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Abstract

Multi-Agent Systems (MAS) built from Large
Language Models (LLMs) offer significant
potential for complex problem-solving, yet
their optimal configuration is challenging, with
performance typically evaluable only after
resource-intensive execution. Addressing the
underexplored area of MAS performance pre-
dictability, this paper investigates whether and
how accurately MAS outcomes can be fore-
casted. We propose and evaluate a methodol-
ogy that involves monitoring MAS operations
during execution, capturing agent inputs and
outputs, and transforming this data into system-
specific statistical indicators. These indicators
are then used to train a regression model to
predict overall task performance. Conducting
experiments across five distinct MAS architec-
tures and three benchmark tasks, we demon-
strate that MAS performance is significantly
predictable, achieving Spearman rank correla-
tions typically ranging from 0.76 to 0.94 be-
tween predicted and actual scores. Notably,
our findings indicate that the global statistics
required for these predictions can be accurately
estimated from as little as 10% of the total op-
erational data-generating events, still yielding
a high correlation of 0.82. Further analysis re-
veals that metrics quantifying individual agent
capabilities are the most influential factors in
performance prediction. This work underscores
the feasibility of reliably predicting MAS per-
formance, offering a path towards more effi-
cient design, configuration, and deployment of
MASs.

1 Introduction

Recently, the rapid development of LLMs has been
widely reported (Achiam et al., 2023; Dubey et al.,
2024; Gemini et al., 2023). These models exhibit
strong capabilities, achieving success in various
tasks of Natural Language Processing (NLP) (Rad-
ford et al., 2019). Leveraging training processes
such as instruction tuning (Longpre et al., 2023),

LLMs have demonstrated the ability to articulate
reasoning (Wei et al., 2022; Yao et al., 2024), self-
correct errors (Madaan et al., 2024), utilize exter-
nal tools (Schick et al., 2024; Qin et al., 2023),
and retain long-term memory (Huang et al., 2023)
during inference. By combining these capabilities
with various techniques, researchers have success-
fully built on off-the-shelf LLMs to create single-
agent systems capable of solving more complex
tasks. Notable examples include AutoGPT (Signifi-
cant Gravitas, 2024), XAgent (XAgent, 2023), and
Openlnterpreter (Openlnterpreter, 2023).

Beyond the aforementioned single-agent appli-
cations, research has emerged that focuses on en-
abling multiple LLMs to collaborate on specific
tasks. Inspired by evidence of collective intelli-
gence (Woolley et al., 2010) arising in groups of
humans, various multi-agent frameworks have been
proposed to mimic human collaborative scenarios.
Typically, in these frameworks, each agent is con-
trolled by an LLM with an assigned role, and a
predefined executable pipeline is configured. Fol-
lowing the pipeline, agents collaborate towards a
common goal. This approach has shown promis-
ing results, demonstrating that a well-configured
LLM-based Multi-Agent System (MAS) can out-
perform a single agent in certain contexts. No-
table successes include Generative Agents (Park
et al., 2023), which simulates human society, Au-
toGen (Wu et al., 2023), CAMEL (Li et al., 2023),
AgentVerse (Chen et al., 2023) which tackles rea-
soning tasks, ChatEval (Chan et al., 2023) which
tackles evaluation tasks, as well as ChatDev (Qian
et al., 2023) and MetaGPT (Hong et al., 2023),
which focus on software tasks.

Despite the significant success of these MASs,
obtaining the optimal MAS configuration remains
an unresolved challenge. The process often re-
quires careful design, relying on prior knowledge
of the task and heuristic approaches. The effective-
ness of the chosen configuration can only be eval-



webbrowser]

i Current System has
H -’F ollowingyTask Performance
1

RQ: Given the information of seen multi-agent systems, 8
. . . . i nown
Is it possible to predict target scores for the unseen multi-agent systems ?

Unknown

reviewer

Figure 1: We investigate the research question: "Given knowledge of existing MAS and their corresponding target
scores, how accurately can we predict the performance of a new MAS on an unseen task?" As illustrated in the
figure, different configurations of MAS are presented. We use to represent the capabilities of the underlying

LLM for each agent. For instance, this could be Llama3-8B, Llama3-70B, or other models.

uated after the actual execution, which can be re-
source intensive and inefficient during production.
Inspired by well-studied scaling laws(Kaplan et al.,
2020) in LLM development — which model target
task performance(Isik et al., 2024) or validation
loss as functions of model size, data size (Hu et al.,
2024), training FLOPs (Hoffmann et al., 2022), or
data mixtures (Ye et al., 2024) — we aim to explore
whether it is possible to predict downstream task
performance given the task and the configuration.
Such predictability would enable us to design more
reliable and effective MAS without the need for
costly trial and error.

Additionally, recent literature has made consider-
able efforts to predict the performance of individual
LLM, with studies examining aspects like bench-
mark performance predictability (Schellaert et al.,
2025; Pacchiardi et al., 2025), methods for explain-
ing predicted performance (Drapal et al., 2024),
and the ability to forecast success on specific in-
stances from limited data (Pacchiardi et al., 2024).
However, the predictability of overall MAS perfor-
mance, which arises from complex emergent dy-
namics due to agent interactions, remains compar-
atively underexplored. This motivates our central
research question: How predictable is the perfor-
mance of a MAS?

To address this, we investigate a method based

on monitoring system execution. During the opera-
tion of a MAS, we capture inputs and outputs each
time an agent communicates. This collected data,
reflecting the dynamic interactions, is transformed
into system-specific indicators (Section 3) designed
to predict target scores. We then train a simple
regression model, such as XGBoost (Chen and
Guestrin, 2016), on these indicators. This model
subsequently allows us to predict the performance
of a newly configured MAS on its target tasks.
Specifically, in this paper, we conducted ex-
periments using five distinct, manually designed
architectures with varying agent assignments
and message flows. These were tested across
three benchmark tasks: HumanEval (Chen et al.,
2021), MMLU (Hendrycks et al., 2020), and
GSMS8K (Cobbe et al., 2021). Our findings re-
veal several key insights into MAS predictability.
Firstly, the performance scores predicted by our
regression model, which is trained on operational
statistics, demonstrate a high consistency with ac-
tual observed values. We achieved a Spearman
rank correlation typically ranging from 0.76 to 0.94
indicating that MAS performance is, to a signifi-
cant extent, predictable. Secondly, while deriving
comprehensive operational statistics for the pre-
diction model typically requires extensive MAS
execution—a potentially costly and inefficient pro-
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Figure 2: Data collected during MAS execution are transformed into statistics that are used to train a performance

prediction model.

cess, our experiments revealed that the key global
statistics needed for prediction can be reliably es-
timated by observing and processing only 10% of
the total data-generating events from the MAS. Im-
pressively, using these estimated global statistics
as input to the predictive model still yielded a high
Spearman rank correlation of 0.82. Thirdly, a finer-
grained analysis of the collected statistics revealed
that metrics quantifying individual agent capabili-
ties are, intuitively, the most influential factors in
predicting overall system performance. Interest-
ingly, many less important statistics still exhibited
considerable variance; their lower predictive im-
pact is therefore not merely due to a lack of vari-
ation but rather suggests that accurately capturing
core agent competencies is of primary importance
for the tasks evaluated, with other interaction statis-
tics playing a secondary, though still complex, role.

2 Related Work

2.1 LLM Based Agents and Multi-Agent
FrameWork

Recent advances in LLMs, such as GPT-4 (Achiam
et al., 2023), have stimulated the development of
LLM-based agents. These agents are able to uti-
lize external tools, such as interpreters (Openln-
terpreter, 2023), search engines (Luo et al., 2023;
Chan et al., 2024), web browsers (Nakano et al.,
2021; He et al., 2024), or custom-defined tools (Qin
et al., 2023; Schick et al., 2024) through func-
tion calling. Leveraging the strong instruction-
following abilities of foundation models, these
agents have demonstrated significant progress in
various domains. For example, the development
of OS-Copilot, which integrates with operating
systems (Wu et al., 2024), the creation of XA-
gent for solving complex tasks (XAgent, 2023),
and the introduction of SearchGPT to acceler-
ate search experiences (OpenAl, 2024). In line
with these advances, frameworks have emerged

for efficiently building LLM agents, such as
LangChain (LangChain-Al, 2024), AgentGPT (Re-
workd, 2024), and AutoGPT (Significant Gravitas,
2024).

Beyond single-agent intelligence, recent re-
search indicates that collaboration among multiple
agents, each with different expertise, can enhance
downstream task performance. Notable successes
include AutoGen (Wu et al., 2023), which facili-
tates the creation of conversable agents for various
pilot applications, such as online decision-making;
OpenHands (Wang et al., 2024), a platform for
developing powerful and flexible Al agents that
interact with the world in ways similar to those of
human developers; IOA (Chen et al., 2024), which
addresses the challenges of distributed agent de-
ployment by introducing an agent integration pro-
tocol, along with a design of an instant messaging
architecture. However, constructing reliable MAS
with these frameworks often involves trial and error
in identifying the optimal configuration.

2.2 LLM Predictablility and Scaling Laws

The vast development of LLMs is closely related to
the concept of neuron scaling laws (Kaplan et al.,
2020; Rae et al., 2021; Henighan et al., 2020). Pre-
vious works have attempted to capture the rela-
tionships between factors such as training FLOPS
and model size, and their impact on validation loss
by first training numerous differently configured
models and then proposing a power law to fit the
coefficients. Once fitted, this power law can be
used to extrapolate and predict the loss for a larger
model and further simulated to derive the optimal
configuration for target size model. This paradigm
has led to several practical and constructive sug-
gestions. For example, Chinchilla law (Hoffmann
et al., 2022) suggests that while given a compu-
tational budget of 10x, the suggested model size
should be 5.5x larger, while training tokens should



be 1.8x more. Similarly, Minicpm (Hu et al., 2024)
derive optimal batch size and learning rate config-
urations from LLM sandbox experiments where
they train a multi-set of smaller models, showing
that their 2.4B model performs on par with current
7-13B scale models. MM1 (McKinzie et al., 2024)
performed a grid search for the optimal learning
rate using smaller models and then successfully ex-
trapolated the results to larger scales. BIMIX (Ge
et al., 2024) proposed a bivariate law concerning
data quantity and mixing proportion, demonstrat-
ing that their optimized data mixture outperforms
the default mixture.

Inspired by the fruitful results in the construc-
tion of LLM, our work aims to investigate the pre-
dictability of MAS by capturing relevant indicators
to predict target scores. Another study (Qian et al.,
2024) explored collaborative scaling laws by in-
creasing the number of agents in a system, finding
that normalized solution quality follows a logistic
growth pattern as the number of agents increases.
However, given the versatility required in build-
ing different MAS, it is challenging to determine a
single-variable law for the entire system.

The broader goal of predicting the performance
of individual LLM has been explored in previous
literature (Schellaert et al., 2025; Drapal et al.,
2024; Pacchiardi et al., 2024, 2025; Ye et al.,
2023). While such research focusing on individ-
ual LLM capabilities is valuable, the distinct chal-
lenge of forecasting the emergent, overall perfor-
mance of MAS—-a domain we’ve highlighted as
comparatively underexplored-requires a dedicated
approach. Our work shares the high-level objec-
tive of performance prediction with these studies;
however, to the best of our knowledge, it is the first
systematic effort to specifically investigate and fore-
cast the task performance in the context of building
and configuring MAS. We hope that this research
provides valuable insights and paves the way for
the community to build better MAS.

3 Indicators Used to Predict Performance
for MASs

In this section, we introduce the indicators used to
train the prediction model. Our indicators fall into
two main categories. The first group consists of
scores generated by using an LLM to assess per-
formance, including the agent’s personal score and
the collective score. Intuitively, the personal score
measures how well an agent completes its own

task following the given instruction, while the col-
lective score evaluates how the agents’ behaviour
contributes to the overall system. For example,
an agent given the instruction to generate helpless
or nonsense responses might excel at its specific
task and receive a high personal score. However,
it would earn a low collective score, as it does not
contribute significantly to the final result. Specif-
ically, We records the input to each agent, each
agent’s output, and the conversation history. We
then use these records to prompt an LLM, using
the prompts detailed in Appendix E.1, to generate
the corresponding scores. Both scores are rated on
a scale from O to 10, with higher scores indicat-
ing better performance. Note that the scores are
averaged across all turns and instances.

The second category includes indicators that are
either inherited from or reflect the configuration
of the MAS. These indicators are fixed after the
system’s construction (e.g., number of nodes) or
are strongly influenced by the configuration (e.g.,
each agent’s PageRank).

The indicators are detailed as follows:

* Number of Nodes: Each agent in the exe-
cution graph is represented as a node, so the
number of nodes corresponds to the total num-
ber of agents in the system.

* Number of Edges: We use directed edges to
represent the information flow between agents.
For example, if Agent A communicates with
Agent B, a directed edge is drawn from A to
B, and vice versa.

* Agent Capability: We assign an integer to
represent the capability of each agent, de-
pending on the level of LLM controlling it.
In our experiments, we assign Llama3-70B-
Instruct a score of 3, Llama3-8B-Instruct and
its uncensored variant a score of 2, and GPT-
3.5-turbo-1106 a score of 1. These rank-
ings are intuitively derived from the leader-
board at https://tatsu-lab.github.io/
alpaca_eval/, though the ranking may vary
slightly across different benchmarks.

* Agent PageRank: We calculate the weighted
PageRank for each agent, treating the edge
weight as the number of tokens sent and re-
ceived by the agent. PageRank (Page et al.,
1999) is an algorithm that measures the impor-
tance of web pages, based on the idea that a
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Figure 3: Spearman rank correlation between the predicted score and the observed score.

page with many incoming links is more im-
portant. Additionally, pages that are linked by
other high-PageRank pages further increase
their own importance. Here, we use agent
PageRank to indicate the importance of each
agent within the system.
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Where:

— PR(PF;) is the PageRank of agent P;.

— d is the damping factor (set to 0.85 in our
paper).

— M(PF) is the set of agents that link to P;.

— wj; is the weight of the link from agent
P; to agent P; (we use token sent and
received as weight in our paper).

— L(P;) is the set of agents that P; links
to.

Average Clustering is the mean of the local
clustering coefficients of all the nodes in the
network where the clustering coefficient mea-
sures the degree to which nodes in a network
tend to cluster together. The local clustering
coefficient C; for a node 7 with degree k; is:
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where e; is the number of edges between the
neighbors of node :.

The average clustering coefficient is:

1
Average Clustering = N Z C; 3

Transitivity measures the overall tendency of
a network to form triangles. It is the ratio of
the number of closed triplets (triangles) to the
total number of triplets (open and closed) and
is defined as:

3 x Number of Triangles

~ Number of Connected Triplets of Nodes
“)

Degree Centrality is the mean of the degree
centralities of all the nodes in the network.
where the degree centrality is the number of
edges connected to a node defined as D; for a
node ¢ is:

ki

D; =
TN -1

&)

where k; is the degree of node ¢, and NV is the
number of nodes in the network.

N
1
Average Degree Centrality = ~ Z D;

(6)



* Closeness Centrality is the mean of the close-
ness centralities of all the nodes in the net-
work, where Closeness centrality is the re-
ciprocal of the average shortest path distance
from a node to all other nodes.

The closeness centrality C; for a node ¢ is:
N -1

2 i 4005 7)

where d(i, j) is the shortest path distance be-

tween nodes ¢ and j.

C; = @)

N
1
Closeness Centrality = N Z C; (8
i=1

Betweenness Centrality is the mean of the
betweenness centralities of all the nodes in the
network where betweenness centrality mea-
sures how often a node appears on the shortest
paths between pairs of nodes in the network.

The betweenness centrality B; for a node ¢ is:

Bi= )

sFEiF£L

where o, is the total number of shortest paths
from node s to node ¢, and o4 (i) is the num-
ber of those paths that pass through node .

Ust(i)

Ost

€))

N
1
Betweenness Centrality = N Z B; (10)
i=1

Heterogeneous Score: here we define the
heterogeneous score to examine the diversity
of LLM used in the MAS. The higher score
means that the LLM used in the MAS is more
different.

Heterogeneous Score =
D Z?:l,j;éi 1(e; # €;)
(2)

11

Where:

— n is the total number of agents.

— e; represents the i-th agent’s backbone
LLM.

- 1(e; # e;) is an indicator function that
equals 1 if e; # e;, and 0 otherwise.

4 Experiments

We experiment with the use of the indicators intro-
duced in Section 3 to train a performance prediction
model to predict the target scores. Specifically, we
evaluate the MAS on three downstream tasks: Hu-
manEval (Chen et al., 2021), MMLU (Hendrycks
et al., 2020), and GSMS8K (Cobbe et al., 2021),
which test coding, reasoning, and math skills,
respectively. We use a sampled version from
MINT (Wang et al., 2023), where the queries are
complex enough to require multi-agent collabora-
tion. Furthermore, we configure each agent with
different LLMs chosen from Llama3-8B, Llama3-
70B, and ChatGPT, for details, see Appendix B.1.
That is, we can perturb the selection of LLMs, gen-
erating a new combination that is a new data point !
for training a regression model. By treating a dif-
ferent combination as a different data point, we can
obtain 3* data points from this architecture in total
if there are 4 agents in the system and 3 optional
LLMs. In this paper, we collect a total of 1,796 data
points. We then perform a grid search to train an
XGBoost model (Chen and Guestrin, 2016), using
reg:squarederror as the objective function.

Additionally, we experiment with the following
settings:

* Task-Group: We group the tuples by task,
then divide them into training and test sets.

* Arch-Group: We group the tuples by archi-
tecture, then divide them into training and test
sets.

* Random-Group: We randomly divide all
data into training and test sets.

4.1 Opverall Results for Predicting Target
Scores

The mean Spearman rank correlation with error
bars is shown in Figure 3. The error bars are plotted
using a 5-fold cross-validation. We observe a clear
pattern: (1) The performance prediction model
tends to achieve relatively high correlations and
low variances. (2) Compared to Task-Group and
Arch-Group, the Random-Group setting—which in-
cludes all tasks and architectures—achieves a higher
overall mean score and a relatively lower variance.
This indicates that access to information from other

"Here, each data point is a tuple of {various indicators,
downstream task performance}.
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Figure 4: Feature Heatmap of Archl on MMLU.

tasks or architectures improves predictive perfor-
mance, and indicators are transferable between dif-
ferent settings.We also show the boxplot in Figure 8
which shows the distribution of errors in all settings.
In general, the median lies close to zero, suggesting
that the predicted values are generally close to the
observed values. Furthermore, although the correla-
tion for HumanEval in Task-Group setting is lower,
the error is not, being smaller overall compared to
the other two tasks. This suggests that while pre-
dicting the rank is more challenging for this task,
the regression model can still predict values that
are reasonably closer to the observed values.

4.2 A Closer Look into Relationships of Each
Indicator

In this section, we take a closer look at the relation-
ships between each indicator. As shown in Figure 4,
the correlation heatmap of the indicators in MMLU
for Archl is presented. We can identify some sub-
tle patterns in this setting, where scores evaluated
by the LLM, such as the coder personal score and
the coder collective score, exhibit a higher correla-
tion with each other but exhibit a lower correlation
with other graph attributes, such as the total number
of nodes and transitivity (indicated by the lighter
color near the diagonal).

Furthermore, in Figure 5, we present the par-
allel coordinate plot of the features with the top
five and bottom five importance scores of the fea-
tures. The feature importance is calculated by XG-
Boost, which measures how much each indicator
contributes to the model’s inference. In particular,
it is observable that most indicators do not exhibit
monotonicity with respect to the target score, mean-

1.50 0.74

Target Score

0.70 08

1.30 N / 0.6
N
AN
/0.65+
1.20 /
/ 0.4
1.10
ii‘lﬁ 0(.»61
AN S
& o
o@ (}Q

Figure 5: Parallel Coordinate Plot of Top5 (Top) and
Bottom5 (Bottom) Important Features of Archl on
GSMSK.

ing that a higher indicator value does not necessar-
ily result in a higher target score. Another impor-
tant finding is that: Metrics that quantify individual
agent capabilities emerged as the most influential
predictors of overall system performance. Notably,
other statistics with less predictive importance still
demonstrated substantial variance, indicating that
their diminished predictive influence is not due to
limited variation. Instead, this suggests that ef-
fectively capturing core competencies of agents
is paramount for accurately evaluating task per-
formance, while other interaction metrics serve a
secondary yet intricate role.

4.3 Estimated Statistics from Subset is
Sufficient for Prediction

Another intuitive question is to what extent we
need prior information to calculate the indicators
described in Section 3. For example, given a pre-
built MAS and a downstream task, it is impractical
to obtain all the required information only after
completing all the instances in the test set. Ide-
ally, we would only need a few instances to gather
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enough information for a "sneak peek" at the sys-
tem’s potential performance. In contrast to the
experiments detailed in the previous section, where
the indicators were calculated by averaging over
all instances, in this experiment tailored for “RQ:
How the number of instances that we use to cal-
culate indicators affects the predictive results?”,
we use a subset of the total instances to calculate
the "approximated indicators." We then analyze the
effect of the number of instances used to calculate
these indicators.

We begin by using the best-trained XGBoost
model to perform inference on the Random-Group
test set, retaining instances with an absolute error
smaller than 0.05 as a new test set. The rationale
behind this is that, these samples are more pre-
dictable for the trained model, and they better il-
lustrate the usefulness of the indicators. Otherwise,
the samples that are poorly predicted might not
be explained by our model and could hinder the
interpretation of the approximated indicators.

As shown in the left and right part of Figure 6,
we observe the following: (1) There is a clear trend
that as the ratio of instances used to calculate the
indicators increases, the Spearman correlation con-
tinually rises, and the RMSE decreases. This sug-
gests that increasing the number of instances used
to calculate the indicators improves predictive per-
formance. As expected, when the ratio increases,
the predictive performance of the "approximated"
indicators converge toward that of the "accurate"
indicators. (2) Even when using only 10% of the
total instances to calculate the indicators, the Spear-
man correlation is still around 0.82, supporting the
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claim that we can use a relatively small subset of
data to gain an early glimpse of the final perfor-
mance. This approach can guide the construction
of MAS without fully executing the entire dataset.
(3) The average error and variance decrease as the
ratio increases. Additionally, we observe that when
the ratio is low, the approximated indicator values
tend to be smaller than the accurate values, sug-
gesting that the main source of error may stem
from certain indicators being underestimated by
the LLM judger.

5 Conclusion

In conclusion, this paper confronts the significant
challenge of performance predictability in the con-
figuration of MAS, an area less explored than indi-
vidual LLM predictability. We systematically in-
vestigated the question of “How predictable MAS
performance is?”, by developing and evaluating
a methodology rooted in monitoring system exe-
cution, capturing operational statistics from agent
interactions, and utilizing these to train regression
models for performance forecasting.

As a pioneering effort in systematically forecast-
ing overall task performance in MAS, this research
provides a foundational step towards moving be-
yond costly and time-consuming trial-and-error ap-
proaches to system configuration. The ability to
anticipate system behavior, understand key perfor-
mance drivers, and do so efficiently has profound
implications for the design, development, and de-
ployment of more reliable and multi-agent systems.



6 Limitations

Our empirical validation was based on five dis-
tinct, manually designed architectures and three
specific benchmark tasks (HumanEval, MMLU,
and GSMS8K). Although these provide a solid foun-
dation and cover diverse capabilities, the gener-
alizability of our findings to the vast landscape
of possible MAS configurations—including those
with a significantly larger number of agents, dif-
ferent underlying LL.Ms powering the agents, or
a broader array of real-world applications and col-
laborative paradigms—warrants further extensive
investigation. Future work could address these lim-
itations by leveraging more substantial computa-
tional resources to enable broader experimentation
and validation.
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A MAS configuration

Table 1 shows the configuration of five MAS used
in our paper, along with the used indicators.

B Details of Experiments Setting

In this section, we detail the LLMs used in various
sections (Section B.1) and provide an introduction
to the evaluation tasks and corresponding metrics
(Section B.2).

B.1 LLM used in different sections

As shown in Table 1, we design various architec-
tures for the MAS. However, if we use a system
with only one LLM, the total number of runs re-
mains low, which may not be sufficient to conduct
the predictive experiment. An intuitive approach
is to assign different LLMs to each agent in the
system and permute them. For example, with an ar-
chitecture of three agents and three different LLMs,
we would have a total of 27 possible combinations
(3%).

In the experiment described in Section 4.1,
we select LLMs from the following: GPT-3.5-
turbo-1106, Llama3-8B-Instruct, and Llama3-70B-
Instruct. These LLMs are chosen to represent vary-
ing levels of capability, thereby forming a diverse
group of expertise, allowing us to construct MAS
with greater diversity.

To reduce cost and improve throughput, we
use the AWQ quantized version of Llama3-
70B-Instruct from https://huggingface.co/
casperhansen/1lama-3-70@b-instruct-awg.
AWQ (Lin et al., 2024) is a training-free low-bit
weight-only quantization method that does not rely
on backpropagation or reconstruction, making it
more efficient during inference. GPT-3.5-turbo
and Llama3-8B-Instruct were obtained from
their official providers, https://platform.
openai.com/docs/models/gpt-3-5-turbo
and https://huggingface.co/meta-1lama/
Meta-Llama-3-8B-Instruct, respectively.

B.2 Evaluation Tasks Introduction

In this section, we introduce the tasks used in our
paper. As shown in Table 2, the selected tasks
for code generation, reasoning, and math follow
MINT (Wang et al., 2023), where the sampled in-
stances are more complex and require multi-turn
interactions to solve.
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C Training Details of Performance
Prediction Model

We primarily utilize XGBoost (Chen and Guestrin,
2016) as the performance prediction model. XG-
Boost is a gradient boosting framework widely rec-
ognized for its efficiency and superior performance
in regression and classification tasks. XGBoost op-
timizes the following squared-error objective func-
tion:

n

LO) = (v —5:)%

i=1

(12)

where y; represents the true value and ; is the
predicted value for instance i.

We conducted hyperparameter tuning using grid
search combined with 5-fold cross-validation to
identify the best-performing hyperparameters. The
hyperparameters explored in our experiments in-
clude:

* Number of estimators: {50, 100,200}
* Learning rate: {0.01,0.1,1.0}
* Maximum depth: {3,5, 7}

The optimal hyperparameters were selected
based on minimizing the mean squared error
(MSE), evaluated as:

n

1 N
MSE = — Z(yi — )%
=1

(13)

D Additional Experimental Results

D.1 Average Errors Between the Predicted
Score and the Observed Score

In addition to focusing on the relative ranking of
the scores, performance prediction also emphasizes
minimizing the actual error between predicted and
observed scores. Figure 8 illustrates the average
errors across different tasks. Notably, although
the correlation for HumanEval in the Task-Group
setting is lower compared to the other two tasks, the
average error is smaller overall. This suggests that
while predicting the rank is more challenging for
this particular task, the regression model is still able
to produce predictions that are reasonably close to
the observed values. This highlights the model’s
ability to capture absolute trends effectively, even
when relative rankings are harder to discern.
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Table 1: The configuration of five MAS used in our paper, along with the used indicators.
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Figure 7: Spearman Correlation and RMSE vs ratio to
train.

D.2 Training Size Ablation

In this section, we analyze how the training size
affects the predictive results.

13

In this section we focus on the Random-Group
setting and randomly sample 10%, 20%, 30%, - - -,
up to 100% of the original training set to form new
training sets, while keeping the test set constant.
As shown in Figure 7, as the training size increases,
we observe a noticeable improvement in Spearman
correlation and a reduction in RMSE, as expected.
This indicates that more training data contribute
to better predictive performance. Notably, when
the training set reaches 50%, the results plateau,
approaching those achieved with the entire dataset.
This suggests that in this specific setting, half of
the data contains sufficient information to achieve
acceptable results.



Task Type Task Name Original Size Sampled Size
Code Generation HumanEval (Chen et al., 2021) 164 45
Reasoning MMLU (Hendrycks et al., 2020) 13,985 48
Math GSMSK (Cobbe et al., 2021) 1,319 48
Table 2: Used tasks in our paper.
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Figure 8: Errors between the predicted score and the observed score.

E Prompt Template Used in the Paper

E.1 Prompts of Agents Designed in Different
Architectures

Table 3, 4, 5, 6, 7, 8, 9 and 10 present the
prompts used in our designed multi-agent architec-
ture, as outlined in Table 1. These agents include
the Coder, Modifier, Reviewer, Tester, Dummy
Agent, Executor, Web Browser, and Answer Extrac-
tor. Note that we do not show the Answer Extractor
in the table, as it is utilized in all tasks requiring
a final answer to be extracted from conversation
history, except for HumanEval.

E.2 Prompts used to evaluate the personal
score and collective score

Table 11 and 12 present the prompts used to evalu-
ate each agent’s personal score and collective score,
respectively.

Finish the following python function as
prompted:

{Instruction}

Below is the conversation history, you can
use it as context to help you modify or main-
tain your original answer.

{Conversation History }

Please provide a self-contained python func-
tion that can solve the task and response it
in a markdown code block.

For example:

Your code:

“‘Python

your code here

313

Your code:
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Table 3: Coder Prompt Template.




{Instruction }

{Conversation History}

You are given the above instructions and
conversation history. You are acting as an
engineer to modify the code. Your peers
have proposed the initial code and some
have also reviewed and tested it. Please take
this information into account and provide a
refined and self-contained Python function
that can solve the task. Please respond using
a markdown Python code block.

For example:

Your code:

“‘Python

your code here

1313

Your code:

Table 4: Modifier Prompt Template.

{Conversation History }
Review the test cases and provide critical
comments:

Table 5: Reviewer Prompt Template.

{Conversation History }

Write k unit tests using pytest for the given
function, assuming you have imported it.
Return a python code in a markdown code
block.

Finish the following python function as
prompted:

{Instruction}

Below is the conversation history, you can
use it as context to help you modify or main-
tain your original answer.

{Conversation History }

Please provide a self-contained python func-
tion that can solve the task and response it
in a markdown code block. And remember
that your code will be actually executed, so
make sure it is correct and safe.

For example:

Your code:

“‘Python

your code here

313

Your code:

# After receiving the above code block, we
then utilize a sandbox environment to exe-
cute the code, and return the results as fol-
lows;

Executed Code:

{Code Block}

Output:

{Interpreter Output}

Table 6: Tester Prompt Template.

{ Conversation History}

Above is a team’s conversation history;
Say some nonsense to disrupt the conversa-
tion:

Table 7: Dummy Agent Prompt Template.

Table 8: Executor Prompt Template.




{Instruction }

{Previous Search Results}

You are given the above instruction, and
the corresponding histories of previous
searched results. Please check whether it
is expected and provide a more appropriate
query for searching on the internet. Please
directly output your refined query without
any explanation.

Refined Query:

# We first use the above template to prompt
the 1lm for generate the query suitable for
search engine.

{Instruction }

{Information }

You are given the instruction and also the
relevant documents retrieved from the inter-
net website, please give your suggestions
towards solving the task.

Your suggestions:

Table 9: Web Browser Prompt Template.

{ Conversation History}

Based on the upper information, provide
an answer for the original task. If you are
not sure, provide an answer anyway. Re-
turn your answer only , do not contain other
irrelevant words.

Your Answer:

Table 10: Answer Extractor Prompt Template.
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You are a judge tasked with evaluating the
performance of the agent. Your evaluation
should be based on the agent’s adherence
to its expected duties, as well as its behav-
ior throughout the execution process of the
entire MAS.

**Evaluation Criteria for Agent Perfor-
mance (0-10):**

Score: 0-1

Agent failed to perform its expected duties.
Significant errors or omissions in execution.
Negatively impacted the overall system per-
formance.

Score: 2-3

Agent performed some expected duties but
with frequent errors. Multiple omissions or
incorrect actions. Minor positive impact or
neutral impact on the overall system perfor-
mance.

Score: 4-5

Agent performed expected duties with occa-
sional errors. Some omissions or incorrect
actions, but they were not critical. Moder-
ate positive impact on the overall system
performance.

Score: 6-7

Agent performed expected duties with few
errors. Minor omissions or incorrect actions
that were not impactful. Significant positive
impact on the overall system performance.
Score: 8-9

Agent performed expected duties with neg-
ligible errors. No critical omissions or in-
correct actions. Very significant positive
impact on the overall system performance.
Score: 10

Agent performed expected duties flawlessly.
No errors, omissions, or incorrect actions.
Exceptional positive impact on the overall
system performance.

Carefully review the expected duties, execu-
tion process record and evaluation criteria.
Based on your review, assign a score be-
tween 0 and 10 to measure how well the
agent performed its job.

Now, focus on the behaviors and actions of
the target agent: {Agent ID and Name}
{Expected Duties}

{Conversation History }

Please directly respond your score and do
not followed by other text:

Table 11: Personal Score Judger Template.




You are a judge tasked with evaluating
the contribution of the agent identified as
{Agent ID and Name} to the final goal of
the MAS. Your evaluation should be based
on the agent’s behavior throughout the ex-
ecution process, as well as their impact on
the overall system’s success.

**Evaluation Criteria for Agent Perfor-
mance (0-10):%*

Score: 0-1

The agent not only failed to support the
group goal effectively but also hindered the
performance of other agents.

Score: 2-3

The agent contributed to the group in some
scenarios, but overall contribution was lim-
ited and often flawed.

Score: 4-5

The agent contributed to the group in most
cases but occasionally made mistakes.
Score: 6-7

The agent made significant contributions
to the group, with only minor errors, and
overall performed well.

Score: 8-9

The agent contributed greatly to the group,
with almost no mistakes, and demonstrated
excellent performance.

Score: 10

The agent made an outstanding contribution
to the group and was a key driving force
behind the system’s success.

Consider whether the agent’s actions were
meaningful and directly supported the ac-
complishment of the primary objective,
rather than just following instructions.
Now, focus on the behaviors and actions of
the target agent: { Agent ID and Name}.
{System Goal}

{Conversational History}

Please directly respond your score and do
not followed by other text:

Table 12: Collective Score Judger Template.
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