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Abstract

Large Language Models like ChatGPT demonstrate a remarkable capacity to learn
new concepts during inference without any fine-tuning. However, visual models
trained to detect new objects during inference have been unable to replicate this
ability, and instead either perform poorly or require meta-training and/or fine-
tuning on similar objects. In this work, we propose a meta-learning algorithm that
emulates Large Language Models by learning new visual concepts during inference
without fine-tuning. Our approach leverages a frozen pre-trained feature extractor,
and analogous to in-context learning, recasts meta-learning as sequence modeling
over datapoints with known labels and a test datapoint with an unknown label. On
8 out of 11 meta-learning benchmarks, our approach—without meta-training or
fine-tuning—exceeds or matches the state-of-the-art algorithm, P>M>F, which is
meta-trained on these benchmarks.

1 Introduction

Meta-learning algorithms for image classification aim to classify a set of unlabeled images from only
several labeled examples. The labeled examples are termed the support set and the set of unknown
images is called the query set. In an n-way-k-shot meta-learning paradigm, the support set spans n
different classes, each class contains k labeled images, and the meta-learning algorithm predicts the
class of each unlabled image in the query set from the n classes in the support set.

Nearly all meta-learning algorithms ascribe to a common pattern of pre-training, meta-training,
and/or fine-tuning [Hu et al., 2022]. Pre-training initializes the meta-learner’s feature extractor with a
pre-trained vision model; meta-training trains the model’s parameters to learn how to classify new
visual concepts during inference by training the model on a series of n-way, k-shot classification
tasks; and fine-tuning updates the model’s parameters on the support set at inference.

While meta-training excels in learning new classes during inference that are similar to those seen
during meta-training, it often fails to generalize to new classification paradigms. For example,
models meta-trained on coarse-grained object detection often fail to generalize to fine-grained
image classification. Fine-tuning on the support set during inference can rescue an otherwise poor
performing model; however, training a model during inference is often impractical and prohibitive
of many real-time applications. In this regard, visual meta-learning algorithms lag behind recent
advancements in natural language where Large Language Models (LLMs) exhibit a remarkable
capacity to learn new concepts during inference without fine-tuning [Brown et al., 2020].

In this work, we develop a meta-learning algorithm that emulates LLMs by learning new visual
concepts during inference without fine-tuning. Drawing inspiration from in-context learning in LLMs,
we reformulate n-way-k-shot image classification as sequence modeling over the support set and
an unknown query image. Due to its capacity to learn visual information “in-context”, we term our
approach Context-Aware Meta-Learning (CAML).
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Figure 1: Overview of CAML. Query and support set images are encoded with a CLIP feature extractor
and then concatenated with their corresponding ELMES label embeddings. We feed the resulting sequence
of concatenated vectors into a Transformer encoder and extract the transformed query vector from the output
sequence to predict its class.

2 Approach

We adapt the ideas underpinning in-context learning in LLMs—namely learning to classify a query
from a context of support set demonstrations in a single forward pass—to image classification. A
similar concept has recently been explored by Fifty et al. [2023] for few-shot molecular property
prediction. Dissimilar from this work, we avoid meta-training and instead focus on universal image
classification: learning to detect new visual classes during inference without meta-training on related
classes or fine-tuning on the support set.

Architecture. CAML consists of three components: (1) a frozen CLIP image encoder, (2) a fixed
ELMES class encoder, and (3) a Transformer encoder sequence model. CAML first encodes query
and support set images using a frozen CLIP feature extractor. Crucially, the CLIP embedding space
distills images into low-dimensional representations so that images with similar visual characteristics
and semantic meanings have similar embeddings. We encode the classes of the support set with an
ELMES class encoder. In Appendix A, we prove that an ELMES encoding of mutually exclusive
labels allows the Transformer encoder sequence model to maximally identify classes within the
support set. As the class of the query is unknown, it uses a special learnable “unknown token”
embedding.

The core idea underpinning CAML is to cast meta-learning as sequence modeling over the support set
and query points. We instantiate the sequence model as a Transformer encoder, and during large-scale
pre-training, train the model to predict the class of the query from an input sequence composed of
the support set and query embedded vectors. Specifically, the input to the Transformer encoder is a
sequence of support set and query vectors embedded in the joint image-label embedding space. From
the output sequence of the Transformer encoder, we select the element at the same position as the
query in the input sequence, and pass this vector through a shallow MLP to predict the label of the
query. A visual depiction of CAML is shown in Figure 1.

Large-Scale Pre-Training. As our focus is universal meta-learning—and CAML may encounter
any new visual concept during inference—we pre-train CAML’s Transformer encoder on few-
shot image classification tasks from ImageNet-1k [Deng et al., 2009], Fungi [Schroeder and Cui,
2018], MSCOCO [Lin et al., 2014], and WikiArt [Saleh and Elgammal, 2015]. We chose these
datasets because they span generic object recognition (ImageNet-1k, MSCOCO), fine-grained image
classification (Fungi), and unnatural image classification (WikiArt). To avoid distorting the CLIP
embedding space, we freeze the CLIP feature extractor and only update the Transformer encoder
during pretraining. Similarly, since an ELMES minimizes the entropy of detecting classes within
the support set, the label encoder is also frozen. In the context of pre-training, meta-training, and
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Table 1: MiniImageNet & CIFAR-fs mean accuracy and standard error across 10,000 test epochs.

Method (Backbone) CIFAR-fs MiniImageNet

5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-training]
P>M>F (ViT-base) Hu et al. [2022] 84.3 92.2 95.3 98.4

Universal Meta-Learning;
No Meta-Training or Finetuning
MetaQDA (ViT-base) [Zhang et al., 2021] 60.4±.2 83.2±.1 88.2±.2 97.4±.0
CAML (ViT-base) 70.8±.2 85.5±.1 96.2±.1 98.6±.0

Table 2: Pascal & Paintings mean accuracy and standard error across 10,000 test epochs.

Method (Backbone) Pascal + Paintings Paintings Pascal

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F (ViT-base) 60.7 74.4 53.2 65.8 72.2 84.4

Universal Meta-Learning
MetaQDA (ViT-base) 53.8±.2 74.1±.1 49.4±.2 66.6±.1 73.5±.2 85.2±.2
CAML (ViT-base) 63.8±.2 78.3±.1 51.1±.2 65.2±.1 82.6±.2 89.7±.1

fine-tuning, CAML only requires pre-training and avoids meta-training on the train/validation splits
of meta-learning benchmarks or fine-tuning on the support set during inference.

3 Experiments

To quantify universal image classification performance, we evaluate a diverse set of 11 meta-learning
benchmarks divided across 4 different categories:

1. Generic Object Recognition: mini-ImageNet [Vinyals et al., 2016], tiered-ImageNet [Ren et al.,
2018], CIFAR-fs [Bertinetto et al., 2018], and Pascal VOC [Everingham et al.]

2. Fine-Grained Image Classification: CUB [Wah et al., 2011], Aircraft [Maji et al., 2013], meta-
iNat [Wertheimer and Hariharan, 2019], and tiered meta-iNat [Wertheimer and Hariharan, 2019]

3. Unnatural Image Classification: ChestX [Guo et al., 2020] and Paintings [Crowley and Zisserman,
2015]

4. Inter-Domain Image Classification: Pascal+Paintings [Everingham et al., Crowley and Zisserman,
2015].

Generic object recognition, fine-grained image classification, and unnatural image classification
are standard benchmarking tasks in meta-learning literature [Chen et al., 2020, Hu et al., 2022,
Wertheimer et al., 2020, Guo et al., 2020]. Beyond this, we compose a challenging new inter-domain
category by combining Pascal VOC with Paintings so that each class is composed of both natural
images and paintings. This allows us to evaluate the ability of meta-learning algorithms to generalize
across domains within the same class. For example, the support image for the class “tower” may be
Van Gogh’s The Starry Night, while the query may be a picture of the Eiffel Tower. Humans have
the ability to generalize visual concepts between such domains; however, meta-learning algorithms
struggle with this formulation.

3.1 Baselines

We evaluate CAML and MetaQDA [Zhang et al., 2021] in a universal meta-learning setting by
pre-training them with the same CLIP feature extractor over the same image corpus as CAML and
similarly freezing their weights at inference time. We select MetaQDA as this algorithm benefits
from pre-trained feature extractors and was designed for cross-domain meta-learning [Zhang et al.,
2021, Hu et al., 2022].
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Table 3: meta-iNat & tiered meta-iNat & ChestX mean accuracy and standard error across 10,000
test epochs.

Method (Backbone) meta-iNat tiered meta-iNat ChestX

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F (ViT-base) 91.2 96.1 74.8 89.9 27.0 32.1

Universal Meta-Learning
MetaQDA (ViT-base) 86.3±.2 95.9±.1 76.0±.2 92.4±.1 22.6±.1 27.0±.1
CAML (ViT-base) 91.2±.2 96.3±.1 81.9±.2 91.6±.1 21.5±.1 22.2±.1

Table 4: CUB & tiered-ImageNet & Aircraft mean accuracy and standard error across 10,000 test
epochs.

Method (Backbone) CUB tiered-ImageNet Aircraft

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F (ViT-base) 92.3 97.0 93.5 97.3 79.8 89.3

Universal Meta-Learning
MetaQDA (ViT-base) 88.3±.2 97.4±.1 89.4±.2 97.0±.1 63.6±.3 83.0±.2
CAML (ViT-base) 91.8±.2 97.1±.1 95.4±.1 98.1±.1 63.3±.3 79.1±.2

To assess the performance gap between universal meta-learning and the typical meta-training ap-
proach, we also benchmark the performance of the current state-of-the-art meta-learning algorithm,
P>M>F [Hu et al., 2022], which is meta-trained on each dataset. While previous cross-domain
approaches often involve fine-tuning on the support set at inference time, we forgo this step as
fine-tuning is incompatible with universal meta-learning and developing real-time meta-learning
applications.

When pre-training all models in the universal meta-learning setting, we set the learning rate to a fixed
1 × 10−5 and do not perform any hyperparameter tuning in order to match the practices used by
P>M>F. We use early stopping with a window size of 10 epochs during pre-training and the code
release of Hu et al. [2022] to benchmark P>M>F with the training settings and hyperparameters
described in their work.

3.2 Results

Our findings are summarized in Table 1, Table 2, Table 3, and Table 4 and indicate that CAML
significantly outperforms MetaQDA on 15 of 22 evaluation settings. For 5 of the remaining 7
evaluation settings, CAML matches—or nearly matches—MetaQDA. Remarkably, CAML also
performs competitively with P>M>F on 8 out of 11 meta-learning benchmarks, even though P>M>F
meta-trains on the training set of each benchmark. This result suggests that the amount of new visual
information learned during inference when using only foundational models and novel meta-learning
techniques without fine-tuning is comparable to the amount learned when directly meta-training on
in-domain data. This capacity may unlock new applications in the visual space, just as the emergence
of in-context learning in LLMs has enabled many new applications in natural language.

4 Conclusion

In this work, we develop CAML, a meta-learning algorithm that emulates in-context learning in
LLMs by learning new visual concepts during inference without fine-tuning. Our empirical findings
show that CAML—without meta-training or fine-tuning—exceeds or matches the performance of
the current state-of-the-art meta-learning algorithm on 8 out of 11 benchmarks. This result indicates
visual meta-learning models are ready for deployment in a manner similar to LLMs, and we hope
this work recalibrates our sense of limitations for the universal meta-learning paradigm.
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Appendix

A Theoretical Analysis

In this section, we explore the symmetries inherent in CAML. These symmetries allow us to formulate
the problem of learning support set class representations as an entropy minimization problem with a
closed-form solution. We prove that this solution is an ELMES. Later, we show it maintains permu-
tation invariance, a vital property of meta-learning algorithms that conveys consistent predictions
irrespective of the ordering of elements within the sequence.

A.1 Equiangular Tight Frames

Papyan et al. [2020] coin the term Simplex Equianguar Tight Frame to describe a set of vectors
{ϕj}dj=1 such that the minimum angle between any two pairs of vectors is maximized and all vectors
have equal norm. Formally,
Definition 1. Let Rd be a d−dimensional inner product space over R with the Euclidean inner
product. A Simplex ETF is a set of d vectors {ϕj}dj=1, ϕj ∈ Rd, specified by the columns of√

d
d−1 (Id −

1
d11

T )

where Id ∈ Rd×d is the identity matrix and 1 ∈ Rd×1 is the ones vector. Somewhat contradictory, a
Simplex Equiangular Tight Frame is not an Equiangular Tight Frame [Welch, 1974] as this set of
vectors does not form a tight frame in Rd.
Definition 2. Let R be a d−dimensional space over R with the Euclidean inner product. An
Equiangular Tight Frame (ETF) is a set of non-zero, equal norm vectors {ϕj}nj=1, n ≥ d, that
achieves the Welch lower bound:

max
j ̸=j′

|⟨ϕj , ϕj′⟩|
∥ϕj∥∥ϕj′∥

=

√
n− d

d(n− 1)

It is well-known that a set of non-zero equal-norm vectors satisfies the Welch lower bound if and
only if that set of vectors is equiangular and also a tight frame for Rd [Fickus et al., 2018].
Definition 3. A set of non-zero, equal norm vectors {ϕj}nj=1 is equiangular if ∀j ̸= j′, |⟨ϕj , ϕj′⟩| =
c for some c ∈ R, c > 0.

Definition 4. {ϕj}nj=1 is a tight frame for Rd if, ∀v ∈ Rd, ∃A > 0 such that A∥v∥2 =∑n
j=1 |⟨ϕj , v⟩|2.

Remark 1. A Simplex Equiangular Tight Frame is not a tight frame.

Proof. Observe that for any finite d, for {ϕj}dj=1 equal to the columns of
√

d
d−1 (Id − 1

d11
T ), it

is the case that
d−1∑
j=1

ϕj = −1 ∗ ϕd. So {ϕj}nj=1 do not span Rd, and therefore, cannot be a tight

frame.

Similarly, a Simplex ETF is not a d−simplex.
Remark 2. A Simplex Equiangular Tight Frame is not a simplex.

Proof. A simplex in Rn requires n+ 1 points.

To align terminology with properties, we generalize a Simplex ETF to an ELMES in ??: a set of
d vectors in a (d + k)-dimensional ambient space with k ≥ 0. We define an Equal Length and
Maximally Equiangular Set (ELMES):
Definition 5. An Equal Length and Maximally Equiangular Set (ELMES) is a set of non-zero
vectors {ϕj}dj=1, ϕj ∈ Rd+k for some k ≥ 0, such that ∀j ̸= j′, ∥ϕj∥ = ∥ϕj′∥ and ⟨ϕj , ϕj′⟩ =
−1
d−1 . Simply, all vectors in this set are equal length and maximally equiangular.
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Figure 2: A visualization of a d = 4 ELMES in R3. Observe the endpoints of the vectors of an ELMES lie on
the vertices of a centered regular tetrahedron.

Observe that a regular simplex is a special type of ETF in which the number of vectors in the set
is one more than the dimension of the space that they span [Fickus et al., 2018]. Building on this
observation, an intuitive view of ELMES is a regular d−simplex immersed in Rd+k.

Remark 3. Consider a centered d-dimensional regular simplex with vertices {ϕj}d+1
j=1 , ϕj ∈ Rd+1.

Let ıcan be the canonical inclusion map: Rd → Rd+1, ıcan(x1, x2, ..., xd) = (x1, x2, ..., xd, 0d+1),
then {ıcan(ϕj)}d+1

j=1 is an ELMES.

Proof. The two criteria of an ELMES are maximally equiangular and equal length. As all vertices
of a centered regular d−simplex are equal length from the origin, {ϕj}d+1

j=1 are equal length and
therefore {ıcan(ϕj)}d+1

j=1 must also have equal length.

Similarly, from Lemma 10 of Papyan et al. [2020], we know the cosine of the angle between any
two vectors in a (d+ 1)−dimensional ELMES is −1

d . It is known that for a d−dimensional regular
simplex in Rd centered at the origin, the angle subtended by any two verticies through the origin is
cos(θ) = −1

d . Immersing {ϕj}d+1
j=1 , ϕj ∈ Rd, into Rd+1 via the canonical inclusion operator ıcan

does not change the pairwise angle between vectors in this set: ⟨ϕj , ϕj′⟩ = ⟨ıcan(ϕj) , ıcan(ϕj′)⟩.
As {ıcan(ϕj)}d+1

j=1 are equal length and maximally equiangular, it forms an ELMES.

We now show that an ELMES immersed in a higher dimension remains an ELMES. Taken with
Remark 3, we can view a high-dimensional ELMES in Rd composed of n + 1 vectors {ϕj}n+1

j=1 ,
d >> n+ 1, as simply a n−simplex immersed in Rd via the canonical inclusion operator.

Lemma 1. Let ıcan : Rd → Rd+k. If {ϕj}nj=1 is an ELMES , then {ıcan(ϕj)}dj=1 is an ELMES.

Proof. This reduces to proving that the maximum angle between a set of d equiangular points in Rd

is the maximum angle between a set of d equiangular points in Rd+k. Let {ϕj}dj=1 be an ELMES
such that ϕj ∈ Rd and {ψj}dj=1 be an ELMES such that ψj ∈ Rd+k. Then {ψj}dj=1 lie in a
d−dimensional subspace of Rd+k: ∃γ1, ..., γd and basis vectors e1, ..., ed such that ∀ψj ∈ {ψj}dj=1,
ψj =

∑d
i=1 γiei. Therefore, ∀j ̸= j′, ⟨ψj , ψj′⟩ ≤ ⟨ϕj , ϕj′⟩ as {ϕj}dj=1 are an ELMES for

Rd.
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A.2 ELMES Rotational Symmetry

There are infinitely many ELMES by rotating one such set of vectors about the origin.
Remark 4. Let {ϕj}dj=1 be an ELMES in Rd+k for some k ≥ 0. Let o : Rd+k → Rd+k be an
operator from the special orthogonal group SO(d+ k). Then {o(ϕj)}dj=1 is also an ELMES .

Proof. Length is preserved as operations in SO(d+ k) have determinant 1 and angles are similarly
preserved as operations in SO(d+ k) are unitary (i.e. preserving inner product).

A.3 A Set of Orthonormal Basis Vectors Is Not an ELMES

A final remark relates to the common misconception that a set of orthonormal basis vectors {ψj}dj=1

is an ELMES. While {ψj}dj=1 is an ETF in Rd since this set realizes the Welch lower-bound
in Definition 2, these vectors are not maximally equiangular: ⟨ψj , ψj′⟩ = 0 > −1

d−1 .

A.4 Label Symmetry

Symmetry in the assignment of support classes to numeric labels is an important property of meta-
learning algorithms. For example, if we have the support set classes {tower, bear, tree}, the mapping
of {bear -> 1, tower -> 2, tree -> 3 } should produce the same prediction for a query point as a
different mapping {bear -> 2, tower -> 3, tree -> 1}. To explore this symmetry, we examine how
class embeddings are being used by the model.

From our formulation in Section 2, we represent a demonstration vector as a concatenation of an
image embedding ρ and a label embedding ϕ: [ρ ϕ]. This vector is directly fed into the self-attention
mechanism, where we matrix multiply with key, query, and value self-attention heads. Taking only
one of these matrices for simplicity with head-dimension k:

[ρ ϕ]

[
Γ1 ... Γk

ψ1 ... ψk

]
= [⟨ρ , Γ1⟩ ... ⟨ρ , Γk⟩] + [⟨ϕ , ψ1⟩ ... ⟨ϕ , ψk⟩] (1)

The output of this transformation will be the sum of two vectors: one composed of the inner products
between the image embedding and the learnable {Γi}ki=1s and the other composed of the class
embedding and the learnable {ψi}ki=1.

We postulate a capacity to distinguish among the classes of demonstration vectors is necessary for
the model to predict the class of the query vector. Conversely, if a meta-learning algorithm predicts
among d classes, and all classes maintain the same embedding ϕj = ϕi ∀i ∈ {1, ..., d}, the model
will be unable to identify the class of the query vector as all demonstration vectors appear to have the
same class identity. Such an embedding would maximize the Shannon entropy for any learnable ψi

Hi(X) := −
∑
x∈X

pi(x) ln(pi(x))

where we define X = {1, 2, ..., d} to be the different classes, X to be a random variable which takes
on values in X , and pi(X = j) = e⟨ψi , ϕj⟩∑

ℓ∈X e⟨ψi , ϕℓ⟩
as the softmax probability of class j given that ψi

is learned to detect class i (i.e. maximize pi(X = i) and minimize Hi(X)).

Contrary to the above example, we assume a capacity to learn a ψi that maximally detects a given class
j will be beneficial to minimizing the loss for meta-learning paradigms. As we use the softmax of the
inner product to determine class probabilities, maximizing pi(X = j) is equivalent to minimizing
pi(X = ℓ) for all ℓ ̸= j.

By symmetry in the assignment of class embeddings to support classes, we can assume that the
number of ψi learned to detect class i is similar to the number of ψj learned to detect class j for all
pairs (i, j). Then pi(X = i) for all 1 ≤ i ≤ d is jointly maximized ⇐⇒ the d-class embeddings
{ϕj}dj=1 is an ELMES . Before we prove this result, we leverage symmetry in the assignment of
labels to classes to make the following assumptions:
Assumption 1. Suppose {ψi}ki=1 are learnable class detectors of unit norm with at least one ψi

detecting each class 1 ≤ i ≤ d. The probability pj(X = j) = pi(X = i) for 1 ≤ i, j ≤ d.
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Justification of Assumption 1. This property is implied by symmetry in the assignment of class
embeddings to support classes. As the assignment is arbitrary, all learnable ψi class detectors should
have equal probability of detecting their respective class.

Assumption 2. Suppose {ψi}ki=1 are learnable class detectors of unit norm with at least one ψi

detecting each class 1 ≤ i ≤ d. Define pi(X = i)\{ϕl}dl=(m+1) as the probability of ψi detecting ϕi
from the set of vectors {ϕj}mj=1, m < d. Then the probability pj(X = j)\{ϕl}dl=(m+1) = pi(X =

i)\{ϕl}dl=(m+1) for 1 ≤ i, j ≤ m and m ≥ 2.

Justification of Assumption 2. Informally, this property states that, for any m-subset of classes
{ϕj}mj=1, the probability of ψj detecting class j is equal to the probability of ψi detecting class
i. This is again implied by symmetry in the assignment of class embeddings to support classes as
meta-learning algorithms may predict among a subset of m classes in the support set rather than the
maximum number of classes d.

Assumption 3. When ψi =
ϕi

∥ϕi∥ , pi(X = i) is maximized.

Justification of Assumption 3. Recall in Rd, ⟨ψ , ϕ⟩ = ∥ψ∥∥ϕ∥ cos(θ) where θ is the angle between
ψi and ϕi. Then this assumptions constrains our set {ϕj}dj=1 so that relative norm of ϕi with respect

to ϕj is lower bounded by cos(θi,j):
∥ϕi∥
∥ϕj∥ > cos(θi,j).

Informally, the {ϕj}dj=1 are sufficiently spread out in the ambient space so that the learnable ψi that
maximizes pi(X = i) is ϕi itself: ψi =

ϕi
∥ϕi∥ . This constraint helps us avoid degenerative cases

similar to the {ϕj}dj=1 all equal maximum entropy case described earlier. For example, ϕj = αϕi,
i ̸= j with α > 0 is one such degenerative case where one class embedding vector is stacked on a
different class embedding, but with higher norm.

When Assumption 1, Assumption 2, and Assumption 3 hold, the set of class embeddings that
maximize the probability of a learnable ψi detecting class i is necessarily an ELMES.
Theorem 1. The set of class embeddings {ϕj}dj=1 ∀j, 1 ≤ j ≤ d that maximizes pj(X = j) is
necessarily an ELMES.

Proof of Theorem 1. Taken with Assumption 1, Assumption 2, and Assumption 3, it suffices to show
Theorem 2 and Lemma 4 to prove Theorem 1.

Theorem 2. p1(X = 1) = p2(X = 2) = ... = pd(X = d) ⇐⇒ {ϕj}dj=1 are equiangular and
equal norm.

To show the forward (⇒) direction, it suffices to first show p1(X = 1) = p2(X = 2) = ... =
pd(X = d) ⇒ {ϕj}dj=1 are equal norm and then show p1(X = 1) = p2(X = 2) = ... = pd(X = d)

⇒ {ϕj}dj=1 are equiangular.

Lemma 2. p1 (X = 1 ) = p2 (X = 2 ) = ... = pd(X = d) ⇒ {ϕj}dj=1 are equal norm.

Proof. This implication holds when d = 2:

p1(X = 1) =
e∥ϕ1∥

e∥ϕ1∥ + e∥ϕ2∥ cos(θ1,2)
=

e∥ϕ2∥

e∥ϕ2∥ + e∥ϕ1∥ cos(θ1,2)
= p2(X = 2)

e∥ϕ1∥(e∥ϕ2∥ + e∥ϕ1∥ cos(θ1,2)) = e∥ϕ2∥(e∥ϕ1∥ + e∥ϕ2∥ cos(θ1,2))

e∥ϕ1∥+∥ϕ1∥ cos(θ1,2) = e∥ϕ2∥+∥ϕ2∥ cos(θ1,2)

∥ϕ1∥(1 + cos(θ1,2)) = ∥ϕ2∥(1 + cos(θ1,2))

∥ϕ1∥ = ∥ϕ2∥

Suppose d > 2 and p1(X = 1) = ... = pd(X = d). By Assumption 2, all m−combinations
(
d
m

)
of {p1(X = 1), ..., pd(X = d)} are equal. This implies all 2-combinations are equal: pi(X = i) =
pj(X = j) ⇒ ∥ϕi∥ = ∥ϕj∥. Therefore, ∥ϕ1∥ = ... = ∥ϕd∥.
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Lemma 3. p1(X = 1) = p2(X = 2) = ... = pd(X = d)⇒ {ϕj}dj=1 are equiangular.

Proof. This implication is trivially true when d = 2 (see the proof of Lemma 2), and we show it is
similarly true when d = 3. Following the steps in the proof of Lemma 2, we arrive at the following 3
pairs of equalities:

(1) e∥ϕ1∥(1+cos(θ1,2)) + e∥ϕ1∥+∥ϕ3∥ cos(θ2,3) = e∥ϕ2∥(1+cos(θ1,2)) + e∥ϕ2∥+∥ϕ3∥ cos(θ1,3)

(2) e∥ϕ1∥(1+cos(θ1,3)) + e∥ϕ1∥+∥ϕ2∥ cos(θ2,3) = e∥ϕ3∥(1+cos(θ1,3)) + e∥ϕ3∥+∥ϕ2∥ cos(θ1,3)

(3) e∥ϕ2∥(1+cos(θ2,3)) + e∥ϕ2∥+∥ϕ1∥ cos(θ1,3) = e∥ϕ3∥(1+cos(θ2,3)) + e∥ϕ3∥+∥ϕ1∥ cos(θ1,2)

From Lemma 2, p1(X = 1) = p2(X = 2) = p3(X = 3) ⇒ ∥ϕ1∥ = ∥ϕ2∥ = ∥ϕ3∥, so the above
pairs of equalities reduce to:

(1) cos(θ2,3) = cos(θ1,3)

(2) cos(θ2,3) = cos(θ1,3)

(3) cos(θ1,3) = cos(θ1,2)

and when d = 3, {ϕj}3j=1 are equiangular.

Suppose d > 3 and p1(X = 1) = ... = pd(X = d). By Assumption 2, all m−combinations
(
d
m

)
of {p1(X = 1), ..., pd(X = d)} are equal. This implies all 3-combinations are equal: pi(X = i) =
pj(X = j) = pk(X = k) ⇒ θi,j = θi,k = θj,k. Therefore, all angles are equal θi,j = θl,m for
1 ≤ i, j, l,m ≤ d.

Proof of Theorem 2. (⇒) Suppose p1(X = 1) = p2(X = 2) = ... = pd(X = d).

By Lemma 2 and Lemma 3, p1(X = 1) = p2(X = 2) = ... = pd(X = d) ⇒ {ϕj}dj=1 are
equiangular and equal norm.

(⇐) Suppose {ϕj}dj=1 are equiangular and equal norm. Let ∥ϕ∥ be the norm of any vector in our set
and cos(θ) be the pairwise angle between any two vectors. Then

pi(X = i) =
e∥ϕ∥

e∥ϕ∥ + (d− 1)e∥ϕ∥ cos(θ)
= pj(X = j)

for any 1 ≤ i, j ≤ d.

Lemma 4. For a set of equiangular and equal norm vectors, maximum equiangularity maximizes∑
j

pj(X = j).

Proof. The maximum pairwise angle between two vectors in Rd is π, and from Theorem 2

pi(X = i) = pj(X = j) =
e∥ϕ∥

e∥ϕ∥ + (d− 1)e∥ϕ∥ cos(θ)

for all 1 ≤ i, j ≤ d. Increasing the angle θ decreases cos(θ). Decreasing cos(θ) only decreases the
denominator, which in turn, increases pi(X = i). Therefore, maximizing the pairwise angle between
all vectors maximizes pi(X = i) for all 1 ≤ i ≤ d.

A.5 Label Symmetry

Alternatively when viewed through the lens of information theory, we can reinterpret an ELMES as
the class embedding that minimizes the entropy of ψi detecting class i. Informally, ELMES causes
ψi to have the least uncertainty when detecting class i.
Lemma 5. Let Hi be the entropy of pi(X). An ELMES minimizes Hi.

Proof of Lemma 5. Equal norm and equiangular {ϕj}dj=1 are bounded in norm, and thus, the set
of probability distributions we obtain {p1, p2, ..., pd} belong to a capped simplex [Warmuth and

Kuzmin, 2008] ∆d
c = {p ∈ ∆|maxi pi ≤ c} where c = e∥ϕ∥

2

e∥ϕ∥2+(d−1)e∥ϕ∥2 cos(θ)
. Clearly, among such

probability vectors, the minimum entropy is achieved at the boundary where cos(θ) is minimized,
i.e., when the {ϕj}dj=1 are maximally equiangular.
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(a) Left: An example task, classifying images by the objects depicted. Center: CLIP image embeddings on this
task’s images. Right: joint image+label representations after the last CAML attention layer for the same task.

Embroidery 3D Model

Support

Pencil Sketch

Oil Painting Stained Glass

Embroidery

Query

(b) Left: An example task, classifying images by the artistic medium used. Center: CLIP image embeddings on
this task’s images. Right: joint representations after the last CAML attention layer for the same task.

Figure 3: Two sample tasks over the same support images but utilizing different criteria to define classes. The
nature of the query image informs the task being presented, e.g. classification by object (top) vs. classification
by texture (bottom). For both, the final-layer attention outputs provide better separation between class represen-
tations and groups the query representation with the proper task, even when projected into 2D space by PCA.

A.6 Permutation Invariance.

In addition to label symmetry, it is also desirable for the output prediction of CAML to not depend on
the order of demonstrations in the sequence. As Fifty et al. [2023] show that a two-class, non-ELMES
version of CAML is invariant to permutations in the input sequence, it suffices to show that the
ELMES label encoder is equivariant to permutations in the input sequence.

Lemma 6. Consider a n-sequence of one-hot labels stacked into a matrix S ∈ Rn×w, and an ELMES
label encoder denoted by W ∈ Rw×d with w denoting “way” and d the dimension of the label
embedding. The label embedding SW is equivariant to permutations.

B Analysis

To better understand how CAML learns, we conduct empirical analyses on (1) its ability to dy-
namically update its representations at inference time, and (2) the effect of the fixed ELMES class
embedding.

Context-Aware Representations. Dissimilar from other meta-learning algorithms and due to
recasting meta-learning as sequence modeling, CAML considers the full context of a query and
support set to predict the label of the query. Specifically, the query dynamically influences the
representation of support set points, and the support set points dynamically influence the representation
of the query as this sequence is passed through the layers of a Transformer encoder. This property
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enables universal meta-learning by allowing the model to update the support and query representations
based on the context of the task, not only the contents of the images.

An example where the query dynamically influences the support set is visualized in Figure 3. Given
only the 5 support examples, the prediction task is ambiguous. However, the nature of the query
determines the prediction task. The query image of a tower in Figure 3a reduces the task to generic
object recognition: classify the query based on the object portrayed in the image. On the other hand,
and as visualized in Figure 3b, the query image of embroidery reduces the prediction task to texture
identification: classify the query based on artistic medium.

To analyze how dynamic representations affect CAML, we examine the representations of the support
set and query vectors at the input to and output of the Transformer encoder. For both examples
visualized in Figure 3a and Figure 3b, the Transformer encoder learns to separate support set vectors
by class identity, and moreover, group the query representation with the correct support set example.

We find the frozen CLIP image embeddings are actually antagonistic for the classification-by-texture
task visualized in Figure 3b: the query image embedding is closest to the support set example for
the second class, “oil painting”. Moreover, we find that MetaQDA, which relies on frozen CLIP
image embeddings, groups the query with “oil painting” and therefore misclassify this example.
On the other hand, as CAML considers the full context of the query and support set, it develops
representations of the query in the context of the support set—and the support set in the context of the
query—to group the query with the “embroidery” support set image as they share the same texture,
thereby correctly classifying this example.
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