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Abstract

Machine unlearning, which involves erasing knowledge about a forget set from a trained
model, can prove to be costly and infeasible using existing techniques. We propose a low-
compute unlearning technique based on a discrete representational bottleneck. We show that
the proposed technique efficiently unlearns the forget set and incurs negligible damage to
the model’s performance on the rest of the data set. We evaluate the proposed technique
on the problem of class unlearning using four datasets: CIFAR-10, CIFAR-100, LACUNA-
100 and ImageNet-1k. We compare the proposed technique to SCRUB, a state-of-the-art
approach which uses knowledge distillation for unlearning. Across all four datasets, the
proposed technique performs as well as, if not better than SCRUB while incurring almost no
computational cost.

1 Introduction

Machine Unlearning (Cao & Yang, 2015; Nguyen et al., 2022; Zhang et al., 2023; Xu et al., 2023; Kurmanji
et al., 2023; Warnecke et al., 2021) may be defined as the problem of removing the influence of a subset of
the data on which a model has been trained. Unlearning can be an essential component in addressing several
problems encountered in deploying deep-learning approaches in practical scenarios. Neural networks such as
Large Language Models (LLMs), trained on massive amounts of commonly available data, can exhibit harmful
behaviors in the form of generating misinformation, demonstrating harmful biases, or other undesirable
characteristics. A major culprit behind these behaviors is the presence of biased or corrupted instances in the
training data of these models. To ensure safe model deployment, it is necessary to remove these instances.
Another reason to remove instances and make a model behave as if it had not been trained on certain data
is concerns about data privacy and the right of end users to expunge their data (Mantelero, 2013; Dang,
2021). For example, an individual might want their data removed from a face recognition system that was
trained on their faces such that it is no longer able to identify them. Several regulations are being put in
place in order to safeguard the “right to be forgotten" (Pardau, 2018; Magdziarczyk, 2019). All the above
problems can be addressed by unlearning the specific subset of the training data which gives rise to the
harmful behavior of the model in the former cases and an individual’s private data in the latter cases. Apart
from these concerns, unlearning can also serve other purposes such as removing outdated data from a model
to free up network capacity for more recent or relevant data. With increasing concerns about AI safety and
the increasing ubiquity of deep learning models in real-world applications, the problem of unlearning is of
critical importance.

The main challenge in unlearning is maintaining the performance of the model on the data that needs to be
retained, called the retain set, while unlearning the forget set. The naive way to ensure that a model has
no information about the forget set is to train from scratch on the retain set. Unlearning techniques aim
to achieve the same goal but at a much lower computational cost compared to full retraining. Unlearning
in a pretrained network is difficult, especially in densely connected neural networks, since the value of one
parameter may affect the output for all the input examples given to the neural network. A possible solution
is to fine tune the model we wish to unlearn only on the retain set. While this would ensure that the
performance of the model on the retain set is maintained, it can be computationally infeasible in practice.
Other more effective solutions include retraining the model on the training data with a negative gradient for
the forget set (Golatkar et al., 2020a; Kurmanji et al., 2023), or using knowledge-distillation-based training
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Figure 1: A summary of the proposed unlearning approach. Left: The structure of a key-value bottleneck.
The encoder is frozen and pre-trained and R1 is a random projection matrix. The values corresponding to the
selected keys are retrieved to be used by the decoder. The gradient is backpropagated through the decoder
into the values during training. The figure depicts the case with 1 codebook in the DKVB. However, in
practice we use multiple codebooks. Center: Examples from the forget set are passed through the trained
model and the key-value pairs selected during the forward pass are recorded. Right: The recorded key-value
pairs are then masked from the bottleneck. As a result, the key selection is redirected to other keys, with
non-informative corresponding values leading to other prediction.

objectives to capture information about the retain set while filtering out information about the forget set
(Kurmanji et al., 2023; Chundawat et al., 2023). Nevertheless, all of these approaches require some form of
substantial additional compute in order to facilitate unlearning. Moreover, some of the existing approaches
additionally require access to the original training data to facilitate unlearning, which may not be possible in
many practical applications, e.g., for a model in production which is being trained online on an incoming
data stream. The use of large models is becoming more popular and prevalent with the advent of general
purpose transformer models. The requirement for additional compute can quickly become impractical in the
context of these large models, especially in cases where a model is deployed and needs to be redeployed as
quickly as possible after making the necessary changes.

In this article, we argue that specific kinds of discrete neural information bottlenecks are highly suited for very
efficient and specific unlearning. Neural information bottlenecks have emerged as useful components in neural
network architectures, providing numerous benefits such as improving out-of-distribution (OOD) generalization
capabilities and robustness to noisy data (Goyal et al., 2021; Jaegle et al., 2021; Liu et al., 2021; 2023), facili-
tating large scale unsupervised pre-training and generative modeling (Esser et al., 2021; Oord et al., 2017), and
more recently, helping in continual learning (Träuble et al., 2023). In particular, we build upon Discrete Key-
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Value Bottleneck (DKVB) proposed in Träuble et al. (2023). DKVB induces sparse representations in the
form of key-value pairs which are trained in a localized and context-dependent manner. Since these representa-
tions are sparse, we hypothesize that it is possible to remove the information about a subset of the training data
without damaging the information about the rest of the data—the primary desiderata for a useful unlearning
method. Moreover, since the representations are discrete, this may be achieved without requiring any addi-
tional compute in the form of retraining or fine tuning, by directly intervening on individual representations.

We investigate the above-mentioned idea of low compute unlearning in the Discrete Key-Value Bottleneck.
Specifically, we focus on the problem of class unlearning in multi-class classification tasks, where the aim
is to remove information about a specific class, called the forget class, from a trained model. We use the
term retain classes to refer to the classes other than the forget class that are present in the training data.
More specifically, we wish to remove the influence of the forget class on the model. We measure this influence
using the performance of the model on held-out test datasets corresponding to the forget class and the retain
classes.

We propose two approaches for compute efficient unlearning in DKVB - Unlearning via Examples and
Unlearning via Activations. We show that the proposed methods achieve unlearning of the forget class while
incurring negligible damage to the model’s performance on the retain classes. We compare the proposed
methods to SCRUB (Kurmanji et al., 2023), a recent state-of-the-art approach that requires additional
compute to unlearn, on four datasets: CIFAR-10, CIFAR-100, LACUNA-100 and ImageNet-1k. The novelty
of our work lies in the largely under-explored idea of using a model architecture with inherent sparse
representations.

2 Related Work

The problem of unlearning has been studied in different forms for over two decades. Early works such as Tsai
et al. (2014), Cauwenberghs & Poggio (2000) and Duan et al. (2007) study the problem of decremental learning
in linear models, where a small number of samples need to be removed from a model. Ginart et al. (2019)
considers unlearning as a problem of deleting individual data points from a model. They give a probabilistic
definition, formalize the notion of efficient data deletion, and propose two deletion efficient learning algorithms.
Guo et al. (2019) introduces certified removal - a theoretical guarantee of indistinguishability between a
model from which data was removed and a model that never saw the data. Izzo et al. (2021) distinguishes
between exact unlearning and approximate unlearning and proposes a compute-efficient approximate data
deletion method, and a new metric for evaluating data deletion from these models. Golatkar et al. (2020a)
and Kurmanji et al. (2023) cast unlearning into an information theoretic framework. Golatkar et al. (2020b)
proposes Neural Tangent Kernel (NTK) (Jacot et al., 2018) theory-based approximation of the weights of
the unlearned network. Multiple works also delve into the more philosophical, ethical, and legal aspects of
unlearning and the “right to be forgotten" (Kwak et al., 2017; Villaronga et al., 2018). Chundawat et al.
(2023) and Tarun et al. (2023) learn error minimization and error maximization-based noise matrices which
are used to finetune the trained model in order to do unlearning. Chundawat et al. (2023) further uses a
generator that generates pseudo data points for unlearning in order to operate in a data-free regime. Recent
works have also explored unlearning in the context of Large Language Models. Liu et al. (2024); Mekala et al.
(2024)

Kurmanji et al. (2023) introduces SCRUB, a knowledge distillation-based unlearning method. SCRUB
considers the original model as a teacher model and trains a student model to obey the teacher model on the
retain set and disobey it on the forget set. This is done by computing the KL Divergence between the output
distributions of the two models and training the student model to maximize it on the forget set (called a
max-step) and minimize it on the retain set (called a min-step). The student model is simultaneously also
optimized for minimizing the task loss on the retain set. The training consists of mstep max-steps. The
max-steps and min-steps are executed alternatively. Chen et al. (2023), similarly to us, focuses on class
unlearning rather than unlearning specific instances in the data. Unlearning is done by destroying the decision
boundary of the forget class. The authors propose two boundary shift methods termed as Boundary Shrink
and Boundary Expanding.
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Unlearning and Model Sparsity. Jia et al. (2023) and Mehta et al. (2022) investigate unlearning in
context of model sparsity. Jia et al. (2023) leverages the Lottery Ticket Hypothesis, Frankle & Carbin
(2018) leverages using parameter pruning on a trained dense model to identify the token subnetwork. They
observe that applying standard unlearning approaches to a sparsified networks is better as compared to doing
unlearning directly on the dense network. Mehta et al. (2022) identifies the Markovian Blanket of parameters
corresponding to the examples to be unlearnt and updates those parameters. Fan et al. (2024) identifies the
most salient weights with respect to the forget set and unlearns by finetuning only the salient weights with
random labels. These approaches can be seen as applying sparse unlearning updates to the network instead
of full finetuning. We point out that sparsity is a critical dimension that determines the effectiveness of
unlearning: extremely sparse representations make unlearning trivial, whereas fully distributed representations
intertwine knowledge in a way that makes compute-efficient unlearning a serious challenge. Previous methods
studying sparsity in the context of unlearning such as Jia et al. (2023) and Mehta et al. (2022) propose the
use of pruning techniques to first sparsify the network. These approaches start with dense trained models and
leverage sparsity for unlearning. In contrast, we propose using sparsity as an in-built inductive bias in the
model during the initial training which makes the model suitable for unlearning involving minimal compute
requirements. On the other hand, Jia et al. (2023) sparsify the model after it has been trained. Mehta
et al. (2022) involves sparse updates to the model parameters as discussed previously. However, these sparse
updates are utilized during unlearning as opposed to during training of the original model in the proposed
approach. We identify a sweet spot on the continuum between local and distributed learning that allows for
both, compute-efficient unlearning and simultaneously obtaining the same generalization performance.

Xu et al. (2023) introduced a taxonomy that categorizes existing research on unlearning based on different
approaches and aims. In this classification, our methods fall within the Model Pruning category by means of
disabling specific (key, value) pairs within the bottleneck. Although one could argue that our methods lean
towards a weak unlearning strategy–given the pre-trained backbone might retain some information about the
forget set–our approach deviate from the strict definition of weak unlearning as outlined by Xu et al. (2023).
As an example, when considering a non-parametric decoder, our methods affect intermediate rather than final
model activations. Zhao et al. (2024) empirically shows that unlearning difficulty grows with entanglement
between the embeddings of the forget set and the retain set. This analysis reinforces our design choice. A
DKVB ensures minimal entanglement between the representations of the forget and retain sets.

Similar to the proposed approaches, Foster et al. (2024) and Schoepf et al. (2024) propose approaches for
finetuning-free unlearning. The proposed approaches involve performing one backward pass to compute
Fisher-information ratios, followed by algebraically scaling the handful of weights most specialised to the
forget set. While most of the approaches discussed above improve upon the naive and intractable baseline of
retraining on the retain set, most of them (except (Foster et al., 2024) and Schoepf et al. (2024) require a
substantial amount of additional computation in the form of optimizing an objective function for unlearning.
This additional compute requirement can quickly become infeasible whenever large models are involved. The
approach proposed in this work, on the other hand, requires negligible computation for unlearning. Any
computation that may be required is in the form of running inference on the forget set. Further, most of the
existing approaches for unlearning are optimized for models with continuous representations. We propose the
first approach for unlearning in models with discrete representations. The proposed approaches show that
discrete representations while providing several other advantages (such as better generalization), can also be
leveraged for effective and compute efficient unlearning.

3 Background and Notations

Unlearning: Let Dtrain = {xi, yi}N
i=1 be a training dataset and Dtest be the corresponding test dataset. In

our experiments, we consider the setting of class unlearning, wherein we aim to unlearn a class c from a
model trained with a multiclass classification objective on Dtrain. c is called the forget class or the forget
set. Given c, we obtain Dforget

train ⊂ Dtrain such that Dforget
train = {(x, y) ∈ Dtrain|y = c}. The complement of

Dforget
train is Dretain

train , i.e., subset of Dtrain that we wish to retain. Thus Dretain
train ∪ D

forget
train = Dtrain. Similarly,

from Dtest, we have Dforget
test = {(x, y) ∈ Dtest|y = c} and its complement Dretain

test . We refer to Dretain
train and
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Dretain
test as the retain set training and test data; and Dforget

train and Dforget
test as the forget set training and test

data, respectively.

Discrete Key-Value Bottleneck: A discrete key-value bottleneck (DKVB) (Träuble et al., 2023) consists of
a discrete set of coupled key-value codes. The bottleneck contains C codebooks with each codebook containing
M key-value pairs. Models with DKVB use a pre-trained and frozen encoder to encode the input into a
continuous representation. This input representation is then projected into C lower dimension heads and each
head is quantized to the top− k nearest keys in the corresponding codebook. The values corresponding to
the selected keys are averaged, and used for the downstream task. The keys in the codebooks are frozen and
initialized to cover the input data manifold whereas the values are learnable. The mapping between the keys
and values is non-parametric and frozen. Thus, the gradient is not propagated between the values and keys
during training of the model. Since the values are retrieved and updated sparsely, and all the components
except the value codes and the decoder are frozen, DKVB stores information in the form of input-dependent,
sparse and localized representations (i.e., the value codes). These inductive biases allow the framework to
exhibit improved generalization under distribution shifts during training, as shown empirically as well as
theoretically in Träuble et al. (2023). Figure 1 (Left) shows an overview of a model with a DKVB where
C = 1, M = 5 and top-k = 1. While typically limited to multi-class image classification settings, Diera et al.
(2024) discusses the application of DKVB in the context of encoder only language models.

4 Unlearning via Sparse Representations

Learning a Discrete Key Value Bottleneck. A Discrete Key Value Bottleneck (DKVB) model is
first trained on the given dataset using the standard negative log-likelihood (cross-entropy loss) training
objective for multi-class classification. We use a non-parametric average pooling decoder and test the
proposed approaches on two pretrained backbones: 1.) a CLIP (Radford et al., 2021) pre-trained ViT-B/32
(Dosovitskiy et al., 2020) and 2.) a ResNet-50 pretrained on ImageNet in a supervised fashion. Then
we proceed to unlearn a specific subset of data from these models. Before training with the classification
objective, we do a key initialization for the DKVB models on the same dataset.

Key Initialization in DKVB models. After being forward propagated through the pre-trained encoder,
the representations of the input are mapped to the top-k closest keys in the information bottleneck. The
mapping between keys and values in the discrete key-value bottleneck is non-parametric and frozen. As
a result, there is no gradient (back)propagation from the values to the keys, and hence the keys are not
modified during training. Thus, it becomes essential for the keys to be initialized before learning the values
and decoder, such that they broadly cover the feature space of the encoder. This initialization helps the
model represent different concepts effectively. As in Träuble et al. (2023), we use exponential moving average
(EMA) updates (Oord et al., 2017; Razavi et al., 2019) to initialize the keys of the DKVB models. The
key-initialization is done on the same train dataset Dtrain which we want to train the model on. The key
initializations depend solely on the input encodings of the backbone and hence do not require access to any
labeled data.

Inference for Unlearning. We propose to achieve unlearning in DKVB models by excluding key-value
pairs from the bottleneck such that they cannot be selected again. Numerically, this masking is done by
setting the quantization distance of the selected keys to ‘infinity’. Figure 1 (center and right column) shows
an overview of the proposed methods. More specifically, we experiment with two methods, Unlearning via
Activations and Unlearning via Examples, described as follows.

Unlearning via Examples. In this method, we analyze the effect of unlearning a subset of Ne examples
belonging to the forget set. Ne examples are randomly sampled from the forget set training data (Dforget

train )
and are input into the model having a DKVB. All key-value pairs that are selected during forward propagation
across the Ne examples are flagged. These key-value pairs are then masked out from the bottleneck.
Technically, this approach requires access to the original training data corresponding to the forget class.
However, it is also possible to carry out this procedure with a proxy dataset that has been sampled from a
distribution close enough to that of the forget set. For more discussion on this, refer to Appendix A.1.
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Unlearning via Activations. In this second method, we analyze the effect on the quality of unlearning by
deactivating different numbers of key-value pairs corresponding to the forget set. We refer to the key-value
pairs that have been selected as inputs to the decoder as activations. The entire forget set is forward-
propagated through the DKVB model and all the key-value pairs selected across all examples of the forget
class are recorded. Next, we mask the top-Na most frequently selected key-value pairs from the bottleneck.
The requirement of accessing the original training data for this method can be avoided by caching all the
activations corresponding to the forget set during the last epoch of training. Further, similar to the previous
case, unlearning via activations may also be performed given access to data that has been sampled from a
distribution close enough to the distribution of the forget set.

Both approaches are two different ways of achieving a common objective: to exclude a subset of activations
corresponding to the forget set. However, using one approach over the other may be more practical or even
necessary, depending on the task at hand. In both the above approaches, we do not do any form of retraining or
fine-tuning. The only computation which may be necessary is incurred during the inference stage for recording
the key-value pairs which have been utilized for the forget set. Hence both approaches require negligible
additional compute. Moreover, the requirement of access to original training data of the forget class can also be
circumvented under appropriate assumptions, making the proposed approaches zero-shot unlearning methods.

5 Experiments and Results

The goal of our experiments is two-fold. First, we validate that proposed methods of the Unlearning via
Activations and Unlearning via Examples in models with a DKVB (Section 5.2), and show that the proposed
methods are competitive with the baselines (Section 5.2.1) in unlearning the forget class while incurring
minimal damage to the performance of the models on the retain class. Second, we compare the compute
efficiency of the proposed methods against that of the baselines. More specifically, we report the number
of floating-point operations (FLOPs) required during the procedure of unlearning. Before presenting these
results, we describe our experimental setup (Section 5.3). Before presenting these results, we describe our
experimental setup.

5.1 Experimental Setup

Benchmark datasets We validate the proposed methods using experiments across four base datasets:
CIFAR-10 with 10 distinct classes, CIFAR-100 (Krizhevsky et al., 2009) with 100 distinct classes, LACUNA-
100 (Golatkar et al., 2020a) with 100 distinct classes and ImageNet-1k (Russakovsky et al., 2015) with 1000
distinct classes. LACUNA-100 is derived from VGG-Faces (Cao et al., 2018) by sampling 100 different
celebrities and sampling 500 images per celebrity, out of which 400 are used as training data and the rest are
used as test images.

Models On the aforementioned three datasets we study the following types of model architectures:

(a) Backbone + Discrete Key-Value Bottleneck (Ours): Overall, this architecture consists of three
components: 1) the frozen pre-trained backbone 2) the Discrete Key-Value Bottleneck (DKVB) and
3) a decoder, as shown in Figure 1. For the DKVB, we use 256 codebooks, with 4096 key-value pairs
per codebook (approximately 1M pairs overall) as in Träuble et al. (2023).

(b) Backbone + Linear Layer (Baseline): As a baseline, we replace the Discrete Key Value bottleneck and
the decoder in the above model architecture with a linear layer. Thus, the two components of this model
are 1) a frozen pre-trained backbone and 2) a linear layer. This model will be used for all the baseline meth-
ods. We replace the DKVB with a linear layer in the baseline since we observe that existing unlearning
approaches are designed for continuous representation architectures and thus perform better on them.

In each model, we use a pre-trained frozen CLIP (Radford et al., 2021) ViT-B/32 and ImageNet supervised
pre-trained ResNet-50 as our encoder backbones. We refer the reader to the appendix for additional
implementation details.

Training the Base Models We then train both model architectures on the full training sets of each dataset.
Since the backbone is frozen, for the baseline models, only the weights of the linear layer are tuned during

6



Under review as submission to TMLR

100 80 60 40 20 0

Forget Set Test Accuracy [%]

90.0

90.8

91.6

92.4

93.2

94.0
R

e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]
CIFAR-10

0

40000

80000

120000

160000

200000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

75.0

75.8

76.6

77.4

78.2

79.0

R
e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]

CIFAR-100

0

15000

30000

45000

60000

75000

90000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

87.0

87.8

88.6

89.4

90.2

91.0

R
e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]

LACUNA-100

0

40000

80000

120000

160000

200000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

65.0

65.8

66.6

67.4

68.2

69.0

R
e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]

ImageNet

0

4000

8000

12000

16000

20000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

80.0

80.8

81.6

82.4

83.2

84.0

R
e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]

CIFAR-10

0

40000

80000

120000

160000

200000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

60.0

60.6

61.2

61.8

62.4

63.0
R

e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]
CIFAR-100

0

8000

16000

24000

32000

40000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

63.5

64.1

64.7

65.3

65.9

66.5

R
e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]

LACUNA-100

0

15000

30000

45000

60000

100 80 60 40 20 0

Forget Set Test Accuracy [%]

75.0

75.4

75.8

76.2

76.6

77.0

R
e
ta

in
S

e
t

T
e
st

A
cc

u
ra

cy
[%

]

ImageNet-1k

0

6000

12000

18000

24000

30000

Figure 2: Unlearning via Activations. Performance on the retain set test data vs. Performance on the
forget set test data across various datasets for (a) CLIP pretrained ViT/B-32 in the top row (b) ImageNet
pretrained ResNet-50 backbones in the bottom row as the value of Na is increased which is indicated by
the color of the markers. The relative performance on the retain set test data as compared to the original
models increases after unlearning in the case of CIFAR-10 and ImageNet-1k and drops for CIFAR-100 and
LACUNA-100 in the case of ViT/B-32 and increases for all four datasets in the case of ResNet-50 (see Table
1).

initial training (and later unlearning). Since we use only one linear layer, we do not do any pre-training
(beyond the backbone), unlike in previous works (Kurmanji et al., 2023; Golatkar et al., 2020a;b). Table 3
shows the performance of these trained models on the train and test splits of the complete datasets. Starting
from these base models trained on the full datasets, we will validate the ability to unlearn previously learned
knowledge.

Key-Initializations. To remain consistent with the literature on DKVB (Träuble et al., 2023), we apply
EMA-based key-initializations to the DKVB models in all cases. The key-initializations lead to a clean
class-wise separation of the keys in the DKVB as discussed in (Träuble et al., 2023). Consequently, they
enable high-quality unlearning by making sure that different classes have minimal number of shared keys. We
empirically explore the effect of key-initializations on the quality of unlearning in Appendix A.4.

Unlearning We aim to make the problem of unlearning as challenging as possible. In order to bias the
comparison against the proposed methods we select the forget class to be the class best learnt by the models
with the DKVB in each case (see Appendix A.3). The intuition behind this experimental design choice is
that the class best learnt by the model would be associated with the largest number of representations in
the DKVB (leading to high values of Na and Ne for unlearning), thus increasing the likelihood of it sharing
representations with other classes. Thus, unlearning these classes would lead to a higher drop in the retain set
performance as compared to unlearning other classes. Nevertheless, we experimentally demonstrate that the
proposed approaches perform competitively even when the forget set is randomly chosen in Appendix A.9.

Objective & Metrics We report our results on the test data of retain classes and forget class, i.e. Dretain
test

and Dforget
test . Note that while typically in unlearning the performance of training examples from the forget set

is studied. However, in our case, we aim to study not only whether the the model has unlearnt examples of
the forget class in the training data. We study unlearning in a more broader sense and aim to study whether
the model unlearns general "information" about the class, i.e., given a forget set, is the model’s performance
on all similar data points (and not just those belonging to the forget set) drops; i.e. whether the unlearning
generalizes. Hence we report the performance on the evaluation set. Note that this practice would not be
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valid in case of instance specific unlearning wherein the aim to unlearn specific examples from the training
data.

Further, while the proposed approaches facilitate unlearning up to arbitrary extents, in our experiments, we
aim to achieve complete unlearning - achieving minimal accuracy on the forget set while incurring minimal
damage to the performance on the retain set. We do this in order to stress test the proposed approaches,
since higher the greater the extent of unlearning the larger the extent of damage incurred on the performance
of the model on the retain classes. While achieving complete unlearning may not always be desirable, such as
in the case of Membership Inference Attacks (MIAs) the proposed methods can be easily extended to defend
against MIAs (We refer to Appendix A.11 for further discussion on MIAs and the proposed methods). We
report mean values across 5 random seeds in all cases.

For comparing the compute efficiency of different approaches, we report the approximate FLOPs (Floating
Point Operations) required for the procedure of unlearning. The total number of FLOPs are calculated as
number of FLOPs required during the forward passes + number of FLOPs required during the backward passes.
We use the fvcore1 library for computing the number FLOPs required during the forward passes. FLOPs
required using backward passes are approximated as number of operations used for gradient computations +
number of operations used for weight updates2. Since only the linear head weights are trainable, the number
of computations required for calculating the gradients would be the same as the number of parameters in the
linear layer. Further, since we use Adam optimizer, the number of operations required for the weight updates
would be equal to 18 times the number of parameters.

To calculate the final number of FLOPs, we first calculate the FLOPs required for one example (one forward
+ backward pass) and then multiply them with the total number of examples and the total number of epochs.
For SCRUB, the forward and backwards FLOPs are multiplied with different scalars depending on the msteps
parameter.

5.2 Unlearning via the Discrete Key-Value Bottleneck

We will now discuss the results of unlearning via activations and examples, i.e. the two approaches proposed
in Section 4 on all four benchmark datasets.

Unlearning via Activations. Unlearning via activations requires us to set the hyperparameter Na, reflecting
the top-Na most frequently activated key-value pairs which will be masked out after inference on the forget
set. We therefore start by analyzing its role over a wide range of values to probe its choice and effect with
Na = 0 being the limit without any unlearning. Figure 2 summarizes the unlearning and effect of Na on the
retain vs forget test set. In the case of CIFAR-10 and a ViT/B-32 backbone, the initial accuracies on the
retain and forget test set are 92.61% and 96.50% respectively. As Na increases, the forget class test accuracy
decreases, slowly for small Na and rapidly for larger Na. The model reaches random accuracy (i.e. 10% for
CIFAR-10) on the forget class test data at Na = 150000. At this point the retain set test accuracy is 92.97%.
The model unlearns the forget class completely between Na = 170, 000 (0.4%) and Na = 180, 000 (0%). That
is, the forget class test accuracy of the DKVB model drops to 0% between these values of Na. The exact
value of Na at which the accuracy drops to zero, represents the minimum number of activations that need to
be discarded in order to destroy all information about the forget class from the model. At this point, the
retain set test accuracy is 92.94%, which is almost identical to the initial accuracy. Further increasing Na

up to Na = 200, 000, i.e. about 20% of all key-value pairs, leads to an additional increase in retain set test
accuracy to 93%. On the contrary, in the case of CIFAR-10 and a ResNet-50 backbone, the decrease in the
forget set test accuracy is rapid for small Na and it slow for higher values of Na. Complete unlearning in
this case happens between Na = 160000 (0.1%) and Na = 190000 (0%). These differences in trends can be
attributed to how the information is factorized among the representations. For eg. there is a steep decline in
the forget set test accuracy between Na = 50000 (41%) and Na = 55000 (13%) in the case of LACUNA-100
and ResNet-50 backbone. This behavior may be attributed to the presence of high information but less
frequently selected key-value pairs between the two values of Na. Nevertheless, as can be seen from the
equivalent analysis on the CIFAR-100, LACUNA-100 and ImageNet-1k models in Figure 2 and Figure 3, the

1https://github.com/facebookresearch/fvcore/
2https://epochai.org/blog/backward-forward-FLOP-ratio
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Figure 3: Unlearning via Examples. Performance on the retain set test data vs. Performance on the forget
set test data across different datasets for (a) CLIP pretrained ViT/B-32 in the top row and (b) ImageNet
pretrained ResNet-50 backbones in the bottom row as the value of Ne is increased which is indicated by
the color of the markers. The relative performance on the retain set test data as compared to the base
model increases for CIFAR-10 and drops for all other datasets in the case of ViT/B-32, whereas it drops for
CIFAR-10 and CIFAR-100 and increases for LACUNA-100 and ImageNet-1k in the case of ResNet-50 (see
Table 1)

same trend of maintaining the initial retain accuracy while minimizing the forget accuracy up to a minimum
holds across all four datasets and both backbones validating its meaningful unlearning capability.

Unlearning via Examples. For the second method—unlearning via examples—Ne examples are sampled
randomly from the training data of the forget class, and subsequently used for unlearning by the mechanism
described in Section 4. Similar to before, we aim to assess the effect on the choice of Ne over a wide range for
each dataset, including Ne = 0 being the limit without any unlearning. Figure 3 summarizes the unlearning
and effect of Ne on the retain vs. forget test set. We again begin by focusing on the results with CIFAR-10
and ViT/B-32 backbone. Here, the forget set Dforget

train contains 5000 examples. We start off with retain set and
forget set test accuracies of 92.61% and 96.50% respectively. Similar to the previous approach – unlearning
via activations – the test accuracy on the forget set decreases with increasing Ne. The accuracy on the retain
test set, on the other hand, increases monotonically, although only slightly overall. The model achieves
random accuracy on the forget class around Ne = 2500. The accuracy on retain set test data is at just under
93% at this transition. Finally, the accuracy on the forget set drops to 0% (i.e. complete unlearning) between
Ne = 3000 and Ne = 3400 with a retain set test accuracy of just above 93% at Ne = 3400. Further increasing
Ne does not affect the retain set test accuracy notably. Similarly to the case of unlearning via activations, the
forget set test performance decreases rapidly at first and then slowly with Ne in the case of CIFAR-10 with a
ResNet-50 backbone. The retain set test accuracy increases at first and then decreases, albeit marginally. An
equivalent analysis on the CIFAR-100, Lacuna-100 and ImageNet-1k models in Figure 3 exhibit a similar
behavior of successful minimization of the forget accuracy up to a minimum while roughly maintaining the
retain set test accuracy, validating unlearning via examples as another option for unlearning using discrete
key-value bottlenecks.

Summary. Both methods, Unlearning via Activations and Unlearning via Examples, successfully demonstrate
unlearning of the forget class while having a negligible effect on the models’ performance on the retain set.
Importantly, this is achieved without any form of training, retraining, or fine-tuning as is usually required
by other methods. The retain set test accuracy remains more or less constant for all four datasets except
for a few minor fluctuations. This is a result of the fact that due to localized and context-dependent sparse
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Table 1: Comparison between the proposed methods and the baseline across CIFAR-10, CIFAR-100, LACUNA-
100 and ImageNet-1k datasets and CLIP pretrained ViT/B-32 and ImageNet pretrained ResNet-50 backbones.
We compare the relative change in performance on the retain and forget set test data relative to the
originally trained models. The proposed methods are able to unlearn the forget sets completely in all cases
while causing minimal changes in the performance of the models on the retain set test data.

CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

Backbone Method Dretain
test

Dforget
test

Dretain
test

Dforget
test

Dretain
test

Dforget
test

Dretain
test

Dforget
test

ViT/B-32
DKVB via Activations (sec 5.2) 0.36% -100% -0.20% -100% -0.17% -100% 0.15% -100%
DKVB via Examples (sec 5.2) 0.45% -100% -0.36% -100% -0.09% -100% -0.03% -100%

Linear Layer + SCRUB 1.62% -100% -0.91% -100% -1.10% -100% 7.31% -100%
Linear Layer + Finetuning 1.94% -100% -1.91% -98.33% -2.21% -100% 0.88% -100%
Linear Layer + Retraining 1.82% -100% -0.39% -100% -2.03% -100% 5.16% -100%
Linear Layer + NegGrad+ 0.49% -100% -0.63% -100% -1.34% -100% 2.45% -100%

ResNet-50
DKVB via Activations (sec 5.2) 0.04% -100% 0.26% -100% 0.21% -100% 0.04% -100%
DKVB via Examples (sec 5.2) -0.07% -100% -0.34% -100% 0.17% -100% 0.04% -100%

Linear Layer + SCRUB -0.07% -99.67% -0.94% -98.79% -0.26% -99.67% 0.74% -100%
Linear Layer + Finetuning 0.48% -100% -0.46% -99.99% -2.96% -100% -2.25% -100%
Linear Layer + Retraining 3.06% -100% 1.76% -100% 1.15% -100% -1.14% -100%
Linear Layer + NegGrad+ 2.13% -100% -0.85% -100% 6.73% -100% -0.85% -100%

updates during the initial training of the model, discrete key-representations corresponding to different classes
in the dataset are well separated from each other, an important prerequisite discussed in Träuble et al. (2023).
Hence, all the information about a class can be unlearned by forgetting only a subset of the forget class
training data in the case of Unlearning via Examples, making it very data-efficient. While the aforementioned
experiments are conducted in the context of unlearning a single class, Appendix A.8 further discusses the
performance of the proposed approaches in multi-class unlearning scenarios.

5.2.1 Comparison with Baselines

We now compare the results of both the proposed methods, which require Backbone + DKVB models against
several baseline methods, which are optimized for models without such a bottleneck. For this, we will use the
Backbone + Linear Layer models described in 5.1. On these models, we run SCRUB (Kurmanji et al., 2023),
finetuning - finetuning the model to be unlearnt on the retain set, retraining - training the model from scratch on
the retain set only and NegGrad+ (Kurmanji et al., 2023) and compare the performance changes on the forget
and retain classes against the performance changes after unlearning with the two proposed methods.Table 1
shows the comparison between the two previously reported methods and the baselines. We can see that one of
the two proposed approaches always results in the least change in the performance of the base model on the
retain classes, while at the same time achieving complete unlearning of the forget class. The baselines on the
other hand, occasionally fail to achieve complete unlearning. Finally, it is important to re-emphasize that the
proposed methods achieve the shown performance without requiring any additional gradient-based training
for unlearning. In the case of baselines, we stop the unlearning procedure when the forget set is completely
unlearned or the forget set test accuracy has converged with minimal damage to the performance on the
retain set. Moreover, while we report results for the case of complete unlearning, the proposed methods
can be easily used for achieving unlearning of the forget class to different extents by tuning the Na and Ne

hyperparameters. We refer to Appendix A.13.3 and A.13.2 for further training and implementation details.

5.3 Proposed Methods achieve Unlearning in a Compute Efficient Manner
In this section, we compare the proposed approaches against the baselines in terms of the amount of compute
required in order to achieve complete unlearning. To facilitate this comparison, we report the number of
FLOPs required for the unlearning procedure for each case. The FLOPs are calculated following the rules
described in Section 5.1. Table 2 compares the FLOPs required for unlearning in each case.

We report the forward and backward FLOPs separately to highlight that the proposed approaches do not
require any gradient based updates. Additionally, while the scale of backward FLOPs may seem insignificant
against the forward FLOPs, it can easily blow up in cases where complex parametric decoders are used on
top of the DKVB. In our experiments, the decoder is simply an average pooling layer. Nevertheless, we can
see that the proposed approaches require significantly less forward FLOPs as compared to the baselines. This
can be explained by the fact that the proposed approaches require only one forward pass through the models
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Table 2: Comparison of FLOPs for various methods across CIFAR-10, CIFAR-100, LACUNA-100, and
ImageNet-1k datasets using ViT/B-32 and ResNet-50 backbones. We report both forward and backward
FLOPs for each method.

CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

Backbone Method Forward Backward Forward Backward Forward Backward Forward Backward
(TFLOPs) (GFLOPs) (TFLOPs) (GFLOPs) (TFLOPs) (GFLOPs) (TFLOPs) (GFLOPs)

ViT/B-32

DKVB via Activations (sec 5.2) 21.93 0 2.19 0 1.75 0 5.63 0
DKVB via Examples (sec 5.2) 14.91 0 0.75 0 1.40 0 2.90 0

Linear Layer + SCRUB 655.13 14.59 1316.83 293.30 527.60 117.51 39168.28 87230.98
Linear Layer + Finetuning 196.54 4.38 6485.87 1444.61 5188.69 1155.69 11179.75 24898.21
Linear Layer + Retraining 196.54 4.38 1080.98 240.77 864.78 192.61 5589.87 12449.11
Linear Layer + NegGrad+ 393.08 8.76 1729.56 385.23 1383.65 308.18 11179.75 24898.21

ResNet-50

DKVB via Activations (sec 5.2) 16.66 0 1.67 0 1.33 0 5.31 0
DKVB via Examples (sec 5.2) 7.33 0 0.93 0 1.33 0 3.74 0

Linear Layer + SCRUB 1498.74 87.55 1488.79 869.68 3697.00 2159.62 31873.28 299227.17
Linear Layer + Finetuning 1049.12 61.29 1648.66 963.07 131.89 77.05 5304.25 49796.43
Linear Layer + Retraining 659.47 385.23 1648.66 963.07 2242.18 1309.78 5304.25 49796.43
Linear Layer + NegGrad+ 329.73 192.61 10608.49 99592.85 263.79 154.09 5304.25 49796.43

per example of the forget class training data, in order to cache the activations. The baseline methods on the
other hand, require multiple forward passes, each corresponding to a single training epoch.

We also provide a runtime comparison of the proposed approaches with SCRUB in Appendix A.5, showing
that the proposed approaches are at least 20× more compute efficient than SCRUB, further demonstrating
the efficacy of the proposed approaches.

6 Limitations and Future Work

The proposed methods inherit the limitations of the DKVB (Träuble et al., 2023) such as the reliance
of DKVB on pre-trained encoders which can extract meaningful shared representations and trade-offs in
downstream performance due to the use of an information bottleneck. Extensions to the model may involve
training sparse representations inducing discrete bottleneck end-to-end. Further, in our experiments, we
consider the setting of multi-class classification in a supervised learning setting where the forget set can
be easily identified and isolated. However, this may not always be sufficient for a given task and more
complicated approaches might be needed to identify the data that needs to be removed from the model.
Scaling the proposed framework and evaluating its effectiveness in more complex scenarios such as generative
modeling remains to be explored. While the methods introduced in this work are currently not designed
for selective unlearning as outlined in Appendix A.11, there are various directions for future adaptations.
These directions include enhancing the forget set isolation, and addressing limitations related to information
retention, for instance by further fine-tuning on the encoder backbone.

7 Conclusion

In this work, we proposed a new approach to unlearning that requires minimal computation in order to
unlearn a subset of data. This approach is based on the use of a discrete architectural bottleneck which
induces sparse representations. These sparse representations facilitate unlearning a subset of data from the
model with minimal to no performance drop on the rest of the data. We focused on the setting of class
unlearning and our experiments show that the proposed approach, while being at least 20× compute efficient,
performs competitively with or in some cases better than a state-of-the-art approach which requires additional
compute to perform unlearning. Consequently, excising the activated key-value pairs from the model is a
highly effective means of unlearning the forget set without disrupting the retain set.

Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Unlearning. Machine Unlearning has
emerged as a very important problem with the recent advances in Artificial Intelligence. With the advent of
large, compute intensive neural networks, out work can have significant societal impact by addressing the
applications of machine unlearning such as privacy preservation and mitigating harmful among many others
discussed in the paper.
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A Appendix

A.1 Unlearning in the absence of original training data

The main condition for unlearning the forget class in the bottleneck is that the keys which are closest to the
encoder representations of the forget set examples in the forget class are being removed. One way to do this
as described above, is by recording which keys get selected for the forget class examples and subsequently
removing them from the bottleneck. However, in the absence of the forget class training data, the same could
also be done by passing examples not directly belonging to the forget set but drawn from a distribution that
is close enough to the forget set. This will result in approximately the same set of keys being selected as
would have been if the examples belonged to the forget set.

A.2 Initial Performances of the Models

We train both: the models with a DKVB and the baseline models (i.e. backbone + linear layer) to achieve
similar performances on the test datasets in order to ensure a fair comparison. Note that, due to these the
models are not necessarily trained to achieve the maximum possible performance on the datasets. Table 3
shows the initial performances of the originally trained models on different splits of the datasets.

Table 3: Performance of the models on different sets of data after the initial training on the four datasets.
We use two kinds of models: (a) models having a Discrete KV Bottleneck which are used for the proposed
methods and (b) models where the DKVB and the decoder are replaced by a Linear Layer. These are used
for the baseline. We wish to reduce the accuracy of these models on Dforget

test to 0% while maintaining the
accuracy on Dretain

test .

(a) Backbone + DKVB
ViT-B/32 ResNet-50

Dataset Dtrain Dretain
train

Dforget
train

Dtest Dretain
test

Dforget
test

Dtrain Dretain
train

Dforget
train

Dtest Dretain
test

Dforget
test

CIFAR-10 100% 100% 100% 93.01% 92.61% 96.50% 100% 100% 100% 82.94% 82.04% 91.00%
CIFAR-100 99.98% 99.98% 100% 78.43% 78.24% 96.00% 99.98% 99.98% 100% 62.11% 61.81% 92.00%

LACUNA-100 98.09% 98.07% 100% 90.38% 90.28% 100% 98.35% 98.34% 100% 65.53% 65.24% 94.00%
ImageNet-1k 99.53% 99.53% 100% 68.24% 68.22% 92.00% 99.37% 99.36% 100% 76.44% 76.41% 100%

(b) Backbone + Linear Layer
ViT-B/32 ResNet-50

Dataset Dtrain Dretain
train

Dforget
train

Dtest Dretain
test

Dforget
test

Dtrain Dretain
train

Dforget
train

Dtest Dretain
test

Dforget
test

CIFAR-10 93.27% 92.82% 97.32% 93.02% 92.59% 96.90% 83.80% 83.42% 87.20% 82.04% 81.74% 91.70%
CIFAR-100 86.73% 86.61% 99.00% 78.53% 78.35% 96.00% 78.02% 77.82% 98.20% 62.69% 62.41% 90.00%

LACUNA-100 95.58% 95.53% 100% 90.68% 90.59% 100% 86.48% 84.53% 99.25% 65.40% 65.10% 95.00%
ImageNet-1k 73.13% 73.11% 96.15% 68.29% 68.26% 92.00% 97.44% 97.43% 100% 76.77% 76.75% 100%

A.3 Deciding the Forget Class

We assume that this class should be the most difficult one for the model to forget. Figures 4(a) - 4(c) show
the number of mis-classifications per class on the test data, for CIFAR-10, CIFAR-100 and LACUNA-100
for the ViT-B/32 backbone. For CIFAR-10, class #1 is the best-learned class with the lowest number of
mis-classifications. Thus, we select class #1 as the forget class for the dataset. For CIFAR-100 class 58 is the
best-learned class and for LACUNA-100, class 48 is one of the best-learned classes with zero mis-classifications.
Hence, we select classes #58 and #48 as the forget classes for CIFAR-100 and LACUNA 100 respectively.
We determine the forget class in all other cases using the same method. We use the same forget classes for
experiments on the models with a linear layer in place of the DKVB (i.e., the baseline) as well. Table 4 shows
the forget class for all the cases discussed in our experiments.
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Figure 4: Number of mis-classifications per class for the test data. The red bars correspond to the class with
the least number of mis-classifications (a) CIFAR-10: Class 1 has the least number of mis-classifications (b)
CIFAR-100: Class 58 has the least number of mis-classifications (c) LACUNA-100: Classes 34, 48, 65, 76, 82
and 85 have 0 mis-classifications and hence, do not have a bar

Table 4: Forget classes for the different scenarios presented in the paper

Forget Classes CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k
ViT-B/32 1 58 48 1
ResNet-50 1 94 34 9

A.4 Importance of Key-Value Initializations in the DKVB

The effectiveness of the proposed approaches depends on the quality of key-initializations (i.e. how well the
keys corresponding to different classes are separated), which also affects the overall performance of the DKVB
model. EMA is used for key-initializations and thus plays a crucial role in the approaches. The quality of
unlearning would deteriorate in the absence of key-initializations. We demonstrate this with an experiment
where we compare the retain set accuracy of ViT-B/32 backbone based DKVB models trained with and
without key-initializations when they undergo unlearning via activations for CIFAR-10, CIFAR-100 and
LACUNA-100 and report the results in Table 5. We can see that the retain set accuracy incurs significant
damage upon complete unlearning when the models are trained without key-initializations.

Table 5: Comparison of the effectiveness of Unlearning via Activations with and without EMA based key-
initialization for ViT-B/32 backbone based models

DKVB via Activations CIFAR-10 CIFAR-100 LACUNA-100
Dretain

test Dforget
test Dretain

test Dforget
test Dretain

test Dforget
test

w/ Key-Init 0.36% -100% -0.20% -100% -0.17% -100%
w/o Key-Init -2.96% -100% -13.36% -100% -9.46% -100%

In order to stay consistent with the literature on DKVB, we use EMA, exactly as used in (Träuble et al.,
2023), using the same parameter values (i.e. gamma = 0.95). We discuss the implementation in detail in the
Appendix A.12.1.

A.5 Comparison of Runtimes

In this section, we present a comparison of runtimes of the proposed approaches against the baseline, SCRUB
(Kurmanji et al., 2023) as a proxy for comparing the compute requirements of the two approaches. Table
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Table 6: Comparison of runtimes (in seconds) between the proposed methods and the baseline on CIFAR-10,
CIFAR-100, LACUNA-100 and ImageNet-1k. The proposed methods are at-least 20× faster than the baseline
across all cases. Between the two proposed methods, Unlearning via Activations is faster.

Backbone Method CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32
DKVB via Activations 5.02 1.57 2.74 0.84
DKVB via Examples 13.98 6.65 13.03 2.36

Linear Layer + SCRUB 288.80 921.56 553.31 181.04

ResNet-50
DKVB via Activations 4.88 0.84 1.50 1.02
DKVB via Examples 12.26 2.39 2.20 4.30

Linear Layer + SCRUB 1703.73 1902.89 4192.96 295.45

6 presents the results of this comparison across all cases. We observe that in all the cases, the runtime
of the baseline is multiple orders of magnitude greater than the runtime of the proposed approaches, with
proposed approaches being at-least 20× faster than the baseline.3 Large runtimes for SCRUB are a result
of the gradient-based parameter optimization required for the approach.

A.6 Comparisons to fully trained baselines

We demonstrate perform equally well in comparison to baselines that are fully trained by training the baselines
to completion on CIFAR-10 and CIFAR-100 for ResNet-50 backbones, and comparing unlearning on them
via SCRUB with unlearning in the proposed approaches.

We first report the performances of the fully trained baselines and corresponding DKVB models in Table 7.
For the baseline models, we run an extensive hyperparameter sweep and select models according to the best
test performance across all the combinations.

Table 7: Performance of the models on different sets of data after the initial training on the four datasets.

(a) Backbone + DKVB

ResNet-50

Dataset Dtrain Dretain
train

Dforget
train

Dtest Dretain
test

Dforget
test

CIFAR-10 100% 100% 100% 82.94% 82.04% 91.00%
CIFAR-100 99.98% 99.98% 100% 62.11% 61.81% 92.00%

(b) Backbone + Linear Layer (Fully Trained)

ResNet-50

Dataset Dtrain Dretain
train

Dforget
train

Dtest Dretain
test

Dforget
test

CIFAR-10 86.68% 85.96% 93.08% 84.28% 83.50% 91.3%
CIFAR-100 81.61% 81.45% 97.2% 63.3% 63.11% 82.00%

Next, we run SCRUB (Kurmanji et al., 2023) on the fully trained baseline models and compare the performance
with the proposed approaches in Table 8.

Clearly, unlearning on fully trained baselines is more difficult than on models trained to the same extent as
the DKVB models.

3Note that the runtimes for ImageNet-1k are low since we use pre-computed backbone embeddings to run these experiments.
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Table 8: Comparison of the proposed approaches with unlearning via SCRUB on fully trained baseline models.
F-T stands for fully trained baselines.

CIFAR-10 CIFAR-100

Backbone Method Dretain
test

Dforget
test

Dretain
test

Dforget
test

ResNet-50
DKVB via Activations (sec 5.2) 0.04% -100% 0.26% -100%
DKVB via Examples (sec 5.2) -0.07% -100% -0.34% -100%

Linear Layer + SCRUB -0.07% -99.67% -0.94% -98.79%
Linear Layer + SCRUB (F-T) -1.15% -99.99% -2.35% -98.37%

A.7 Unlearning in SCRUB

Figure 5 plots the retain class test accuracy vs forget class test accuracy for running SCRUB on a (CLIP
pretrained and then finetuned on CIFAR-100) ViT-B/32 backbone in the case of CIFAR-100 (similar to
Figures 2 and 3). The forget set accuracy drops to 0% after the first epochs. We run the unlearning procedure
for 10 epochs, each epoch consisting of either one or two optimization steps, depending on the msteps
parameter. As explained in Section 5.2.1, we run SCRUB until the damage on the retain set test accuracy is
minimal.
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Figure 5: Retain Class Test Accuracy vs Forget Class Test Accuracy. The markers are color coded to represent
the number of epochs.

A.8 Multi Class Unlearning

We attempt to investigate the effects of unlearning multiple classes at once by performing experiments on
CIFAR-100 for both ViT/B-32 and ResNet-50 models. We unlearn upto 10 classes using both - Unlearning
via Activations as well as Unlearning via Examples as well as one of the baselines - SCRUB (Kurmanji et al.,
2023) and run each experiment for 5 seeds. The classes to be forgotten are chosen randomly for each seed.
Figure 6 plts relative change in performance of the unlearnt model on the retain class (with respect to the
original model) vs the number of classes unlearnt at approximately the point of complete unlearning.

We can see that Unlearning via Activations performs relatively better as compared to Unlearning via Examples.
Further, SCRUB outperforms both the proposed methods significantly in the case of a ViT backbone, keeping
the percentage change in the retain class test accuracy less than 1% in all cases. However, in the case of
a ResNet-50 backbone, SCRUB surprisingly performs the worst for low number of unlearnt classes and
competitively for higher number of unlearnt classes. The proposed methods perform comparatively better on
the ResNet-50 backbone as compared to the ViT backbone. We can also clearly see that the relative error
as compared to the original model on the retain set performance is higher than single class unlearning, as
expected. Noticeably, the performance starts to significantly deteriorate when forgetting > 6 classes in the
case of Unlearning via Examples, and > 8 examples in the case of Unlearning via Activations for both the
backbones.
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Figure 6: Multi Class Unlearning for CIFAR-100

Table 9: Selecting the forget class randomly for CIFAR-100

CIFAR-100

Backbone Method Dretain
test Dforget

test

ViT/B-32
DKVB via Activations (sec 5.2) -0.27 ± 0.07 % -100% ± 0 %
DKVB via Examples (sec 5.2) -0.47 ± 0.03 % -100 ± 0 %

Linear Layer + SCRUB -1.56 ±0.35% -100 ±0%

ResNet-50
DKVB via Activations (sec 5.2) 0.58 ± 0.12 % -100 ± 0 %
DKVB via Examples (sec 5.2) 0.28 ± 0.11 % -100 ± 0 %

Linear Layer + SCRUB -1.43 ±0.18% -99.94 ±0%

A.9 Choosing the forget class randomly

To ensure that the effectiveness of the approach is not class specific, we perform experiments on CIFAR-100,
where the class to be forgotten is randomly chosen, and compare the performance of the proposed approaches
against SCRUB [2]. We run each experiment for 5 random seeds, wherein the forget class is randomly chosen
for each seed. Rest of the experimental setup remains the same as described in Section 5 of the paper. We
report the results in Table 9

Clearly, even with the forget class chosen randomly, the proposed approaches perform competitively to
SCRUB. This demonstrated that the effectiveness of the proposed approaches is not class dependent.

A.10 Unlearning beyond the compute free setting

We investigate the effect of using additional compute to the proposed methods. As shown previously, the
proposed methods perform competitively to SCRUB. To the best of our knowledge, SCRUB is the most
competitive and relevant unlearning approach. However, it has the inherent drawback of requiring compute
for unlearning. Nevertheless, for a fair comparison, we additionally explore the implications of this additional
compute for the proposed two methods for a ViT/B-32 backbone on CIFAR-10, CIFAR-100 and LACUNA-100.
Specifically, we retrain the DKVB models after the (compute efficient) unlearning, on the training data
of the retain set (i.e., Dretain

train ) for 10 epochs. For the baseline, we use the same experimental setting as
in Section 5.2.1, except - we run it for 10 epochs instead of stopping when either the forget set has been
completely unlearned or the performance has converged. Figure 7 and figure 8 highlight the effect of retraining
of the proposed methods compared to SCRUB across multiple epochs, for all three datasets.
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Retraining the unlearned models on the retain set does not affect their performance significantly. The
performance of the baseline on the other hand increases after an initial drop in case of CIFAR-100 and
LACUNA-100. The initial drop may be attributed to the damage to the retain set performance caused by the
initial max-steps. The subsequent increase can be attributed to the fact that the SCRUB training objective
also optimizes the task loss on the retain set. Thus, once the model unlearns the forget set, SCRUB shifts
the model capacity towards better learning the retain set. For CIFAR-10 this results in the model performing
better than the DKVB models on the retain set as the retain set test accuracy after unlearning is higher than
the original model. However, the baseline is unable to recover its original performance for CIFAR-100 and
LACUNA-100.
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Figure 7: Comparison between the performance of proposed methods with added compute and the baseline on
the retain set test data. For the proposed methods, the plots start from after the initial zero shot unlearning.
For the baseline, the plots start from the original models. Retraining the models unlearned using the proposed
models does not lead to any significant improvements in performance.

For the forget set, in all three cases, the baseline completely unlearns the forget set quickly within the first
few epochs, as shown in Figure 8.
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Figure 8: Comparison between the performance of proposed methods with added compute and the baseline
on the and forget set test data. Note that for the proposed methods, the plots start from after the initial
zero shot unlearning. For the baseline, the plots start from the original models. The green line occludes the
red line since both of them stay at 0% throughout the training.
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A.11 Using the proposed Methods against Membership Inference Attacks

Depending on the application, complete unlearning of the forget set may not always be the final goal of
unlearning. For several use cases such as removing information about corrupted data from the model or
removing harmful biases exhibited by the model, maximal error on the forget set is desirable. However, for
applications such as Differential Privacy, it is more desirable to achieve a forget set error which is similar
to that of a model trained from scratch only on the retain set. Otherwise, it makes the unlearned model
susceptible to Membership Inference Attacks (MIA) (Shokri et al., 2017). Although we do not explore
this setting in detail in this work, the proposed method can also be used for applications where complete
unlearning is not desirable. This can be done by following a procedure similar to SCRUB+R (Kurmanji et al.,
2023), wherein instead of selecting a particular model checkpoint, one can select the model corresponding to
particular values of Na or Ne such that the error on the forget set test data is similar to the reference point
as defined in Kurmanji et al. (2023).

First,it is important to clarify that the proposed approaches are not a-priori suited for selective unlearning,
i.e. the setting where we want the model to forget specific examples or a small subset of examples instead of
removing the information about an entire class. The KV bottleneck essentially induces induces clusters of
representation, where the members of a particular cluster correspond to the representations belonging to the
same class (see Figure 2 in Träuble et al. (2023)). When we try to unlearn the representations corresponding
to one particular example belonging to a particular class, the KV bottleneck routes the selection to other
(key-)representations within the same cluster since those keys would be the next closest to the representation
of the encoder. Since these representations also contain information about the same class as the examples we
intend to unlearn, the model would still predict the class to be unlearnt.

Due to the same reason the proposed approaches are also not designed for working against traditional
Membership Inference attacks. According to the basic attacks setup as explained in Kurmanji et al. (2023),
the objective is to obtain a model that has unlearnt a small subset of specific examples (i.e. selective
unlearning) such that the loss of the model on the unlearnt subset of examples should be indistinguishable
from loss on examples that the model never saw during training.

Nevertheless, since the proposed approaches are designed for class unlearning specifically, we attempt to
evaluate them on a modified version of the above. We call this "Class Membership Inference Attacks (CMIA)".
In CMIA, the aim is to defend against an attacker whose aim is to determine whether a model that has
undergone unlearning ever saw a particular class as a part of its training data. Thus, we want the model to
unlearn a particular class such that the losses/performance of the model on the unlearnt class as a whole, is
indistinguishable from those on a held-out class that the model never saw during its training. We describe
the experimental setup and results below.

Experimental Setup We perform the experiment for CIFAR10 with a ViT/B-32 backbone. We divide the
dataset into training data (DT rain), validation data (DV al) and test data (DT est). Training Data consists of
4000 examples per class; validation and test data consist of 1000 examples per class. We first trained a model
on the first 9 classes of CIFAR10. Thus, class number 10 is the held-out class. Next, we unlearn class 1 from
the model using the Unlearning via Activations approach introduced in the paper. We unlearn the model
until the loss of the model on the validation sets of the forget class and the held-out class are similar. In our
experiments, we find that we reach this point at approximately Na = 240000. The loss l(x, y) in our case is
be the cross-entropy loss.

Next, we label the losses corresponding to the validation and test set of the forget class as 1 and those
corresponding to the validation and test set of the held-out class as 0. We train a binary classifier on the
validation losses of the forget and held-out sets and evaluate it on the test losses. We follow a similar setting
for the baseline model, where we obtain the model suitable for MIA defense by using SCRUB+R (Kurmanji
et al., 2023). For a successful defense, we would want the accuracy of the classifier to be close to 50% on the
test losses, indicating that it is unable to distinguish between the unlearned class and the held-out class. Same
as Kurmanji et al. (2023), we use sklearn.logistic_regression as our attacker (the binary classifier). We
call the approach described above Partial UvA (Partial Unlearning via Activations). We run experiments for
3 random seeds, and the mean of the attacker performance is reported. Note that a similar procedure can
also be followed using Unlearning via Examples.
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Observations and Results: We report the results of the experiment described above in the table given
below. We observe that although the baseline performs slightly better, the proposed approaches perform
competitively, even though we have not intended to develop the method for this scenario.

Table 10: Comparison on Class Membership Inference Attacks between the proposed approach and the
baseline. A binary classifier is trained on the validation losses of the forget and held-out sets and is evaluated
on the test losses. The proposed approach performs competitively to SCRUB + R

Approach Attacker Accuracy
Partial UvA 53.50%

Linear Layer + SCRUB + R 51.50%

A.12 Mathematical and Algorithmic Formulations

In this section, we provide mathematical formulations for the proposed approaches of Unlearning via
Activations and Unlearning via Examples as well as the empirical moving averages used for initializing the
keys of the Discrete Key-Value bottleneck.

A.12.1 Exponential Moving Averages for Key-Initialization

Similar to Träuble et al. (2023) we build upon exponential moving averages as introduced in Oord et al.
(2017); Razavi et al. (2019). Below, we reiterate much of what is described in Träuble et al. (2023) (Appendix
C). The set of equations given below describes the key initialization procedure. For each codebook c:

N
(t)
i := γN
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i + n

(t)
i (1− γ) (1)

m
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i := γm

(t−1)
i +

n
(t)
i∑
j

E
c(x)
i,j (1− γ) (2)

k
(t)
i := m

(t)
i

N
(t)
i

(3)

where t is the index of the current mini-batch, ki and Ni represent the position and counts of the ith key,
Ec(x)(t)

i,j=1...n
(t)
i

are the n
(t)
i head embeddings of the examples in the mini-batch which attach to the i-th key.

We refer the reader to Appendix C of Träuble et al. (2023) for more details.

A.12.2 Unlearning via Activations and Examples

In this section, we provide algorithmic implementations of the the proposed approaches of Unlearning via
Activations (Algorithm 1) and Unlearning via Examples (Algorithm 2). Both algorithms are applied on
model with a DKVB that was trained on the given task.

Discrete Key-Value Bottleneck - Notations. Before laying out the algorithms, we define some notations
related to different components of the Discrete Key-Value Bottleneck (DKVB) (Träuble et al., 2023) that
are essential for the algorithms. We refer the reader to Träuble et al. (2023) for the role of each of these
components in the DKVB.

1. Pre-trained and frozen embedding model E

2. Random projection matrix R
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3. Set of keys initialized using EMA {kj}N−1
j=0

4. Distance matrix D ∈ R|Dforget
train |×N , initialized to −∞:

D[i, j]← −∞ ∀ i ∈ {0, 1, 2, ....., |Dforget
train | − 1}, j ∈ {0, 1, 2, ....., N − 1}.

5. Selection mask M ∈ R|Dforget
train |×N , initialized to 1:

M [i, j]← 1 ∀ i ∈ {0, 1, 2, ....., |Dforget
train}| − 1], j ∈ {0, 1, 2, ....., N − 1}.

We also define a function argsort as follows:

Function Definition: argsort
Let v = [v1, v2, . . . , vn] ∈ Rn be a one-dimensional array or vector. The function argsort(v) returns a
permutation π of the indices [1, 2, . . . , n] such that:

vπ(1) ≤ vπ(2) ≤ . . . ≤ vπ(n).

In other words, π(i) is the index of the i-th smallest element of v.

For example, if v = [3, 1, 4], then:
argsort(v) = [2, 1, 3],

since v2 = 1 is the smallest, v1 = 3 is the second smallest, and v3 = 4 is the largest.

A.13 Training Details and Hyperparameters

We perform all of our experiments on a 48GB RTX8000 GPU. We do not use any data augmentation in
any experiment. The transforms used for training the model with a ViT/B-32 backbone are the same as
CLIP (Radford et al., 2021) pretrained ViT/B-32 transforms. For ResNet-50, both pre-trained weights and
transforms are loaded from torchvision.models.ResNet50_Weights

A.13.1 Training Details and Hyperparameters for training the original DKVB Models

In the case of ImageNet pretrained ResNet-50, the representations of the backbone are extract from the 3rd
last layer for CIFAR-10, CIFAR-100 and LACUNA-100 and from the 4th last layer for ImageNet-1k. Table 11
shows all the hyperparameters used for training the base DKVB models.

A.13.2 Training Details and Hyperparameters for training the original Baseline Models

For the baseline models, we deliberately train them to similar test (Dtest) accuracies as the models with a
Discrete Key Value Bottleneck to ensure a fair comparison for unlearning. Table 12 shows the hyperparameters
used for training the baseline models.

A.13.3 Training Details and Hyperparameters for SCRUB

For the baseline, we run SCRUB on the model with linear layer. One epoch consists of one min step and may
or may not contain a max step. Hence the values of min steps and epochs are always same. One max step is
included in every epoch for the first msteps epochs. We tune the hyperparameter msteps in our experiments
and pick the case where the model is able to best recover its performance on the retain set test data and
consider this model as the final unlearned model. We mention the hyperparameters used for running SCRUB
corresponding to the results presented in Section 5.2.1 in Table 13. In this case, training of SCRUB is stopped
when the forget set accuracy has either dropped to 0% or converged at a close to 0% value without damaging
the retain set accuracy. Results presented in Appendix A.10 also use the same set of hyperparameters except
min-step which is always 10 since we train all the methods for 10 epochs.

23



Under review as submission to TMLR

Algorithm 1: Unlearning via Activations
Input: Forget class training data Dforget

train ⊂ Dtrain, number of activations to be deactivated Na, top-k
parameter used for the DKVB

Output: Modified selection mask M

Initialize: Frequency matrix f ∈ ZN
≥0, initialized to 0:

f [j]← 0 ∀ j ∈ {0, 1, 2, ....., N − 1}.

Step 1: Forward propagate the forget class training data through the model
for i← 0 to |Dforget

train | − 1 do

x← Dforget
train [i]

ex = R · E(x)
for j ← 0 to N − 1 do

D[i, j]← ||ex − kj ||2 ×M [i, j]
end
Ie ← argsort(D[ex, :])1:top-k

for j ∈ Ie do
f [j]← f [j] + 1

end

end

Step 2: Deactivate the most frequently activated keys
J ← argsort(f)N−Na+1:N

for j ∈ J do
M [:, j]←∞

end

A.13.4 Training Details and Hyperparameters for Retraining Experiments

Once the DKVB models are unlearned using Unlearning via Activations and Unlearning via Examples, we
retraining them in order to make a fair comparison with the baseline. Thus, during retraining, the initial
performance of these models on the retain set is same as the final performance of the unlearned models.
Table 14 show the hyperparameters used for retraining the unlearned DKVB models.
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Algorithm 2: Unlearning via Examples
Input: Forget class training data Dforget

train ⊂ Dtrain, number of examples to be used for unlearning Ne,
top-k parameter used for the DKVB

Output: Modified selection mask M for the DKVB.

Initialize: Set of activated indices I ← ∅

Step 1: Randomly sample a subset Sf from Dforget
train of size Ne

Sf ∼ Dforget
train , |Sf | = Ne

Step 2: Input the examples in the subset into the model to record the activated keys
for i← 0 to |Sf | − 1 do

x← Sf [i]
ex = R · E(x)
for j ← 0 to N − 1 do

D[i, j]← ||ex − kj ||2 ×M [i, j]
end
I ← I ∪ argsort(D[i, :])1:top-k

end

Step 3: Deactivate the activated keys
for i ∈ I do

M [:, j]←∞

end

Table 11: Hyperparameters used for training the base DKVB models

Backbone Hyperparameter CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32

top-k 1 10 10 1
Key Dimension 8 8 8 14

# of Key Init Epochs 10 10 10 10
Type of Value Init Gaussian Random Zeros Uniform Random Zeros

# of Codebooks 256 256 256 256
# of Key-Value Pairs per Codebook 4096 4096 4096 4096

Optimizer Adam Adam Adam Adam
LR 0.1 0.3 0.3 0.3

Batch Size 256 256 256 256
Epochs 74 71 7 3

ResNet-50

top-k 1 2 1 1
Key Dimension 14 14 8 14

# of Key Init Epochs 10 10 10 10
Type of Value Init Zeros Random Gaussian Random Gaussian Random

# of Codebooks 256 256 256 256
# of Key-Value Pairs per Codebook 4096 4096 4096 4096

Optimizer Adam Adam Adam Adam
LR 0.3 0.3 0.1 0.3

Batch Size 256 256 256 256
Epochs 70 4 1 5
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Table 12: Hyperparameters used for training the baseline models

Backbone Hyperparameter CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32
LR 0.001 0.01 0.01 0.01

Batch Size 256 256 256 512
Epochs 1 7 13 1

ResNet-50
LR 0.01 0.001 0.01 0.001

Batch Size 256 256 512 512
Epochs 2 72 73 11

Table 13: Hyperparameters for SCRUB + Linear Layer Experiments shown in Section 5.2.1

Backbone Hyperparameter CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32

Forget Set Batch Size 256 256 256 512
Retain Set Batch Size 256 256 256 512

# of max-steps (msteps) 3 9 5 3
# of min-steps / # of epochs 3 10 7 3

LR 0.001 0.01 0.01 0.001
Optimizer Adam Adam Adam Adam

ResNet-50

Forget Set Batch Size 256 256 256 512
Retain Set Batch Size 256 256 256 512

# of max-steps (msteps) 9 3 3 3
# of min-steps / # of epochs 10 30 30 10

LR 0.01 0.001 0.01 0.001
Optimizer Adam Adam Adam Adam

Table 14: Hyperparameters used for re-training experiments. UvA stands for Unlearning via Activations and
UvE stands for Unlearning via Examples

CIFAR-10 CIFAR-100 LACUNA-100
UvA UvE UvA UvE UvA UvE

LR 0.3 0.3 0.1 0.1 0.1 0.3
Optimizer Adam Adam Adam Adam Adam Adam
Batch Size 256 256 256 256 256 256

Gradient Clipping 0.1 0.1 0.1 0.1 0.1 0.1
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