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Abstract001

Human video comprehension demonstrates dy-002
namic coordination between reasoning and vi-003
sual attention, adaptively focusing on query-004
relevant details. However, current long-005
form video question answering systems em-006
ploy rigid pipelines that decouple reasoning007
from perception, leading to either informa-008
tion loss through premature visual abstraction009
or computational inefficiency through exhaus-010
tive processing. The core limitation lies in011
the inability to adapt visual extraction to spe-012
cific reasoning requirementsdifferent queries013
demand fundamentally different visual evi-014
dence from the same video content. In015
this work, we present CAVIA, a training-free016
framework that revolutionizes video under-017
standing through reasoning-perception coordi-018
nation. Unlike conventional approaches where019
visual processing operates independently of020
reasoning, CAVIA creates a closed-loop sys-021
tem where reasoning continuously guides vi-022
sual extraction based on identified informa-023
tion gaps. CAVIA introduces three innova-024
tions: (1) hierarchical reasoning-guided local-025
ization to precise frames; (2) cross-modal se-026
mantic bridging for targeted extraction; (3)027
confidence-driven iterative synthesis. CAVIA028
achieves state-of-the-art performance on chal-029
lenging benchmarks: EgoSchema (65.7%,030
+5.3%), NExT-QA (76.1%, +2.6%), and Inten-031
tQA (73.8%, +6.9%), demonstrating that dy-032
namic reasoning-perception coordination pro-033
vides a scalable paradigm for video under-034
standing.035

1 Introduction036

Video question answering (VideoQA) entails the037

comprehension of intricate temporal dynamics,038

spatial relationships, and semantic content within039

video sequences (Xiao et al., 2022). While sub-040

stantial advancements have been made in analyz-041

ing short video clips, long-form video understand-042

ing presents unique challenges (Wu et al., 2024):043
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Figure 1: CAVIA addresses the limitations of static
caption-based methods and unfocused VLMs through
closed-loop coordination, dynamically generating pre-
cise multimodal prompts to extract query-specific spa-
tiotemporal details for accurate video understanding.

the sparse distribution of query-relevant informa- 044

tion across extensive sequences and the computa- 045

tional burden of processing lengthy content while 046

preserving fine-grained details (Song et al., 2024; 047

Li et al., 2023b). Given a natural language query 048

and an extended video, systems must efficiently 049

identify pertinent temporal segments while main- 050

taining a holistic understanding of the video con- 051

tent (Fei et al., 2024). 052

Current methods achieve significant progress 053

in addressing this challenge, typically through 054

two predominant paradigms. Caption-based ap- 055

proaches (Jianqiao et al., 2025) convert visual in- 056

formation into textual descriptions, leverage the 057

powerful reasoning capabilities of language mod- 058

els for answer generation. Conversely, end-to- 059

end vision-language models (Youk et al., 2024) 060

achieve comprehensive visual understanding by re- 061

taining and processing raw visual data uniformly. 062

However, both paradigms exhibit a critical limi- 063

tation stemming from the decoupling of reason- 064
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ing and perception (Wang et al., 2024b; Ko et al.,065

2023a): perception passively feeds information to066

reasoning modules without adaptive feedback, pre-067

venting cognition from guiding perception. Conse-068

quently, captioning methods inevitably suffer from069

information loss due to premature abstraction of070

visual details, while end-to-end models incur com-071

putational overload from exhaustive, indiscrimi-072

nate processing of all visual content (Shen et al.,073

2023).074

Human cognition demonstrates a dynamic in-075

terplay between reasoning and visual attention,076

where perceptual focus continuously adapts based077

on evolving reasoning states (Santos et al., 2025),078

revealing a radically different architecture where079

reasoning and perception exist in constant dia-080

logue, mutually informing and reshaping each081

other. Consider two distinct queries: answering082

“what tool was used?” demands detailed spatial083

analysis of objects and their interactions, while de-084

termining “why did the person stop?” necessitates085

understanding temporal sequences and broader086

contextual cues. This synergistic guidance of per-087

ception by higher-level cognition starkly contrasts088

with existing computational methods’ fundamen-089

tal limitation: the decoupling of reasoning and per-090

ception. Figure 1 illustrates these limitations and091

motivates our closed-loop approach.092

Inspired by the profound interplay of reason-093

ing and perception inherent to human cogni-094

tion, we present CAVIA (Closed-loop Adaptive095

Video Intelligence Agent), which fundamentally096

rethinks video understanding by establishing dy-097

namic coordination between reasoning and percep-098

tion. Our key insight: effective comprehension re-099

quires neither exhaustive processing nor static cap-100

tions, but adaptive mechanisms where reasoning101

continuously guides visual extraction—mirroring102

human cognitive processes. Unlike prior itera-103

tive approaches that perform simple caption cor-104

rections (Zhang et al., 2025), CAVIA introduces105

a sophisticated feedback loop that dynamically en-106

riches visual descriptions based on identified rea-107

soning gaps. CAVIA introduces three technical in-108

novations:109

• Hierarchical Reasoning-Guided Localiza-110

tion: Progressively narrows from caption111

clusters to precise frames through LLM-112

guided analysis.113

• Cross-Modal Semantic Bridging: Trans-114

lates reasoning gaps into targeted visual ex-115

traction directives for spatial-temporal analy- 116

sis. 117

• Confidence-Driven Iterative Synthesis: Or- 118

chestrates progressive refinement through 119

reasoning-perception cycles, with conver- 120

gence determined by confidence metrics. 121

By coordinating pretrained VLMs and LLMs in a 122

training-free framework, CAVIA achieves state-of- 123

the-art performance: EgoSchema (65.7%, +5.3%), 124

NExT-QA (76.1%, +2.6%), and IntentQA (73.8%, 125

+6.9%). These results validate dynamic reasoning- 126

perception coordination as a scalable paradigm for 127

long-form video understanding 128

2 Related Work 129

2.1 Long-form Video Question Answering 130

Early VideoQA methods with CNN-RNN architec- 131

tures faced context window limitations (Sharma 132

and Jalal, 2022). Transformer-based approaches 133

improved temporal modeling (Chen et al., 2024) 134

but suffer from quadratic complexity. Recent 135

works address efficiency through hierarchical pro- 136

cessing: OptiGQA (Wang et al., 2025b) and 137

VideoTree (Wang et al., 2025c) use multi-level 138

structures, while MIST (Gao et al., 2023) de- 139

composes spatial-temporal attention into cascaded 140

selection modules. For extremely long videos, 141

(Nguyen et al., 2024) integrates State Space Lay- 142

ers for global semantic encoding. However, these 143

static pipelines process all queries uniformly re- 144

gardless of complexity. 145

2.2 Multimodal Architectures for Video 146

Understanding 147

Video understanding systems coordinate LLMs 148

and VLMs through various architectures (Ma 149

et al., 2024; Jin et al., 2024). Recent ef- 150

ficiency improvements include sparse memory 151

(MovieChat (Song et al., 2024), VideoINSTA 152

(Liao et al., 2024)), streaming processing (Flash- 153

VStream (Zhang et al., 2024b)), and memory- 154

based reasoning (Glance-Focus (Bai et al., 2023)). 155

SeViLA (Yu et al., 2023a) leverages image- 156

language models with dual-module chaining for 157

keyframe localization. While DrVideo (Ma et al., 158

2025) introduces iterative refinement, it lacks fine- 159

grained temporal localization and targeted mul- 160

timodal prompting, operating at coarse segments 161

without precise spatial-temporal instructions. 162
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Figure 2: The CAVIA framework architecture. The system operates through closed-loop coordination between
three components: Hierarchical Localization (blue) progressively narrows from caption chunks to specific frames
via retrieval and LLM analysis; Dynamic Prompting (orange) generates targeted spatial-temporal instructions
based on identified information gaps; Adaptive Extraction (green) employs VLMs in temporal or spatial mode
to extract query-specific visual details. The iterative process continues until sufficient confidence is achieved.

2.3 Adaptive Reasoning and Cross-Modal163

Coordination164

Adaptive frameworks implement query-specific165

processing through predefined selection (VideoA-166

gent (Wang et al., 2025a)), text-visual alignment167

(LeAdQA (Dong et al., 2025)), or LLM-based tem-168

poral reasoning (LLaMA-VQA (Ko et al., 2023b)).169

However, these approaches operate via open-loop170

reasoningonce visual features are extracted, mod-171

els cannot request targeted information to address172

reasoning gaps, precluding iterative refinement173

crucial for complex video understanding.174

3 Method175

We present CAVIA, a closed-loop framework for176

long-form video question answering that estab-177

lishes dynamic coordination between reasoning178

and perception. Unlike static pipelines that pro-179

cess videos uniformly, CAVIA introduces query-180

aware mechanisms where reasoning continuously181

guides visual extraction.182

3.1 Problem Formulation and Framework183

Overview184

Given a video V with uniformly sampled185

frames {f1, f2, . . . , fT } and corresponding cap-186

tions {c1, c2, . . . , cT }, we answer question q187

by dynamically identifying and extracting query-188

specific visual details rather than exhaustively pro- 189

cessing all information. 190

As illustrated in Figure 2, CAVIA operates 191

through four interconnected components forming 192

a closed-loop system: (1) Coarse-to-Fine Tempo- 193

ral Localization that hierarchically narrows from 194

caption blocks to specific frames, (2) Reasoning 195

Gap Identification where LLMs detect missing 196

information in current context, (3) Targeted Mul- 197

timodal Prompting that generates precise spatial- 198

temporal instructions for VLMs, and (4) Iter- 199

ative Caption Enhancement that progressively 200

enriches descriptions based on extracted details. 201

This closed-loop architecture enables reasoning to 202

actively guide perception throughout the process. 203

3.2 Coarse-to-Fine Temporal Localization 204

We introduce a coarse-to-fine strategy that adapts 205

processing granularity to query complexity. For 206

the initial localization, we partition the caption 207

sequence into semantically coherent blocks and 208

employ a retrieval mechanism that considers both 209

the original query and decomposed sub-questions. 210

This multi-granular matching captures both holis- 211

tic relevance and specific detail alignment: 212

Crel = argmax
C

αS(q, C) + β
∑

qi∈D(q)

S(qi, C) 213
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where S(q, C) measures semantic similarity be-214

tween query q and caption block C, D(q) rep-215

resents decomposed sub-questions, and α, β are216

weighting parameters. This formulation captures217

both holistic relevance and specific detail align-218

ment. Within selected caption blocks, our Fine219

Frame Locator employs LLM analysis to iden-220

tify frames containing critical visual information.221

Unlike methods that uniformly sample frames,222

this query-driven selection ensures computational223

resources concentrate on discriminative content.224

The LLM evaluates each caption within relevant225

blocks, identifying those that potentially contain226

answer-critical information but lack sufficient de-227

tail.228

3.3 Targeted Multimodal Prompting229

The core innovation of CAVIA lies in our itera-230

tive enhancement mechanism that dynamically en-231

riches visual understanding based on reasoning re-232

quirements. When the LLM detects information233

gaps in the current context, it generates targeted234

instructions that guide the VLM to extract specific235

missing details. The visual tool is implemented236

using Qwen2.5-VL-7B1(Bai et al., 2025), which237

provides strong visual-language understanding ca-238

pabilities for both temporal and spatial analysis.239

Our Instruction Generator operates in two com-240

plementary modes based on the nature of identi-241

fied gaps:242

Temporal Enhancement Mode: When reason-243

ing requires understanding of actions, movements,244

or temporal transitions, the system selects coher-245

ent frame sequences that capture motion dynam-246

ics. Unlike static frame sampling, we adaptively247

determine the temporal span based on action com-248

plexity:249

Itemp = argmax
ts,te

AC(fts:te) · QR(q, fts:te)250

where AC(fts:te) measures action coherence251

across frames ts to te, and QR(q, fts:te) evalu-252

ates query relevance. This ensures we capture253

complete action sequences rather than isolated254

frames. The VLM then processes these inter-255

vals with temporal-aware prompts, generating de-256

scriptions that capture motion patterns, action se-257

quences, and temporal relationships absent from258

initial captions.259

1Available at https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct

Spatial Enhancement Mode: For queries re- 260

quiring fine-grained visual details about objects, 261

scenes, or spatial relationships, prompts such as 262

“Focus on the tool in the person’s right hand” guide 263

VLMs to extract fine-grained visual attributes 264

from specific regions, ensuring focused analysis 265

rather than generic description. 266

Algorithm 1 details this instruction-driven vi- 267

sual processing mechanism, showing how targeted 268

prompts are generated based on identified reason- 269

ing gaps. This targeted enhancement mechanism 270

represents a fundamental departure from existing 271

approaches. Rather than relying on pre-computed 272

visual features or exhaustive frame processing, we 273

dynamically generate visual queries that address 274

specific reasoning gaps, ensuring efficient yet com- 275

prehensive understanding. 276

Algorithm 1 Instruction-Driven Visual Processing

Require: Question q, relevant caption blocks Crel,
video frames F , frame-caption mappingM

Ensure: Refined context Cref, final answer ŷ
1: Cref ← ∅, I ← GENINST(q, Crel)
2: for each instruction i ∈ I do
3: if ISTEMP(i) then
4: It ← SELTIME(F , i)
5: Vt ← FEATTIME(It)
6: Cref ← Cref ∪ DESCSEQ(Vt, i)
7: else if ISSPAT(i) then
8: f ← LOCFRAME(F , i)
9: Vs ← FEATOBJ(f, i)

10: Cref ← Cref ∪ DESCREG(Vs, i)
11: end if
12: end for
13: D ← SYNTH(Cref, q)
14: ŷL ← LLMPRED(q,D)
15: ŷM ← VLMPRED(q, It, f)
16: ŷ ← FUSE(ŷL, ŷM )
17: if LOWCONF(ŷ) then
18: Cref ← UPDATECAP(Cref, It, f)
19: ŷ ← REFINEANSWER(q, Cref,F ,M)
20: end if
21: return Cref, ŷ

3.4 Iterative Caption Enhancement and 277

Cross-Modal Synthesis 278

The final component orchestrates LLM reasoning 279

and VLM perception through confidence-based it- 280

erative refinement. Unlike single-pass systems, 281

our framework continues refinement until suffi- 282

cient confidence is achieved or computational bud- 283

4

https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct


get is exhausted, enabling progressive improve-284

ment through query-specific processing.285

In the synthesis stage, the system transcends286

simple prediction fusion by leveraging the LLM’s287

linguistic reasoning capabilities in conjunction288

with the VLM’s visual understanding. The VLM289

generates descriptive summaries based on ques-290

tions and visual content, providing contextual ref-291

erences that enhance the LLM’s judgment process.292

The answer fusion mechanism adaptively293

weights contributions from both modalities based294

on query characteristics and confidence metrics:295

ŷ = argmax
y

αPL(y|q, C+)+ (1−α)PV (y|q,F)296

where PL and PV represent probability distri-297

butions from LLM and VLM respectively, C+ de-298

notes enhanced captions, and α dynamically ad-299

justs based on query type and information com-300

pleteness. This adaptive fusion ensures each301

modality contributes according to its strengths.302

When available information remains insuffi-303

cient, the framework initiates iterative refinement304

by updating captions to incorporate missing de-305

tails. During updates, the system integrates tem-306

poral sequence information and previously over-307

looked visual details. The VLM dynamically308

adjusts frame sequence processing, incorporating309

both temporal context through frame intervals and310

spatial details based on enriched captions.311

The iterative nature creates a virtuous cycle: ini-312

tial coarse understanding guides targeted informa-313

tion extraction, which enables more precise rea-314

soning. Each iteration refines the context through315

query-specific processing, transforming video un-316

derstanding from exhaustive computation to intel-317

ligent, adaptive extraction.318

4 Experiments319

We conduct comprehensive experiments to320

validate CAVIA’s effectiveness in long-form321

video question answering. Our evaluation ad-322

dresses three key questions: (1) Does closed-loop323

reasoning-perception coordination outperform324

static pipelines? (2) How does dynamic prompt325

generation improve over fixed visual processing?326

(3) What are the contributions of each component327

in our iterative framework? We evaluate on328

three challenging benchmarks—EgoSchema,329

NExT-QA, and IntentQA—demonstrating that330

CAVIA achieves state-of-the-art performance331

while providing insights into the importance of 332

adaptive visual information extraction. 333

4.1 Datasets and Evaluation Metrics 334

We evaluate CAVIA on three complementary 335

datasets that test different aspects of video under- 336

standing: 337

EgoSchema(Mangalam et al., 2023): Contains 338

250+ hours of first-person videos with 5,000 339

multiple-choice questions. Provides both Subset 340

and Fullset evaluations, covering diverse human 341

activities and human-object interactions. 342

NExT-QA(Xiao et al., 2021): Comprises 5,440 343

videos ( 44 seconds each) with Temporal (Tem.), 344

Causal (Cau.), and Descriptive (Des.) question 345

types, emphasizing temporal and causal reasoning 346

evaluation. 347

IntentQA(Li et al., 2023a): Focuses on intent- 348

based reasoning requiring understanding of causal- 349

temporal relationships and underlying motivations 350

in sequential activities. 351

We use accuracy as the primary evaluation met- 352

ric, reporting the percentage of correctly answered 353

multiple-choice questions. For EgoSchema, we 354

evaluate on both Subset and Fullset categories; for 355

NExT-QA, we report Temporal, Causal, Descrip- 356

tive, and Average performance; for IntentQA, we 357

report overall average accuracy. 358

4.2 Experimental Results 359

4.2.1 Comparison with State-of-the-Art 360

Methods 361

Table 1 presents comprehensive comparisons 362

with existing approaches, categorized into two 363

paradigms: Vision-Centric Multimodal Architec- 364

tures that primarily rely on visual features, and 365

LLM-Driven Cross-Modal Synergy methods that 366

leverage language models for reasoning. 367

Overall Performance: CAVIA achieves new 368

state-of-the-art results across all benchmarks. On 369

EgoSchema, we attain 71.6% accuracy on Sub- 370

set (+5.4% over VideoTree) and 65.7% on Fullset 371

(+4.6%), demonstrating significant improvements 372

in long-form video understanding. For NExT-QA, 373

CAVIA reaches 76.1% average accuracy, surpass- 374

ing the previous best by 2.6%. Most notably, 375

on the challenging IntentQA dataset, our method 376

achieves 73.8%, a substantial 4.6% improvement 377

over MoReVQA. 378

Analysis by Question Type: The performance 379

breakdown reveals CAVIA’s strengths in complex 380
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Method LLM EgoSchema NExT-QA IntentQA

Sub. Full Tem. Cau. Des. Avg. Avg.

Vision-Centric Multimodal Architectures
SeViLA (Yu et al., 2023b) GPT-3.5 - - 61.3 61.5 75.6 63.6 60.9
LongViViT (Papalampidi et al., 2024) GPT-3.5 56.8 33.3 - - - - -
MC-ViT-L (Balažević et al., 2024) GPT-3.5 65.8 52.9 - - - - -
InternVideo2 (Wang et al., 2024a) GPT-4 66.4 55.8 - - - - -

LLM-Driven Cross-Modal Synergy
MVU (Ranasinghe et al., 2025) GPT-4 60.3 37.6 55.4 48.1 64.1 55.2 -
LLoVi (Zhang et al., 2024a) GPT-4 57.6 50.3 61.0 69.5 75.6 67.7 64.0
VideoAgent (Wang et al., 2025a) GPT-4 60.2 54.1 64.5 72.7 81.1 71.3 -
MoReVQA (Min et al., 2024) GPT-3.5 - - 64.6 70.2 - - 69.2
OptiGQA (Wang et al., 2025b) GPT-4 - - 65.8 72.3 78.0 71.0 68.7
VideoTree (Wang et al., 2025c) GPT-4 66.2 61.1 67.0 75.2 81.3 73.5 66.9

CAVIA(ours) GPT-4 70.8 65.7 70.2 75.7 79.2 74.5 72.8
CAVIA(ours) GPT-4.1 71.6 65.3 71.0 78.2 79.6 76.1 73.8

Table 1: Performance comparison on EgoSchema, NExT-QA, and IntentQA benchmarks. Methods are categorized
into Vision-Centric Multimodal Architectures and LLM-Driven Cross-Modal Synergy paradigms. For NExT-QA,
we report results on Temporal (Tem), Causal (Cau), and Descriptive (Des) question types. Bold indicates best
performance; underlined indicates second best; "-" denotes results not reported in original papers.

reasoning tasks. For temporal questions on NExT-381

QA, we achieve 71.0% accuracy compared to382

VideoTree’s 67.0%, demonstrating the effective-383

ness of our coarse-to-fine localization strategy. In384

causal reasoning (78.2% vs. 75.2%), the gains385

highlight how targeted multimodal prompting ex-386

tracts crucial cause-effect information missed by387

static approaches. While VideoTree slightly388

outperforms on descriptive questions (81.3% vs.389

79.6%), CAVIA’s consistent superiority in tempo-390

ral and causal categorieswhich require deeper un-391

derstandingvalidates our focus on dynamic infor-392

mation extraction.393

Vision-Centric vs. LLM-Driven Approaches:394

The results clearly demonstrate the limitations395

of pure vision-centric methods (e.g., SeViLA:396

63.6%) when handling complex reasoning.397

Among LLM-driven approaches, CAVIA’s closed-398

loop design consistently outperforms open-loop399

methods like LLoVi and VideoAgent, confirming400

that iterative refinement and reasoning-guided401

perception are crucial for comprehensive video un-402

derstanding. The performance gap is particularly403

pronounced on IntentQA, where understanding404

human intentions requires both visual details405

and sophisticated reasoningprecisely what our406

dynamic coordination enables.407

4.2.2 Ablation Study: Dissecting the Impact 408

of Core Components 409

To validate the effectiveness of our closed-loop 410

architecture, we conduct comprehensive ablation 411

studies examining how each component con- 412

tributes to overall performance. 413

Multimodal Coordination Analysis Figure 3 414

visualizes the performance comparison across dif- 415

ferent modalities on various reasoning dimensions. 416

We evaluate text-only baselines (leveraging only 417

caption information), video-only approaches (us- 418

ing VLM without iterative refinement), and our 419

complete CAVIA framework across temporal rea- 420

soning (Why, How, When), spatial understanding 421

(Loc, Bef&Aft), counting tasks (Cnt), and accu- 422

racy metrics for different question categories. 423

The results reveal striking patterns that vali- 424

date our design choices. Text-based methods ex- 425

cel at semantic reasoning (Acc_D: 79.5%) but 426

struggle with fine-grained spatial-temporal under- 427

standing, particularly in localization tasks (60.5%). 428

Conversely, video-based approaches demonstrate 429

strong spatial awareness (Loc: 88.81%) but fail to 430

maintain consistent performance across reasoning- 431

intensive categories. CAVIA achieves balanced 432

superiority across all dimensions, with particu- 433

larly notable improvements in temporal reason- 434
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Figure 3: Performance comparison of text-based meth-
ods, video-based methods, and CAVIA across multi-
ple NExT-QA reasoning dimensions including tempo-
ral (Why, How, When), spatial (Loc, Bef&Aft), count-
ing (Cnt), and accuracy metrics for different question
categories.

ing (Why: 78.2%, How: 78.2%, When: 77.7%)435

where the synergy between iterative caption en-436

hancement and targeted visual extraction proves437

most valuable. This comprehensive advantage438

confirms that our closed-loop coordination suc-439

cessfully bridges the complementary strengths of440

both modalities.441

Impact of Dynamic Prompt Generation Across442

LLM Scales Table 2 examines how CAVIA’s443

benefits scale across different base LLMs, from444

efficient models like Llama-3.1-8B (Vavekanand445

and Sam, 2024) to state-of-the-art systems in-446

cluding Llama-4-Scout (Meta AI, 2025) (a MoE447

architecture with selective parameter activation),448

DeepSeek-V3 (Liu et al., 2025), GPT-4 and GPT-449

4.12.450

CAVIA consistently outperforms caption-only451

COT baselines across all model scales. The452

improvements are particularly substantial with453

smaller models (Llama-3.1-8B: +5.5% on NExT-454

QA, +12.3% on IntentQA), where targeted multi-455

modal prompting compensates for limited reason-456

ing capacity. Even with powerful LLMs, CAVIA457

maintains significant gains (GPT-4.1: +4.3% on458

NExT-QA, +8.2% on IntentQA), demonstrating459

that our iterative refinement addresses a fundamen-460

2Both GPT-4 and GPT-4.1 can be accessed at https://
openai.com/

Method NExT-QA IntentQA

Baseline Methods
LLoViα 67.7 64.0
VideoTreeβ 73.5 66.9

Efficient LLMs
COT (Llama-3.1-8B) 55.7 41.5
CAVIA (Llama-3.1-8B) 61.2 53.8
Gain +5.5 +12.3

COT (Llama-4-Scout) 64.7 62.6
CAVIA (Llama-4-Scout) 70.6 67.9
Gain +5.9 +5.3

Large-Scale LLMs
COT (DeepSeek-V3) 71.8 67.3
CAVIA (DeepSeek-V3) 74.9 69.1
Gain +3.1 +1.8

COT (GPT-4) 70.4 64.9
CAVIA (GPT-4) 74.5 72.8
Gain +4.1 +7.9

COT (GPT-4.1) 71.8 65.6
CAVIA (GPT-4.1) 76.1 73.8
Gain +4.3 +8.2

Table 2: Ablation study examining CAVIA’s perfor-
mance gains across different base LLMs. We compare
our framework against caption-only chain-of-thought
(COT) baselines using models ranging from Llama-3.1-
8B to GPT-4.1. α (Zhang et al., 2024a), β (Wang et al.,
2025c).

tal limitation: the inability to dynamically request 461

missing visual details during reasoning. 462

The stronger gains on IntentQA across all mod- 463

els highlight how intent understanding critically 464

benefits from query-specific visual extraction, as 465

inferring human motivations requires nuanced in- 466

tegration of temporal dynamics and spatial con- 467

text that static captions cannot capture. These 468

model-agnostic improvements validate that closed- 469

loop reasoning-perception coordination represents 470

a fundamental advancement in video understand- 471

ing methodology, offering a principled solution 472

that enhances any language model’s ability to rea- 473

son about visual content. 474

Impact of Iterative Refinement Figure 4 475

demonstrates the effectiveness of our iterative re- 476

finement mechanism. The strong positive corre- 477

lation (r=0.932) between iteration count and ac- 478

curacy validates our closed-loop design: perfor- 479

mance steadily improves from 67% (single itera- 480
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Figure 4: Accuracy as a function of refinement iter-
ations on NExT-QA dataset. The plot shows perfor-
mance changes from iteration 1 to 4, with a trend line
indicating correlation (r=0.932).

tion) to 76% (four iterations), representing a sub-481

stantial 9% absolute gain.482

This consistent improvement pattern reveals483

how each refinement cycle serves a distinct pur-484

pose. Early iterations typically identify and ad-485

dress coarse-grained temporal gaps, while later486

cycles focus on fine-grained spatial details and487

causal relationships. During each iteration, the488

LLM identifies specific missing information and489

generates targeted prompts (e.g., "describe the tool490

manipulation sequence in frames 45-52"), ensur-491

ing that newly extracted information directly ad-492

dresses reasoning gaps rather than adding redun-493

dant details. This targeted approach explains the494

sustained performance gains across all refinement495

stages.496

4.3 Efficiency Analysis497

Figure 5 illustrates CAVIA’s efficiency characteris-498

tics by examining the relationship between compu-499

tational cost (number of captions processed) and500

performance on EgoSchema Subset. Our frame-501

work demonstrates strong performance across502

the entire computational spectrum, maintaining503

a consistently superior position in the efficiency-504

effectiveness space.505

This advantage stems from two key design506

choices. First, our hierarchical localization strat-507

egy prioritizes the most informative segments508

through coarse-to-fine filtering, maximizing early-509

stage performance gains. Second, the closed-loop510

architecture ensures intelligent resource utiliza-511

tion: the LLM evaluates information sufficiency512

at each step and generates targeted prompts only513

when additional details would improve reasoning,514
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Figure 5: Accuracy versus number of captions pro-
cessed on EgoSchema Subset. The plot compares
CAVIA with LLoVi and VideoTree across different
computational budgets.

preventing redundant processing while ensuring 515

comprehensive understanding. 516

CAVIA’s stable scaling behavior and flexible 517

computational profile make it particularly suitable 518

for real-world deployment. Whether operating un- 519

der tight resource constraints or with abundant 520

computational budget, the framework maintains 521

effectiveness through adaptive information extrac- 522

tion. This allows practitioners to dynamically 523

adjust the accuracy-computation trade-off based 524

on specific application requirements, providing a 525

practical solution for diverse video understanding 526

scenarios. 527

5 Conclusion 528

We presented CAVIA, a closed-loop framework 529

that fundamentally transforms video understand- 530

ing through dynamic reasoning-perception coordi- 531

nation. By establishing iterative feedback between 532

LLMs and VLMs, CAVIA addresses the critical 533

limitation of static pipelines: the inability to adapt 534

visual processing to query-specific needs. Our 535

hierarchical localization and targeted multimodal 536

prompting enable the system to progressively 537

identify and extract precisely the visual informa- 538

tion required for each unique query, transform- 539

ing video understanding from exhaustive computa- 540

tion to intelligent, adaptive extraction. Extensive 541

experiments across multiple benchmarks validate 542

CAVIA’s effectiveness and efficiency, demonstrat- 543

ing that dynamic coordination between reasoning 544

and perception represents a fundamental advance- 545

ment in video understanding methodology with 546

strong potential for real-world applications. 547
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Limitations548

While CAVIA demonstrates strong performance549

across multiple benchmarks, several limitations550

merit discussion. First, our iterative refine-551

ment mechanism increases computational over-552

head compared to single-pass methods, particu-553

larly when multiple iterations are required for com-554

plex queries. Although we show efficiency gains555

through intelligent caption selection, the cumula-556

tive cost of repeated LLM-VLM interactions may557

limit deployment in latency-sensitive applications.558

Second, CAVIA’s effectiveness relies on the qual-559

ity of initial captionsvideos with poor textual de-560

scriptions or highly ambiguous visual content may561

not benefit fully from our dynamic prompting ap-562

proach. Third, our current implementation uses563

fixed confidence thresholds for terminating itera-564

tions, which may not be optimal across all query565

types and video domains. Future work could ex-566

plore adaptive termination criteria and more ef-567

ficient architectures for iterative reasoning to ad-568

dress these limitations while maintaining the ben-569

efits of closed-loop coordination.570
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A System Implementation Details798

A.1 Framework Architecture799

The CAVIA framework implements closed-loop800

coordination between reasoning and perception801

through three interconnected modules: Hierarchi-802

cal Localization for coarse-to-fine filtering, Dy-803

namic Prompting for targeted instruction genera-804

tion, and Adaptive Extraction for multimodal anal-805

ysis. Given video V = {ft}Tt=1 with captions806

C = {ct}Tt=1, we iteratively refine understanding807

to find optimal answer a∗:808

a∗ = argmax
a∈A

P (a|q,V, C(k)) (1)809

where C(k) denotes enhanced captions at itera-810

tion k.811

A.2 Algorithm Description812

Algorithm 2 presents the complete framework813

with simplified notation for column constraints.814

Algorithm 2 CAVIA Framework
Require: Video V , Captions C, Question q
Ensure: Answer a

1: Init: ϕ← 0, k ← 0, C(0) ← C
2: Qs ← Decompose(q)
3: while ϕ < θ and k < K do
4: Br ← Retrieve(Qs, C(k))
5: G,Fg ← Analyze(q, Br)
6: if |G| > 0 then
7: P ← GenPrompts(G)
8: for (pi, fi) ∈ zip(P , Fg) do
9: di ← VLM(V , pi, fi)

10: C(k+1)[fi]←Merge(C(k)[fi], di)
11: end for
12: end if
13: aL, ϕL ← LLM(q, C(k+1))
14: aV , ϕV ← VLM(q, V)
15: a, ϕ← Fuse(aL, aV , ϕL, ϕV )
16: k ← k + 1
17: end while
18: return a

The algorithm operates through five carefully815

orchestrated phases, each contributing to the816

closed-loop refinement process:817

Phase 1 - Query Decomposition: The De-818

compose() function transforms complex, multi-819

faceted queries into atomic sub-questions Qs =820

{q1, q2, ..., qn}. This decomposition targets three821

primary aspects: temporal relations (e.g., ac- 822

tion sequences and timing), spatial configurations 823

(e.g., object locations and movements), and causal 824

dependencies (e.g., action-consequence relation- 825

ships). By breaking down complex queries, we 826

enable more precise retrieval and focused analysis 827

in subsequent phases. 828

Phase 2 - Hierarchical Retrieval: The Re- 829

trieve() function implements a two-stage filtering 830

mechanism. First, caption sequences are parti- 831

tioned into semantically coherent blocks Bi of size 832

w (typically 10 frames). Then, relevance scoring 833

is computed as: 834

s(Bi) = α · sim(q,Bi)+β
∑

qj∈Qs

sim(qj , Bi) (2) 835

where sim() computes cosine similarity in the em- 836

bedding space, Bi represents caption blocks, and 837

α, β are weighting parameters balancing global 838

query relevance against sub-question specificity. 839

To ensure high recall in the coarse localization 840

stage, we set the top-K value relatively large (typi- 841

cally K = 5), preventing potentially relevant seg- 842

ments from being prematurely excluded from the 843

reasoning pipeline during early iterations. This 844

conservative approach proves crucial for complex 845

queries where relevant information may be dis- 846

tributed across multiple non-adjacent segments. 847

Phase 3 - Gap Analysis: The Analyze() 848

function performs structured examination of re- 849

trieved content against query requirements. It 850

outputs a gap set G = {g1, g2, ..., gm} where 851

each gap gi is characterized by: (i) type ∈ 852

{temporal, spatial, causal}, (ii) associated frames 853

Fgi ⊂ {1, ..., T}, and (iii) specific information 854

requirements. This systematic categorization en- 855

ables targeted prompt generation in the next phase. 856

Phase 4 - Dynamic Prompt Generation: 857

Based on identified gaps, GenPrompts() creates 858

specialized instructions P = {p1, p2, ..., pm}. For 859

temporal gaps, prompts focus on action sequences 860

and state transitions across frame intervals. Spa- 861

tial prompts direct attention to specific regions or 862

object attributes within individual frames. The 863

prompt generation process adapts to both the gap 864

type and the specific visual content characteristics, 865

ensuring efficient information extraction. 866

Phase 5 - Multimodal Fusion: The Fuse() 867

function implements adaptive combination of 868

LLM and VLM predictions through confidence- 869
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#C C moves the brick mold close to the bricks on the
ground .
#C C wipes sand on the brick mold.
#C C wipes brick mold.
#C C wipes brick mold with his hand .
……
#C C puts sand in the brick mold.
#C C scoops mud.
……
#C C removes extra clay from the brick mold.
#C C turns the brick mold upside down.
#C C removes the brick mold from the clay mould .

       

Retriever

#C C moves the brick mold close to the
bricks on the ground .
#C C wipes sand on the brick mold.
#C C wipes brick mold.
#C C wipes brick mold with his hand .

#C C puts sand in the brick mold.
#C C scoops mud.

……

……

……

Question: What is the primary sequence of actions performed by c throughout the video, and how do these actions relate to the overall task being performed?

Fine frame
locator

#C C puts sand in
the brick mold.
#C C scoops mud.

...
...

#C C wipes sand
on the brick mold.

Question

Instruction
Generator

Where did C scoop the
mud to in the 15th frame?

What did this person do
in frames 160-180?

...

Instruction list

Vision tool

Key frameKey chunk

spatial mode

temporal mode

                 C scooped the mud into the brick mold
placed on the ground.

                         C cuts clay from the mould with his
hands, throws the excess wet clay on the heap of wet
clay, turns the mould upside down, removes the brick
mold, moves the brick mold closer to other bricks,
removes extra clay from the brick mold, turns the
brick mold upside down, and removes the brick mold
from the clay mould.

frame15:

frame160-180:

Visual Clue
C's brick-making process: moving and wiping the
mold, adding sand/clay, mixing mortar, removing
excess clay, inverting the mold to release the brick,
and repeating with adjustments to produce bricks
sequentially.

Answer
Aggregator

Yes

Update

optionA: C cleans brick mold with 
his hand.
optionB: ……
optionC: ……
optionD: ……
optionE: C scoops clay into the 
brick mold, removes clay from the 
brick mold, scoops mortar from a 
pile of mortar on the floor, slams 
mortar into the brick mold, scoops 
excess mortar from the brick 
mold, throws excess mortar on the 
pile of mortar in his front, adds 
clay from the floor on the brick 
mold, and drops brick from brick 
mold beside already made bricks 
on the floor.

summary

Figure 6: CAVIA’s iterative refinement on a brick-making task. The system progressively identifies missing clay
manipulation details through targeted prompts, demonstrating how closed-loop coordination enables comprehen-
sive understanding of complex sequential activities.

weighted aggregation:870

a = argmax
ai∈A

[γ(q) ·PL(ai)+ (1− γ(q)) ·PV (ai)]

(3)871

where γ(q) ∈ [0, 1] is a query-dependent weight-872

ing function learned from question characteris-873

tics, PL and PV represent probability distributions874

from LLM and VLM respectively. The weighting875

adapts based on query type: reasoning-heavy ques-876

tions favor LLM contributions (γ > 0.5), while877

visually-grounded queries emphasize VLM out-878

puts (γ < 0.5). This adaptive fusion ensures each879

modality contributes according to its strengths for880

the specific query at hand.881

B Experimental Analysis882

B.1 Case Study: Iterative Refinement883

Process884

Figure 6 demonstrates CAVIA’s iterative process885

on an EgoSchema brick-making task. Starting886

with fragmented captions like "C moves brick887

mold" and "C wipes sand", the system identifies888

critical gaps in understanding the complete work-889

flow.890

In the first iteration, the Retriever identifies rel-891

evant caption chunks while the Fine Frame Loca-892

tor pinpoints frames 15 and 160-180 as containing893

key information. The gap analysis reveals missing 894

details about tool usage and action sequencing. 895

The second iteration employs targeted prompt- 896

ing. For spatial understanding, the system queries 897

"Where did C scoop the mud to in the 15th 898

frame?", extracting contextual information about 899

workspace layout. For temporal dynamics, it gen- 900

erates "What did this person do in frames 160- 901

180?", capturing the detailed sequence of clay cut- 902

ting, mold manipulation, and brick formation. 903

The final synthesis combines enhanced captions 904

with visual analysis. The spatial mode identi- 905

fies tools and materials positioning, while tempo- 906

ral mode captures the complete action sequence: 907

scooping mud into molds, removing excess clay, 908

and systematic brick arrangement. This progres- 909

sive refinement transforms fragmented observa- 910

tions into coherent understanding of the brick- 911

making process. 912

B.2 Experimental Environment 913

Our experiments utilize a heterogeneous com- 914

puting environment. Llama-3.1-8B-Instruct and 915

Qwen2.5-VL runs on 2 * NVIDIA RTX 4090 916

GPU-24GB VRAM each, while Llama-4-Scout 917

requires 4 * NVIDIA A800 GPU-80GB VRAM 918

due to its MoE architecture. All other models in- 919
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cluding GPT-4, GPT-4.1 and DeepSeek-V3 are ac-920

cessed through API endpoints. The implementa-921

tion uses PyTorch 2.1.0 with CUDA 12.1, main-922

taining consistent hyperparameters across all ex-923

periments with confidence threshold 0.85, maxi-924

mum iterations 5, and temperature settings of 0 for925

LLMs and VLMs.926

B.3 Ablation Analysis: Component927

Contributions928

To validate the effectiveness of our closed-loop de-929

sign, we conduct comprehensive ablation studies930

examining both individual components and their931

interactions.932

B.3.1 Component Isolation Analysis933

We systematically remove each component to mea-934

sure its contribution:935

∆i = Acc(Full)− Acc(Full \ {i}) (4)936

where i represents individual components. Be-937

yond quantitative metrics, we analyze qualitative938

behavioral changes to understand each compo-939

nent’s role in the overall system.940

B.3.2 Interaction Effects and Synergy941

The interaction between components reveals inter-942

esting patterns. When combining hierarchical lo-943

calization with dynamic prompting, the joint im-944

provement exceeds the sum of individual contribu-945

tions:946

∆HL+DP > ∆HL +∆DP (5)947

This synergistic effect stems from the comple-948

mentary nature of our design: precise localiza-949

tion enables more targeted prompts, while better950

prompts improve the quality of retrieved informa-951

tion. The closed-loop architecture amplifies these952

benefits through iterative refinement.953

C Prompt Engineering954

C.1 Prompt Design Philosophy955

Our prompt system follows principles of clarity,956

specificity, and adaptability across five functional957

categories:958

Question Decomposition: Transforms com-959

plex queries into atomic sub-questions addressing960

temporal ("when did X happen?"), spatial ("where961

is Y located?"), and causal ("why did Z occur?")962

aspects.963

Gap Identification: Structures missing infor- 964

mation analysis with explicit categorization, en- 965

abling precise targeting of visual extraction ef- 966

forts. 967

Spatial Extraction: Directs VLM attention to 968

specific regions with clear attribute specifications, 969

focusing on object identities, positions, and fine- 970

grained features. 971

Temporal Extraction: Guides sequential anal- 972

ysis across frame intervals, emphasizing state 973

changes, motion patterns, and action continuity. 974

Cross-Modal Synthesis: Coordinates informa- 975

tion fusion between modalities with confidence- 976

based weighting, ensuring balanced contributions 977

based on query characteristics. 978
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