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Abstract

Differentially Private (DP) data release is a promis-
ing technique to disseminate data without compro-
mising the privacy of data subjects. However the
majority of prior work has focused on scenarios
where a single party owns all the data. In this paper
we focus on the multi-party setting, where different
stakeholders own disjoint sets of attributes belong-
ing to the same group of data subjects. Within the
context of linear regression that allow all parties
to train models on the complete data without the
ability to infer private attributes or identities of in-
dividuals, we start with directly applying Gaussian
mechanism and show it has the small eigenvalue
problem. We further propose our novel method and
prove it asymptotically converges to the optimal
(non-private) solutions with increasing dataset size.
We substantiate the theoretical results through ex-
periments on both artificial and real-world datasets.

1 INTRODUCTION

The machine learning community has greatly benefited from
open and public datasets [Chapelle and Chang, 2011, Real
et al., 2017, Fast and Horvitz, 2017, Kong et al., 2020].
Unfortunately the privacy concern of data release signifi-
cantly limits the feasibility of sharing many rich and useful
datasets to the public, especially in privacy-sensitive do-
mains like health care, finance, and government etc. This
restriction considerably slows down the research in those
areas as well as the general machine learning research given
many of today’s algorithms are data-hungry. Recently, legal
and moral concerns on protecting individual privacy become
even greater. Most countries have imposed strict regulations
on the usage and release of sensitive data, e.g. CCPA [Leg-
islature, 2018], HIPPA [Act, 1996] and GDPR [Parliament
and of the European Union, 2016]. The tension between
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Figure 1: An illustration of how data is distributed in the
health care example. Clinics have the same set of patients,
but different attributes such as blood test results, CT images
and the degree of liver cancer.

protecting privacy and promoting research drives the com-
munity as well as many ML practitioners into a dilemma.

Differential privacy (DP) [Dwork, 2011, Dwork et al., 2006,
2014, Sheffet, 2017, Lee et al., 2019, Xu et al., 2017, Ken-
thapadi et al., 2012] is shown to be a promising direction to
release datasets while protecting individual privacy. DP pro-
vides a formal definition of privacy to regulate the trade-off
between two conflicting goals: protecting sensitive infor-
mation and maintaining data utility. In a DP data release
mechanism, the shared dataset is a function of the aggregate
of all private samples and the DP guarantees regulate how
difficult for anyone to infer the attributes or identity of any
individual sample. With high probability, the public data
would be barely affected if any single sample were replaced.

Despite the ongoing progress of DP data release, the ma-
jority of the prior work mainly focuses on the single-party
setting which assumes there is only one party that would
release datasets to the public. However in many real-world
scenarios, there exist multiple parties who own data relevant
to each other and want to collectively share the data as a
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whole to the public. For example, in health care domain,
some patients may visit multiple clinics for specialized treat-
ments (Figure 1), and each clinic only has access to its own
attributes (e.g. blood test and CT images) collected from the
patients. For the same set of patients, attributes combined
from all clinics can be more useful to train models. In gen-
eral, the multi-party setting assumes multiple parties own
disjoint sets of attributes (features or labels) belonging to
the same group of data subjects (e.g. patients).

One straightforward approach to release data in a multi-party
setting is combining data from all parties in a centralized
place (e.g. one of the data owners or a third-party), and
then releasing it using a private single-party data release
approach. However, in a privacy-sensitive organization like
a clinic, sending data to another party is prohibited by policy.
An alternative approach is to let each party individually re-
lease its own data to the public through adding sample-wise
Gaussian noise, and then ML practitioners can combine the
data together to train models. However the resulting models
trained on the data combined in this way would show a sig-
nificantly lower utility compared to the models trained on
non-private data (confirmed by experiments in Section 5).
To bridge this utility gap, we propose new algorithms specif-
ically designed for multi-party setting.

In summary, we study DP data release in multi-party set-
ting where parties share attributes of the same data subjects
publicly through a DP mechanism. It protects the privacy
of all data subjects and can be accessed by the public, in-
cluding any party involved. To this end, we propose the
following two differentially private algorithms, both based
on Gaussian DP Mechanism [Dwork et al., 2014] within
the context of linear regression. First, in De-biased Gaus-
sian Mechanism for Ordinary Least Squares (DGM-OLS),
each party adds Gaussian noise directly to its data. The
learner with the public data is able to remove a calculated
bias from the Hessian matrix. However, we show that bias
removal brings the small eigenvalue problem. Hence, we
propose the second method Random Mixing prior to Gaus-
sian Mechanism for Ordinary Least Squares (RMGM-OLS).
A random Bernoulli projection matrix is shared to all parties,
and each party uses it to project its data along sample-wise
dimension before adding Gaussian noise. We prove that both
algorithms are guaranteed to produce solutions that asymp-
totically converge to the optimal solutions (i.e. non-private)
as the dataset size increases. Through extensive experiments
on both synthetic and real-world datasets, we show the latter
method achieves the theoretical claims and outperforms the
first method that naively adapts Gaussian mechanism.

2 PRELIMINARY

A sequence {Xn} of random variables in Rd is defined to
converge in probability towards the random variable X if

for all β > 0,

lim
n→∞

P [‖Xn −X‖ > β] = 0.

The norm notation ‖·‖ denotes `2 norm in our paper. We
denote this convergence as plimn→∞Xn = X .

Differential privacy (DP; [Dwork et al., 2006, 2014]) is
a quantifiable and rigorous privacy framework, which is
formally defined as follows.

Definition 1 ((ε, δ)-differential privacy). A randomized
mechanism M : D → R with domain D and range R
satisfies (ε, δ)-differential privacy if for any two adjacent
datasets D,D′ ∈ D, which differ at exactly one data point,
and for any subset of outputs S ⊆ R, it holds that

P[M(D) ∈ S] ≤ eε · P[M(D′) ∈ S] + δ.

Gaussian mechanism [Dwork et al., 2014] is a post-hoc
mechanism to convert a deterministic real-valued function
f : D → Rm to a randomized algorithm with differential
privacy guarantee. It relies on sensitivity of f , denoted by
Sf , which is defined as the maximum difference of out-
put ‖f(D)− f(D′)‖. We define Gaussian mechanism for
differential privacy as below.

Lemma 1 (Gaussian mechanism). For any deterministic
real-valued function f : D → Rm with sensitivity Sf , we
can define a randomized function by adding Gaussian noise
to f :

fdp(D) := f(D) +R,

where R is sampled from a multivariate normal distribution

N
(
0, S2

fσ
2 · I

)
. When σ ≥

√
2 log(1.25/δ)

ε , fdp is (ε, δ)-
differentially private for 0 < ε ≤ 1 and δ > 0.

To simplify notations, we define σε,δ :=

√
2 log(1.25/δ)

ε .

Johnson-Lindenstrauss lemma (JL; [Johnson and Linden-
strauss, 1984, Achlioptas, 2003]) is a technique to compress
a set of vectors S = {v1, · · · , vl} with dimension d to a
lower dimension space k < d. With a proper selection k,
it is able to approximately preserve the inner product be-
tween any two vectors in the set S with high probability. We
specifically introduce the Bernoulli version of JL Lemma,
which is extended from Theorem 1.1 in Achlioptas [2003].

Lemma 2 (JL Lemma for inner-product preserving
(Bernoulli)). Suppose S is an arbitrary set of l points in Rd

and suppose s is an upper bound for the maximum `2-norm
for vectors in S. LetB be a k×d random matrix, whereBij
are independent random variables taking value from 1 or
−1 with probability 1/2 respectively. With the probability

at least 1− (l+ 1)2 exp
(
−k
(
β2

4 −
β3

6

))
, ∀u,v ∈ S, we

have

u>v

s2
− 4β ≤

(
Bu/
√
k
)> (

Bv/
√
k
)

s2
≤ u>v

s2
+ 4β.



3 NOTATION AND PROBLEM SETUP

Notations. Denote Dj , j = 1, · · · ,m, as data matrices
for m parties, where Dj ∈ Rn×dj and m ≥ 2. They are
aligned by the same set of subjects but have different at-
tributes and they have the same number of samples. Define
D =

[
D1, · · · , Dm

]
∈ Rn×(d+1) as the collection of all

datasets, where d = d1 + · · · + dm − 1. We define d by
subtracting 1 from the total number of attributes because
one column is label which we need to treat separately. De-
fine dmax = maxj∈[m] dj , and Di as the i-th row of D, we
make the following assumption on data distribution:

Assumption 1. Di, i = 1, · · · , n, are i.i.d sampled from
an underlying distribution P over Rd+1.

Dataset release algorithm. A private multi-party data re-
lease algorithm needs to protect both inter-party and intra-
party communications. The general workflow of our pro-
posed algorithms is designed as the following:

1. Pre-generate random variable B. The pre-generated one
or more random variables will be shared among parties.

2. Privatize the dataset locally with the algorithm Apriv.
Each party applies the same privatizing algorithm Apriv

that takes the local dataset Dj ∈ Rn×dj and the random
matrix B as the inputs and then outputs k (predefined)
“encrypted” samples

(
Dpub

)j
:= Apriv(Dj ;B) ∈

Rk×dj .
3. Release the dataset. All parties jointly release Dpub =

[
(
Dpub

)1
, · · · ,

(
Dpub

)m
] ∈ Rk×(d+1) to the public.

Note that we need to specially design random variableB and
the privatizing algorithm Apriv, which we will introduce in
the next section. In addition, the random variable B allows
the dependencies between the randomized output from all
parties, which can be utilized to guarantee the final utility.

Privacy constraint. Since the public will observe the re-
leased dataset Dpub, for each j ∈ [m],

(
Dpub

)j
should not

leak the information of the private dataset Dj . Formally
we require ∀j ∈ [m], Apriv(Dj ;B) is differentially private,
where two neighbouring datasets Dj and

(
Dj
)′

differ at
one row (sample).

However the multi-party setting requires more than the
above guarantee because each party j′ 6= j not only
observes Dj but also the shared random variable B.
Thus we need to further require that given B, each
party j cannot infer information about other private
datasets Dj . In terms of differential privacy, it is required
that condition on B for any possible sample value I ,
Apriv(Dj ;B) is (ε, δ)-differentially private, i.e. for any
two neighbouring datasets Dj and

(
Dj
)′

and B, we have

P(Apriv(Dj ;B)|B) ≤ eε · P
((
Apriv

((
Dj
)′

;B
)∣∣∣B)+ δ.

Utility target. We aim to guarantee the performance of
arbitrary linear regression task (arbitrarily selected label
and features) on the joint released dataset

[
D1, · · · , Dm

]
.

Out of the notation simplicity, we assume the label in the
linear regression task is the last attribute, and the features
are the rest of the attributes. Under this assumption, the joint
private datasetD can be written as [X,Y ], whereX ∈ Rn×d

is the private feature matrix and Y ∈ Rn is the private label
vector. Similarly the public dataset Dpub can be written as
[Xpub, Y pub], where Xpub ∈ Rk×d and Y pub ∈ Rk.

We define the loss function by the expected squared loss:

L(w;P) = E(x,y)∼P
[
(w>x− y)2

]
, (1)

where the data point is sampled from the distribution P
in Assumption 1. We make two more assumptions for the
distributionP : the standard normalization and the no perfect
multicollinearity assumption. The latter is common in the
literature of linear regression [Farrar and Glauber, 1967,
Chatterjee and Hadi, 2006].

Assumption 2. The absolute values of all attributes |Dij |
are bounded by 1.

Assumption 3. E(x,y)∼P
[
xx>

]
is positive definite.

Under Assumption 3, derived by setting ∇wL(w;P) = 0,
the optimal solution w∗ to the loss in Equation 1 has the
following explicit form:

w∗ =
(
E(x,y)∼P

[
xx>

])−1
E(x,y)∼P [x · y] .

The utility target (for the trained linear regression model) is
determined by our release algorithm (B,Apriv). For a given
public dataset Dpub released by our algorithms, we define
our utility target as the existence of a training algorithm Alr

that achieves the asymptotic property for the trained model
weights ŵn := Alr

(
Dpub

)
as the dataset size n → ∞.

The asymptotic property is commonly studied in differential
privacy [Chaudhuri and Hsu, 2011, Bassily et al., 2014, Feld-
man et al., 2020] and we restate it as follows: ŵn converges
to w∗ in probability as the size of dataset n increases, i.e.
∀β > 0, limn→∞ P [‖ŵn −w∗‖ > β] = 0. The random-
ness from the above property comes from data sampling
P , dataset release algorithm (B,Apriv), and the training
algorithm Alr.

4 METHODOLOGY

We now describe our data release algorithms which both sat-
isfy the differential privacy and yield asymptotically optimal
solutions to the linear regression task. We start with the first
algorithm De-biased Gaussian Mechanism for Ordinary
Least Squares (DGM-OLS), which directly applies Gaus-
sian mechanism when releasing the data and then de-biases



Algorithm 1 DGM-OLS
Dataset Release

1: Input: D =
[
D1, · · · , Dm

]
, ε, δ.

2: for j = 1, · · · ,m do
3: The party j computes

(
Ddgm

)j
:= Dj +Rj , where

Rj ∈ Rn×dj is a random Gaussian matrix and elements
in Rj are i.i.d sampled from N

(
0, 4dmax · σ2

ε,δ

)
.

4: end for
5: Return: Ddgm =:

[(
Ddgm

)1
, · · · ,

(
Ddgm

)m]
.

Training Algorithm
1: Input: Ddgm, ε, δ
2: [Xdgm, Y dgm] = Ddgm

3: Compute the de-biased Hessian matrix Ĥdgm
n :=

1
n

(
Xdgm

)>
Xdgm − 4dmaxσ

2
ε,δ · I

4: ŵdgm
n :=

(
Ĥdgm
n

)−1 (
1
n

(
Xdgm

)>
Y dgm

)
.

5: Return: ŵdgm
n .

the Hessian matrix when training the model. However the
de-bias operator introduces the possible inverse of a matrix
with small eigenvalues, which severely hurts the perfor-
mance of the learned model. We therefore propose a novel
dataset release algorithm rather than the directly application
to Gaussian mechanism – Random Mixing prior to Gaus-
sian Mechanism for Ordinary Least Squares (RMGM-OLS).
The model learned from the corresponding released public
dataset is also guaranteed to be asymptotically optimal, and,
more importantly, avoids the problem of small eigenvalues.

4.1 DE-BIASED GAUSSIAN MECHANISM
(DGM-OLS)

The De-biased Gaussian Mechanism for Ordinary Least
Squares (DGM-OLS) includes the dataset release algo-
rithm and the corresponding training algorithm. Algorithm 1
shows the overview and we will introduce them next.

Dataset release algorithm. Each party directly applies
Gaussian mechanism to their own dataset Dj (j = 1, · · ·m)
to satisfy the differential privacy. Consider two neighboring
data matrices Dj and

(
Dj
)′

differing at exactly one row
with the row index i. Implied by Assumption 2, we can
compute the sensitivity of the data matrix Dj :∥∥∥Dj −

(
Dj
)′∥∥∥ =

∥∥∥∥Dj
i −

(
Dj
i

)′∥∥∥∥ ≤ 2
√
dj ≤ 2

√
dmax.

Then each party independently adds a Gaussian noise Rj to
Dj . Entries in Rj are i.i.d sampled from Gaussian distribu-
tion N (0, 4dmaxσ

2
ε,δ).

The dataset release algorithm meets the privacy constraints
in section 3. No random matrix B is shared among dif-

ferent parties. Lemma 1 guarantees that
(
Ddgm

)j
is (ε, δ)-

differentially private w.r.t. Dj for any 0 < ε ≤ 1, δ > 0.

Training algorithm. Given the dataset released through
the above algorithm, there exists an asymptotic linear
regression solution. Denote the feature matrix and the
label vector of the private and public joint dataset as
[X,Y ] = D and [Xdgm, Y dgm] = Ddgm. Further define
R :=

[
R1, · · · , Rm

]
∈ Rn×(d+1) and split R into RX and

RY representing the additive noise to X and Y respectively.

Consider the ordinary least square solution for the public
data Xdgm and Y dgm, whose explicit form is:((

Xdgm
)>
Xdgm

) (
Xdgm

)>
Y dgm. (2)

Compared with our target solution w∗ =(
E(x,y)∼P

[
xx>

])−1
E(x,y)∼P [x · y], we can prove

that plimn→∞
1
n

(
Xdgm

)>
Y dgm = E(x,y)∼P [x · y] by the

concentration of bounded random variables and multivariate
normal distribution. Nevertheless, there is a gap between
plimn→∞

1
n

(
Xdgm

)>
Xdgm and E(x,y)∼P

[
xx>

]
:

plim
n→∞

1

n

(
Xdgm

)>
Xdgm

= plim
n→∞

1

n

(
X>X +X>RX +R>XX +R>XRX

)
= E(x,y)∼P

[
xx>

]
+ 4dmaxσ

2
ε,δ · I,

where the last equation again holds by the concentration
of bounded random variables and multivariate normal
distribution. To reduce the bias 4dmaxσ

2
ε,δ · I , we can revise

the solution computation in Equation 2 to ŵdgm
n defined as(

1

n

(
Xdgm

)>
Xdgm − 4dmaxσ

2
ε,δ · I

)−1(
1

n

(
Xdgm

)>
Y dgm

)
.

The first term is estimated for the inverse of the Hessian ma-
trix E(x,y)∼P

[
xx>

]
, which we denote as (Ĥdgm

n )−1. The
asymptotic optimality for the solution ŵdgm

n is implied by
the theorem below and the proof is in the Appendix.

Theorem 1. When β ≤ c for some variable c that is depen-
dent of σε,δ , d, and P , but is independent of n,

P
[
‖ŵdgm

n −w∗‖ > β
]
< exp

(
−Õ

(
β2 n

σ4
ε,δd

2d2max

))
,

Problem of small eigenvalues. The expectation of Ĥdgm
n

is a positive definite matrix given Assumption 3, but the
sample of Ĥdgm

n itself is not guaranteed. With a certain prob-
ability, it has small eigenvalues that might lead to explosion
when computing its inverse. In our experiments (section 5),
we find that Ĥdgm

n suffers from the small eigenvalues even
if n is as large as 106. As a result, the model utility is much
more inferior than what is guaranteed theoretically. This
motivates us to design the second algorithm.



Algorithm 2 RMGM-OLS
Dataset Release

1: Input: D =
[
D1, · · · , Dm

]
, ε, δ, k.

2: The first party pre-generates a k × n random matrix
B where all entries in B are i.i.d. sampled from the
distribution with probability 1/2 for 1 and 1/2 for −1.
Then first party sends the random matrix sample B to
all parties.

3: for j = 1, · · · ,m do
4: The party j computes (Drmgm)

j
:= BDj/

√
k+Rj ,

where Rj is a k × dj random matrix and all elements
in Rj are i.i.d. sampled from the multivariate normal
distribution N

(
0, 4dmaxσ

2
ε,δ

)
.

5: end for
6: Return: Drmgm :=

[
(Drmgm)

1
, · · · , (Drmgm)

m
]
.

Training Algorithm
1: Input: Drmgm, ε, δ
2: [X rmgm, Y rmgm] = Drmgm

3: Compute the ordinary least square solution

ŵrmgm
n :=

(
(X rmgm)

>
X rmgm

)−1
(X rmgm)

>
Y rmgm.

4: Return: ŵrmgm
n .

4.2 RANDOM MIXING PRIOR TO GAUSSIAN
MECHANISM (RMGM-OLS)

In previous method’s dataset release stage, when we directly
add the Gaussian additive noise R to the data, in order to
guarantee DP, the norm of the noise needed has to be the
same order (in n) as the norm of the data matrix D. Both D
and R have norm in Θ(

√
n). Thus later in the training stage,

the additive noise R when compared to the data matrix X
would not diminish as n → ∞ and we have to subtract
4dmaxσ

2
ε,δ · I from

(
Xdgm

)>
Xdgm to remove this additive

noise in order to obtain the optimal model weights. This
subtraction is the problematic part that brings training insta-
bility (small eigenvalues in the Hessian matrix).

Instead, we can avoid such subtraction in the training stage
by imposing a smaller noise in the data release stage. If
we can design the data release stage properly, so that the
addictive noise has relatively smaller order in n than D, in
the later training stage, the learner would no longer need the
problematic de-biasing step.

Algorithm 2 shows the full details of Random Mixing
prior to Gaussian Mechanism for Ordinary Least Squares
(RMGM-OLS). We now explain the design of data release
and training algorithm based on the above insights.

Dataset release algorithm. Suppose b is an n-
dimensional vector in {−1, 1}n. For any two neighbouring
daasets Dj and

(
Dj
)′

that are different at row index i, the
sensitivity of b>Dj is

∥∥∥b>Dj − b>
(
Dj
)′∥∥∥ =

∥∥∥∥Dj
i −

(
Dj
i

)′∥∥∥∥ ≤ 2
√
dj ≤ 2

√
dmax.

Moreover, when B ∈ {−1, 1}k×n, BDj/
√
k has sensitiv-

ity 2
√
dmax as well.

We now introduce the data release algorithm. Suppose all
parties are sharing a random matrix B ∈ {−1, 1}k×n,
where all elements in B are i.i.d. sampled from the dis-
tribution with probability 1/2 for 1 and 1/2 for −1. Then
we define the local computation for each party j:

(Drmgm)
j

:= BDj/
√
k +Rj ,

where Rj is a k × dj random matrix and all elements in Rj

are i.i.d. sampled from the multivariate normal distribution
N
(

0, 4dmaxσ
2
ε,δ

)
. Gaussian mechanism guarantees for any

fixed B ∈ {1,−1}k×n, (Drmgm)
j is (ε, δ)-differentially

private w.r.t. the dataset Dj for 0 < ε ≤ 1, δ > 0.

Importantly, now the addictive noise Rj is relatively small
than BDj/

√
k. The order of ‖Rj‖ is Θ(k) while the order

of
∥∥∥BDj/

√
k
∥∥∥ ≈ ‖Dj‖ is Θ(n) (by JL Lemma). If we set

k = o(n), the additive noise compared to the original data
matrix D will diminish as n → ∞. This implies that the
standard ordinary least square solution to the public dataset
[X rmgm, Y rmgm] would converge to the optimal solution w∗

without special subtraction.

Training algorithm. Given the feature matrixX rmgm and
the label vector Y rmgm from the released dataset, we show
that the vanilla ordinary least square solution

ŵrmgm
n :=

(
(X rmgm)

>
X rmgm

)−1
(X rmgm)

>
Y rmgm

is asymptotically optimal, i.e. plimn→∞ ŵrmgm
n = w∗.

To prove the above asymptotic optimality, we show
plimn→∞ (X rmgm)

>
X rmgm = E(x,y)∼P

[
xx>

]
and

plimn→∞ (X rmgm)
>
Y rmgm = E(x,y)∼P [x · y] respec-

tively, and together they prove the optimality.

Define R =
[
R1, · · · , Rm

]
∈ Rk×(d+1) and

split R into RX and RY representing the additive
noises to BX/

√
k and BY/

√
k respectively. Because

plimn→∞
1
nX
>X = E(x,y)∼P

[
xx>

]
, it is sufficient to

show plimn→∞
1
n (X rmgm)

>
X rmgm − 1

nX
>X = 0. Now

we decompose 1
n (X rmgm)

>
X rmgm − 1

nX
>X as below:

1

n

X> B>B
k

X −X>X


︸ ︷︷ ︸

Lemma 2

+ 1

n

X> B>√
k
RX + R

>
X

B
√
k
X


︸ ︷︷ ︸

cvg. of gauss. dist.

+ 1

n
R
>
XRX︸ ︷︷ ︸

k = o(n)

.

We informally show how each term converges to 0 as n→
∞:

1. 1
n

(
X>B

>B
k X −X>X

)
. If k → ∞ as n → ∞, the

convergence is directly implied by Lemma 2.



2. 1
n

(
X>B

>
√
k
RX +R>X

B√
k
X
)

. Properties of normal dis-

tribution guarantees the approximation B>√
k
RX ≈

R′X , where R′X ∈ Rn×d is a Gaussian matrix

with N
(

0, 4dmaxσ
2
ε,δ

)
. Then

∥∥∥ 1
nX
>B>√

k
RX

∥∥∥ ≈

‖ 1nX
>R′X‖ = O

(
1√
n

)
.

3. 1
nR
>
XRX . If k → ∞ as n → ∞,

∥∥ 1
kR
>
XRX

∥∥ will con-
verge to 4dmaxσ

2
ε,δ ·I . On the other hand, when k = o(n),

k
n · 4dmaxσ

2
ε,δ · I will converge to 0 as n→∞.

Notice that the above convergence relies on the proper se-
lection of k. There exists a trade-off: larger k leads to better
convergence rate of the first term, but worse rate for the di-
minishing of additive noise – the third term. The following
theorem shows the exact asymptotic rate:

Theorem 2. When β ≤ c for some variable c that is
dependent of d and P , but independent of σε,δ , n, we have

P [‖ŵrmgm
n −w∗‖ > β] <

exp

(
−O

(
min

{
kβ2

d2
,

nβ

kddmaxσ2
ε,δ

,
n1/2β

dd
1/2
maxσε,δ

})
+ Õ(1)

)
.

If we choose k = O

(
n1/2d1/2

d
1/2
maxσε,δ

)
, then

P [‖ŵrmgm
n −w∗‖ > β] <

exp

(
− n1/2β

d3/2d
1/2
maxσε,δ

·O (min {1, β}) + Õ(1)

)
.

In the theorem, k is selected to balance kβ2

d2 and nβ
kddmaxσ2

ε,δ
.

To achieve the optimal rate for f(β) with any fixed β, the

optimal k is chosen as O
(
n1/2d1/2

d
1/2
maxσε,δ

)
.

Comparison with DGM-OLS. The near-zero eigenvalue
issue is solved since (X rmgm)

>
X rmgm � 0 holds naturally

by its definition. Moreover, although the convergence rate
of n is sacrificed, the orders in d, dmax and σε,δ are much
improved. In section 5 we show that the RMGM-OLS out-
performs DGM-OLS on both synthetic datasets even when
n is as large as 3× 106.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate DGM-OLS and RMGM-OLS
on both synthetic and real world datasets. Our experiments
on synthetic dataset are designed to verify the theoretical
asymptotic results in section 4 by increasing the training
set size n. We further justify the algorithm performance on
five real-world datasets, four from UCI Machine Learning
Repository1 [Dua and Graff, 2017] and one from kaggle.

1https://archive-beta.ics.uci.edu/ml/
datasets

5.1 EXPERIMENT SET-UP

Algorithm set-up. We evaluate both DGM-OLS and
RMGM-OLS. For k in RMGM-OLS, we set k =

√
n

σε,δ
in

synthetic dataset experiments and select the best k from
{102, 3×102, 103, 3×103, 104} in real-world dataset exper-
iments. Because of the numerical instability of computing
Hessian inverse mentioned early, we add small λ · I with
λ = 10−5 to all Hessian matrices.

Baseline. In addition, we consider the following baselines
to help qualify the performance of proposed algorithms.

• OLS: The explicit solution for linear regression given train-
ing data (X,Y ) and serves as the performance’s upper
bound for private algorithms, i.e. non-private solution.

• Biased Gaussian mechanism (BGM-OLS): The same
data release algorithm in DGM-OLS, but has a dif-
ferent training algorithm. Given a released dataset
(Xbgm, Y bgm) by Gaussian mechanism, BGM-OLS out-
puts the vanilla ordinary least square solution ŵbgm

n =((
Xbgm

)>
Xbgm

)−1 (
Xbgm

)>
Y bgm. In other words, it

is DGM-OLS without training debiasing.

Evaluation metric. In the experiments on synthetic
datasets, we estimate the probability of the `2 distance be-
tween the model weights ŵn from each algorithm or base-
line and the ground truth model weight w∗:

P (‖ŵn −w∗‖ > β) .

We also evaluate the expectation of the `2 distance between
weights for different algorithms:

E ‖ŵn −w∗‖ .

If an algorithm is asymptotically optimal, we can see
both P (‖ŵn −w∗‖ > β) and E ‖ŵn −w∗‖ converge to 0
when n increases.

For the experiments on real world datasets, we evaluate
learned models ŵn by the mean squared loss on the test set.

5.2 EVALUATION ON SYNTHETIC DATASETS

Data generation. We define the feature dimension d =
10. Each weight value of the ground truth linear model w∗ is
independently sampled from uniform distribution between
−1/d and 1/d. A single data point (x, y) is sampled as the
following: each feature value in x is independently sam-
pled from a uniform distribution between −1 and 1; label
y is computed as (w∗)

>
x. Two assumptions for the data

distribution P , Assumption 2 and Assumption 3, can be
verified. Moreover, we set 6 parties in total, 5 of which have
2 attributes and the remaining one has 1 attribute.

https://archive-beta.ics.uci.edu/ml/datasets
https://archive-beta.ics.uci.edu/ml/datasets
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Figure 2: P [‖ŵn −w∗‖ > β] and E [‖ŵn −w∗‖] as dataset size n increases for different algorithms when ε = 1.0, 0.3, 0.1.
For all pairs of (ε, β) except two most extreme cases (0.3, 0.1) and (0.1, 0.1), RMGM-OLS shows asymptotic tendencies
plimn→∞ P [‖ŵrmgm

n −w∗‖ > β] = 0. DGM-OLS does not show such tendencies even when training set size n is as large
as 3× 106.
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Figure 3: Scatter plots of `2 distance versus minimum absolute eigenvalue of Hessian matrix. The left figure is for the
synthetic dataset when n = 106 and ε = 1.0. The right figure is for the Insurance dataset when ε = 1.0. Each point
is processed by a different random seed for DGM-OLS and RMGM-OLS. Both figures show that the Hessian matrix in
DGM-OLS is more likely to have small eigenvalues, which further lead to large distance ‖ŵn −w∗‖2.

Results. We vary the training set size n ∈ {104, 3 ×
104, 105, 3 × 105, 106, 3 × 106} and privacy budget ε ∈
{1, 0.3, 0.1} with fixed δ = 10−5. We estimate the
P [‖wn −w∗‖ > β] and E‖wn − w∗‖ for different al-
gorithms with 1000 random seeds. Figure 2 shows how
P [‖wn −w∗‖ > β] and E‖wn − w∗‖ of each algorithm
change when training set size n increases.

Regarding two baselines, P [‖wn −w∗‖ > β] of OLS so-
lutions, without any private constraint, are close to the
ground truth w∗ under all β with probability 0. Nonethe-
less, P [‖wn −w∗‖ > β] of BGM-OLS keeps mostly un-
changed as n increases. Especially, P [‖wn −w∗‖ > 0.1]

stays at 1 for all n. Such results are expected in BGM-OLS’s
convergence: plimn→∞

1
n

(
Xbgm

)>
Xbgm = Ex

[
xx>

]
+

4dmaxσ
2
ε,δ · I , which introduces a non-diminishing bias

4dmaxσ
2
ε,δ · I .

Next, we compare DGM-OLS and RMGM-OLS. RMGM-
OLS outperforms DGM-OLS at both the convergence of
probability P [‖wn −w∗‖ > β] (the first three figures in
Figure 2) and the expected distance E [‖wn −w∗‖] (the
last figure in Figure 2). RMGM-OLS shows the asymptotic
tendencies in all values of β when ε = 1.0. Although DGM-
OLS has better rate at n than RMGM-OLS theoretically,
n = 3 × 106 is not large enough to show the asymptotic



tendencies for DGM-OLS.

DGM-OLS is even much worse than BGM-OLS, which is
almost random guess. It is caused by the small eigenvalue is-
sue discussed in section 4. To illustrate it, Figure 3 (a) shows
the scatter plot, where the x-axis is minimum eigenvalues of
the Hessian matrix Ĥn and y-axis is the distance between
our solutions and the optimal solution ‖ŵn − w∗‖. Each
point is processed by a different random seed for DGM-OLS
and BGM-OLS when n = 106 and ε = 1.0. ‖ŵn − w∗‖
and the minimum absolute eigenvalues of Ĥn have a strong
positive correlation. With a certain probability, the mini-
mum eigenvalue of DGM-OLS is smaller than 10−2 and
corresponding ‖wn −w∗‖ is larger than 10.

Overall RMGM-OLS has the best empirical performance
across various settings of ε and n on the synthetic data, as
its asymptotically optimality is verified and it consistently
outperforms two other private algorithms when n is large
enough. Though DGM-OLS seems to have stronger theoret-
ical guarantee in the aspect of rate in n, its poor empirical
performance comes from two aspects: 1. small eigenval-
ues occur due to the design of the training algorithm; 2.
extremely large n is necessary to show the asymptotic opti-
mality due to the worse rates of d, dmax and σε,δ .

5.3 EVALUATION ON REAL WORLD DATASETS

Dataset. We experiment with five datasets:

• Insurance [Lantz, 2019]: predicting the insurance pre-
mium from features including age, bmi, expenses, etc.

• Bike [Fanaee-T and Gama, 2014]: predicting the count of
rental bikes from features such as season, holiday, etc.

• Superconductor [Hamidieh, 2018]: predicting critical tem-
perature from chemical features.

• GPU [Ballester-Ripoll et al., 2019, Nugteren and Co-
dreanu, 2015]: predicting Running time for multiplying
two 2048×2048. matrices using a GPU OpenCL SGEMM
kernel with varying parameters.

• Music Song [Bertin-Mahieux et al., 2011]: predicting the
release year of a song from audio features.

We split the original dataset into train and test by the ratio 4 :
1. The number of training data n, the number of features d
and the number of parties are listed in Table 1. The attributes
are evenly distributed among parties. All features and labels
are normalized into [0, 1].

Results. For each dataset, we evaluate OLS and three
differentially private algorithms by the mean squared loss
on the test split. Table 1 shows the results for ε ∈
{0.1, 0.3, 1.0} and δ = 10−5. We can check that the loss of
DGM-OLS is usually much larger than others and RMGM-
OLS achieves the lowest losses for most cases (12 out of
15). Moreover, Figure 3 (b) shows that DGM-OLS has the
small eigenvalue problem as well in the real world dataset

experiments. These results are consistent with the results on
synthetic dataset. We therefore recommend RMGM-OLS as
a practical solution to privately release the dataset and build
the linear regression models.

6 RELATED WORK

Differentially private dataset release. Many recent
works [Sheffet, 2017, Gondara and Wang, 2020, Xie et al.,
2018, Jordon et al., 2018, Lee et al., 2019, Xu et al., 2017,
Kenthapadi et al., 2012] study the differentially private data
release algorithms. However, those algorithms either only
serve for data release from a single-party [Sheffet, 2017,
Gondara and Wang, 2020], or focus on the feature dimen-
sion reduction or empirical improvement [Lee et al., 2019,
Xu et al., 2017, Kenthapadi et al., 2012], which is orthogonal
to the study of asymptotical optimality w.r.t. dataset size. In
Sheffet [2017] and Gondara and Wang [2020], the random
Gaussian projection matrices in their method contribute to
the differential privacy guarantee, hence the sharing of pro-
jection matrix would violate the privacy guarantee between
parties. Nevertheless, without sharing this projection ma-
trix, the utility cannot be guaranteed anymore. In Xie et al.
[2018] and Jordon et al. [2018], they train a differentially
private GAN. However, it is not obvious to rigorously pri-
vately share data information during their training when
each party holds different attributes but same instances. Lee
et al. [2019] proposes a random mixing method and also
analyzes the linear model. However, the way they mix only
works for realizable linear data. It is not able to be extended
to the general linear regression and the asymptotic optimal-
ity guarantee. Xu et al. [2017] and Kenthapadi et al. [2012]
focus on the feature dimension reduction, which is orthog-
onal to the study of asymptotical optimality w.r.t. dataset
size.

Asymptotically optimal differentially private convex op-
timization. A large amount of work study differentially
private optimization for convex problems [Bassily et al.,
2014, 2019, Feldman et al., 2020] or particularly for lin-
ear regression [Sheffet, 2017, Kasiviswanathan et al., 2011,
Chaudhuri and Hsu, 2012]. They mainly differ from our
work in the sense that their goal is to release the final model
while ours is to release the dataset.

Linear regression in vertical federated learning. Lin-
ear regression is a fundamental machine learning task.
Hall et al. [2011], Nikolaenko et al. [2013], Gascón et al.
[2017] studying linear regression over vertically partitioned
datasets based on secure multi-party computation. How-
ever, cryptographic protocols such as Homomorphic En-
cryption [Hall et al., 2011, Nikolaenko et al., 2013] and gar-
bled circuits [Nikolaenko et al., 2013, Gascón et al., 2017]
lead to heavy overhead on computation and communication.
From this aspect, DP-based techniques are more practical.



Dataset Statistics
Method

OLS ε = 1.0 ε = 0.3 ε = 0.1
DGM RMGM BGM DGM RMGM BGM DGM RMGM BGM

Insurance n = 1070, d = 9, m = 5 0.008 0.7015 0.0791 0.0805 0.7550 0.0782 0.0850 0.7263 0.0793 0.0832
Bike n = 13903, d = 13, m = 5 0.017 0.8105 0.0581 0.0691 0.9080 0.0711 0.0703 0.8792 0.0700 0.0707

Superconductor n = 17010, d = 81, m = 10 0.009 0.9794 0.0659 0.0670 1.0075 0.0707 0.0704 0.9220 0.0699 0.0704
GPU n = 193280, d = 14, m = 5 0.007 0.6953 0.0137 0.0158 0.7843 0.0160 0.0160 0.7822 0.0165 0.0160

Music Song n = 412276, d = 90, m = 10 0.011 1.0167 0.0202 0.7194 1.6462 0.1039 0.7479 1.5583 0.5654 0.7508

Table 1: Mean squared losses on real world datasets. RMGM-OLS achieves the lowest losses in most settings (12 out of 15).

7 CONCLUSION

We propose and analyze two differentially private algo-
rithms under multi-party setting for linear regression, and
theoretically both of them are asymptotically optimal with
increasing dataset size. Empirically, RMGM-OLS has the
best performance on both synthetic datasets and real-world
datasets, while extremely large training set size n is nec-
essary for DGM-OLS. We hope our work can bring more
attention to the need for multi-party data release algorithms
and we believe that ML practitioners would benefit from
such effort in the era of privacy.

Future work. We focus on linear regression only, and one
future direction is to extend our algorithm to classification,
e.g. logistic regression, while achieving the same asymptotic
optimality. In addition, we assume different parties own the
same set of data subjects. Another future direction is to
relax this assumption: the set of subjects owned by different
parties might be slightly different.
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