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Abstract

Consistency models are a class of generative models that enable few-step gener-
ation for diffusion and flow matching models. While consistency models have
achieved promising results on Euclidean domains like images, their applications
to Riemannian manifolds remain challenging due to the curved geometry. In
this work, we propose the Riemannian Consistency Model (RCM), which, for
the first time, enables few-step consistency modeling while respecting the intrin-
sic manifold constraint imposed by the Riemannian geometry. Leveraging the
covariant derivative and exponential-map-based parameterization, we derive the
closed-form solutions for both discrete- and continuous-time training objectives
for RCM. We then demonstrate theoretical equivalence between the two variants of
RCM: Riemannian consistency distillation (RCD) that relies on a teacher model to
approximate the marginal vector field, and Riemannian consistency training (RCT)
that utilizes the conditional vector field for training. We further propose a sim-
plified training objective that eliminates the need for the complicated differential
calculation. Finally, we provide a unique kinematics perspective for interpreting the
RCM objective, offering new theoretical angles. Through extensive experiments,
we manifest the superior generative quality of RCM in few-step generation on
various non-Euclidean manifolds, including flat-tori, spheres, and the 3D rotation
group SO(3), spanning a variety of crucial real-world applications such as RNA
and protein generation.

1 Introduction

Diffusion [47, 48, 19] and flow matching [27, 7] models have achieved remarkable success on
generative modeling in various domains including image generation [42, 11], protein design [55, 3],
and text generation [2, 14, 9]. As an intrinsically iterative process that gradually transforms the
data from random noises into meaningful samples, the inference procedure of diffusion and flow
matching usually requires hundreds to up to a thousand steps for decent generation. To mitigate such
high computational cost, a new family of generative models known as the Consistency Model (CM)
[50] was proposed. By “shortcutting” the probability flow and enforcing consistent model outputs,
consistency models are able to generate high-quality samples using one or a few steps. In the image
generation task, consistency models have surpassed the existing distillation approaches [44] and
rectified flows [29, 28] in one-step generation.

Besides Euclidean domains like images, generative models on various Riemannian manifolds have
a potentially profound impact in scientific domains, including protein generation [55, 3], peptide
design [26, 25], robotics [5], and geoscience [41]. For example, the generative modeling of a protein
requires descriptors of its position, orientation, and torsion angles for each amino acid. While the
position is Euclidean, the orientation lies in the 3D rotation group SO(3) and the torsion angle lies in
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the flat torus where a translation by 2π will result in the same angle. Existing works for protein design
typical require 200 to 1000 sampling steps, limiting the overall throughput for virtual screening. A
fast and effective few-step generative model on Riemannian manifolds, therefore, can significantly
accelerate the drug discovery and enzyme design processes, further facilitating crucial real-world
pharmaceutical applications.

While the current Euclidean consistency model has achieved superior performance on images where
the distance between two predictions is measured with the standard Euclidean norm, its counterpart in
Riemannian manifolds, the Riemannian consistency model (RCM), poses additional challenges and
remains largely unexplored. Specifically, the intrinsically curved manifold requires the consistency
parameterizations to lie on the manifold. In this way, simple linear interpolation like Lu and Song
[33], Yang et al. [54] is not always feasible. Furthermore, such a manifold constraint will impose
an additional constraint on the vector field when the consistency loss is enforced, that is, the vector
field at different points should also lie in their corresponding tangent spaces, necessitating additional
corrections in the time derivative.

In this work, we address the challenge of Riemannian Consistency Modeling with a novel consistency
parameterization based on the exponential map to ensure the manifold constraint and use the covariant
derivative to account for the intrinsic curved geometry when calculating the time derivative. We
provide the closed-form solutions for both discrete- and continuous-time formulations of the RCM
objective. Similar to the Euclidean CM, we theoretically prove that the Riemannian consistency
distillation (RCD), which relies on a teacher model to approximate the marginal vector field, can
be extended to Riemannian consistency training (RCT), which directly utilizes the conditional
vector field with marginalization techniques for training. We further propose a simplified training
objective that empirically improves model performance and eliminates the need for potentially
complicated calculations of the differentials of the exponential map. Intriguingly, we provide an
intuitive interpretation of the RCM objective from the perspective of kinematics on curved geometries,
offering new theoretical angles. We carry out extensive experiments on non-Euclidean manifolds,
including flat tori, spheres, and the 3D rotation group SO(3). Compared to the vanilla flow-matching
and the naive Euclidean adaptation of the consistency model, our RCM recipe demonstrates higher-
quality generations with better distributional fitness in the few-step generation setting.

2 Preliminary

2.1 Riemannian Flow Matching

Conditional flow matching (CFM) [27] learns a time-dependent vector field that pushes the prior
noise distribution to any target data distribution. Such a flow-based model can be viewed as the
continuous generalization of the score matching (diffusion) model [47, 48, 19] while allowing for a
more flexible design of the denoising process. Riemannian flow matching (RFM) [7] further extends
CFM to general manifolds on which a well-defined distance metric can be computed.

Mathematically, consider a smooth Riemannian manifold M with the Riemannian metric g, a
probability path pt : [0, 1] → P(M) is a curve of probability densities over M. A flow ψt : [0, 1]×
M → M is a time-dependent diffeomorphism defined by a time-dependent vector field ut : [0, 1]×
M → TM via the probability flow ordinary differential equation (PF-ODE): d

dtψt(x) = ut(ψt(x)).
The flow matching objective directly regresses the conditional vector field ut(xt|x0, x1) := d

dtxt
with a time-dependent neural net vθ(xt, t) where xt := ψt(x). The Riemannian flow matching
objective can be formulated as:

LRFM = Et∼U [0,1],x0∼p0(x),x1∼q(x)

[
∥vθ(xt, t)− ut(xt|x0, x1)∥2g

]
, (1)

where q is the data distribution, p0 is the prior distribution, and xt := ψt(x|x0, x1) denotes the
conditional flow. Chen and Lipman [7] further demonstrated that if the exponential map and logarithm
map can be evaluated in closed-form, the condition flow can be defined as the geodesic interpolation
xt = expx1

(κt logx1
x0), where κt is a monotonically decreasing schedule satisfying κ0 = 1, κ1 = 0.

In this way, the corresponding vector field can be calculated as ut(xt|x0, x1) = κ̇t logxt
x1/κt. In

this work, we use ẋ, v̇, etc, to denote the time derivative of x, v and follow the Einstein summation
notation. If necessary, the time t will be noted in the additional subscript.
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2.2 Consistency Model

The marginal vector field learned by the (Euclidean) flow matching model is not necessarily straight,
which requires solving the PF-ODE with hundreds of iterative steps. The consistency model
(CM) [50], by design, can generate high-quality samples by directly mapping noise to data. CM
achieves one-few generation by “short-cutting” the PF-ODE such that the denoiser fθ(xt, t) along
the PF-ODE should output consistency predictions:

LN
CM = N2Et,xt

[
wt∥fθ(xt, t)− fθ−(xt+∆t, t+∆t)∥22

]
, (2)

where ∆t = 1/N is the discretization step, θ− is the stop-gradient operation, and wt is a weighing
function. xt+∆t is defined by following the marginal vector field at xt along the PF-ODE. To avoid
trivial solutions, an additional consistency constraint fθ(x1, 1) = x1 needs to be enforced. Song
et al. [50] utilized a parameterization of fθ(xt, t) := cin(t)xt + cout(t)Fθ(xt, t) where Fθ(xt, t) is
the unconstrained denoiser and cin(t), cout(t) are schedulers such that cin(1) = 1, cout(1) = 0. Yang
et al. [54], Lu and Song [33] further related the denoiser parameterization with the vector field (score)
parameterization. In practice, a pre-trained flow matching model is used to approximate the marginal
vector field (consistency distillation, CD). Additionally, Song et al. [50] also demonstrated that, with
the stop-gradient operation, training on the conditional vector field (consistency training, CT) has
the same marginalization effect. Existing CMs have achieved high-quality one-step or few-step
generations on Euclidean domains like image generation. Their Riemannian counterpart, however,
remains unexplored.

3 Riemannian Consistency Model

3.1 Consistency Model on Riemannian Manifolds

Figure 1: Riemannian Consistency Model
(RCM). The denoiser fθ along the Rieman-
nian PF-ODE should be consistent.

As discussed above, the extension of the consistency
model to Riemannian manifolds poses additional
challenges, as the model needs to be fully aware of
the intrinsic geometry to shortcut the Riemannian PF-
ODE. To address the above challenges, we choose to
learn the vector field vθ(xt, t) and adopt the consis-
tency parameterization utilizing the exponential map
to ensure the manifold geometry (see Figure 1):

fθ(xt, t) := expxt
κtvθ(xt, t). (3)

It is easy to verify that for any bounded vector field
vθ(xt, t), the above parameterization satisfies the con-
sistency constraint fθ(x1, 1) = x1 as κ1 = 0.

The geometric property of Riemannian manifolds
allows us to define geodesics as the “straight lines”
on the manifold, whose lengths are geodesic distance, the shortest distance between two points on
the manifold. Therefore, following the core idea that the predictions along the same PF-ODE should
be consistent, we use the geodesic distance to measure the consistency:

LN
RCM = N2Et,xt

[
wtd

2
g (fθ(xt, t), fθ−(xt+∆t, t+∆t))

]
. (4)

Similar to Euclidean cases, the next data point xt+∆t is defined along the marginal PF-ODE on the
manifold. When N → ∞, we have the following continuous-time limit of RCM:

Theorem 3.1. When N → ∞,∆t→ 0, the continuous-time RCM loss is

L∞
RCM := lim

N→∞
LN

RCM = Et,xt

[
w ∥d(expx)u (κ̇v + κ∇ẋv) + d(expu)x (ẋ)∥2g

]
, (5)

where d(expx)u,d(expu)x : TxM → Tf(x)M are the differentials of the exponential map with
respect to the tangent vector u = κv and the base point x. ∇ẋ denotes the covariant derivative with
respect to the Levi-Civita connection of the Riemannian manifold (M, g) along the PF-ODE.
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Proof. Note that d2g(x, y) = ∥ logx y∥2g holds for any x, y ∈ M. As ∆t→ 0, the two target points in
Eq.4 also approach each other. Therefore, the first-order approximation logx y ≈ y − x holds. Now
consider (fθ(xt+∆t, t+∆t)− fθ(xt, t))/∆t→ ḟ . Applying the chain rule, we get:

ḟ = d(expx)u (κ̇v + κ∇ẋv) + d(expu)x (ẋ) . (6)

Marginalization over t and xt concludes the proof.

In the above formulation, we assume that the marginal vector field ẋ is available via the pre-trained
RFM model, leading to the Riemannian consistency distillation (RCD) where the marginal ẋ is
learned by a pre-trained Riemannian flow matching model. Similar to [50], in the following theorem,
we demonstrate that the same objective can be utilized with the conditional vector field ẋ|x1, leading
to Riemannian consistency training (RCT).
Theorem 3.2. With the stop-gradient operator θ− in Eq.4, the marginal vector field ẋ in the RCD
loss can be substituted with the conditional vector field ẋ|x1.

The following lemma is the key result for extending RCD to RCT:

Lemma 3.1. ḟ is linear in ẋ.

Proof. By the definition of covariant derivative, ∇ẋ is linear with respect to ẋ. Also note that
d(expx)u,d(expu)x are both linear mappings. Therefore, the final result is linear in ẋ.

Lemma 3.2. ẋ = E[(ẋ|x1)|xt], or using the Riemannian integral
∫
M u(x|x1)pt(x1|x) dvolx1 .

Lemma 3.2 generalizes the Euclidean case and can be verified using the Bayes’ rule on Riemannian
manifolds [6]. It draws the connection between the conditional and marginal vector fields. The key
to the proof of Theorem 3.2 is that we want to move the expectation outside to use the conditional
vector fields.

Proof for Theorem 3.2. Let f̃ denote the denoising result in Eq.3 at time step t+∆t and ∆f = f̃−f .
Note that d2g(fθ, f̃θ) = ∥ logfθ f̃θ∥

2
g . Taking the gradient on both sides, we have

1

2
∇θd

2
g(fθ, f̃θ−) =

1

2
∇θ⟨logfθ f̃θ− , logfθ f̃θ−⟩g = ⟨logfθ f̃θ,∇θ logfθ f̃θ−⟩g

≈ ⟨∆fθ,∇θ(f̃θ− − fθ)⟩g = −⟨∆fθ,∇θfθ⟩g.
(7)

Using Lemma 3.1, ∆fθ
∆t → ḟ is linear in ẋ and the second argument ∇θfθ is now independent of ẋ.

This indicates ∇θd
2
g(fθ, f̃θ−) is also linear in ẋ. Therefore, when using Lemma 3.2 to marginalize

over ẋ, we can simply move the expectation over xt outside the gradient operation, leaving the
conditional vector field ẋ|x1 inside the expectation.

The proof above inspires us to use an alternative loss as

L∞
RCM := Et,xt

[
w
〈
fθ− − fθ + ḟθ− , ḟθ−

〉
g

]
, ḟ = d(expx)u (κ̇v + κ∇ẋv) + d(expu)x (ẋ)

(8)
where the differentials are calculated along conditional vector fields. It is easy to verify that the loss
in Eq.8 has the same value as Eq.5 and the same gradient as demonstrated in the proof above.

3.2 Simplified Riemannian Consistency Model

The loss in Eq.8 involves the calculation of the differentials of the exponential map
d(expx)u,d(expu)x, which may require additional complex symbolic calculation for efficient
implementation (see Appendix B). Instead, we proposed an alternative loss on the vector fields that
eliminates the need to compute these differentials:

L∞
sRCM := Et,xt

[
w ∥ẋ+ κ̇v + κ∇ẋv∥2g

]
= Et,xt

[
w ⟨vθ− − vθ + u̇θ− , u̇θ−⟩g

]
, (9)
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where u̇θ := ẋ+ κ̇vθ + κ∇ẋvθ. Here, we make one key approximation that d(expx)u ≈ d(expu)x
such that the second term can be combined with the first one. Also note that d(expx)u is a linear
mapping that does not change the optimality of the loss. Therefore, we simply ignore such a transform
and optimize the norm of u̇θ at xt. Indeed, for the flat-torus and any manifold whose exponential map
is symmetric, the identity d(expx)u = d(expu)x always holds. For general Riemannian manifolds,
the following result holds:
Proposition 3.1. For u, v ∈ TxM, if u, v are parallel, then d(expx)u(v) = d(expu)x(v).

Proof. As both differentials are linear, it suffices to verify d(expx)u(u) = d(expu)x(u). Consider
the consistency parameterization f(xt, t) := expxt

(1− t)ut, where ut = Πx0,xt;γ(u) is the parallel-
transported tangent vector along the geodesic γ from x0 to xt. Therefore, f(xt, t) is a constant-speed
dynamics along the geodesics defined by point x0 = x and vector field u0 = u ∈ TxM. As f travels
in constant speed, we have f(xt, t) ≡ expx u,∀t ∈ [0, 1]. Taking the derivative with respect to t, we
obtain:

ḟ = d(expx)u (−u+ (1− t)∇ẋu) + d(expu)x (ẋ) = 0. (10)
As ẋ = u, the covariant derivative ∇ẋu = ∇ẋẋ vanishes as f traces a geodesic. Therefore, we have
d(expx)u(u) = d(expu)x(ẋ) = d(expu)x(u), which concludes the proof.

In the original RCM loss, the two tangent vectors follow the predicted and the marginal vector field
directions, respectively. This indicates that, if the pre-trained model approximates the marginal vector
field well, the approximation shall be more accurate. The adaptation from RCD to RCT follows a
similar procedure of marginalization in the proof for Theorem 3.2. We summarize the simplified
RCD and RCT training procedure in Algorithm 1 and 2, where the key differences are highlighted in
red. The original RCD and RCT follow similar training algorithms except for optimizing the loss
in Eq.8. Sampling from RCM follows the same setup as the Euclidean CM, which is described in
Appendix C.2.

Algorithm 1 Simplified Riemannian Consistency
Distillation (sRCD)

1: Input: Pre-trained RFM sϕ.
2: while not converged do
3: Sample data x1, noise x0, and t.
4: Calculate xt = expx1

(κt logx1
(x0)).

5: Calculate sϕ(xt, t).
6: Calculate u̇θ = s+ κ̇vθ + κ∇svθ.
7: Optimize the loss with

∇θw⟨vθ− − vθ + u̇θ− , u̇θ−⟩g .
8: end while

Algorithm 2 Simplified Riemannian Consistency
Training (sRCT)

1: Input: None.
2: while not converged do
3: Sample data x1, noise x0, and t.
4: Calculate xt = expx1

(κt logx1
(x0)).

5: Calculate ẋt = κ̇t logxt
x1/κt.

6: Calculate u̇θ = ẋ+ κ̇vθ + κ∇ẋvθ.
7: Optimize the loss with

∇θw⟨vθ− − vθ + u̇θ− , u̇θ−⟩g .
8: end while

3.3 Kinematics Perspective of Riemannian Consistency Model

Figure 2: Three components of the variations in the consistency objective.

We now provide a perspective from kinematics that intuitively explains the terms in the RCM objective.
Consider a point moving on the Riemannian manifold, the RCM objective essentially enforces the
infinitesimal equilibrium on the target fθ(xt, t) along the PF-ODE of x. Locally, the change of the
final target can be decomposed into three components:
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• The difference in the predicted and marginal vector fields, Figure 2(a).
• The intrinsic change of the vector field, Figure 2(b).
• The extrinsic change of the vector field due to the geometric constraint, Figure 2(c).

The first and second terms are more intuitive, represented by the difference and derivative of the
vector field. Also appearing in the Euclidean CM in [54]’s parameterization, these two terms can be
directly generalized to any Riemannian manifold with the standard calculation in the tangent space
TxtM, a vector space where all vector calculations are valid with the additional Riemannian metric.

The third term, however, is unique for general Riemannian manifolds, as it involves the geometric
properties of the manifold. Intuitively, the curved geometry leads to different tangent spaces at
different points, where tangent vectors are not directly comparable. In order to differentiate the vector
field at adjacent points, the covariant derivative is introduced as a generalization of the directional
derivative in the Euclidean case. More concretely, the covariant derivative ∇ẋv describes how the
vector field v changes along the curve defined by ẋ. In other words, even if the vector field v is
“constant” along the curve, its time derivative is not necessarily zero; it is only when we consider such
additional geometric properties that we can arrive at the results that the covariant derivative is indeed
zero for a constant vector field. In this case, the vector field is called parallel-transported along the
curve ẋ.

In this way, we have included all three components that affect the target position in the kinematics of
the Riemannian manifold, with the last extrinsic change capturing the manifold’s geometric properties.
We now discuss some concrete examples of Riemannian manifolds to demonstrate how different
RCMs can explicitly or implicitly learn the consistent kinematics on the manifold. Specifically, we
focus on the covariant derivative ∇ẋ, which appears in all continuous-time RCM losses. The explicit
mathematical formulae can be found in Appendix B.

Euclidean Space. The Euclidean space is a flat manifold with the canonical Euclidean metric
gij = δij . The covariant derivative reduces to the common time derivative as ∇ẋv = v̇. This
intuitively makes sense as the vector field can be trivially transported everywhere on the flat manifold.
With the linear scheduler κt = 1 − t, we obtain the original vector field consistency model loss
∥ẋ− v+(1− t)v̇∥ in [54] as expected. A similar analysis holds for the flat torus Tn = (S1)n, where
S1 is the 1D spherical manifold (see below).

Spherical Manifold. The n-sphere Sn = {∥x∥ = 1 | x ∈ Rn+1} is a n-dimensional manifold
which inherits the Euclidean metric of Rn+1. The covariant derivative on sphere reads ∇ẋv =
v̇+ ⟨v, ẋ⟩x = 0. If v = ẋ such that the first variation is perfectly optimized, the acceleration becomes
v̇ = −x⟨v, v⟩ with a magnitude of ⟨v, v⟩ = ∥v∥2 and points in the inverse direction of x towards the
origin. This result coincides with the acceleration formula for uniform circular motion, which reads
∥a∥ = ∥v∥2/r, with the direction also pointing to the center. In this way, with the non-zero curvature,
the covariant derivative provides additional geometry-aware information for the consistency objective.

3D Rotation Group. The 3D rotation group SO(3) of all 3D rotation matrices is a Lie group with
a Riemannian structure. With the group property, the tangent space at every point is isomorphic
to the tangent space g = TeG at the identity element e = I , also known as the Lie algebra. The
Lie algebra of SO(3) is so(3), the vector space of skew-symmetric matrices. Using the 3-vector
representations, SO(3) has a natural bi-invariant Riemannian metric g(u, v) = ⟨u, v⟩. The covariant
derivative can be calculated as ∇ẋv = v̇ + 1

2 [ẋ, v], where [u, v] = u × v is the cross-product for
3-vectors. This formulation has a close relation to the rotating frame of reference in kinematics,
where the additional cross product represents the Coriolis term induced by the non-inertial rotating
reference frame. Furthermore, as [v, v] vanishes, we have ∇vv = v̇. Essentially, this condition
indicates that v should be a left-invariant vector field to trace a geodesic on SO(3).

4 Experiments

To demonstrate the effectiveness of the RCM framework on Riemannian manifolds, we carry out
extensive experiments on various non-Euclidean settings. In addition to Riemannian consistency
distillation and training (RCD, RCT), we also test with the simplified objective in Eq.9 (sRCD,
sRCT). Furthermore, to demonstrate the advantage of continuous-time RCM, we include the discrete-
time RCD (dRCD) with a discretization step ∆t = 10−2. In principle, as all Riemannian manifolds
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used in this work have a natural inclusion mapping to the ambient Euclidean space, the Euclidean
CM can be directly applied. We call such a naive adaptation (on distillation) CDnaive/CTnaive, to
distinguish from our RCD. We use a 2-step generation setup for all the models above during inference
and set the fixed intermediate time step to t = 0.8 for all manifolds and datasets. As a reference, the
results for the 100-step (RFM-100) and 2-step (RFM-2) Riemannian flow matching model are also
provided.

Across all experiments on all manifolds, we employ the same network architecture, with the sole
difference being the input and output dimensions that vary according to the manifold dimension. We
use the linear scheduler κt = 1−t with the weighing function wt = (κ̇t/κ)

2 = t2/(1−t)2 following
[33]. Given the critical importance of stable Jacobian-vector products (JVP) v̇ = ∂tv + ẋ∂xv for
training consistency models, we followed EDM2 [23] and utilized magnitude-preserving fully-
connected (MP-FC) layers with force weight normalization. Additionally, we incorporated time
information into the model using magnitude-preserving Fourier features and concatenation. The
detailed network architecture and hyperparameters are provided in Appendix C.

To provide a model-agnostic evaluation metric for the generation quality, we use nonparametric
clustering approaches of kernel density estimation (KDE) and maximum mean discrepancy (MMD)
[18]. Specifically, for the 2-sphere datasets, we use KDE with the von Mises–Fisher kernel with a
bandwidth of 0.02 and the haversine distance (geodesic distance on sphere) to estimate the spherical
densities for the ground truth data and the generated samples of the same size. We then mesh-grid the
sphere and calculate the Kullback–Leibler divergence (KLD) between the two kernel densities. For
flat-tori and SO(3), the analogue of the standard Gaussian kernel is not well-defined, so we switch to
MMD to measure distributional fitness. MMD is a kernel-based, distribution-free two-sample test,
with a lower value indicating better distributional fitness. On the two sample sets, the MMD can be
calculated as:

MMD2(X,Y ) =
1

n(n− 1)

n∑
i,j=1

k(xi, xj)+k(yi, yj)−2k(xi, yj), k(x, y) := exp(−γd2g(x, y)),

(11)
where the symmetric Gaussian-like kernel function k is defined using the geodesic distance dg with
the bandwidth parameter γ = 1.

4.1 Spherical Manifold

Table 1: KL divergence between the estimated kernel densities on the 2-sphere datasets. The dataset
size is noted. Except for RFM-100, the best results are in bold and the second best are underlined.

KLD↓ Flow Matching Consistency Distillation Consistency Training

RFM-100 RFM-2 sRCD RCD dRCD CDnaive sRCT RCT

Earthquake 6,124 1.51 10.99 2.13 2.22 6.20 3.66 2.38 2.38
Volcano 829 1.77 35.40 3.36 3.84 17.19 5.44 4.47 4.78
Fire 4,877 0.53 9.79 1.65 1.71 8.01 3.39 1.74 1.72
Flood 12,810 1.33 8.17 2.27 2.41 6.21 2.81 2.39 2.23

For our experiments on spherical manifolds, we utilize the real-world data comprising four distinct
earth location datasets: volcanic eruptions [40], earthquakes [39], floods [4], and wildfires [46],
collected by [36]. Following [7], we assume the Earth’s surface to be a perfect sphere. For the
calculation of KLD between estimated kernel densities, we sampled the same number of points as the
dataset for each model.

As shown in Table 1 and Figure 3 on the Flood data, the 100-step RFM achieves the lowest KLD
as expected. However, its performance degrades significantly with 2-step sampling. In contrast, all
consistency methods markedly improved sample quality in the 2-step setting. Directly using a naive
Euclidean consistency model loss yielded the poorest results, highlighting the necessity of RCM’s
covariant derivative formula to accurately characterize the manifold’s geometry. Similar to the results
in [50], the results from consistency distillation were superior to those from consistency training.
Furthermore, the simplified loss we proposed streamlines the calculation of the differentials of the
exponential map without sacrificing generation quality. As a result, the simplified loss yields even
better results empirically.
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Figure 3: Generations on the Flood dataset on the 2-sphere. Except for RFM-100, all models use
2-step generation. The FM, CD, and CT models are colored in blue, green, and orange.

4.2 Flat Torus

We evaluate our RCM framework on flat tori using a synthetic checkerboard dataset1 as well as
pre-processed protein [32] and RNA [38] datasets, whose torsion angles can be represented on the
2D and 7D tori, respectively. Specifically, for the checkerboard data, we randomly generated 100k
sampling points for training. The protein dataset contains 166,305 samples, and the RNA dataset
contains 9,473 samples.

Table 2: Maximum mean discrepancy (MMD) scores on the 2D flat
torus. Except for RFM-100, the best results are in bold and the
second best are underlined.

MMD↓/
10−2

Flow
Matching

Consistency
Training

Consistency
Distillation

RFM-100 RFM-2 RCD dRCD CDnaive RCT

Board 0.47 14.04 0.61 0.37 3.49 1.89
Protein 0.35 15.19 3.84 3.79 8.40 5.54
RNA 0.97 14.03 7.82 3.39 10.44 5.60

The MMD results are pre-
sented in Table 2, with
additional visualizations in
Appendix D.3. RFM with 100
sampling steps still achieves
the best performance, while
its performance is poor
with only two sampling
steps. Since the torus is
flat, d(expx)u,d(expu)x are
identity mappings such that
the simplified loss is precisely
equivalent to the original loss. Surprisingly, the discrete version of RCD achieves decent results.
We argue that this might be because the flat torus is more similar to a Euclidean space and less
prone to numerical issues compared to other manifolds. Finally, the trivial Euclidean consistency
model CDnaive ignores the periodic nature of the torus, leading to boundary issues and significantly
underperforming RCMs.

4.3 3D Rotation Group

For the generative modeling on the 3D Rotation Group SO(3), we follow [30] to use synthetic rotation
datasets with three different modes (Cone, Fisher, Line) on SO(3). We additionally include a more
challenging dataset that projects the 2D Swiss roll onto the SO(3) manifold. For each dataset, 100k
samples are generated for training the Riemannian flow matching and consistency models. During
evaluation, 10k rotations are sampled for each model for MMD calculation.

1We refer to Flow Matching Guide and Code to implement our synthetic dataset.

8

https://github.com/facebookresearch/flow_matching/blob/main/examples/2d_riemannian_flow_matching_flat_torus.ipynb


Table 3: Maximum mean discrepancy (MMD) scores on the SO(3) datasets. Except for RFM-100,
the best results are in bold and the second best are underlined.

MMD↓/10−2 Flow Matching Consistency Distillation Consistency Training

RFM-100 RFM-2 sRCD RCD dRCD CDnaive sRCT RCT

Swiss Roll 1.35 19.64 1.51 1.47 8.69 2.75 4.17 8.23
Cone 7.38 19.96 5.47 6.30 20.39 21.46 7.53 3.78
Fisher 4.02 17.41 5.81 5.71 16.41 6.87 8.59 7.00
Line 4.87 15.50 3.06 2.39 14.93 9.36 3.75 3.32

The quantitative results of MMD on SO(3) are summarized in Table 3. Again, the simplified version
of RCD and RCT achieves similar performance to the exact one. Noticeably, the discrete-time RCD
performs worse on SO(3), probably due to larger discretization errors on the curve geometry. The
naive Euclidean CD also falls short in terms of MMD, even though the 3-vector representation allows
for arbitrary rotation vectors as the output. Interestingly, the RCT model on the Cone dataset achieved
the best MMD score, even better than the RCD counterpart. This is probably because the pre-trained
RFM in this case is not as good as the other datasets, as demonstrated by a relatively high MMD
for the RFM-100 model. In this way, the learned marginal vector field may not be accurate enough,
leading to worse performance on the distillation approaches. The RCT model, on the other hand,
does not suffer from this limitation, as it relies on the conditional vector fields instead.

4.4 Ablation Study

Scalability to higher-dimensional Riemannian manifolds and sampling efficiency are two crucial
aspects for the generalization of RCM and other baseline models. To demonstrate scalability, we
follow the setup in [27] on high-dimensional tori. The target distribution is a wrapped standard
Gaussian distribution centered at the original, with the torus defined on [0, 2π]D. Therefore, the
high-density regions cover every corner of the hypercube, making it necessary to enforce the manifold
constraint (periodic boundary condition). We estimate the Gaussian parameters based on maximum
likelihood estimation, and calculate the Fréchet distance to the ground truth. 5k points are sampled
as the training dataset, and the same number of samples is generated for parameter estimation. The
results are shown in Table 4, where RCT consistently outperforms RFM and the naive Euclidean CM
in the few-step setup for a manifold dimension up to 128. Specifically, we noted that the performance
of CTnaive drastically degrades on higher-dimensional manifolds. We hypothesize it is because the
increasing manifold dimension makes it exponentially harder for the Euclidean model to comply with
the manifold constraint, as the number of constraints grows exponentially. Our results demonstrate
the scalability of RCM, further necessitating the need to respect manifold properties in consistency
models.

Table 4: Fréchet distance (lower is better) between the ground truth Gaussian parameters and those
estimated from the generations on high-dimensional tori. All samples are generated using 2 steps.

Torus dim 2 4 8 16 32 64 128

RFM 0.52 0.70 1.01 1.41 1.95 1.47 1.83
RCT 0.22 0.31 0.54 0.81 0.46 0.58 0.62
CTnaive 0.73 2.69 1.58 2.16 2.41 24.80 35.16

We also provide a comprehensive study on the impact of the number of sampling steps on the
generation quality for different models in Appendix D.1, where RCM variants consistently outperform
the naive Euclidean baseline across all NFEs. The empirical benchmark on the sampling stage speedup
is provided in Appendix D.2.

5 Related Work

Riemannian Generative Models. Modeling data distributions beyond Euclidean space is essen-
tial for applications like protein modeling [56] and geosciences [22]. [10, 20] successfully extend
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diffusion models [19, 49] to Riemannian manifolds that learn to reverse the noising process. [31] in-
troduced practical improvements for Riemannian diffusion models for certain Riemannian symmetric
spaces to enhance scalability. [21] tackled scalability by employing bridge processes for generative
diffusion on Riemannian manifolds. Another approach involves extending continuous normalizing
flows [8, 17, 27] to manifolds. Early attempts leverage mapping between manifolds and Euclidean
spaces [15] or focused on simple manifolds using maximum likelihood training [36]. [43] proposed
simulation-free training for continuous flows, though they scaled mainly to high dimensions. [6]
expanded flow matching [27, 28] and achieved simulation-free training for simple geometries. [51]
introduced a one-step free-form flow generator for manifolds. Despite these advances, the develop-
ment of a one-step Riemannian Generator remains largely unexplored, motivating our research in this
area.

One-Step Generator. Diffusion models, also known as score-based generative models [19, 47, 1,
49], along with flow models [27], have seen substantial success in various fields. However, these
models typically necessitate hundreds of functional evaluations to ensure high-quality outputs. To
address this, recent research has focused on reducing the number of function evaluations (NFEs) by
adopting advanced solvers [34, 59], introducing better prior-data couplings [29, 52], and leveraging
progressive distillation [37, 44]. There is growing interest in developing one-step generators capable
of producing samples with a single function evaluation. Notably, some studies have successfully
distilled multi-step diffusion models into single-step student generators [35, 57, 53, 45], often
drawing from pre-trained teacher models. Another emerging approach involves consistency models
[50, 54, 33], which learn a consistency function that maps noisy data along an ODE trajectory to the
corresponding clean data. These models can be trained either by distillation or from scratch. The
idea of “consistency” inspires subsequent works such as shortcut models [12].

6 Conclusion

In this work, we propose the Riemannian consistency model (RCM) as an extension to the existing
consistency model on Euclidean domains. We have provided an explicit closed-form continuous-
time RCM objective with manifold-specific operations. Utilizing the marginalization trick on
the Riemannian manifold, we rigorously prove that Riemannian consistency training (RCT) is
mathematically equivalent to Riemannian consistency distillation (RCD). We further propose a
simpler objective without the need for the explicit form of the differentials of the exponential map
while still achieving similar and even better empirical performance. We provide a novel perspective
from kinematics that offers an intuitive interpretation of the RCM objective as geometry-aware
motions.

Our RCM, together with its CD and CT variants, achieved significantly better generation quality
than the vanilla flow matching and Euclidean consistency model in the few-step generation setup,
demonstrating the necessity of incorporating intrinsic geometric information in the model design. We
will continue to explore the possibility of scaling up Riemannian flow matching and hope to inspire
more efficient flow model architectures in various downstream domains like protein design.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly and accurately summarized our main theoretical contributions
and practical evaluation results in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have mentioned in Section 6 that one limitation of our proposed work is the
additional experiments on larger datasets. As a theoretical framework, we have demonstrated
the theoretical stability of RCM on larger datasets and models, and also provided concrete
evidence of the superior performance of RCM on smaller datasets. In this way, we will leave
the scaling experiments for future work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided detailed proof in the main text. References and attributes to
existing results are also provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed implementation algorithms, dataset information,
model architecture, and training hyperparameters in the main text and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used in our paper are publicly available. We will also publicize
our code once our paper gets accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided detailed dataset information, model architecture, and training
hyperparameters in the main text and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To minimize the impact of stochasticity of the generative model, we draw a
large number of samples from each model and evaluate the distributional metrics to reflect
the significance of our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the compute resource information in Appendix C.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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Answer: [Yes]
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eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?
Answer: [Yes]
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nian manifolds. Our proposed RCM and its variants offer a novel approach to extend the
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potentially positively impact various domains, and we are dedicated to ensuring responsible
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from (intentional or unintentional) misuse of the technology.
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Answer: [NA]
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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properly cited and attributed.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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well as details about compensation (if any)?
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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Supplementary Material

A Riemannian Geometry

In this section, we give a more detailed mathematical background on Riemannian geometry. A more
comprehensive background on the Riemannian manifold can be found in standard mathematical
textbooks like [13].

A Riemannian manifold M is a real, smooth manifold equipped with a positive definite inner product
g on the tangent space TxM at each point x ∈ M. Let TM =

⋃
x∈M{x} × TxM be the tangent

bundle of the manifold M, a time-dependent vector field on M is a mapping ut : [0, 1]×M → TM
where ut(x) ∈ TxM. A geodesic is a locally distance-minimizing curve on the manifold. The
existence and the uniqueness of the geodesic state that for any point x ∈ M and for any tangent
vector u ∈ TxM, there exists a unique geodesic γ : [0, 1] → M such that γ(0) = x and γ̇(0) = u.
The exponential map exp : M × TM → M is uniquely defined to be expx(u) := γ(1). The
logarithm map log : M×M → TM is defined as the inverse mapping of the exponential map such
that expx(logx y) ≡ y,∀x, y ∈ M.

Let Γ(TM) denote the space of vector fields on M, a covariant derivative or affine connection

∇ : Γ(TM)⊗ Γ(TM) → Γ(TM),

(u, v) 7→ ∇uv
(12)

is a bilinear map on M that satisfies:

1. ∇ is tensorial in the first argument:

∇u1+u2v = ∇u1v +∇u2v, ∀u1, u2, w ∈ Γ(TM), (13)
∇fuv = f∇uv, ∀f ∈ C∞(M), u, v ∈ Γ(TM). (14)

2. ∇ is R-linear in the second argument:

∇u(v1 + v2) = ∇uv1 +∇uv2, ∀u, v1, v2 ∈ Γ(TM), (15)

and it satisfies the Leibniz rule:

∇u(fv) = v(f)u+ f∇uv, ∀f ∈ C∞(M), u, v ∈ Γ(TM). (16)

The concept of the affine connection generalizes the idea of directional derivatives in the Euclidean
case and allows for the differentiation of vector fields at different points. Consider a smooth curve
γt, a vector field u is said to be parallel-transported along the curve γ if ∇γ̇u = 0. Intuitively, such
a condition indicates the vector field u remains “constant” along the curve γ. We call the mapping
Πx0,xt;γ : Tx0M → TxtM, u0 7→ ut the parallel transport of the tangent vector u0 along the curve
γ. Furthermore, a curve γ is said to be autoparallel if ∇γ̇ γ̇ = 0. Intuitively, a point along such a
curve travels at “constant” speed as evaluated by the affine connection.

A Levi-Civita connection is the unique affine connection that is torsion-free and metric compatible
∇g = 0. The covariant derivative can be explicitly expanded as

∇uv = v̇k + Γk
ijv

iuj , (17)

where Γk
ij are the Christoffel symbols that can be calculated explicitly using the Riemannian metric

gij and the inverse metric gij as:

Γk
ij =

1

2
gkm(∂igmj + ∂jgmi − ∂mgij). (18)

In this way, the Christoffel symbols serve as the geometry-aware terms that correct the time derivative
of the vector field in the Euclidean case. One important property of the Levi-Civita connection is that
every geodesic γ is autoparallel:

∇γ̇ γ̇ = 0. (19)
In this way, the geodesic equation in Eq.19 can be written locally as:

γ̈k + Γk
ij γ̇

iγ̇j = 0, k = 1, . . . , n. (20)
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The differentials of the exponential map d(expx)u,d(expu)x : TxM → TyM, y = expx u are
linear mappings between tangent spaces. For d(expx)u, we fix x and evaluate the differential with
respect to the tangent vector at u; for d(expu)x, we fix u and evaluate the differential with respect to
the base point at x. Intuitively, these differentials describe how a small change at x will affect the
change at y = expx u. Note that, from the parallel transport equation in Eq.17, we can obtain the
approximation of infinitesimal parallel transport along the direction of dx as

duk = −Γk
iju

i(dx)j . (21)

Such a result indicates that, for non-flat Riemannian manifolds with non-zero Christoffel symbols,
there exists an acceleration for enforcing the manifold constraint even if the vector field is “constant”
(more precisely, parallel transported along the curve). This is especially important for the calculation
of d(expu)x, where an additional term involving d(expx)u needs to be added to account for the
extrinsic change in the vector field because of the base point change.

B Geometry on Specific Riemannian Manifold

In this section, we further provide additional information on the geometric properties of the Rieman-
nian manifolds used in this work.

B.1 Euclidean Space and Flat Torus

The Euclidean space with the canonical Euclidean inner product forms a Riemannian structure.
As expected, the geodesic distance is simply the Euclidean distance. As the manifold is flat, the
exponential and logarithm maps simply read:

expx u = x+ u, (22)
logx y = y − x. (23)

All Christoffel symbols vanish on the Euclidean space, so the covariant derivative ∇ẋv = v̇ reduces
to the ordinary time derivative. Direct calculation gives d(expx)u(v) = d(expu)x(v) = v are the
identity map. This makes sense as the tangent vectors can be parallel transported freely anywhere in
the flat space.

The flat torus Tn = (S1)n can be viewed as the quotient manifold of the Euclidean space by
identifying x + 2kπ ∼ x for k ∈ Z along each dimension. Therefore, it is also a flat manifold
that inherits most properties of the Euclidean space. The only difference is that, when calculating
the exponential and logarithm maps, we shall follow the minimum-image convention along each
dimension and wrap the results back to the interval of [0, 2π].

B.2 Spherical Manifold

The n-sphere Sn is an n-dimensional Riemannian manifold that inherits the canonical inner product
from Rn+1 as

⟨u, v⟩S = ⟨u, v⟩ =
n∑

i=1

uivi, u, v ∈ TxS
n. (24)

The tangent space TxSn = {u|⟨u, x⟩ = 0} is a n-dimensional hyperplane perpendicular to the vector
x. The geodesic on the sphere follows the great circle between two points, and the geodesic distance
can be calculated as

dS(x, y) = arccos⟨x, y⟩. (25)
The exponential and logarithm maps can be calculated as:

expx u = x cos ∥u∥+ u

∥u∥
sin ∥u∥, (26)

logx y =
arccos(⟨x, y⟩)√

1− ⟨x, y⟩2
(y − x− ⟨x, y − x⟩x). (27)

The embedded Christoffel symbols read Γk
ij = xkδij , and the covariant derivative can be calculated

as ∇ẋv = v̇ + ⟨v, ẋ⟩x. This indicates that a small perturbation dx on the point will lead to a change
of −⟨v,dx⟩x on the tangent vector v.
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Direct differentiation on Eq.26 gives:

d(expx)u(v) = v∥ cos ∥u∥+
sin ∥u∥
∥u∥

(v⊥ − ⟨u, v⟩x), (28)

where v∥ = ⟨u, v⟩u/∥u∥2 is the parallel component of v with respect to u and v⊥ = v − v∥ is the
orthogonal component. Similarly, for d(expu)x we have:

d(expu)x(v) = v cos ∥u∥ − sin ∥u∥
∥u∥

⟨u, v⟩x. (29)

The first term is the direct differentiation result. The second term is exactly d(expx)u(−⟨u, v⟩x),
which arises because, as mentioned above, a change in x will lead to an additional change in u in
the covariant derivative. One can verify that, for any v ∈ TxS

n, we have ⟨d(expx)u(v), expx u⟩ =
⟨d(expu)x(v), expx u⟩ = 0.

B.3 3D Rotation Group

The 3D rotation group SO(3) is a 3-dimensional Riemannian manifold with the Lie group structure.
Usually, it can be considered as the group of all 3D rotation matrices SO(3) = {R ∈ R3×3 : R⊤R =
I, det(R) = 1} [55, 3], with it Lie algebra so(3) consisting of all 3D skew-symmetric matrics
so(3) = {A ∈ R3×3 : A = −A⊤}. However, it is worth noting that other formalisms can also be
adopted, e.g., the quaternion representation [58]. In this work, we use the 3-vector representation
(i.e., rotation vectors or axis-angle representations) for easy derivative calculation. Mathematically,
define the vee-hat isomorphism as

(̂·) : R3 → so(3),

(
a1
a2
a3

)
7→

(
0 −a3 a2
a3 0 −a1
−a2 a1 0

)
, (30)

(̌·) : so(3) → R3,

(
0 −a3 a2
a3 0 −a1
−a2 a1 0

)
7→

(
a1
a2
a3

)
. (31)

Then, the 3-vector representations are related to rotation matrices via the following Lie exponential
map Exp : so(3) → SO(3) and Lie logarithm map Log : SO(3) → so(3):

R = Exp(θ̂) = I +
sin ∥θ∥
∥θ∥

θ̂ +
1− cos ∥θ∥

∥θ∥2
θ̂2, (32)

θ̂ = Log(R) =
∥θ∥

2 sin ∥θ∥
(R−R⊤), ∥θ∥ = arccos

Tr(R)− 1

2
. (33)

For simplicity, we will omit the vee-hat isomorphism notation and allow the Lie exponential map
to apply to a 3-vector R = Exp θ as if the hat has been applied, and also allow the Lie logarithm
map to return a 3-vector θ = LogR as if the vee has been applied. The Riemannian exponential and
logarithm maps exp, log : R3 × R3 → R3 can be expressed using the Lie exponential and logarithm
maps as

expx u = Log(ExpxExpu), (34)
logx y = exp(−x) y = Log(Exp(−x) Exp y). (35)

Here, we follow the body-frame convention for the rotation vectors such that the tangent vector
u can be interpreted as the local angular velocity relative to the global frame. Using the 3-vector,
the canonical bi-invariant Riemannian metric is given by g(u, v) = ⟨u, v⟩, which is equivalent to
g(A,B) = 1

2 Tr(A
⊤B), A,B ∈ so(3). The geodesic distance then reads

d(x, y) = ∥ logx y∥ = ∥Log(Exp(−x) Exp y)∥ . (36)

The Christoffel symbols Γk
ij = εkij are the Levi-Civita symbols, and the covariant derivative can be

calculated as ∇ẋv = v̇ + 1
2 [ẋ, v], where for 3-vector representations, the Lie bracket becomes the

cross product [u, v] = u× v.
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For the calculation of the differentials, the left- and right-Jacobians JL(θ), JR(θ) relate small pertur-
bations in the 3-vectors. They are defined as:

JL(θ) :=

∞∑
n=0

1

(n+ 1)!

(
θ̂
)n

, JR(θ) :=

∞∑
n=0

1

(n+ 1)!

(
−θ̂
)n

. (37)

Specifically, we have JR(θ) = JL(−θ) = JL(θ)
⊤ = R⊤JL(θ), where R = Exp(θ). The Baker-

Campbell-Hausdorff (BCH) formula on SO(3) reads:
Exp(θ + dθ) ≈ Exp θExp(JR(θ) dθ), (38)
Exp(θ + dθ) ≈ Exp(JL(θ) dθ) Exp θ, (39)

Log(Exp θExpdθ) ≈ θ + J−1
R (θ) dθ, (40)

Log(ExpdθExp θ) ≈ θ + J−1
L (θ) dθ. (41)

With the BCH formula, we can obtain the following approximations of the Riemannian exponential
and logarithm maps:

logy(y + dy) ≈ JR(y)dy, (42)

expx(u+ du) ≈ J−1
R (y)JR(u)du, y = expx u, (43)

expx+dx(u) ≈ J−1
L (y)JL(u)dx, y = expx u. (44)

Combining the above approximations, we have
d(expx)u(v) = JR(u)v. (45)

Similarly, we can calculate d(expu)x using the above approximations with the additional covariant
derivative term as:

d(expu)x(v) = R−1
u JR(x)v −

1

2
JR(u)[v, u], (46)

where Ru denotes the rotation by the rotation vector u, and the second term again arises from the
covariant derivative. The time derivative of the model using the Jacobian-vector product (JVP) should
also be modified as:

dv

dt
=
∂v

∂x
J−1
R (x)ẋ+

∂v

∂t
, (47)

where the additional left inverse Jacobian comes from the expansion of the reference vector field ẋ
using the right expansion BCH formula in Eq.40.

For any v ∈ R3, the Jacobians and their inverse can be calculated in closed form as:

JL(u)v = JR(−u)v = v +
1− cos ∥u∥

∥u∥2
[u, v] +

∥u∥ − sin ∥u∥
∥u∥3

[u, [u, v]], (48)

J−1
L (u)v = J−1

R (−u)v = v − 1

2
[u, v] +

(
1

∥u∥2
− 1 + cos ∥u∥

2∥u∥ sin ∥u∥

)
[u, [u, v]]. (49)

For any v ∈ R3, the application of a rotation vector can be calculated using the vector-form Rodrigues’
formula:

Ruv = v +
sin ∥u∥
∥u∥

[u, v] +
1− cos ∥u∥

∥u∥2
[u, [u, v]]. (50)

We elaborate why the formulae for SO(3) will incur additional terms and transformations. Specifically,
one may notice a seemingly contradiction between the Taylor expansion we used in our proof of
Theorem 3.1 of logx y ≈ y − x and the expansion for SO(3) in Eq.42. This is because we use a non-
canonical representation for the rotations (rotation vectors instead of rotation matrices), effectively
adding an additional coordinate transformation that leads to the Jacobians. By definition, a smooth
Riemannian manifold resembles Euclidean space everywhere locally; therefore, the first-order Taylor
expansion of the exponential map expx u ≈ x+ u always holds. However, by considering a smooth
coordinate mapping φ : M → Rn, the Jacobian of such a map Jφ : TM → Rn needs to be
composed during the derivative calculation. Furthermore, for a non-Abelian Lie group, one must
define both the left- and right-Jacobians. Indeed, the above procedure of calculating the Jacobians
can be generalized to arbitrary smooth mappings φ, and the other canonical coordinates we used for
the sphere and torus can be thought of as adopting the identity mapping with the identity Jacobian
Jφ = id. Under the assumption of a canonical coordinate, our theoretical result in Theorem 3.1
safely holds for all smooth Riemannian manifolds.
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C Experimental Detail

In this section, we provide comprehensive details on the model parameterization, training setup, and
additional techniques we used to improve the performance of RCM.

C.1 Model Parameterization

We found that the magnitude-preserving design principle of EDM2 [23] is very effective in stabilizing
the JVP computation. However, since our task and datasets are relatively small (compared to the
image generation task), we rebuilt a simple magnitude-preserving multilayer perceptron (MLP) using
magnitude-preserving EDM2 modules.

Magnitude-preserving fully-connected layer A fully-connected layer with input activation x and
output activation is calculated as follows:

MP-FC(x) =
w

∥w∥2
x (51)

Magnitude-preserving Fourier features The Fourier features are scaled by
√
2 using a cosine

function as follows:

MP-Fourier(t) =


√
2 cos(2π(f1t+ φ1))√
2 cos(2π(f2t+ φ2))

...√
2 cos(2π(fN t+ φN ))

 (52)

Magnitude-preserving SiLU The SiLU nonlinear function should also be scaled to maintain the
magnitude as follows:

MP-SiLU(x) =
x

0.596 · (1 + e−x)
(53)

Magnitude-preserving Concatenation and Sum The concatenation of two input activations x
and y, scaled by constants ωx and ωy, with a blend factor a ∈ [0, 1] to adjust the balance between x
and y is calculated as follows:

MP-Cat(x, y, a) =

√
Nx +Ny

(1− a)2 + a2
·

[
1− a√
Nx

x⊕ a√
Ny

y

]
(54)

where, Nx and Ny is the size of x and y in concatenation dimension. A similar formula is used for
the sum operation as follows:

MP-Sum(x, y, a) =
(1− a)x+ ay√
(1− a)2 + a2

(55)

Magnitude-preserving Block By using the above operations, we design a simple multilayer
perceptron and residual connections to fuse noisy data and time embedding. Concretely, for inputs x
and emb, we perform the following computation:

hx = MP-FC(MP-SiLU(Norm(x))) (56)
hemb = MP-FC(emb) + 1 (57)

y = MP-Sum(Norm(x),MP-FC(hx) · hemb), 0.3) (58)

Model Architectural We use MP-Blocks to build our model. First, we stack the blocks in the
encoder and gradually increase the hidden dimension. Subsequently, in the decoder, we use the same
blocks and concatenate the output of the corresponding layer of the encoder, similar to what UNet
does. The time t is encoded using MP-Fourier and passed through an MP-FC, which is subsequently
fed into each block.
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Hyperparameter In all our experiments, we use 4 blocks, each with dimensions [256, 512, 512,
256], and the dimension of time embedding is 256. For flow matching, we use a learning rate of
10−3, while for the consistency model, we use a learning rate of 10−4 with the Adam optimizer. The
batch size varies depending on the dataset size and is typically 512 or 1024. We do not use dropout,
nor do we employ other tricks such as learning rate decay. We train our model using a total of 50
million data samples.

All experiments were carried out on a single A100. The maximum GPU memory consumed is only
around 5GB, which can be easily fit into GPUs with smaller memory. As we fixed the number of
iterations, the entire training of each variant of CM models took approximately 4 hours, regardless of
the dataset size.

C.2 Model Sampling

We described the Riemannian flow matching sampling and our Riemannian consistency model
sampling in Algorithm 3 and 4, respectively. The sampling algorithm for RCM is consistent with
[50] on Euclidean cases. In each sampling step, the model first makes a prediction of the denoised
results with the learned vector field (consistency parameterization in Eq.3). A geodesic interpolation
step then follows to bring the prediction back to intermediate noisy data if there is more than one
sampling step.

Algorithm 3 RFM Sampling

1: Input: Trained RFM vθ, number of steps N .
2: Sample noise x0.
3: for t in 0, 1/N, 2/N, . . . , 1− 1/N do
4: xt+1/N = expxt

(−κ̇tvθ(xt, t)/N). ▷ Euler step
5: end for
6: Return: x1.

Algorithm 4 RCM Sampling

1: Input: Trained RFM vθ, number of steps N .
2: Sample initial noise x0.
3: for t in 0, 1/N, 2/N, . . . , 1− 1/N do
4: x1 = expxt

(κtvθ(xt, t)). ▷ Consistency parameterization
5: Sample noise x0.
6: xt+1/N = expx1

(κt+1/N logx1
x0). ▷ Interpolation to the next time step

7: end for
8: Return: x1.

C.3 Training Technique

Tangent Warmup In line with the findings of Lu and Song [33], we identified the covariant
derivative term in our loss as a likely contributor to JVP instability. Consequently, we implemented a
strategy of incrementally adding this term throughout the training process, detailed below:

ḟ = d(expx)u (κ̇v) + d(expu)x (ẋ) + r · d(expx)u (κ∇ẋv) (59)

where r linearly increases from 0 to 1 over the first 10k training iterations. We made an interesting
observation, not previously noted in Lu and Song [33], regarding the parameter r. Specifically, when
r = 0, the loss function degenerates into a flow matching loss. As r progressively increases, the
model gradually transitions from a flow matching objective towards that of a consistency model.
This progression is analogous to the methodology in ECT [16], which involves a reduction of dt in
discrete time steps. This insight offers a unified explanation for these two approaches, despite their
different conceptual starting points.

Tangent Clipping To further stabilize the gradient variance in consistency models, we build upon
the concept of tangent normalization proposed in Lu and Song [33]. We observed that when the
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tangent norm is small, standard normalization preserves only directional information, which can
impede further optimization. Therefore, drawing inspiration from gradient clipping, we introduce a
’tangent clipping’ mechanism, detailed below.

clip(ḟ) = ḟ ·max(M/∥ḟ∥, 1) (60)

whereM represents the maximum tangent norm, which we set to 1 in our experiments. This approach
is designed to maintain low gradient variance without inappropriately rescaling the tangent when its
norm is small.

C.4 Evaluation Details

For the estimation of kernel density on the 2-sphere, we use the off-the-shelf implementation from
Scikit-Learn2 with the haversine distance and the von Mises-Fisher kernel to match the spherical
manifold. We follow [36] to choose the bandwidth of 0.02 and use a meshgrid of 90 longitudes and
90 latitudes for calculating the empirical KLD. For MMD calculation, we always use a bandwidth of
1 and use the geodesic distance in the exponential kernel to match the corresponding manifold.

For the scalability experiment on high-dimensional tori [0, 2π]D, we first estimate the (diagonal)
wrapped Gaussian using the maximum likelihood estimation (MLE) formula as

µ̂ = arctan

(∑
i

sinxi

/∑
i

cosxi

)
, (61)

σ̂2 = − log

 N

N − 1

(
1

N

∑
i

sinxi

)2

+
N

N − 1

(
1

N

∑
i

cosxi

)2

− 1

N − 1

 , (62)

where the index i is over the data points. The above formula is applied to each manifold dimension
(assuming a diagonal wrapped Gaussian). We then calculate the Fréchet distance (FD) to the ground
truth standard Gaussian as:

FD2 =
∑
j

µ̂2
j + (σ̂j − 1)2, (63)

where the index j is over the manifold dimension.

D Additional Results

In this section, we provide additional experimental results to further support the effectiveness,
efficiency, and scalability of RCM.

D.1 Impact of NFEs

We further provide a comprehensive study on the impact of the number of function evaluations (NFEs)
on the final generation quality. We use the same model checkpoints trained on the earthquake dataset
and alter only the sampling steps in {2, 5, 10, 20, 50, 100} as the NFEs. The results are summarized
in Figure 4. We have the following interesting observations:

• For the RFM model, increasing the NFEs has a significant impact on the generation quality,
as the learned marginal vector fields are not necessarily straight, leading to significant errors
in the few-step generation setup.

• RCD and RCT generations are more stable with respect to NFEs, consistently achieving
decent generation quality. This indicates RCM can indeed shortcut the probability path on
the Riemannian manifold.

• RCM variants consistently outperform the baselines, especially the naive Euclidean CM
approach, demonstrating the necessity of Riemannian constraints. For RFM, the two lines
intersect at around 20 NFEs, below which the RFM generation quality drastically drops.

2https://scikit-learn.org/

28



Figure 4: KLD vs NFEs for different models on the Earthquake dataset. RCD variants are colored in
green, and RCT variants are colored in purple.

It shall be noted that the speed-quality tradeoff for the standard flow matching model (as demonstrated
in the blue RFM curve) does not generally apply to CMs. Our NFE vs performance results generally
echo the findings in Kim et al. [24], in which high NFEs may instead lead to poorer generations. In
practice, the improvement in terms of KLD is also less significant for all CMs. It is also possible to
adapt the techniques in Kim et al. [24] for Riemannian manifolds, resulting in finer-grained control
over the sampling stage, which we leave for future work.

D.2 Practical Time Complexity and Speedup

Intuitively, as the training and sampling procedure of RCM follows the Euclidean consistency model,
the training time should be approximately the same while enjoying a speedup of the ratio of the
sampling steps (NFEs) needed. In this way, the 2-step setup will incur a 50x speedup during inference.
To provide more concrete quantitative results, we benchmarked the training stage time of RCM and
sRCM compared to the Euclidean version (CDnaive) and the sampling stage speedup of two-step RCM
compared to the 100-step RFM. The results are summarized in Table 5.

Table 5: Training time overhead compared to CDnaive and sampling time speedup for RCM-2
compared to RFM-100 on three different datasets.

Dataset Earth RNA SO(3)

RCM train overhead +5.9% +<0.1% +10.7%
sRCM train overhead +4.1% +<0.1% +7.8%

RCM-2 sample speedup ×46.5 ×48 ×43.2

For training, it is clear that even with a fairly small model, the additional Riemannian operations have
minimal overhead in general. It is also expected that the overhead for SO(3) is larger than the sphere,
as the former requires more operations, like the calculation of left or right Jacobians. Similarly, the
simplified loss leads to fewer overheads as it does not require the calculation of the differentials of
the exponential map. Generally, the overheads for RCm are still within a 10% range and will be even
smaller for larger models, as the Riemannian operators only scale linearly with the data dimension
but are model-independent. For sampling, the speedups are slightly below 50, probably due to the
additional Riemannian operators and noising sampling in Algorithm 4. Despite this, the speedup
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is drastic, demonstrating the effectiveness of RCM variants in few-step generation scenarios and
offering a perfect solution for sampling efficiency.

D.3 Additional Visualization

Figure 5: Generations on the 2D flat torus. The FM, CD, and CT models are colored in blue, green,
and orange.

For the 2D torus datasets, we provide visualizations of the generations as the heat maps in Figure 5.
Similar trends can be observed comparing different baselines. Interestingly, although the discrete-time
RCD model achieved a better MMD score on the protein dataset, its visual results are not as good as
RCD, as there are noticeable artifacts on the minor mode on the right in the dRCD generation.

For the spherical manifold, we provide generated points on all four datasets across all models in
Figure 6. The number of generated samples is exactly the same as the corresponding ground truth data
for fair comparison. It can be clearly seen that, while RFM-2 could still capture some coarse-grain
features of the overall distribution, it failed to capture the finer-grain modes accurately. Similar
phenomena can be observed on the CDnaive baseline, where the Euclidean assumption does not
necessarily capture the curved Riemannian geometry.
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Figure 6: Generations on the four datasets on the 2-sphere. The FM, CD, and CT models are colored
in blue, green, and orange.
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