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Abstract

Conceptualized as Associative Memory, Hopfield Networks (HNs) are powerful1

models which describe neural network dynamics converging to a local minimum2

of an energy function. HNs are conventionally described by a neural network with3

two layers connected by a matrix of synaptic weights. However, it is not well4

known that the Hopfield framework generalizes to systems in which many neuron5

layers and synapses work together as a unified Hierarchical Associative Memory6

(HAM) model: a single network described by memory retrieval dynamics (conver-7

gence to a fixed point) and governed by a global energy function. In this work we8

introduce a universal abstraction for HAMs using the building blocks of neuron9

layers (nodes) and synapses (edges) connected within a hypergraph. We imple-10

ment this abstraction as a software framework, written in JAX, whose autograd11

feature removes the need to derive update rules for the complicated energy-based12

dynamics. Our framework, called HAMUX (HAM User eXperience), enables any-13

one to build and train hierarchical HNs using familiar operations like convolutions14

and attention alongside activation functions like Softmaxes, ReLUs, and Layer-15

Norms. HAMUX is a powerful tool to study HNs at scale, something that has16

never been possible before. We believe that HAMUX lays the groundwork for a17

new type of AI framework built around dynamical systems and energy-based as-18

sociative memories.19

1 Introduction20

Non-linear ordinary differential equations (ODEs) are extensively used in modern AI architectures,21

leading to impressive results. An important subset of general ODEs are systems with an under-22

lying global Lyapunov function, often called an energy function, which decreases in time as the23

non-linear dynamical system approaches the fixed point state. Paradigmatic examples of such sys-24

tems are Hopfield Networks (HNs), introduced in 1982 by John Hopfield as models of associative25

memory retrieval [1, 2]. The core idea is that the non-linear (discrete or continuous) dynamical26

system, governed by the energy function, is designed to have multiple fixed points (memories) with27

substantial basins of attraction around them. Given an initial prompt (a query), the network picks28

one of the basins of attraction and follows the gradient of the energy function to “retrieve” the fixed29

point state stored at the bottom of that basin. There has been a resurgence of interest in HNs in30

the past few years thanks to novel results pertaining to their memory storage capacity, relationship31

to transformer’s attention, and possible ways of integrating these ideas in a wide variety of deep32

learning architectures [3, 4, 5, 6, 7, 8].33

Hopfield Networks are conventionally seen as shallow, two-layer systems, e.g., [9, 6, 7, 10]. How-34

ever, this restriction of shallowness is one imposed by historical usage and not one of the energy-35

based equations themselves. It turns out that the same energy rules that govern the simple two-layer36

system generalize to HNs composed of any number of layers and synapses, an architecture called37
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Figure 1: Left: the fundamental building blocks of our abstraction. Each Layer is given a La-
grangian function L that fully defines both its activations g and energy. Each Synapse has energy
dependent only on a learnable alignment function that converts the activations of connected layers
into a scalar. Center: an example HAM composed of four layers and three synapses. The sys-
tem’s energy function is the sum of the energies of its components. Layer states are recurrent in
time. We use 0-based indexing to align the graphical representation with the matching Python code.
Right: pseudocode illustrating how illustrating how a few lines of code can build a HAM. Each layer
(lines 2-5) is assigned a Lagrangian (denoted by its familiar activation names e.g., identity, relu,
tanh, softmax) and shape. Synapses (lines 8-10) are modeled after common network operations
(e.g., convolution, attention, dense), which are all implemented in HAMUX and whose parameter
shapes are fully defined by the connected layers. The hypergraph definition (lines 13-15) assembles
the graph, one line per synapse.

the Hierarchical Associative Memory (HAM) [11]. The conventional HN is then a special limiting38

case of the HAM with two layers and one synapse.39

The generalizability of the HN to the HAM is not common knowledge to the research community,40

and as such the behavior of the HAM as a “Hierarchical Hopfield Network” has not been well41

characterized or understood. In this work we propose a powerful abstraction and accompanying42

software framework called HAMUX that removes critical barriers that stand in the way of applying43

these networks at scale:44

Barrier 1: There is no standardized terminology for the energy fundamentals of a HAM.45

Our framework proposes an abstraction that fully captures the behavior of any HN while being46

modular (i.e., it is easy to assemble deep HAMs connected to any number of signals), gener-47

alizable (i.e., it is possible to quickly propose novel operations and activation functions that48

satisfy energy constraints), and reminiscent of the biological inspiration for the original HN.49

Barrier 2: The energy of a HAM grows increasingly complex with the number of compo-50

nents and connections. Our framework uses modern AI tooling (JAX [12]) to automatically51

calculate the gradient of the energy function for any given state and parameters, removing the52

need to manually derive complicated update rules.53

Barrier 3: It can be challenging to conceptualize HAM architectures as modern machine54

learning pipelines. It requires the shift of perspective from the standard “classification” setup55

(take an input, pass it through the network, and return an output), to an “association” setup,56

where labels are just another attribute of a data point (data and labels are equally important57

and treated the same). With the examples released with HAMUX, we show how one can ap-58

ply HAMs to conventional “classification” pipelines while reusing existing tools in the Deep59

Learning ecosystem to create custom energy components.60
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Our framework, though still in its infancy, aims to integrate HAMs into modern Deep Learning. All61

experiments in this paper were conducted using our framework.62

2 The Abstraction63

Hopfield Networks are recurrent networks whose behavior at time t is completely defined as a64

function of the neuron states. Our abstraction pivots on understanding how the individual ener-65

gies of neuron layers and synapses (i.e., the “energy building blocks” of our abstraction) oper-66

ate within the constraints of a hypergraph. Concretely, our HAM framework with N layers and67

K synapses is fully defined by a list of all neuron layers X = {X 1,X 2, . . . ,XN}, a list of all68

synapses S = {S1,S2, . . . ,SK}, and a list of connections specifying the connection hypergraph69

G = {G1,G2, ...,GK}. We emphasize that a HAM uses a hypergraph and not a normal graph: i.e.,70

a synapse (edge) can operate on an arbitrary number of layers (nodes). In practice, we represent Gκ71

as the collection of integers
(
{α, β, ...}, κ

)
to specify that synapse Sκ operates on the activations of72

layers {Xα,X β , ...}. Figure 1 summarizes our abstraction. The system’s total energy is defined as73

a sum of the energies of its components.74

Etotal =

N∑
α=1

Eα
layer +

K∑
κ=1

Eκ
synapse (1)

2.1 Neuron Layers75

A neuron layer Xα is an assembly of Dα neurons each with a hidden state xα
i governed by a76

Lagrangian function Lα : RDα 7→ R. All neurons share a scalar time constant τα that governs how77

quickly xα
i will evolve in time. Each neuron can additionally have a resting state Iαi that we call the78

bias in conventional deep learning. The choice of the Lagrangian Lα fully defines the activation or79

the gain function gα : RDα 7→ RDα

for a given neuron layer as gα := ∂Lα

∂xα .80

The most important rule of the neuron layer is the following: the hidden state xα
i is completely81

invisible to the rest of the network at any point in time. The ONLY way a neuron can influence the82

rest of the network is via its activation gαi (i.e., all synapses must operate on activations).83

The energy of neuron layer Xα can be computed from its state xα as follows:84

Eα
layer =

∑
i

(xα
i − Iαi )g

α
i − Lα(x

α) (2)

In practice, xα
i need not be a scalar. For example, a layer of shape RDα×H×W has Dα neurons85

whose states xα
i and activations gαi are image patches in RH×W .86

2.2 Synapses87

A synapse Sκ is a parameterized alignment function Fκ that transforms the activations {gα, gβ , . . .}88

of one or more layers {Xα,X β , . . .} into a meaningful scalar that represents the alignment of those89

layers. This is a novel construction of our abstraction as no previous work has considered anything90

beyond pairwise synapses. A synapse’s energy is defined as the negative of its alignment function.91

Eκ
synapse = −Fκ, where Fκ(gα, gβ , . . .) 7→ R. (3)

2.3 The Update Rule92

The update rule for xα
i is the direct consequence of differentiating the total energy in Eq. 1. Incoming93

signals ∂Fκ

∂gα
i

into xα
i can only come from connected synapses. See the derivations in [7, 11].94

τα
dxα

i

dt
= −∂Etotal

∂gαi
=

K∑
κ=1

∂Fκ

∂gαi
+ Iαi − xα

i (4)
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Figure 2: A HAM was trained on the MNIST classification task. After training, the image neurons
of the trained HAM were initialized at random while the label neurons were clamped to one-hot
encodings for each digit. The image neurons were then allowed to update their states so that the
energy decreases in time (left) to the fixed point of the dynamics (in our experiments after 15 time
steps). These fixed points are shown on the right as the tanh(·) activations of the image layer. We
use the HN (SoftMax) model from Table 1.

Table 1: Classification results reported as the best top-1 accuracy on the validation set at 100 (600)
epochs.

Model Top-1 Val % # of Params (M)

MNIST CIFAR10 MNIST CIFAR10
HN (ReLU) 98.74 (99.03) 58.82 (66.23) 0.79 18.49
HN (SoftMax) 97.32 (97.99) 53.17 (58.89) 0.79 18.49
Conv HAM (max pool) 99.29 (99.51) 82.08 (86.39) 0.60 1.78

3 Classification and Observing the Dynamics95

The problem of classification can be formulated in a HAM as an association problem: what one-hot96

encoded label is associated with a given collection of pixels? In this section we train several different97

architectures using HAMUX: the traditional HN in both the classical and modern paradigm where we98

concatenate flattened pixels to labels; and a novel HAM where we stack convolutional and pooling99

operations. All architectures behave under the global energy function and we do not use additional100

encoders, decoders, or classification heads. See Appendix A for technical details and discussion.101

The accuracy of our HAMs, shown in Table 1, stands in line with the accuracy of corresponding102

feedforward models on similar tasks.103

Every system built with HAMUX is an associative memory. This means that training a HAM to104

“classify” images in one direction allows us to utilize the system in reverse — we can retrieve the105

memory most associated with a label by clamping the labels to a desired value over the dynamics.106

See Figure 2 for energy dynamics of a trained model with different clamped MNIST labels and107

Appendix B for details.108

4 Conclusion109

In this work, we have proposed a universal abstraction to describe the energy of general Hopfield110

Networks. Our abstraction proves particularly powerful for network design, allowing anyone to111

modularly construct deep HNs (HAMs) that can be applied to traditional machine learning tasks.112

At the same time, our abstraction generalizes the fundamental operations of synapses, giving us113

freedom to implement energy-constrained versions of convolutions, pooling, and even attention. We114

package our abstraction into a software framework called HAMUX that makes it trivial to implement115

complex HAMs. We believe that HAMUX gives HNs the representational power of modern Deep116

Learning by providing a framework that integrates modern AI tooling and advances into a regime117

that is governed by energy and whose cardinal function is association rather than prediction.118
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Table 2: TIMM Data Augmentation configuration for the experiments

MNIST CIFAR
re prob 0.1 0.2
hflip 0.0 0.5
vflip 0.0 0.0
scale (0.9, 1.0) (0.2, 1.0)
color jitter 0.4 0.5
auto augment None None
ratio (0.75., 1.33) (0.75, 1.33)

A Classification: Training and Architectures167

We now provide the technical details for the variety of architectures that were implemented using168

HAMUX in section 3. All models were trained for 600 epochs using the ADAM optimizer with169

weight decay (using optax defaults: b1=0.9, b2=0.99, weight decay=1e-4 [13]) at a constant learning170

rate of 0.001 and batch size of 400. For consistency, we do not optimize hyperparameters for any171

particular architecture. We train the networks using simple backpropagation through time using the172

ADAM optimizer [14]. We load MNIST and CIFAR images with minor data augmentations from173

the popular timm [15] library. All experiments were run on an A100 GPU.174

We provide example code for MNIST architectures; CIFAR10 versions of the architecture are almost175

identical, though they require different layer shapes for all layers related to images and patches.176

Depending on the depth of the HAM, we vary the number of recurrent timesteps along with our step177

size dt through time. This is to ensure that pixel information has enough time to propagate to a178

potentially distant label layer. All architectures and their training scripts will be released as demo179

models along with the framework.180

A.1 Shallow Hopfield Network Configurations181

We begin by implementing two different HNs where a visible layer, the concatenation of vectorized182

pixels and one-hot labels, is connected to a single hidden layer via a synaptic weight matrix. The183

difference in these two architectures is in the choice of activation function. The relu activation func-184

tion defines the model as a continuous, recurrently applied Classical Hopfield Network (CHN) [2],185

whereas softmax activation function defines a Dense Associative Memory (DAM), also known as186

the Modern Hopfield Network (MHN) [3, 4, 6, 7]. The latter has been shown to have a higher storage187

capacity than the former; however, it is our experience in writing this paper that they are also harder188

to train using backpropagation-through-time. For this reason, in our HN (Softmax) architecture we189

additionally normalize each memory in the weights to have L2-norm equal to 1. Specifically, given190

our synaptic matrix connecting 1000 hidden units to 794 visible units (784 pixels + 10 labels), we191

enforce that the matrix consists of 1000 unit vectors each of dimension 794. This promotes diversi-192

fying of the weights during training and stability of the dynamics during longer inference runs.193

To implement this architecture using HAMUX we define an image layer with the tanh activa-194

tion function that is connected to a label layer with the softmax activation function. Function-195

ally, the states of these two layers are concatenated together and their union is referred to as196

a single visible layer. The second “layer” of this two-layer HN is hidden inside the synapse197

(DenseMatrixSynapseWithHiddenLayer). So why do we put this layer within the synapse? In198

our abstraction, the states of each layer must be propagated through time — that is, a layer’s state199

xα(t) should depend on no other layer states at the same time t. The original definition of the HN200

defines the state of the hidden layer at time t as a function of the state of the visible layer at time t201

(which is equivalent to taking the limit as τ of this layer approaches 0). By including the Lagrangian202

function as a hidden layer within a synapse we propose a workaround that is mathematically con-203

sistent with the original definition of the HN (that is, states are independent of other states at time204

t).205
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layers = [
TanhLayer((28,28,1)),
SoftmaxLayer((10,)),

]
synapses = [

DenseMatrixSynapseWithHiddenLayer(1000, hidden_lagrangian=LRelu()),
]
connections = [

((0, 1), 0),
]
ham = HAM(layers, synapses, connections)

Code 1: Shallow HN with ReLU, MNIST

A.2 Convolutional and Pooling HAMs206

Dense matrix operations are only one kind of alignment function that describe layer-layer relation-207

ships. We introduce an architecture that additionally uses convolutions and pooling. We must first208

calculate the shape of each layer that serves as the output of a convolution or pooling operation.209

With this we can describe our 5-layer HAM as follows (layer 5 is hidden within our last synapse):210
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layers = [
TanhLayer((28,28,1), tau=1.0),
TanhLayer((7,7,64), tau=1.0),
TanhLayer((2,2,128), tau=1.0),
SoftmaxLayer((10,), tau=1.0),

]
synapses = [

ConvSynapseWithPool(
(4, 4),
strides=(2, 2),
padding=(2, 2),
pool_window=(2, 2),
pool_stride=(2, 2),
pool_type="max",

),
ConvSynapseWithPool(

(3, 3),
strides=(1, 1),
padding=(0, 0),
pool_window=(2, 2),
pool_stride=(2, 2),
pool_type="max",

),
DenseMatrixSynapseWithHiddenLayer(1000, hidden_lagrangian=LRelu()),

]
connections = [

((0, 1), 0),
((1, 2), 1),
((2, 3), 2)

]

Code 2: Convolutional HAM with MaxPooling, MNIST

A.2.1 On the consequences of Max-Pooling211

We make several architectural choices in this paper, not all of which have the most natural corre-212

spondence to energy. In particular, consider the max pooling operation which is implemented as part213

of our convolutional synapse. For each patch on which this operation is applied it will discard infor-214

mation from every element but one. This makes it unclear what the signal should be in the gradient215

of that synapse’s energy for all non-maximum elements in the patch. The JAX autograd system (and216

hence HAMUX) uses the definition of max-pooling consistent with that proposed by [16] where the217

gradients of all non-maximum elements of the patch are zero.218

If we consider the operation of max-pooling to be a competitive operation within a single neuron219

where the “winner takes all,” we can easily consider a softer version of the maximum on each patch,220

e.g., “softmax pooling.” We leave this for future work.221

A.3 Example forward pass222

Our HAMs are all fully dynamic systems through time, so it can be unnatural to consider them as223

prediction engines. Here we provide the forward pass that we used for our classification pipelines.224
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import jax.numpy as jnp
import jax.tree_util as jtu

def simple_fwd(ham, x, depth, dt):
"""A simple version of the forward function for classification.

Image layers are `layer[0]` and labels are `layer[-1]`
"""
# Initialize hidden states given our data
xs = ham.init_states(x.shape[0])
xs[0] = jnp.array(x)

# Masks allow us to clamp our visible data over time
masks = jtu.tree_map(lambda x: jnp.ones_like(x), xs)
masks[0] = jnp.zeros_like(masks[0])

for i in range(depth):
# Calculate update directions
updates = ham.vupdates(xs)

# Simple step down the energy function
xs = ham.step(

xs, updates, dt=dt, masks=masks
)

# Label layer has the softmax activation function
# Use this to return probabilities
return ham.layers[-1].g(xs[-1])

Code 3: An example of the forward function for classification

B Observing Dynamics225

Using our trained HN-Softmax model from our classification experiments, we clamp the labels of226

our system to a desired value and let the dynamics of the system evolve around these signals. We227

display the images as our HAM sees them: as the tanh activations of our pixels (hence the negative228

values in Figure 2). To extract sharper memories (i.e., to prevent our system from choosing an229

incoherent superposition of memories at the limit of the dynamics), we decrease the temperature of230

the Softmax in our hidden layer by a factor of 10.231

C About HAMUX: Software Details232

The HAMUX software used for this paper is undergoing rapid API and tooling changes in an effort233

to incorporate more of the expected functionality present in a Machine Learning library. At the time234

of this writing, all components in HAMUX have been built using the excellent but unpopular Treex235

library [17], which we found to be the most robust and simple ML framework for building the unique236

constraints required HAMUX components. As part of the JAX ecosystem, any traditional tools for237

working with deep networks in JAX also work with HAMUX (e.g., it would be easy to consider238

alternative optimization procedures implemented in Optax [13] to descend the energy function).239

The software will be released prior to this workshop date.240

D Examples of Lagrangian Functions241

The choice of the Lagrangian function Lα for layer Xα fully defines the activation or the gain242

function of that layer gα : RDα 7→ RDα as gα := ∂Lα

∂xα for a given neuron layer. These functions243

introduce non-linearites into our HAM. Sometimes these functions operate elementwise (e.g., ReLU,244

GeLU) whereas other activation functions include normalization effects that scale an individual245
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neuron’s state xα
i given the states of other neurons xα in the same layer (e.g., SoftMax, LayerNorm).246

For behaved dynamics, we must choose a Lagrangian that is both convex and differentiable.247

The following common activation functions in use today have easy parallels in the Lagrangian world.248

ReLU The Lagrangian of the ReLU is249

L =
1

2

∑
i

max(xi, 0)
2,

where250

gi =
∂L
∂xi

= max(xi, 0).

SoftMax The Lagrangian of the SoftMax is also known as the LogSumExp. It proves benefi-251

cial to consider the case of a softmax with a (potentially learnable) inverse temperature scalar252

β (e.g., Transformer attention defaults to 1√
Dkey

). The Lagrangian of this operation can be253

expressed as254

L =
1

β
log

∑
i

exp (βxi) ,

where255

gi =
∂L
∂xi

=
exp(βxi)∑
j

exp(βxj)
.

Identity The identity activation occurs with the Lagrangian256

L =
1

2

∑
i

x2
i ,

where257

gi =
∂L
∂xi

= xi.

LayerNorm The LayerNorm activation modifies each neuron layer to have mean 0 and standard258

deviation 1, while optionally learning a scale γ on the standard deviation and a shift δ to the259

mean x̄ = 1
D

D∑
k=1

xk. The corresponding Lagrangian is260

L = Dγ

√
1

D

∑
j

(
xj − x̄

)2
+ ε +

∑
j

δjxj ,

where261

gi = γ
xi − x̄√

1
D

∑
j

(
xj − x̄

)2
+ ε

+ δi.
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