1 SEMANTICALLY-CONSTRAINED PROBABILISTIC PROGRAM GENERATION

We formalize the generation of semantically valid probabilistic programs via iterative constrained
sampling. Let G = (N , T ,P, S0) be a context-free grammar with nonterminal symbols N , terminal
symbols T , production rules P , and start symbol S0.

For a partial program with parse tree κ, let F(κ) denote the set of program fragments, where each
fragment n ∈ F(κ) is a rooted subtree of κ corresponding to a single syntactic statement. Validation
functions operate on a fragment n within program context π ∈ Π: Φ : F(κ)× Π→ {0, 1}. These
functions are conjunctions of individual correctness checks:

Φ(n, π) = ϕ1(n, π) ∧ ϕ2(n, π) ∧ · · · ∧ ϕm(n, π)

Each fragment thus corresponds to a single statement, possibly comprising multiple AST nodes.

Validity Predicates for Probabilistic Program Fragments. To ensure the correctness of synthesized
probabilistic program fragments, we define three essential validation predicates. Let F(s) denote the
set of all probability distribution functions invoked within fragment s. The validation predicates are:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1. Parse-ability: ϕ1(s,Π) = 1 if the fragment conforms to the grammar G.
2. Distribution validity: ϕ2(s,Π) =

∏
f∈F(s) 1{f ∈M} verifies that each probabilistic operation

f exists in the available libraryM of PPL.
3. Parameter validity: ϕ3(s,Π) =

∏
f∈F(s) 1{P (f) ⊆ Pacc(f)} confirms that operation parame-

ters P (f) adhere to the accepted specifications Pacc(f), essential for maintaining probabilistic
semantics. i.e. we ensure that the provided parameters for any distribution are correct according
to the distribution’s specification. For instance, Figure 2 shows parameter "std" was invalid and
resampled correctly as "sigma".

4. Dependency validity: ϕ4(s,Π) =
∏

v∈Vars(s) 1{all dependencies of v are defined before use}
ensures that random variables are declared and initialized before they are referenced.

5. Support validity: ϕ5(s,Π) =
∏

f∈F(s) 1{P (f) ∈ Supp(f)} confirms that parameter values fall
within the distribution’s support (e.g., variance > 0, probabilities in [0, 1]).

6. Type validity: ϕ6(s,Π) =
∏

f∈F(s) 1{type(P (f)) ∈ T (f)} checks that each parameter P (f)

has the expected type from the specification T (f), e.g., ensuring numeric values for scale parame-
ters, or integer values for counts.

Figure 2: Constrained decoding in REFINESTAT
fixing a TypeError from using sd instead of
sigma, as illustrated in Section 1.

The final predicate Φ(s,Π) =
∧6

i=1 ϕi(s,Π)
ensures that generated fragments satisfy all re-
quirements of the probabilistic programming
language (1,4,6) and the Bayesian model (2,3,5).
Our generation algorithm leverages these prop-
erties by maintaining a global symbol table
Π : A → M mapping each alias a ∈ A to
its module or namespace m ∈M.

Generation proceeds via local rejection sam-
pling on SN : we repeatedly sample s ∼ SN

until finding s∗ where Φ(s∗,Π) = 1. This iter-
ative process continues until a termination frag-
ment is generated, ensuring every component
in the final probabilistic program satisfies all se-
mantic constraints. Our local rejection sampling
is token-efficient and we backtrack and precisely
resample the tokens that correspond to the vio-
lation of the constraints. The approach is particularly effective for languages like PyMC, where
maintaining consistent probabilistic variable scopes and dependencies is critical. Combining syntactic
constraints with semantic validation enables efficient exploration of the program space while ensuring
the probabilistic soundness of generated models.

3.2 PROGRAM VALIDATION AND GUIDED RESAMPLING

Building on the validation predicate Φ, we now formalize our constrained generation and refinement
methodology. We introduce the constrained-decoding operator LCD : C → B, which implements
our validation-guided sampling. Here, a statement is an individual syntactic unit, and a code block B
is a (possibly multi-statement) sequence of such statements. For any context C, this operator returns
a new code block B satisfying Φ(C∥B) = 1, where ∥ denotes sequential concatenation of blocks;
concretely, for two blocks A and B, A∥B is the program text formed by appending all statements of
B immediately after those of A.

D∥P∥L denotes the full probabilistic program with data D, prior P , and likelihood L. During
refinement we perform resampling via two steps: L ← Lcd(D∥P) (likelihood resampling), P ←
Lcd(D) (prior resampling), guaranteeing replaced blocks remain semantically valid.

Algorithm 1 synthesizes programs in two phases. First, it checks semantic correctness via Φ,
ensuring parseability, distribution validity, and parameter consistency. Second, it evaluates Bayesian
diagnostics d1, . . . , dL on the full program D∥P∥L; at least K thresholds {τj} must be met to
accept a candidate. As shown in Figure 1, if diagnostics fail, we perform one of two resampling
steps to refine the program: (i) likelihood resampling replaces L under the data–prior context,
addressing convergence or sampler-health issues; (ii) prior resampling replaces P under the data

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

context, correcting prior-specification errors. We iterate until we collect β valid programs or exhaust
the budget Rmax, and return the program maximizing êlpd.

4 EXPERIMENTAL METHODOLOGY Algorithm 1 REFINESTAT Synthesis via D∥P∥L
Require: Rmax, α, β, {τj}Lj=1, K

1: r ← 0, ℓ← 0, V ← ∅, P ← ∅,L ← ∅
2: while r < Rmax and |V| < β do
3: Prog← D∥P∥L
4: if ¬Φ(Prog) then
5: r ← r + 1; continue
6: compute diagnostics d1, ..., dL on Prog
7: Ppass ←

∣∣{j : dj ≥ τj}
∣∣

8: if Ppass ≥ K then
9: V ← V ∪ {Prog}; continue

10: if ℓ < α then ▷ likelihood resampling
11: L ← Lcd(D∥P)
12: ℓ← ℓ+ 1
13: else ▷ prior resampling
14: P ← Lcd(D)
15: r ← r + 1
16: return argmax elpd(M) over all M ∈ V

We use PyMC, a Python probabilistic program-
ming library, to perform inference. We pro-
vide the same initial prompt while performing
unconstrained generation and using REFINE-
STAT. We prompt the model by providing it
with the dataset, the necessary library and the
text query. The exact format of the prompt is
provided in the Appendix D. As stated in Defi-
nition 2, we assess model reliability using stan-
dard Bayesian diagnostics (Vehtari et al., 2021;
2017; Gelman et al., 1995). Further details on
hyperparameters and experimental setup are
provided in Appendix E

Datasets. We use five benchmark datasets from
Stan PosteriorDB (Magnusson et al., 2024),
mirroring the selection in prior research on au-
tomated statistical modeling (Li et al., 2024):

• Eight Schools (Rubin, 1981): This dataset originates from a study commissioned by the Educa-
tional Testing Service, which examines the effects of coaching programs on test performance.

• Dugongs (Unit, b): This dataset provides measurements on the ages and lengths of 27 dugongs.
• Surgical (Unit, a): This dataset comprises records on the number of cardiac surgeries performed

on infants, along with the associated failure rates.
• Peregrine (M Kery, 2011): This dataset tracks the breeding trajectory of the peregrine falcon

population in the French Jura region from 1964 to 2003.
• GP: This dataset contains simulated observations generated from a Poisson Gaussian Process.

Models. We experiment with a range of state-of-the-art LLMs, spanning multiple parameter scales
including Qwen2.5 (code-specific) (Hui et al., 2024), models from the Llama series, DeepSeek,
and Google’s CodeGemma. We have used a total of four models including, Llama3-8B (Grattafiori
et al., 2024), CodeGemma-7B (Team et al., 2024), Qwen2.5-Coder-7B (Hui et al., 2024), and
DeepSeek-R1-Distill-Qwen-7B (hereafter we refer to it as “DQ-7B”) (Guo et al., 2025).

5 EXPERIMENTAL RESULTS

5.1 IMPROVED RUN RATE OVER UNCONSTRAINED AND SYNTAX-DRIVEN GENERATION

We conduct a comprehensive evaluation on diverse datasets, comparing REFINESTAT against both an
unconstrained baseline and leading language models across a suite of diagnostic and performance
metrics. We used identical prompts across our framework, the Standard baseline (unconstrained),
syntactically-constrained tool Syncode (Ugare et al., 2024c), and REFINESTAT.

Table 1 presents Run rates across different temperature settings. Run rate is the fraction of programs
that successfully produce the samples from the posterior distribution. The problems that do not run
successfully include those with runtime errors such as (1) numerical errors, e.g., inf/nan, (2) sampling
issues due to unlikely prior parameterization, (3) other sampling warnings, e.g., failed to initialize
chains, (4) static compilation issues.

Table 1: Run rates for Standard, SYNCODE, and
REFINESTAT by temperature

Temp. Standard SYNCODE REFINESTAT

0.2 0.10 0.21 0.45
0.3 0.11 0.21 0.50
0.4 0.11 0.21 0.50

REFINESTAT achieves success rates approxi-
mately 40 percentage points higher than the
Standard baseline and 30 points higher than Syn-
code, demonstrating that our validation-guided
approach substantially enhances code genera-
tion reliability by mitigating both syntactic and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Diagnostic Scores and ELPD-LOO for Standard vs. REFINESTAT

Dataset Model Variant Reliab. Scr.↑ R̂ ↓ ESS Bulk ↑ Diverg. ↓ Pareto k ↓ ELPD LOO ↑
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

8 Schools

Meta-LLama-3-8B Standard 7.00 0.00 1.00 0.00 2261.00 0.00 0.00 0.00 0.00 0.00 -31.70 0.00
RefineStat 7.00 0.00 1.00 0.00 2303.00 768.76 0.00 0.00 0.00 0.05 -31.77 0.61

CodeGemma-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat 7.00 0.49 1.00 0.00 2573.00 527.68 0.00 1.97 0.00 0.06 -31.46 1.84

Qwen-Coder-7B Standard 3.80 1.30 1.02 0.01 223.25 80.43 92.75 31.38 0.22 0.21 -31.31 0.68
RefineStat 5.00 0.45 1.01 0.01 256.50 883.83 34.50 86.89 0.00 0.05 -30.80 0.05

DQ-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat 5.00 0.98 1.02 0.02 219.00 2176.00 102.00 75.36 0.00 0.00 -30.68 0.11

Dugongs

Meta-LLama-3-8B Standard 7.00 0.00 1.00 0.00 2167.67 884.79 0.00 0.00 0.01 0.02 -7.66 30.39
RefineStat 7.00 0.00 1.00 0.00 1696.00 284.33 0.00 0.00 0.00 0.02 8.42 24.51

CodeGemma-7B Standard 5.70 2.30 1.04 0.06 1527.33 1325.54 285.67 494.79 0.00 0.00 3.90 7.71
RefineStat 7.00 0.00 1.00 0.00 1908.00 2066.23 0.00 0.00 0.04 0.02 8.07 15.42

Qwen-Coder-7B Standard 7.00 0.00 1.00 0.01 1788.67 123.43 0.00 0.00 0.04 0.00 8.15 0.29
RefineStat 7.00 0.00 1.00 0.00 1683.00 148.16 0.00 0.00 0.04 0.02 8.29 0.05

DQ-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat 7.00 0.00 1.00 0.00 2376.00 149.61 0.00 0.00 0.00 0.03 8.35 0.06

Peregrine

Meta-LLama-3-8B Standard 6.00 0.00 1.00 0.00 3774.00 0.00 7.00 0.00 0.00 0.00 -184.96 0.00
RefineStat 7.00 0.00 1.00 0.00 3574.00 428.26 0.00 0.00 0.00 0.00 -173.00 4.91

CodeGemma-7B Standard 7.00 0.00 1.00 0.00 4261.00 0.00 0.00 0.00 0.00 0.00 -172.91 0.00
RefineStat 6.50 0.53 1.00 0.00 2930.00 1343.79 0.50 0.53 0.00 0.00 -129.93 3.91

Qwen-Coder-7B Standard 7.00 0.00 1.00 0.00 4238.00 0.00 0.00 0.00 0.00 0.00 -173.11 0.00
RefineStat 7.00 0.00 1.00 0.00 4679.00 88.73 0.00 0.00 0.00 0.00 -172.98 0.12

DQ-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat 6.50 0.53 1.01 0.01 963.50 436.70 25.50 27.26 0.00 0.00 -114.29 2.76

Surgical

Meta-LLama-3-8B Standard 5.50 1.30 1.01 0.01 1159.75 1202.11 1066.50 1267.61 0.65 0.44 -31.59 20.02
RefineStat 6.00 0.77 1.00 0.00 579.00 1272.12 0.00 5.75 0.00 0.36 -46.73 36.63

CodeGemma-7B Standard 5.50 0.70 1.00 0.00 1230.00 503.46 6.00 5.66 0.46 0.65 -42.02 5.75
RefineStat 6.00 0.49 1.00 0.00 2026.00 450.46 0.00 0.49 0.00 0.12 -45.55 381.60

Qwen-Coder-7B Standard 6.30 1.50 1.01 0.02 1332.75 784.13 37.50 75.00 0.23 0.46 -44.48 4.35
RefineStat 7.00 0.41 1.00 0.00 1642.00 1350.46 0.00 0.00 0.00 0.38 -46.55 2.79

DQ-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat 7.00 0.50 1.00 0.01 2800.00 1182.68 0.00 0.00 0.00 0.37 -46.51 3.49

GP

Meta-LLama-3-8B Standard 3.00 0.00 4.13 0.00 4.00 0.00 1634.00 0.00 0.00 0.00 -21.61 0.00
RefineStat 6.00 0.49 1.00 0.00 1710.00 668.57 13.00 12.39 0.09 0.08 -152.30 139.07

CodeGemma-7B Standard 7.00 0.00 1.00 0.00 6034.00 0.00 0.00 0.00 0.18 0.00 -154.42 0.00
RefineStat 7.00 0.98 1.00 0.00 1752.00 1004.88 0.00 2.46 0.00 0.49 -22.76 126.08

Qwen-Coder-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DQ-7B Standard ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
RefineStat 6.50 0.53 1.01 0.00 816.50 89.27 30.50 32.61 0.00 0.00 -23.39 1.14

semantic error sources. These results show that REFINESTAT significantly enhances code generation
reliability. The top root causes of failure are syntax errors, semantic errors, and sampler pathologies.
We categorize these failures and provide a detailed discussion in Appendix F.1.

5.2 COMPARISON OF GENERATED PROGRAM QUALITY TO UNCONSTRAINED BASELINE

To evaluate semantic correctness and diagnostic robustness, we compared programs generated by the
base language model with those from REFINESTAT under identical prompts. Since we observed that
REFINESTAT consume almost twice the number of tokens consumed by the Baseline (refer Appendix
G.1), we run baseline models five times with different seeds (2.5x tokens more than REFINESTAT) and
compare the best program in terms of Bayesian Reliability Score and ELPD to a single REFINESTAT
run. We repeat this process five times, to calculate the mean and standard deviation for all metrics
computed using these generated programs. In Table 2, we report five representative metrics drawn
from these diagnostics (for space reasons). The symbol ✗ indicates that no valid program was
produced—i.e., the method failed to explore the search space sufficiently to yield a correct result.

Except for one instance, REFINESTAT matches or exceeds the Standard Baseline in terms of the
Bayesian Workflow Reliability score, and in some cases achieves up to twice the reliability. Moreover,
REFINESTAT delivers substantially better performance on individual diagnostics, particularly diver-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

gences. Notably, DQ-7B, which failed on every dataset under the Standard Baseline, succeeded on all
datasets when augmented with REFINESTAT. For example, on the Surgical dataset with Meta-Llama,
the Standard Baseline produces over 1000 divergences, while REFINESTAT produces none.

We observed that in cases where the Standard baseline attains a higher ELPD-LOO than REFINESTAT,
closer inspection of the diagnostics exposes unreliable sampling. For instance, on the Meta-Llama
GP task the Standard model achieves a superior ELPD score, but exhibits split-R̂ = 4.13≫ 1 and a
low reliability score (3), indicating severe convergence issues. In contrast, REFINESTAT may report a
marginally lower ELPD yet maintains R̂ ≈ 1 and a higher reliability score, reflecting trustworthy
posterior estimates. Furthermore, REFINESTAT delivers markedly lower variability in key diagnostics
such as R̂ and the number of divergent transitions demonstrating its consistency and robustness.

5.3 COMPARISON OF GENERATED PROGRAM QUALITY TO BOXLM

Table 3: Comparison with BoxLM (Li et al., 2024),
REFINESTAT using DQ-7B, and Expert values

Dataset Expert REFINESTAT BoxLM OpenAI-o3
w/ DQ-7B w/ GPT-4

Eight schools -30.70 -30.68 -30.42 -30.74
Dugongs 22.43 8.35 23.40 22.83
Peregrine -112.60 -114.29 -173.11 -133.29
Surgical -39.73 -46.51 -38.03 -38.73
GP -26.53 -23.39 – -34.95

We compare REFINESTAT’s performance us-
ing the DQ-7B model (averaged over five runs)
against three baselines: the Expert stan pro-
grams from PosteriorDB (Magnusson et al.,
2024), the BoxLM system introduced by Li et al.
(2024), and programs generated by OpenAI o3.
Since the code for BoxLM is not publicly avail-
able, we rely on the reported numbers from their
paper for comparison. Because the dataset we

use for the GP task is not included in BoxLM’s evaluation suite, we omit their result for that dataset.

Table 3 shows that our framework consistently outperforms both BoxLM and OpenAI o3 on the
PEREGRINE dataset, and surpasses OpenAI o3 on the GP task, while matching the performance
of expert-written programs in most cases. Across the remaining datasets, our approach performs
comparably to other baselines, with the exception of DUGONGS, where performance is slightly lower.
These results demonstrate that REFINESTAT achieves performance comparable to, and in several
cases better than, large language models like OpenAI o3 and multi-agent frameworks such as BoxLM.

5.4 ABLATION STUDY

Effectiveness of Semantic Validation Components. To evaluate the contribution of each validity
predicate within REFINESTAT, we perform an ablation study by systematically disabling one com-
ponent at a time and measuring the resulting compilation rate. This analysis is conducted across
all models with ten different random seeds to ensure robustness. Notably, removing all validation
predicate reduces the system to the behavior of SYNCODE.

Table 4: Ablation Study: Impact of Semantic Validation
Checks on Run rate

Method Run % ∆Run

1 REFINESTAT (all components) 50.0% -
2 w/o Parameter validity 35.5% −14.5%
3 w/o Distribution validity 26.5% −9%
4 w/o Parse-ability 21.0% −5.5%
5 w/o grammar-guided generation 11.0% −10.0 %

Table 4 shows that parameter validity
emerges as the most critical component,
its removal results in a substantial drop
of 14.5 percentage points in compilation
success. All checks contribute meaning-
fully to overall performance: omitting
distribution validity or parse-ability con-
sistently reduce compilation rates (−9%
and −5.5%, respectively), underscoring
the complementary role these validations play in ensuring soundness of generated programs.

Memorization Effect. A number of studies (Dong et al., 2024a; Golchin & Surdeanu, 2025; 2024;
Li, 2023) have highlighted concerns about the memorization effect in large language models, where
models may reproduce previously seen content rather than demonstrating genuine synthesis. (Kong
et al., 2025) addresses this issue by proposing code mutation to reveal potential memorization in
program repair tasks. Inspired by this perspective, we introduce dataset and prompt modifications
designed to preserve the semantics of the data while changing its presentation. Concretely, we apply
two systematic prompt modifications across all benchmarks when evaluating Meta-Llama 3-8B,
with details provided in Appendix G.2. The modified versions match the original REFINESTAT
on reliability, convergence, and predictive metrics. This consistency suggests that REFINESTAT’s
effectiveness stems from learning from the provided data rather than memorization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Finally, PosteriorDB provides limited ground-truth PyMC programs: only the Eight Schools model is
available, and it targets an outdated version of PyMC, while the remaining programs are provided in
Stan. As a result, ground-truth references in PyMC are effectively absent, making it unlikely that
such implementations appeared in the model’s pretraining corpus.

6 RELATED WORK

Researchers have presented probabilistic techniques for discovering model structures from observed
data, including Bayesian networks (Mansinghka et al., 2006; Lowd & Domingos, 2012), matrix-
composition models (Grosse et al., 2012), Markov networks (Gogate et al., 2010), and deep proba-
bilistic models (Gens & Pedro, 2013). Probabilistic programming languages (PPLs) flexibly represent
these models as programs but demand substantial domain and API expertise. Recent advances in LLM
code generation make synthesizing probabilistic programs more accessible. REFINESTAT leverages
this opportunity to advance the state of the art in LLM-based probabilistic program synthesis.

Probabilistic Program Synthesis: There have been many approaches for deterministic program
synthesis, which is recently been dominated by LLM-based approaches. Several works (Nori et al.,
2015; Saad et al., 2019; Gerasimou et al., 2015; Češka et al., 2019; Ellis et al., 2015) synthesize
probabilistic programs using classical machine learning or symbolic methods. (Gerasimou et al., 2015)
uses a genetic algorithm for probabilistic model generation. (Saad et al., 2019) presents techniques
to automatically construct probabilistic programs using Bayesian inference over DSLs defined via
probabilistic grammars, enabling qualitative structure discovery and quantitative prediction.

Most recently, (Li et al., 2024) uses LLM for probabilistic program synthesis. The paper shows that
with instances of GPT4 as the generator and critic (closed LLM) can find reasonable probabilistic
programs from data. As our evaluation shows, REFINESTAT significantly improves the ability to find
programs that fits the data (recall Table 3) and in contrast to (Li et al., 2024), runs only a single small
open LLM (< 8B weights), demonstrating the benefits of constrained decoding.

Program Synthesis with Constrained LLM Decoding: Recent advances in program synthesis
have enabled constrained decoding approaches where LLMs generate code while adhering to formal
language specifications. These constraints can be partially precomputed and enforced more efficiently
for regular (Deutsch et al., 2019; Willard & Louf, 2023; Kuchnik et al., 2023) or context-free (Koo
et al., 2024; Ugare et al., 2024b; Dong et al., 2024b; Banerjee et al., 2025; Suresh et al., 2025; Firestone
et al., 2025) languages, ensuring syntactic correctness. For more dynamic program generation, Poesia
et al. (2022) and Ugare et al. (2025) implement error-driven backtracking.

Recently, several works explore probabilistic inference/programming in LM-constrained genera-
tion. Loula et al. (2025) guide generation with potential scores and grammar rules, constraining
token emission but not model correctness. In contrast, REFINESTAT generates probabilistic programs,
enforces PPL checks during decoding, and retains only those passing Bayesian diagnostics. In Grand
et al. (2025), a Planner writes an inference plan that LMs execute to satisfy constraints. REFINESTAT
instead directly writes the probabilistic model and focuses on the quality of the posterior. Ahmed
et al. (2025) adjusts next-token probabilities using a verifier so text matches high-level attributes.
REFINESTAT aims for statistical validity, enforcing PPL semantics, and selecting the final program.

7 CONCLUSION AND LIMITATIONS

Conclusion. The main contribution of our work is to separate the task of generating probabilistic
modeling through PPLs as fragments of priors and likelihood and to construct an LLM-based search
procedure that automatically discovers the probabilistic program that satisfies the standard reliability
metrics in the Bayesian workflow. We believe that our framework can be extended to enforce arbitrary
reliability criteria defined by domain experts for reliable generation in other domains that involve
domain-specific languages and plan to explore those in future work.

Limitations. While our framework incorporates key components of the Bayesian workflow (i.e.,
convergence diagnostics and predictive performance metrics), it does not include prior-predictive
or posterior-predictive checks, which often require manual inspection and domain-specific judg-
ment (Gelman et al., 1995). Thus, the reliability judgment is based on a subset of available diagnostics,
and the reported ELPD only partially reflect model adequacy in some cases. Further, our refinement
strategy is effective in practice but does not guarantee convergence to globally optimal program.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We provide the source code of REFINESTAT as part of the supplementary material that can be used to
reproduce our results. We also provide additional experimental details in the appendix.

REFERENCES

Kareem Ahmed, Catarina G Belem, Padhraic Smyth, and Sameer Singh. Semantic probabilistic
control of language models, 2025. URL https://arxiv.org/abs/2505.01954.

Debangshu Banerjee, Tarun Suresh, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh. Crane:
Reasoning with constrained llm generation, 2025. URL https://arxiv.org/abs/2502.
09061.

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint
arXiv:1701.02434, 2017.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal
probabilistic programming. Journal of machine learning research, 20(28):1–6, 2019.

Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betan-
court, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic program-
ming language. Journal of Statistical Software, 76(1):1–32, 2017a. doi: 10.18637/jss.v076.i01.
URL https://www.jstatsoft.org/index.php/jss/article/view/v076i01.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Be-
tancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76:1–32, 2017b.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. A general-purpose algorithm for constrained
sequential inference. In Proceedings of the Conference on Computational Natural Language
Learning, 2019. URL https://aclanthology.org/K19-1045/.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models, 2024a.
URL https://arxiv.org/abs/2402.15938.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen.
XGrammar: Flexible and efficient structured generation engine for large language models. arXiv
preprint arXiv:2411.15100, 2024b. URL https://arxiv.org/pdf/2411.15100.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. Structure
discovery in nonparametric regression through compositional kernel search. In International
Conference on Machine Learning, pp. 1166–1174. PMLR, 2013.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learning by pro-
gram synthesis. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/b73dfe25b4b8714c029b37a6ad3006fa-Paper.pdf.

Preston Firestone, Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. UTF-8 plumbing: Byte-
level tokenizers unavoidably enable LLMs to generate ill-formed UTF-8. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=8ExXncFpf6.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis. Chapman
and Hall/CRC, 1995.

10

https://arxiv.org/abs/2505.01954
https://arxiv.org/abs/2502.09061
https://arxiv.org/abs/2502.09061
https://www.jstatsoft.org/index.php/jss/article/view/v076i01
https://aclanthology.org/K19-1045/
https://arxiv.org/abs/2402.15938
https://arxiv.org/pdf/2411.15100
https://proceedings.neurips.cc/paper_files/paper/2015/file/b73dfe25b4b8714c029b37a6ad3006fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/b73dfe25b4b8714c029b37a6ad3006fa-Paper.pdf
https://openreview.net/forum?id=8ExXncFpf6

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao,
Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian workflow.
arXiv preprint arXiv:2011.01808, 2020.

Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In Sanjoy
Dasgupta and David McAllester (eds.), Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp. 873–880, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/
gens13.html.

Simos Gerasimou, Giordano Tamburrelli, and Radu Calinescu. Search-based synthesis of probabilistic
models for quality-of-service software engineering. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’15, pp. 319–330. IEEE
Press, 2015. ISBN 9781509000241. doi: 10.1109/ASE.2015.22. URL https://doi.org/
10.1109/ASE.2015.22.

Vibhav Gogate, William Webb, and Pedro Domingos. Learning efficient markov net-
works. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.),
Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc.,
2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/
file/e5e63da79fcd2bebbd7cb8bf1c1d0274-Paper.pdf.

Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models, 2024. URL https://arxiv.org/abs/2308.08493.

Shahriar Golchin and Mihai Surdeanu. Data contamination quiz: A tool to detect and estimate
contamination in large language models, 2025. URL https://arxiv.org/abs/2311.
06233.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Probabilistic
programming. In Proceedings of the on Future of Software Engineering, pp. 167–181. ACM, 2014.
doi: 10.1145/2593882.2593900.

Gabriel Grand, Joshua B. Tenenbaum, Vikash K. Mansinghka, Alexander K. Lew, and Jacob Andreas.
Self-steering language models, 2025. URL https://arxiv.org/abs/2504.07081.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Roger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. Tenenbaum. Exploiting
compositionality to explore a large space of model structures. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence, UAI’12, pp. 306–315, Arlington, Virginia,
USA, 2012. AUAI Press. ISBN 9780974903989.

Roger Baker Grosse. Model selection in compositional spaces. PhD thesis, Massachusetts Institute
of Technology, 2014.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Jiaolong Kong, Xiaofei Xie, and Shangqing Liu. Demystifying memorization in llm-based pro-
gram repair via a general hypothesis testing framework. Proceedings of the ACM on Software
Engineering, 2(FSE):2712–2734, 2025.

11

https://proceedings.mlr.press/v28/gens13.html
https://proceedings.mlr.press/v28/gens13.html
https://doi.org/10.1109/ASE.2015.22
https://doi.org/10.1109/ASE.2015.22
https://proceedings.neurips.cc/paper_files/paper/2010/file/e5e63da79fcd2bebbd7cb8bf1c1d0274-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/e5e63da79fcd2bebbd7cb8bf1c1d0274-Paper.pdf
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2311.06233
https://arxiv.org/abs/2311.06233
https://arxiv.org/abs/2504.07081

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decoding.
In Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=BDBdblmyzY.

Michael Kuchnik, Virginia Smith, and George Amvrosiadis. Validating large lan-
guage models with RELM. Proceedings of Machine Learning and Systems, 5,
2023. URL https://proceedings.mlsys.org/paper_files/paper/2023/
file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf.

Michael Y. Li, Emily B. Fox, and Noah D. Goodman. Automated statistical model discovery with
language models, 2024. URL https://arxiv.org/abs/2402.17879.

Yucheng Li. Estimating contamination via perplexity: Quantifying memorisation in language model
evaluation, 2023. URL https://arxiv.org/abs/2309.10677.

Kevin Linka, Sarah R St Pierre, and Ellen Kuhl. Automated model discovery for human brain using
constitutive artificial neural networks. Acta Biomaterialia, 160:134–151, 2023.

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya
Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew,
Tim Vieira, and Timothy J. O’Donnell. Syntactic and semantic control of large language models
via sequential monte carlo, 2025. URL https://arxiv.org/abs/2504.13139.

Daniel Lowd and Pedro Domingos. Learning arithmetic circuits, 2012. URL https://arxiv.
org/abs/1206.3271.

M Schaub M Kery. Bayesian population analysis using WinBUGS. Academic Press, 2011.

Måns Magnusson, Jakob Torgander, Paul-Christian Bürkner, Lu Zhang, Bob Carpenter, and Aki
Vehtari. posteriordb: Testing, benchmarking and developing bayesian inference algorithms, 2024.
URL https://arxiv.org/abs/2407.04967.

V. K. Mansinghka, C. Kemp, J. B. Tenenbaum, and T. L. Griffiths. Structured priors for structure
learning. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence,
UAI’06, pp. 324–331, Arlington, Virginia, USA, 2006. AUAI Press. ISBN 0974903922.

BA McKinney, JE Crowe Jr, HU Voss, PS Crooke, N Barney, and JH Moore. Hybrid grammar-based
approach to nonlinear dynamical system identification from biological time series. Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 73(2):021912, 2006.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. Efficient synthesis of
probabilistic programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, pp. 208–217, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450334686. doi: 10.1145/2737924.2737982.
URL https://doi.org/10.1145/2737924.2737982.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. 2019.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible and acceler-
ated probabilistic programming in numpyro, 2019. URL https://arxiv.org/abs/1912.
11554.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=KmtVD97J43e.

12

https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://arxiv.org/abs/2402.17879
https://arxiv.org/abs/2309.10677
https://arxiv.org/abs/2504.13139
https://arxiv.org/abs/1206.3271
https://arxiv.org/abs/1206.3271
https://arxiv.org/abs/2407.04967
https://doi.org/10.1145/2737924.2737982
https://arxiv.org/abs/1912.11554
https://arxiv.org/abs/1912.11554
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Donald B Rubin. Estimation in parallel randomized experiments. Journal of Educational Statistics, 6
(4):377–401, 1981.

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K.
Mansinghka. Bayesian synthesis of probabilistic programs for automatic data modeling. Proceed-
ings of the ACM on Programming Languages, 3(POPL):1–32, January 2019. ISSN 2475-1421.
doi: 10.1145/3290350. URL http://dx.doi.org/10.1145/3290350.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
python using PyMC3. PeerJ Computer Science, 2:e55, apr 2016. doi: 10.7717/peerj-cs.55. URL
https://doi.org/10.7717/peerj-cs.55.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Tarun Suresh, Debangshu Banerjee, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh. Dingo:
Constrained inference for diffusion llms, 2025. URL https://arxiv.org/abs/2505.
23061.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A Choquette-Choo, Jingyue Shen, Joe Kelley, et al. Codegemma: Open code models
based on gemma. arXiv preprint arXiv:2406.11409, 2024.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. Itergen:
Iterative structured llm generation. arXiv preprint arXiv:2410.07295, 2024a.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. SynCode:
Improving LLM code generation with grammar augmentation. arXiv preprint arXiv:2403.01632,
2024b. URL https://arxiv.org/pdf/2403.01632.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024c. URL https://arxiv.org/abs/2403.
01632.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. IterGen:
Iterative structured LLM generation. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/pdf?id=ac93gRzxxV.

MRC Biostatistics Unit. Examples volume 1, a. URL http://www.mrc-bsu.cam.ac.uk/
wp-content/uploads/WinBUGS_Vol1.pdf.

MRC Biostatistics Unit. Examples volume 2, b. URL http://www.mrc-bsu.cam.ac.uk/
wp-content/uploads/WinBUGS_Vol2.pdf.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction to
probabilistic programming, 2021. URL https://arxiv.org/abs/1809.10756.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical bayesian model evaluation using leave-one-
out cross-validation and waic. Statistics and computing, 27:1413–1432, 2017.

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-
normalization, folding, and localization: An improved R̂ for assessing convergence of mcmc (with
discussion). Bayesian analysis, 16(2):667–718, 2021.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
preprint arXiv:2307.09702, 2023. URL https://arxiv.org/pdf/2307.09702.

Milan Češka, Christian Hensel, Sebastian Junges, and Joost-Pieter Katoen. Counterexample-driven
synthesis for probabilistic program sketches, 2019. URL https://arxiv.org/abs/1904.
12371.

13

http://dx.doi.org/10.1145/3290350
https://doi.org/10.7717/peerj-cs.55
https://arxiv.org/abs/2505.23061
https://arxiv.org/abs/2505.23061
https://arxiv.org/pdf/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://openreview.net/pdf?id=ac93gRzxxV
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol1.pdf
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol1.pdf
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol2.pdf
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol2.pdf
https://arxiv.org/abs/1809.10756
https://arxiv.org/pdf/2307.09702
https://arxiv.org/abs/1904.12371
https://arxiv.org/abs/1904.12371

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

This appendix provides expanded technical details, evaluations, and examples supplementing the
main paper. Below is a structured index:

A. Extended Background

1. Language Models

2. Bayesian Workflow

3. Probabilistic Programming Language

B. Probabilistic Program Metrics

1. Basic Terminologies

2. Formal Definitions

C. Example

D. Prompt Design

1. Prompt Template

2. Dataset-Specific Prompt

E. Experimental Setup

F. Error Analysis

1. Search Space Limitations

2. Model Misfit and Sampling Failures

3. Call-Level Hallucinations

4. Termination Failures Due to Budget Constraints

G. Ablation Studies

1. Token Efficiency Analysis

2. Memorization Effect

A EXTENDED BACKGROUND

A.1 LANGUAGE MODELS

Decoding and Constraints. Various approaches for token selection include greedy decoding,
sampling, and beam search, repeated until an end-of-sequence (EOS) token or another stopping
criterion is met. In constrained decoding, we may need to exclude specific tokens at certain positions.
This is achieved using a mask m ∈ {0, 1}|V |, where 1 indicates a viable token and 0 a discarded one.
Decoding methods can then be applied to m⊙ softmax(S).
Grammar-guided Generation Grammar-guided generation constrains model outputs to a formal
grammar by using production rules of the form A→ α, where A is a nonterminal symbol and α is a
sequence of nonterminals and terminals (the actual tokens or characters that appear in the final output).
Most programming languages can be described using context-free grammar, with rules that apply
to nonterminal symbols independent of their context. Grammar-guided generation ensures that LM
outputs follow the syntactic structure required for, e.g., code generation or structured data formatting.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 BAYESIAN WORKFLOW

At its core, a generative probabilistic program often follows a D∥P∥L structure: first fixing the
observed data (D), then sampling latent variables under the prior (P : p(z)), and finally conditioning
on the data via the likelihood (L : p(x | z)).
Modern probabilistic programming languages such as Stan (Carpenter et al., 2017b) and PyMC (Sal-
vatier et al., 2016) streamline this cycle by automating MCMC sampling and providing integrated
diagnostics. These include prior predictive checks, convergence measures (e.g., split-R̂, effective sam-
ple size, BFMI, divergent NUTS transitions) (Vehtari et al., 2021; Hoffman et al., 2014; Betancourt,
2017), and predictive accuracy metrics such as PSIS-LOO (Vehtari et al., 2017).

These diagnostics guard against model mis-specification and poor sampling behavior, ensuring that
only well-calibrated models are considered for inference or downstream decision-making.

A.3 PROBABILISTIC PROGRAMMING LANGUAGE

Probabilistic Programming Languages can be categorized as internal Domain-Specific Languages
(DSLs), which embed within a host language and reuse its syntax and tooling (e.g., PyMC (Salvatier
et al., 2016), NumPyro (Phan et al., 2019), Pyro (Bingham et al., 2019)), or as external DSLs that
define their own syntax and compiler (e.g., Stan (Carpenter et al., 2017b)). This representation enables
automated model specification while leveraging existing inference algorithms (Gordon et al., 2014).

B PROBABILISTIC PROGRAM METRICS

B.1 BASIC TERMINOLOGIES

Before presenting examples for individual diagnostics, we briefly define a few recurring terms that
are used throughout:

Chain: An independent run of the sampler that generates a sequence of draws from the posterior
distribution. Multiple chains are typically run to verify that results do not depend on initialization.

Convergence: The state in which all chains are sampling from the same region of the posterior
distribution. Lack of convergence suggests that the sampler has not fully explored the posterior.

Divergence: A warning issued by the Hamiltonian Monte Carlo (HMC) algorithm indicating that
numerical integration failed to follow the posterior geometry accurately. Divergences often signal
problematic parameterizations or highly curved posterior regions.

B.2 FORMAL DEFINITIONS

In our framework for valid statistical model synthesis, we employ several diagnostic metrics from
probabilistic programming to ensure model validity. Below, we define each of these metrics formally.

Definition 5 (R̂ Statistic) The split-R̂ statistic for parameter ϕ, denoted R̂ϕ, measures the con-
vergence of Markov chains in MCMC sampling by comparing the between-chain variance to the
within-chain variance. Formally:

R̂ϕ =

√
V

W
(1)

where V is the variance between chain means and W is the average variance within chains. Values
close to 1.0 indicate convergence, while higher values suggest poor mixing of chains.

Definition 6 (Effective Sample Size) The effective sample size (ESS) measures the equivalent num-
ber of independent samples obtained from autocorrelated MCMC draws. For parameter ϕ, we

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

define:

ESSbulk,ϕ =
MN

τbulk,ϕ
(2)

ESStail,ϕ =
MN

τtail,ϕ
(3)

where M is the number of chains, N is the number of draws per chain, and τ represents the
autocorrelation time for bulk or tail estimates respectively. Bulk ESS evaluates sampling efficiency
across the central mass of the posterior, while tail ESS focuses on the distribution tails.

Definition 7 (Divergent Transitions) Divergent transitions, denoted divergences(M) for model M ,
count the number of leapfrog steps in Hamiltonian Monte Carlo where the numerical approximation
of Hamiltonian dynamics breaks down due to extremely high curvature in the posterior geometry.
These indicate potential pathological geometries in the posterior distribution that may lead to biased
inference.

Definition 8 (Bayesian Fraction of Missing Information) The Bayesian Fraction of Missing Infor-
mation, BFMI(M) for model M , is defined as:

BFMI(M) =
Var(∆E)

Var(E)
(4)

where E represents the energy (negative log probability density) and ∆E is the change in energy
between consecutive HMC iterations. Low BFMI values indicate poor exploration of the target
distribution.

Definition 9 (Pareto Shape Parameter) The Pareto shape parameter k̂i(M) for observation i in
model M quantifies the reliability of importance sampling estimates used in PSIS-LOO cross-
validation:

k̂i(M) = shape parameter of Pareto distribution fitted to importance weights for observation i
(5)

Values k̂i < 0.5 indicate reliable estimates, while k̂i > 0.7 suggest unstable estimates that may
require more robust computational approaches.

Definition 10 (Expected Log Pointwise Predictive Density) The Expected Log Pointwise Predic-
tive Density under Leave-One-Out cross-validation, êlpd(M) for model M , measures the model’s
out-of-sample predictive accuracy:

êlpd(M) =

n∑
i=1

log p(yi | y−i) (6)

where p(yi | y−i) is the predictive density for observation i after fitting the model to all other
observations. Higher values indicate better predictive performance.

C EXAMPLE

We illustrate REFINESTAT on a standard Bayesian linear regression. Given a partial program P , we
want to find a completion M that maximizes the Bayesian reliability score B(M). This example
shows how each semantic and diagnostic check prunes or refines candidates.

1. Partial Program P

At timestep t, REFINESTAT generates the following partial program:

with pm.Model() as linear_model:
alpha = pm.Normal("alpha", 0, 10)
beta = pm.Normal("beta", 0, 10)
sigma = pm.HalfNormal("sigma", 5)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The LLM must complete the likelihood (yobs).

2. LLM Proposals & Semantic Checks
Candidate likelihoods are checked against PPL semantics as shown in Table 5:

Table 5: Semantic filtering of LLM-proposed likelihoods.
Proposal Check Outcome

y_obs = pm.ExtNormal("y_obs",

mu=alpha + beta * x,

sigma=sigma, observed=y) Distribution validity Reject (hallucinated ExtNormal)

y_obs = pm.Normal("y_obs",

mu=alpha + beta * x,

sd=sigma, observed=y) Parameter validity Reject (deprecated sd vs. sigma)

y_obs = pm.Normal("y_obs",

mu=alpha + beta * x,

sigma=sigma, observed=y) All checks Accept

3. Diagnostic Checks & Guided Resampling We run NUTS on the accepted model and observe:

• R̂ = 1.2 (too high),
• 100 divergences.

These failures reduce the Bayesian reliability score B(M). REFINESTAT then resamples the
likelihood or prior fragments (via the LLM) and retries inference until diagnostics (R̂, ESS,
divergences, Pareto-k) fall within thresholds or the iteration limit is reached.

The final program M∗ converges (R̂ ≈ 1), shows zero divergences, and yields reliable ELPD-LOO.
By pruning invalid distributions early and resampling based on diagnostic triggers, REFINESTAT
iteratively refines candidates into a high-scoring M∗ with robust statistical reliability.

D PROMPT DESIGN

We use the same prompt across both the baseline, and REFINESTAT for experimentation pur-
pose. To standardize the prompt across different datasets, we use a template in which the fields
{description} and {template_code} are replaced with the dataset-specific description and
code snippet, respectively.

Prompt Template

Template prompt:

Complete the PyMC model definition within the ’with pm.Model() as m:’ block below.
Your output must define a complete Bayesian model with appropriate priors, likelihood, and
then sample the posterior using, ‘pm.sample(1000, tune = 1000, chains = 4,
return_inferencedata = True, idata_kwargs = {{"log_likelihood": True}})‘. Do not
include any extra commentary or text outside the code. Follow best practices for expert−level
Bayesian modeling.

Description: {Description}

{Template_Code}

Note: The placeholders {description} and {template_code} are automatically substituted
for each dataset. Below are the {description} and {template_code} respectively for each
dataset:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.1 EIGHT SCHOOLS

Description: A hierarchical model for the 8-schools data.

Template Code

import pymc as pm
import numpy as np
import arviz as az
import matplotlib.pyplot as plt

Data
y = np.array([28, 8, −3, 7, −1, 1, 18, 12])
sigma = np.array([15, 10, 16, 11, 9, 11, 10, 18])

with pm.Model() as m:

D.2 DUGONGS

Description: A growth model for dugongs with missing data.

Template Code

import pymc as pm
import numpy as np
import arviz as az
import matplotlib.pyplot as plt

Data
X = np.array([1, 1.5, 1.5, 1.5, 2.5, 4, 5, 5, 7, 8, 8.5, 9, 9.5, 9.5, 10, 12, 12, 13, 13, 14.5, 15.5,
15.5, 16.5, 17, 22.5, 29, 31.5])
y = np.array([1.8, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47, 2.19, 2.26, 2.4, 2.39, 2.41, 2.5,
2.32, 2.32, 2.43, 2.47, 2.56, 2.65, 2.47, 2.64, 2.56, 2.7, 2.72, 2.57])

with pm.Model() as m:

D.3 SURGICAL

Description: The mortality rates in 12 hospitals performing cardiac
surgery on babies.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Template Code

import pymc as pm
import numpy as np
import arviz as az
import matplotlib.pyplot as plt

Given Data
N = 12 # Number of observations
n = np.array([47, 148, 119, 810, 211, 196, 148, 215, 207, 97, 256, 360])
r = np.array([0, 18, 8, 46, 8, 13, 9, 31, 14, 8, 29, 24])

with pm.Model() as m:

D.4 GP

Description: Simulated data from a Poisson GP model.

Template Code

import pymc as pm
import numpy as np
import arviz as az
import matplotlib.pyplot as plt

Given Data
N = 11 # Number of observations
x = np.array([−10, −8, −6, −4, −2, 0, 2, 4, 6, 8, 10])
y = np.array([4.75906, 1.59423, 2.99548, 5.27501, 1.66472, 2.24347, 2.8914, 4.08681,
4.60588, 0.802364, 3.92136])
k = np.array([40, 37, 29, 12, 4, 3, 9, 19, 77, 82, 33])

with pm.Model() as m:

D.5 PEREGRINE

Description: Simulated population counts of peregrines in the French
Jura over 9 years

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Template Code

import pymc as pm
import numpy as np
import arviz as az
import matplotlib.pyplot as plt

Data

nyears = 40 # Number of years
year = np.array([−0.95, −0.9, −0.85, −0.8, −0.75, −0.7, −0.65, −0.6, −0.55, −0.5, −0.45, −0.4,
−0.35, −0.3, −0.25, −0.2, −0.15, −0.1, −0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1])

C = np.array([27, 42, 35, 55, 61, 19, 41, 74, 43, 42, 73, 37, 48, 49, 19, 72, 30, 18, 31, 71, 63,
51, 48, 73, 49, 54, 43, 59, 30, 24, 62, 55, 51, 47, 14, 27, 45, 20, 26, 19])
N = np.array([43, 83, 53, 91, 95, 24, 62, 91, 64, 57, 97, 56, 74, 66, 28, 92, 40, 23, 46, 96, 91,
75, 71, 100, 72, 77, 64, 68, 43, 32, 97, 92, 75, 84, 22, 58, 81, 37, 45, 39])

with pm.Model() as m:

E EXPERIMENTAL SETUP

We set the convergence threshold to αR = 1.05 for split-R̂, allow ESSbulk ≥ βbulk = 400, and
adopt a relaxed cutoff βtail = 100 for ESStail to accommodate lower sampling efficiency in the tails.
For leave-one-out validation, êlpd(M) must be finite, with at least 1− ϵ = 0.8 of data points having
Pareto shape values below Lcd = 0.7. These thresholds are used consistently when computing the
reliability score across all models. We use STANDARD unconstrained generation as our baseline.
Further, based on preliminary experiments we have chosen β to be 4, α to be 2, and Rmax as 100 for
all experimental purposes.

We run experiments on a 48-core Intel Xeon Silver 4214R CPU with 2 NVidia RTX A5000 GPUs.
REFINESTAT is implemented using PyTorch (Paszke et al., 2019), and Itergen library (Ugare et al.,
2024a) for refining the parser-guided LLM generation infrastructure. We run all experiments for 10
seeds to reduce result randomness, and use a temperature range of 0.2 to 0.4.

F ERROR ANALYSIS

F.1 RUN RATE FAILURES

We categorized the failures by their root causes in different methods found during the run rate
experiment:

• The Standard baseline exhibited frequent syntax errors (e.g., unmatched delimiters, missing imports)
and invalid API calls.

• Syncode eliminated many basic syntactic mistakes but still suffered semantic errors, such as
incorrect distribution parameter names, type mismatches, referring to deprecated API functions
(e.g., calling pm.sample_prior from an earlier PyMC release), and inventing non-existent
methods like pm.random_coefs.

• RefineStat, in contrast, often produced models whose samplers failed to explore the correct
posterior modes, leading to chains stuck in low-density regions or divergent transitions, failures
stemming from the model definitions rather than our decoding framework; REFINESTAT reduced
both syntactic and semantic errors and avoided sampler pathologies by enforcing grammar and
parameter validity during decoding.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.2 OTHER FAILURE MODES

While REFINESTAT significantly improves the syntactic correctness and statistical validity of gener-
ated probabilistic programs, we analyze the remaining failure cases to better understand the limitations
of the framework and identify directions for future improvement.

Search Space Limitations. Despite the use of resampling based mechanism for semantic validity,
the language model occasionally reintroduces previously rejected code fragments. For instance, it
may repeatedly generate outdated or invalid syntax such as the use of sd instead of sigma in PyMC
model definitions:

mu = pm.Normal(“mu”, mu=0, sd=10)

This behavior likely stems from the model’s prior exposure to deprecated APIs in its pretraining
corpus and reflects the difficulty of escaping local attractors in the search space.

Model Misfit and Sampling Failures. Despite generating semantically correct code, some models
fail during posterior inference due to numerical instabilities inherent in the model specification. A
common manifestation of this issue is the PyMC error:

SamplingError: Initial evaluation of model at starting point
failed!

This error often arises when certain mathematical operations within the model, such as exponentiation
or logarithms, result in undefined or non-finite values. For instance, exponentiating large numbers
can lead to overflow, while taking the logarithm of zero or negative numbers is undefined. These
numerical issues can cause the log-probability evaluations to return NaN or inf, thereby preventing
the sampler from initializing properly.

Call-Level Hallucinations. The model occasionally hallucinates invalid function names or API
calls not present in the target probabilistic programming language. For example:

mu = pm.ExtNormal(‘ex’, mu=0)

Such hallucinations highlight a mismatch between the syntactic plausibility and the executable
validity of generated code, reinforcing the need for grounded semantic constraints during decoding.

Termination Failures due to Budget Constraints. In practice, we impose limits on the maximum
number of iterations or generated tokens to maintain tractability. In some instances, these constraints
are reached before a valid program is synthesized, resulting in truncated or incomplete code outputs.

SamplingError Initial evaluation of the model at the starting point failed due to numerical instabil-
ities (overflow/NaNs).

Indentation and commenting failures: Wrong indentation of python-like function codes; inability
to always close string comments.

G ABLATION STUDY

G.1 TOKEN EFFICIENCY ANALYSIS

To evaluate the computational cost associated with our framework, we measure the number of tokens
consumed in generating a program under Itergen, Baseline (Unconstrained generation), REFINESTAT
without Refinement Loop (REFINESTAT w/o RL), and REFINESTAT using Meta-LLama-3-8B. The
token usage across five runs is recorded for each of these methods, from which we report the mean
and standard deviation.

The Table 6 presents the results across models and datasets, with the final column (“Token Ratio”)
reporting the ratio of token usage by REFINESTAT relative to the baseline. On average, REFINESTAT

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

consumes twice the number of tokens consumed by Baseline. While this reflects the added cost of
our refinement mechanism, the overhead varies across settings. For instance, in some cases such as
Dugongs, REFINESTAT uses fewer tokens than the baseline due to early convergence. Conversely, high
multipliers (e.g., Eight Schools, GP) reflect continued refinement due to unmet stopping conditions,
even if the generated program is already of high quality.

Table 6: Comparison of Itergen, Baseline, and REFINESTAT Variants with Multipliers.

Dataset Itergen Baseline REFINESTAT
w/o RL REFINESTAT Token

Mean Std Mean Std Mean Std Mean Std Ratio

Eight Schools 98.8 5.3 606.8 386.3 147.6 36.7 1503.0 409.5 2.5x
Dugongs 209.3 225.9 747.4 495.0 294.4 86.3 419.0 87.1 0.6x
GP 131.3 8.9 663.6 410.9 155.0 21.2 1660.0 253.5 2.5x
Peregrine 132.5 21.4 884.0 538.9 180.8 103.6 1740.0 418.0 2.0x
Surgical 97.3 4.3 624.4 260.6 113.2 9.2 1275.0 1348.1 2.0x

Average Token Ratio 1.9x

G.2 MEMORIZATION EFFECT

To further stress-test our approach against memorization, we performed two controlled prompt
modifications across all datasets using Meta-Llama 3-8B.

Anonymized Prompt (REFINESTAT-AP): All metadata and dataset names were removed, leaving
only the raw dataset.

Syntactic Obfuscation (REFINESTAT-SO): All numerical values were transformed into exponential
notation (e.g., 3.28e2 instead of 328) to prevent exact string matches with any potential training data.

Anonymized Prompt and Syntactic Obfuscation (REFINESTAT-AP-SO): Combined variant using
both Anonymized Prompt, and Syntactic Obfuscation.

Table 7: Comparison of Diagnostic Scores and ELPD-LOO for REFINESTAT variants.
Dataset Variant Reliab. Score ↑ R̂ ↓ ESS Bulk ↑ Divergences ↓ Pareto k ↓ ELPD LOO ↑

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Dugongs

REFINESTAT 7.00 0.00 1.00 0.00 1696.00 284.33 0.00 0.00 0.00 0.02 8.42 24.51
REFINESTAT-AP 7.00 0.00 1.00 0.00 1073.00 317.84 0.00 0.00 0.04 0.00 -0.17 4.24
REFINESTAT-SO 7.00 0.00 1.00 0.00 1753.50 68.95 0.00 0.00 0.04 0.00 8.31 0.09
REFINESTAT-AP-SO 7.00 0.00 1.00 0.00 2257.00 731.23 0.00 0.00 0.00 0.00 1.79 7.09

Eight Schools

REFINESTAT 7.00 0.00 1.00 0.00 2303.00 768.76 0.00 0.00 0.00 0.05 -31.77 0.61
REFINESTAT-AP 7.00 0.00 1.00 0.00 2926.00 541.38 0.00 0.00 0.00 0.00 -31.62 0.79
REFINESTAT-SO 7.00 0.00 1.00 0.00 2470.50 32.61 0.00 0.00 0.06 0.06 -31.61 0.01
REFINESTAT-AP-SO 7.00 0.00 1.00 0.00 2187.50 252.83 0.00 0.00 0.00 0.00 -31.60 0.04

Peregrine

REFINESTAT 7.00 0.00 1.00 0.00 3574.00 428.26 0.00 0.00 0.00 0.00 -173.00 4.91
REFINESTAT-AP 7.00 0.00 1.00 0.00 4057.00 811.85 0.00 0.00 0.00 0.00 -173.14 65.91
REFINESTAT-SO 7.00 0.00 1.00 0.00 1812.50 24.05 0.00 0.00 0.00 0.00 -132.88 8.20
REFINESTAT-AP-SO 6.00 0.00 1.00 0.00 1812.50 24.05 0.00 0.00 0.00 0.00 -140.88 8.20

GP

REFINESTAT 6.00 0.49 1.00 0.00 1710.00 668.57 13.00 12.39 0.09 0.08 -152.30 139.07
REFINESTAT-AP 7.00 0.00 1.00 0.00 2283.00 519.55 0.00 0.00 0.00 0.04 -21.24 2.58
REFINESTAT-SO 7.00 0.00 1.00 0.00 1135.00 0.00 0.00 0.00 0.00 0.00 -24.99 0.00
REFINESTAT-AP-SO 6.50 0.53 1.00 0.00 1140.00 251.23 69.00 73.76 0.00 0.00 -23.01 0.47

Surgical

REFINESTAT 6.00 0.77 1.00 0.00 579.00 1272.12 0.00 5.75 0.00 0.36 -46.73 36.63
REFINESTAT-AP 7.00 0.49 1.01 0.00 640.00 635.48 0.00 0.00 0.00 0.25 -46.71 96.47
REFINESTAT-SO 7.00 0.00 1.01 0.01 1311.00 742.99 0.00 0.00 0.04 0.04 -65.22 19.85
REFINESTAT-AP-SO 7.00 0.00 1.01 0.01 1139.00 638.22 0.00 0.00 0.04 0.04 -69.27 24.20

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

As shown in Table 7, both variants match the original REFINESTAT on reliability, convergence, and
predictive metrics. The table also reports a combined variant using both modifications, which performs
comparably. This consistency suggests that REFINESTAT’s effectiveness stems from learning from
the provided data rather than memorization.

23

	Introduction
	Background
	RefineStat
	Semantically-Constrained Probabilistic Program Generation
	Program Validation and Guided Resampling

	Experimental Methodology
	Experimental Results
	Improved Run Rate over Unconstrained and Syntax-driven Generation
	Comparison of Generated Program Quality to Unconstrained Baseline
	Comparison of Generated Program Quality to BoxLM
	Ablation Study

	Related Work
	Conclusion and Limitations
	Reproducibility Statement
	Appendix
	Appendix
	Extended Background
	Language Models
	Bayesian Workflow
	Probabilistic Programming Language

	Probabilistic Program Metrics
	Basic Terminologies
	Formal Definitions

	Example

	Prompt Design
	Eight Schools
	Dugongs
	Surgical
	GP
	Peregrine

	Experimental Setup

	Error Analysis
	Run rate failures
	Other Failure Modes

	Ablation Study
	Token Efficiency Analysis
	Memorization Effect

