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Abstract001

Multi-Agent Systems (MAS) built from Large002
Language Models (LLMs) offer significant003
potential for complex problem-solving, yet004
their optimal configuration is challenging, with005
performance typically evaluable only after006
resource-intensive execution. Addressing the007
underexplored area of MAS performance pre-008
dictability, this paper investigates whether and009
how accurately MAS outcomes can be fore-010
casted. We propose and evaluate a methodol-011
ogy that involves monitoring MAS operations012
during execution, capturing agent inputs and013
outputs, and transforming this data into system-014
specific statistical indicators. These indicators015
are then used to train a regression model to016
predict overall task performance. Conducting017
experiments across five distinct MAS architec-018
tures and three benchmark tasks, we demon-019
strate that MAS performance is significantly020
predictable, achieving Spearman rank correla-021
tions typically ranging from 0.76 to 0.94 be-022
tween predicted and actual scores. Notably,023
our findings indicate that the global statistics024
required for these predictions can be accurately025
estimated from as little as 10% of the total op-026
erational data-generating events, still yielding027
a high correlation of 0.82. Further analysis re-028
veals that metrics quantifying individual agent029
capabilities are the most influential factors in030
performance prediction. This work underscores031
the feasibility of reliably predicting MAS per-032
formance, offering a path towards more effi-033
cient design, configuration, and deployment of034
MASs.035

1 Introduction036

Recently, the rapid development of LLMs has been037

widely reported (Achiam et al., 2023; Dubey et al.,038

2024; Gemini et al., 2023). These models exhibit039

strong capabilities, achieving success in various040

tasks of Natural Language Processing (NLP) (Rad-041

ford et al., 2019). Leveraging training processes042

such as instruction tuning (Longpre et al., 2023),043

LLMs have demonstrated the ability to articulate 044

reasoning (Wei et al., 2022; Yao et al., 2024), self- 045

correct errors (Madaan et al., 2024), utilize exter- 046

nal tools (Schick et al., 2024; Qin et al., 2023), 047

and retain long-term memory (Huang et al., 2023) 048

during inference. By combining these capabilities 049

with various techniques, researchers have success- 050

fully built on off-the-shelf LLMs to create single- 051

agent systems capable of solving more complex 052

tasks. Notable examples include AutoGPT (Signifi- 053

cant Gravitas, 2024), XAgent (XAgent, 2023), and 054

OpenInterpreter (OpenInterpreter, 2023). 055

Beyond the aforementioned single-agent appli- 056

cations, research has emerged that focuses on en- 057

abling multiple LLMs to collaborate on specific 058

tasks. Inspired by evidence of collective intelli- 059

gence (Woolley et al., 2010) arising in groups of 060

humans, various multi-agent frameworks have been 061

proposed to mimic human collaborative scenarios. 062

Typically, in these frameworks, each agent is con- 063

trolled by an LLM with an assigned role, and a 064

predefined executable pipeline is configured. Fol- 065

lowing the pipeline, agents collaborate towards a 066

common goal. This approach has shown promis- 067

ing results, demonstrating that a well-configured 068

LLM-based Multi-Agent System (MAS) can out- 069

perform a single agent in certain contexts. No- 070

table successes include Generative Agents (Park 071

et al., 2023), which simulates human society, Au- 072

toGen (Wu et al., 2023), CAMEL (Li et al., 2023), 073

AgentVerse (Chen et al., 2023) which tackles rea- 074

soning tasks, ChatEval (Chan et al., 2023) which 075

tackles evaluation tasks, as well as ChatDev (Qian 076

et al., 2023) and MetaGPT (Hong et al., 2023), 077

which focus on software tasks. 078

Despite the significant success of these MASs, 079

obtaining the optimal MAS configuration remains 080

an unresolved challenge. The process often re- 081

quires careful design, relying on prior knowledge 082

of the task and heuristic approaches. The effective- 083

ness of the chosen configuration can only be eval- 084
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Figure 1: We investigate the research question: "Given knowledge of existing MAS and their corresponding target
scores, how accurately can we predict the performance of a new MAS on an unseen task?" As illustrated in the
figure, different configurations of MAS are presented. We use to represent the capabilities of the underlying
LLM for each agent. For instance, this could be Llama3-8B, Llama3-70B, or other models.

uated after the actual execution, which can be re-085

source intensive and inefficient during production.086

Inspired by well-studied scaling laws(Kaplan et al.,087

2020) in LLM development – which model target088

task performance(Isik et al., 2024) or validation089

loss as functions of model size, data size (Hu et al.,090

2024), training FLOPs (Hoffmann et al., 2022), or091

data mixtures (Ye et al., 2024) – we aim to explore092

whether it is possible to predict downstream task093

performance given the task and the configuration.094

Such predictability would enable us to design more095

reliable and effective MAS without the need for096

costly trial and error.097

Additionally, recent literature has made consider-098

able efforts to predict the performance of individual099

LLM, with studies examining aspects like bench-100

mark performance predictability (Schellaert et al.,101

2025; Pacchiardi et al., 2025), methods for explain-102

ing predicted performance (Drapal et al., 2024),103

and the ability to forecast success on specific in-104

stances from limited data (Pacchiardi et al., 2024).105

However, the predictability of overall MAS perfor-106

mance, which arises from complex emergent dy-107

namics due to agent interactions, remains compar-108

atively underexplored. This motivates our central109

research question: How predictable is the perfor-110

mance of a MAS?111

To address this, we investigate a method based112

on monitoring system execution. During the opera- 113

tion of a MAS, we capture inputs and outputs each 114

time an agent communicates. This collected data, 115

reflecting the dynamic interactions, is transformed 116

into system-specific indicators (Section 3) designed 117

to predict target scores. We then train a simple 118

regression model, such as XGBoost (Chen and 119

Guestrin, 2016), on these indicators. This model 120

subsequently allows us to predict the performance 121

of a newly configured MAS on its target tasks. 122

Specifically, in this paper, we conducted ex- 123

periments using five distinct, manually designed 124

architectures with varying agent assignments 125

and message flows. These were tested across 126

three benchmark tasks: HumanEval (Chen et al., 127

2021), MMLU (Hendrycks et al., 2020), and 128

GSM8K (Cobbe et al., 2021). Our findings re- 129

veal several key insights into MAS predictability. 130

Firstly, the performance scores predicted by our 131

regression model, which is trained on operational 132

statistics, demonstrate a high consistency with ac- 133

tual observed values. We achieved a Spearman 134

rank correlation typically ranging from 0.76 to 0.94 135

indicating that MAS performance is, to a signifi- 136

cant extent, predictable. Secondly, while deriving 137

comprehensive operational statistics for the pre- 138

diction model typically requires extensive MAS 139

execution–a potentially costly and inefficient pro- 140
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Figure 2: Data collected during MAS execution are transformed into statistics that are used to train a performance
prediction model.

cess, our experiments revealed that the key global141

statistics needed for prediction can be reliably es-142

timated by observing and processing only 10% of143

the total data-generating events from the MAS. Im-144

pressively, using these estimated global statistics145

as input to the predictive model still yielded a high146

Spearman rank correlation of 0.82. Thirdly, a finer-147

grained analysis of the collected statistics revealed148

that metrics quantifying individual agent capabili-149

ties are, intuitively, the most influential factors in150

predicting overall system performance. Interest-151

ingly, many less important statistics still exhibited152

considerable variance; their lower predictive im-153

pact is therefore not merely due to a lack of vari-154

ation but rather suggests that accurately capturing155

core agent competencies is of primary importance156

for the tasks evaluated, with other interaction statis-157

tics playing a secondary, though still complex, role.158

2 Related Work159

2.1 LLM Based Agents and Multi-Agent160

FrameWork161

Recent advances in LLMs, such as GPT-4 (Achiam162

et al., 2023), have stimulated the development of163

LLM-based agents. These agents are able to uti-164

lize external tools, such as interpreters (OpenIn-165

terpreter, 2023), search engines (Luo et al., 2023;166

Chan et al., 2024), web browsers (Nakano et al.,167

2021; He et al., 2024), or custom-defined tools (Qin168

et al., 2023; Schick et al., 2024) through func-169

tion calling. Leveraging the strong instruction-170

following abilities of foundation models, these171

agents have demonstrated significant progress in172

various domains. For example, the development173

of OS-Copilot, which integrates with operating174

systems (Wu et al., 2024), the creation of XA-175

gent for solving complex tasks (XAgent, 2023),176

and the introduction of SearchGPT to acceler-177

ate search experiences (OpenAI, 2024). In line178

with these advances, frameworks have emerged179

for efficiently building LLM agents, such as 180

LangChain (LangChain-AI, 2024), AgentGPT (Re- 181

workd, 2024), and AutoGPT (Significant Gravitas, 182

2024). 183

Beyond single-agent intelligence, recent re- 184

search indicates that collaboration among multiple 185

agents, each with different expertise, can enhance 186

downstream task performance. Notable successes 187

include AutoGen (Wu et al., 2023), which facili- 188

tates the creation of conversable agents for various 189

pilot applications, such as online decision-making; 190

OpenHands (Wang et al., 2024), a platform for 191

developing powerful and flexible AI agents that 192

interact with the world in ways similar to those of 193

human developers; IOA (Chen et al., 2024), which 194

addresses the challenges of distributed agent de- 195

ployment by introducing an agent integration pro- 196

tocol, along with a design of an instant messaging 197

architecture. However, constructing reliable MAS 198

with these frameworks often involves trial and error 199

in identifying the optimal configuration. 200

2.2 LLM Predictablility and Scaling Laws 201

The vast development of LLMs is closely related to 202

the concept of neuron scaling laws (Kaplan et al., 203

2020; Rae et al., 2021; Henighan et al., 2020). Pre- 204

vious works have attempted to capture the rela- 205

tionships between factors such as training FLOPS 206

and model size, and their impact on validation loss 207

by first training numerous differently configured 208

models and then proposing a power law to fit the 209

coefficients. Once fitted, this power law can be 210

used to extrapolate and predict the loss for a larger 211

model and further simulated to derive the optimal 212

configuration for target size model. This paradigm 213

has led to several practical and constructive sug- 214

gestions. For example, Chinchilla law (Hoffmann 215

et al., 2022) suggests that while given a compu- 216

tational budget of 10x, the suggested model size 217

should be 5.5x larger, while training tokens should 218
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be 1.8x more. Similarly, Minicpm (Hu et al., 2024)219

derive optimal batch size and learning rate config-220

urations from LLM sandbox experiments where221

they train a multi-set of smaller models, showing222

that their 2.4B model performs on par with current223

7-13B scale models. MM1 (McKinzie et al., 2024)224

performed a grid search for the optimal learning225

rate using smaller models and then successfully ex-226

trapolated the results to larger scales. BIMIX (Ge227

et al., 2024) proposed a bivariate law concerning228

data quantity and mixing proportion, demonstrat-229

ing that their optimized data mixture outperforms230

the default mixture.231

Inspired by the fruitful results in the construc-232

tion of LLM, our work aims to investigate the pre-233

dictability of MAS by capturing relevant indicators234

to predict target scores. Another study (Qian et al.,235

2024) explored collaborative scaling laws by in-236

creasing the number of agents in a system, finding237

that normalized solution quality follows a logistic238

growth pattern as the number of agents increases.239

However, given the versatility required in build-240

ing different MAS, it is challenging to determine a241

single-variable law for the entire system.242

The broader goal of predicting the performance243

of individual LLM has been explored in previous244

literature (Schellaert et al., 2025; Drapal et al.,245

2024; Pacchiardi et al., 2024, 2025; Ye et al.,246

2023). While such research focusing on individ-247

ual LLM capabilities is valuable, the distinct chal-248

lenge of forecasting the emergent, overall perfor-249

mance of MAS–a domain we’ve highlighted as250

comparatively underexplored–requires a dedicated251

approach. Our work shares the high-level objec-252

tive of performance prediction with these studies;253

however, to the best of our knowledge, it is the first254

systematic effort to specifically investigate and fore-255

cast the task performance in the context of building256

and configuring MAS. We hope that this research257

provides valuable insights and paves the way for258

the community to build better MAS.259

3 Indicators Used to Predict Performance260

for MASs261

In this section, we introduce the indicators used to262

train the prediction model. Our indicators fall into263

two main categories. The first group consists of264

scores generated by using an LLM to assess per-265

formance, including the agent’s personal score and266

the collective score. Intuitively, the personal score267

measures how well an agent completes its own268

task following the given instruction, while the col- 269

lective score evaluates how the agents’ behaviour 270

contributes to the overall system. For example, 271

an agent given the instruction to generate helpless 272

or nonsense responses might excel at its specific 273

task and receive a high personal score. However, 274

it would earn a low collective score, as it does not 275

contribute significantly to the final result. Specif- 276

ically, We records the input to each agent, each 277

agent’s output, and the conversation history. We 278

then use these records to prompt an LLM, using 279

the prompts detailed in Appendix E.1, to generate 280

the corresponding scores. Both scores are rated on 281

a scale from 0 to 10, with higher scores indicat- 282

ing better performance. Note that the scores are 283

averaged across all turns and instances. 284

The second category includes indicators that are 285

either inherited from or reflect the configuration 286

of the MAS. These indicators are fixed after the 287

system’s construction (e.g., number of nodes) or 288

are strongly influenced by the configuration (e.g., 289

each agent’s PageRank). 290

The indicators are detailed as follows: 291

• Number of Nodes: Each agent in the exe- 292

cution graph is represented as a node, so the 293

number of nodes corresponds to the total num- 294

ber of agents in the system. 295

• Number of Edges: We use directed edges to 296

represent the information flow between agents. 297

For example, if Agent A communicates with 298

Agent B, a directed edge is drawn from A to 299

B, and vice versa. 300

• Agent Capability: We assign an integer to 301

represent the capability of each agent, de- 302

pending on the level of LLM controlling it. 303

In our experiments, we assign Llama3-70B- 304

Instruct a score of 3, Llama3-8B-Instruct and 305

its uncensored variant a score of 2, and GPT- 306

3.5-turbo-1106 a score of 1. These rank- 307

ings are intuitively derived from the leader- 308

board at https://tatsu-lab.github.io/ 309

alpaca_eval/, though the ranking may vary 310

slightly across different benchmarks. 311

• Agent PageRank: We calculate the weighted 312

PageRank for each agent, treating the edge 313

weight as the number of tokens sent and re- 314

ceived by the agent. PageRank (Page et al., 315

1999) is an algorithm that measures the impor- 316

tance of web pages, based on the idea that a 317
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Figure 3: Spearman rank correlation between the predicted score and the observed score.

page with many incoming links is more im-318

portant. Additionally, pages that are linked by319

other high-PageRank pages further increase320

their own importance. Here, we use agent321

PageRank to indicate the importance of each322

agent within the system.323

PR(i) =
1− α

N
+ α

∑
j∈M(i)

wji · PR(j)∑
k∈L(j)wjk

(1)324

Where:325

– PR(Pi) is the PageRank of agent Pi.326

– d is the damping factor (set to 0.85 in our327

paper).328

– M(Pi) is the set of agents that link to Pi.329

– wji is the weight of the link from agent330

Pj to agent Pi (we use token sent and331

received as weight in our paper).332

– L(Pj) is the set of agents that Pj links333

to.334

• Average Clustering is the mean of the local335

clustering coefficients of all the nodes in the336

network where the clustering coefficient mea-337

sures the degree to which nodes in a network338

tend to cluster together. The local clustering339

coefficient Ci for a node i with degree ki is:340

Ci =
2× ei

ki(ki − 1)
(2)341

where ei is the number of edges between the 342

neighbors of node i. 343

The average clustering coefficient is: 344

Average Clustering =
1

N

N∑
i=1

Ci (3) 345

• Transitivity measures the overall tendency of 346

a network to form triangles. It is the ratio of 347

the number of closed triplets (triangles) to the 348

total number of triplets (open and closed) and 349

is defined as: 350

T =
3× Number of Triangles

Number of Connected Triplets of Nodes
(4) 351

• Degree Centrality is the mean of the degree 352

centralities of all the nodes in the network. 353

where the degree centrality is the number of 354

edges connected to a node defined as Di for a 355

node i is: 356

Di =
ki

N − 1
(5) 357

where ki is the degree of node i, and N is the 358

number of nodes in the network. 359

Average Degree Centrality =
1

N

N∑
i=1

Di

(6) 360
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• Closeness Centrality is the mean of the close-361

ness centralities of all the nodes in the net-362

work, where Closeness centrality is the re-363

ciprocal of the average shortest path distance364

from a node to all other nodes.365

The closeness centrality Ci for a node i is:366

Ci =
N − 1∑
j ̸=i d(i, j)

(7)367

where d(i, j) is the shortest path distance be-368

tween nodes i and j.369

Closeness Centrality =
1

N

N∑
i=1

Ci (8)370

• Betweenness Centrality is the mean of the371

betweenness centralities of all the nodes in the372

network where betweenness centrality mea-373

sures how often a node appears on the shortest374

paths between pairs of nodes in the network.375

The betweenness centrality Bi for a node i is:376

Bi =
∑
s ̸=i ̸=t

σst(i)

σst
(9)377

where σst is the total number of shortest paths378

from node s to node t, and σst(i) is the num-379

ber of those paths that pass through node i.380

Betweenness Centrality =
1

N

N∑
i=1

Bi (10)381

• Heterogeneous Score: here we define the382

heterogeneous score to examine the diversity383

of LLM used in the MAS. The higher score384

means that the LLM used in the MAS is more385

different.386

Heterogeneous Score =387 ∑n
i=1

∑n
j=1,j ̸=i 1(ei ̸= ej)(

n
2

) (11)388

Where:389

– n is the total number of agents.390

– ei represents the i-th agent’s backbone391

LLM.392

– 1(ei ̸= ej) is an indicator function that393

equals 1 if ei ̸= ej , and 0 otherwise.394

4 Experiments 395

We experiment with the use of the indicators intro- 396

duced in Section 3 to train a performance prediction 397

model to predict the target scores. Specifically, we 398

evaluate the MAS on three downstream tasks: Hu- 399

manEval (Chen et al., 2021), MMLU (Hendrycks 400

et al., 2020), and GSM8K (Cobbe et al., 2021), 401

which test coding, reasoning, and math skills, 402

respectively. We use a sampled version from 403

MINT (Wang et al., 2023), where the queries are 404

complex enough to require multi-agent collabora- 405

tion. Furthermore, we configure each agent with 406

different LLMs chosen from Llama3-8B, Llama3- 407

70B, and ChatGPT, for details, see Appendix B.1. 408

That is, we can perturb the selection of LLMs, gen- 409

erating a new combination that is a new data point 1 410

for training a regression model. By treating a dif- 411

ferent combination as a different data point, we can 412

obtain 34 data points from this architecture in total 413

if there are 4 agents in the system and 3 optional 414

LLMs. In this paper, we collect a total of 1,796 data 415

points. We then perform a grid search to train an 416

XGBoost model (Chen and Guestrin, 2016), using 417

reg:squarederror as the objective function. 418

Additionally, we experiment with the following 419

settings: 420

• Task-Group: We group the tuples by task, 421

then divide them into training and test sets. 422

• Arch-Group: We group the tuples by archi- 423

tecture, then divide them into training and test 424

sets. 425

• Random-Group: We randomly divide all 426

data into training and test sets. 427

4.1 Overall Results for Predicting Target 428

Scores 429

The mean Spearman rank correlation with error 430

bars is shown in Figure 3. The error bars are plotted 431

using a 5-fold cross-validation. We observe a clear 432

pattern: (1) The performance prediction model 433

tends to achieve relatively high correlations and 434

low variances. (2) Compared to Task-Group and 435

Arch-Group, the Random-Group setting–which in- 436

cludes all tasks and architectures–achieves a higher 437

overall mean score and a relatively lower variance. 438

This indicates that access to information from other 439

1Here, each data point is a tuple of {various indicators,
downstream task performance}.
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Figure 4: Feature Heatmap of Arch1 on MMLU.

tasks or architectures improves predictive perfor-440

mance, and indicators are transferable between dif-441

ferent settings.We also show the boxplot in Figure 8442

which shows the distribution of errors in all settings.443

In general, the median lies close to zero, suggesting444

that the predicted values are generally close to the445

observed values. Furthermore, although the correla-446

tion for HumanEval in Task-Group setting is lower,447

the error is not, being smaller overall compared to448

the other two tasks. This suggests that while pre-449

dicting the rank is more challenging for this task,450

the regression model can still predict values that451

are reasonably closer to the observed values.452

4.2 A Closer Look into Relationships of Each453

Indicator454

In this section, we take a closer look at the relation-455

ships between each indicator. As shown in Figure 4,456

the correlation heatmap of the indicators in MMLU457

for Arch1 is presented. We can identify some sub-458

tle patterns in this setting, where scores evaluated459

by the LLM, such as the coder personal score and460

the coder collective score, exhibit a higher correla-461

tion with each other but exhibit a lower correlation462

with other graph attributes, such as the total number463

of nodes and transitivity (indicated by the lighter464

color near the diagonal).465

Furthermore, in Figure 5, we present the par-466

allel coordinate plot of the features with the top467

five and bottom five importance scores of the fea-468

tures. The feature importance is calculated by XG-469

Boost, which measures how much each indicator470

contributes to the model’s inference. In particular,471

it is observable that most indicators do not exhibit472

monotonicity with respect to the target score, mean-473
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Figure 5: Parallel Coordinate Plot of Top5 (Top) and
Bottom5 (Bottom) Important Features of Arch1 on
GSM8K.

ing that a higher indicator value does not necessar- 474

ily result in a higher target score. Another impor- 475

tant finding is that: Metrics that quantify individual 476

agent capabilities emerged as the most influential 477

predictors of overall system performance. Notably, 478

other statistics with less predictive importance still 479

demonstrated substantial variance, indicating that 480

their diminished predictive influence is not due to 481

limited variation. Instead, this suggests that ef- 482

fectively capturing core competencies of agents 483

is paramount for accurately evaluating task per- 484

formance, while other interaction metrics serve a 485

secondary yet intricate role. 486

4.3 Estimated Statistics from Subset is 487

Sufficient for Prediction 488

Another intuitive question is to what extent we 489

need prior information to calculate the indicators 490

described in Section 3. For example, given a pre- 491

built MAS and a downstream task, it is impractical 492

to obtain all the required information only after 493

completing all the instances in the test set. Ide- 494

ally, we would only need a few instances to gather 495
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Figure 6: Left: Spearman Correlation and RMSE vs ratio to calculate indicators ; Right: Average Errors of
Indicators vs ratio to calculate indicators.

enough information for a "sneak peek" at the sys-496

tem’s potential performance. In contrast to the497

experiments detailed in the previous section, where498

the indicators were calculated by averaging over499

all instances, in this experiment tailored for “RQ:500

How the number of instances that we use to cal-501

culate indicators affects the predictive results?”,502

we use a subset of the total instances to calculate503

the "approximated indicators." We then analyze the504

effect of the number of instances used to calculate505

these indicators.506

We begin by using the best-trained XGBoost507

model to perform inference on the Random-Group508

test set, retaining instances with an absolute error509

smaller than 0.05 as a new test set. The rationale510

behind this is that, these samples are more pre-511

dictable for the trained model, and they better il-512

lustrate the usefulness of the indicators. Otherwise,513

the samples that are poorly predicted might not514

be explained by our model and could hinder the515

interpretation of the approximated indicators.516

As shown in the left and right part of Figure 6,517

we observe the following: (1) There is a clear trend518

that as the ratio of instances used to calculate the519

indicators increases, the Spearman correlation con-520

tinually rises, and the RMSE decreases. This sug-521

gests that increasing the number of instances used522

to calculate the indicators improves predictive per-523

formance. As expected, when the ratio increases,524

the predictive performance of the "approximated"525

indicators converge toward that of the "accurate"526

indicators. (2) Even when using only 10% of the527

total instances to calculate the indicators, the Spear-528

man correlation is still around 0.82, supporting the529

claim that we can use a relatively small subset of 530

data to gain an early glimpse of the final perfor- 531

mance. This approach can guide the construction 532

of MAS without fully executing the entire dataset. 533

(3) The average error and variance decrease as the 534

ratio increases. Additionally, we observe that when 535

the ratio is low, the approximated indicator values 536

tend to be smaller than the accurate values, sug- 537

gesting that the main source of error may stem 538

from certain indicators being underestimated by 539

the LLM judger. 540

5 Conclusion 541

In conclusion, this paper confronts the significant 542

challenge of performance predictability in the con- 543

figuration of MAS, an area less explored than indi- 544

vidual LLM predictability. We systematically in- 545

vestigated the question of “How predictable MAS 546

performance is?”, by developing and evaluating 547

a methodology rooted in monitoring system exe- 548

cution, capturing operational statistics from agent 549

interactions, and utilizing these to train regression 550

models for performance forecasting. 551

As a pioneering effort in systematically forecast- 552

ing overall task performance in MAS, this research 553

provides a foundational step towards moving be- 554

yond costly and time-consuming trial-and-error ap- 555

proaches to system configuration. The ability to 556

anticipate system behavior, understand key perfor- 557

mance drivers, and do so efficiently has profound 558

implications for the design, development, and de- 559

ployment of more reliable and multi-agent systems. 560
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6 Limitations561

Our empirical validation was based on five dis-562

tinct, manually designed architectures and three563

specific benchmark tasks (HumanEval, MMLU,564

and GSM8K). Although these provide a solid foun-565

dation and cover diverse capabilities, the gener-566

alizability of our findings to the vast landscape567

of possible MAS configurations–including those568

with a significantly larger number of agents, dif-569

ferent underlying LLMs powering the agents, or570

a broader array of real-world applications and col-571

laborative paradigms–warrants further extensive572

investigation. Future work could address these lim-573

itations by leveraging more substantial computa-574

tional resources to enable broader experimentation575

and validation.576
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A MAS configuration843

Table 1 shows the configuration of five MAS used844

in our paper, along with the used indicators.845

B Details of Experiments Setting846

In this section, we detail the LLMs used in various847

sections (Section B.1) and provide an introduction848

to the evaluation tasks and corresponding metrics849

(Section B.2).850

B.1 LLM used in different sections851

As shown in Table 1, we design various architec-852

tures for the MAS. However, if we use a system853

with only one LLM, the total number of runs re-854

mains low, which may not be sufficient to conduct855

the predictive experiment. An intuitive approach856

is to assign different LLMs to each agent in the857

system and permute them. For example, with an ar-858

chitecture of three agents and three different LLMs,859

we would have a total of 27 possible combinations860

(33).861

In the experiment described in Section 4.1,862

we select LLMs from the following: GPT-3.5-863

turbo-1106, Llama3-8B-Instruct, and Llama3-70B-864

Instruct. These LLMs are chosen to represent vary-865

ing levels of capability, thereby forming a diverse866

group of expertise, allowing us to construct MAS867

with greater diversity.868

To reduce cost and improve throughput, we869

use the AWQ quantized version of Llama3-870

70B-Instruct from https://huggingface.co/871

casperhansen/llama-3-70b-instruct-awq.872

AWQ (Lin et al., 2024) is a training-free low-bit873

weight-only quantization method that does not rely874

on backpropagation or reconstruction, making it875

more efficient during inference. GPT-3.5-turbo876

and Llama3-8B-Instruct were obtained from877

their official providers, https://platform.878

openai.com/docs/models/gpt-3-5-turbo879

and https://huggingface.co/meta-llama/880

Meta-Llama-3-8B-Instruct, respectively.881

B.2 Evaluation Tasks Introduction882

In this section, we introduce the tasks used in our883

paper. As shown in Table 2, the selected tasks884

for code generation, reasoning, and math follow885

MINT (Wang et al., 2023), where the sampled in-886

stances are more complex and require multi-turn887

interactions to solve.888

C Training Details of Performance 889

Prediction Model 890

We primarily utilize XGBoost (Chen and Guestrin, 891

2016) as the performance prediction model. XG- 892

Boost is a gradient boosting framework widely rec- 893

ognized for its efficiency and superior performance 894

in regression and classification tasks. XGBoost op- 895

timizes the following squared-error objective func- 896

tion: 897

L(θ) =
n∑

i=1

(yi − ŷi)
2, (12) 898

where yi represents the true value and ŷi is the 899

predicted value for instance i. 900

We conducted hyperparameter tuning using grid 901

search combined with 5-fold cross-validation to 902

identify the best-performing hyperparameters. The 903

hyperparameters explored in our experiments in- 904

clude: 905

• Number of estimators: {50, 100, 200} 906

• Learning rate: {0.01, 0.1, 1.0} 907

• Maximum depth: {3, 5, 7} 908

The optimal hyperparameters were selected 909

based on minimizing the mean squared error 910

(MSE), evaluated as: 911

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (13) 912

D Additional Experimental Results 913

D.1 Average Errors Between the Predicted 914

Score and the Observed Score 915

In addition to focusing on the relative ranking of 916

the scores, performance prediction also emphasizes 917

minimizing the actual error between predicted and 918

observed scores. Figure 8 illustrates the average 919

errors across different tasks. Notably, although 920

the correlation for HumanEval in the Task-Group 921

setting is lower compared to the other two tasks, the 922

average error is smaller overall. This suggests that 923

while predicting the rank is more challenging for 924

this particular task, the regression model is still able 925

to produce predictions that are reasonably close to 926

the observed values. This highlights the model’s 927

ability to capture absolute trends effectively, even 928

when relative rankings are harder to discern. 929
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Architectures Agents Example Execution Graph Indicators

Arch1
The coder is responsible for providing a self-contained code that can solve the task.

coder

tester

reviewer

The reviewer is responsible for writing review and provide comments. Indicators Judged by LLM

The tester is responsible for writing unit test to ensure the code functionality. Each Agent’s Personal Score

Arch2

The coder is responsible for providing a self-contained code that can solve the task. Each Agent’s Collective Score

The reviewer is responsible for writing review and providing comments.

coder

tester reviewer

dummy

The dummy agent does not have specific responsibility but is acting as a black sheep. Indicators Determined by Configuration

The tester is responsible for writing unit test to ensure the code functionality. Each Agent’s Pagerank

Arch3

The coder is responsible for providing a self-contained code that can solve the task.

coder

tester reviewer

webbrowser

Each Agent’s Capabilities

The reviewer is responsible for writing review and providing comments. Number of Nodes

The web browser is responsible for using the Internet to retrieve useful information. Number of Edges

The tester is responsible for writing unit test to ensure the code functionality. Average Clustering

Arch4

The coder is responsible for providing a self-contained code that can solve the task.

coder

modifier

tester reviewer

Transitivity

The modifier is responsible for modifying the code written by the coder. Average Degree Centrality

The reviewer is responsible for writing review and providing comments. Average Closeness Centrality

The tester is responsible for writing unit test to ensure the code functionality. Average Betweenness Centrality

Arch5
The executor is provided with an executable interpreter and should execute the code.

executor

webbrowser

Heterogeneous Score

The web browser is responsible for using the Internet to retrieve useful information.

Table 1: The configuration of five MAS used in our paper, along with the used indicators.
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Figure 7: Spearman Correlation and RMSE vs ratio to
train.

D.2 Training Size Ablation930

In this section, we analyze how the training size931

affects the predictive results.932

In this section we focus on the Random-Group 933

setting and randomly sample 10%, 20%, 30%, · · · , 934

up to 100% of the original training set to form new 935

training sets, while keeping the test set constant. 936

As shown in Figure 7, as the training size increases, 937

we observe a noticeable improvement in Spearman 938

correlation and a reduction in RMSE, as expected. 939

This indicates that more training data contribute 940

to better predictive performance. Notably, when 941

the training set reaches 50%, the results plateau, 942

approaching those achieved with the entire dataset. 943

This suggests that in this specific setting, half of 944

the data contains sufficient information to achieve 945

acceptable results. 946
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Task Type Task Name Original Size Sampled Size

Code Generation HumanEval (Chen et al., 2021) 164 45

Reasoning MMLU (Hendrycks et al., 2020) 13,985 48

Math GSM8K (Cobbe et al., 2021) 1,319 48

Table 2: Used tasks in our paper.

Task-Group Arch-Group Random-Group

Figure 8: Errors between the predicted score and the observed score.

E Prompt Template Used in the Paper947

E.1 Prompts of Agents Designed in Different948

Architectures949

Table 3, 4, 5, 6, 7, 8, 9 and 10 present the950

prompts used in our designed multi-agent architec-951

ture, as outlined in Table 1. These agents include952

the Coder, Modifier, Reviewer, Tester, Dummy953

Agent, Executor, Web Browser, and Answer Extrac-954

tor. Note that we do not show the Answer Extractor955

in the table, as it is utilized in all tasks requiring956

a final answer to be extracted from conversation957

history, except for HumanEval.958

E.2 Prompts used to evaluate the personal959

score and collective score960

Table 11 and 12 present the prompts used to evalu-961

ate each agent’s personal score and collective score,962

respectively.963

Finish the following python function as
prompted:
{Instruction}
Below is the conversation history, you can
use it as context to help you modify or main-
tain your original answer.
{Conversation History}
Please provide a self-contained python func-
tion that can solve the task and response it
in a markdown code block.
For example:
Your code:
“‘Python
your code here
“‘
—
Your code:

Table 3: Coder Prompt Template.
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{Instruction}
{Conversation History}
You are given the above instructions and
conversation history. You are acting as an
engineer to modify the code. Your peers
have proposed the initial code and some
have also reviewed and tested it. Please take
this information into account and provide a
refined and self-contained Python function
that can solve the task. Please respond using
a markdown Python code block.
For example:
Your code:
“‘Python
your code here
“‘
—
Your code:

Table 4: Modifier Prompt Template.

{Conversation History}
Review the test cases and provide critical
comments:

Table 5: Reviewer Prompt Template.

{Conversation History}
Write k unit tests using pytest for the given
function, assuming you have imported it.
Return a python code in a markdown code
block.

Table 6: Tester Prompt Template.

{Conversation History}
Above is a team’s conversation history;
Say some nonsense to disrupt the conversa-
tion:

Table 7: Dummy Agent Prompt Template.

Finish the following python function as
prompted:
{Instruction}
Below is the conversation history, you can
use it as context to help you modify or main-
tain your original answer.
{Conversation History}
Please provide a self-contained python func-
tion that can solve the task and response it
in a markdown code block. And remember
that your code will be actually executed, so
make sure it is correct and safe.
For example:
Your code:
“‘Python
your code here
“‘
—
Your code:
# After receiving the above code block, we
then utilize a sandbox environment to exe-
cute the code, and return the results as fol-
lows;
Executed Code:
{Code Block}
Output:
{Interpreter Output}

Table 8: Executor Prompt Template.
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{Instruction}
{Previous Search Results}
You are given the above instruction, and
the corresponding histories of previous
searched results. Please check whether it
is expected and provide a more appropriate
query for searching on the internet. Please
directly output your refined query without
any explanation.
Refined Query:
# We first use the above template to prompt
the llm for generate the query suitable for
search engine.
—
{Instruction}
{Information}
You are given the instruction and also the
relevant documents retrieved from the inter-
net website, please give your suggestions
towards solving the task.
Your suggestions:

Table 9: Web Browser Prompt Template.

{Conversation History}
Based on the upper information, provide
an answer for the original task. If you are
not sure, provide an answer anyway. Re-
turn your answer only , do not contain other
irrelevant words.
Your Answer:

Table 10: Answer Extractor Prompt Template.

You are a judge tasked with evaluating the
performance of the agent. Your evaluation
should be based on the agent’s adherence
to its expected duties, as well as its behav-
ior throughout the execution process of the
entire MAS.
**Evaluation Criteria for Agent Perfor-
mance (0-10):**
Score: 0-1
Agent failed to perform its expected duties.
Significant errors or omissions in execution.
Negatively impacted the overall system per-
formance.
Score: 2-3
Agent performed some expected duties but
with frequent errors. Multiple omissions or
incorrect actions. Minor positive impact or
neutral impact on the overall system perfor-
mance.
Score: 4-5
Agent performed expected duties with occa-
sional errors. Some omissions or incorrect
actions, but they were not critical. Moder-
ate positive impact on the overall system
performance.
Score: 6-7
Agent performed expected duties with few
errors. Minor omissions or incorrect actions
that were not impactful. Significant positive
impact on the overall system performance.
Score: 8-9
Agent performed expected duties with neg-
ligible errors. No critical omissions or in-
correct actions. Very significant positive
impact on the overall system performance.
Score: 10
Agent performed expected duties flawlessly.
No errors, omissions, or incorrect actions.
Exceptional positive impact on the overall
system performance.
—
Carefully review the expected duties, execu-
tion process record and evaluation criteria.
Based on your review, assign a score be-
tween 0 and 10 to measure how well the
agent performed its job.
Now, focus on the behaviors and actions of
the target agent: {Agent ID and Name}
{Expected Duties}
{Conversation History}
Please directly respond your score and do
not followed by other text:

Table 11: Personal Score Judger Template.
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You are a judge tasked with evaluating
the contribution of the agent identified as
{Agent ID and Name} to the final goal of
the MAS. Your evaluation should be based
on the agent’s behavior throughout the ex-
ecution process, as well as their impact on
the overall system’s success.
**Evaluation Criteria for Agent Perfor-
mance (0-10):**
Score: 0-1
The agent not only failed to support the
group goal effectively but also hindered the
performance of other agents.
Score: 2-3
The agent contributed to the group in some
scenarios, but overall contribution was lim-
ited and often flawed.
Score: 4-5
The agent contributed to the group in most
cases but occasionally made mistakes.
Score: 6-7
The agent made significant contributions
to the group, with only minor errors, and
overall performed well.
Score: 8-9
The agent contributed greatly to the group,
with almost no mistakes, and demonstrated
excellent performance.
Score: 10
The agent made an outstanding contribution
to the group and was a key driving force
behind the system’s success.
—
Consider whether the agent’s actions were
meaningful and directly supported the ac-
complishment of the primary objective,
rather than just following instructions.
Now, focus on the behaviors and actions of
the target agent: {Agent ID and Name}.
{System Goal}
{Conversational History}
Please directly respond your score and do
not followed by other text:

Table 12: Collective Score Judger Template.
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