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Abstract

Gradient-based algorithms are a cornerstone of artificial neural network training,
yet it remains unclear whether biological neural networks use similar gradient-
based strategies during learning. Experiments often discover a diversity of synaptic
plasticity rules, but whether these amount to an approximation to gradient descent
is unclear. Here we investigate a previously overlooked possibility: that learning
dynamics may include fundamentally non-gradient “curl”-like components while
still being able to effectively optimize a loss function. Curl terms naturally emerge
in networks with inhibitory-excitatory connectivity or Hebbian/anti-Hebbian plas-
ticity, resulting in learning dynamics that cannot be framed as gradient descent on
any objective. To investigate the impact of these curl terms, we analyze feedforward
networks within an analytically tractable student-teacher framework, systemati-
cally introducing non-gradient dynamics through neurons exhibiting rule-flipped
plasticity. Small curl terms preserve the stability of the original solution manifold,
resulting in learning dynamics similar to gradient descent. Beyond a critical value,
strong curl terms destabilize the solution manifold. Depending on the network
architecture, this loss of stability can lead to chaotic learning dynamics that destroy
performance. In other cases, the curl terms can counterintuitively speed learning
compared to gradient descent by allowing the weight dynamics to escape saddles by
temporarily ascending the loss. Our results identify specific architectures capable
of supporting robust learning via diverse learning rules, providing an important
counterpoint to normative theories of gradient-based learning in neural networks.

1 Introduction

Modern deep learning relies on backpropagation to compute high-dimensional gradients that assign
credit to individual synapses by propagating error signals backward through the network [Rumelhart;
et al., 1986, (Chinta and Tweed, |2012]. This mechanism solves the credit assignment problem by
assuming that each synapse can locally adapt in proportion to the negative gradient of the loss.
However, despite its central role in artificial systems, direct evidence for gradient-based learning in
biological neural circuits is still lacking [Lillicrap et al., [2020].

To reconcile this gap, many studies have proposed biologically plausible approximations to gradient
descent [Richards and Kordingl [2023]]. These typically address concerns related to the locality of
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error information [Golkar et al., [2023] [Keller and Mrsic-Flogel, 2018| [Bredenberg et al., [2023]],
separation of forward and backward passes [[Guerguiev et al., 2017, |Xie and Seung, [2003]], and the
weight transport problem [Akrout et al.| 2019 Lillicrap et al.,|2016]. However, a more fundamental
constraint has received less attention: even if local gradient information were available, it remains
unclear whether biological plasticity rules can consistently drive synapses along such a gradient.

Backpropagation implicitly assumes a coordinated update rule in which all synapses adjust their
weights in directions aligned with the descending gradient of a global error signal. Yet this assumption
is incompatible with experimental observations. Synaptic plasticity in the brain is remarkably diverse,
with different cell types and circuits expressing distinct, and sometimes opposing, forms of long-term
potentiation and depression, including both Hebbian and anti-Hebbian rules [Abbott and Nelson)
2000]. This diversity is compounded by Dale’s law [Dale, |1934]], which fixes each neuron as either
excitatory or inhibitory, constraining the sign of its outgoing synapses. Crucially, the local plasticity
rule at a given synapse appears uncorrelated with the identity of the presynaptic neuron—whether
excitatory or inhibitory—or with any other structural or physiological feature of the circuit [|Citri
and Malenka, 2008]]. As a result, identical local signals can produce opposite weight changes across
different synapses, with no apparent mechanism to coordinate or compensate for this variability.
These constraints raise a more fundamental question: can networks with heterogeneous and potentially
antagonistic plasticity rules still support meaningful optimization?

In this work, we examine how physiological diversity in synaptic plasticity and cell-type identity,
shapes the learning dynamics of neural networks. Specifically, we ask whether networks composed
of heterogeneous neurons can still effectively reduce an objective function or whether such diversity
precludes gradient-based learning altogether.

Our contributions are as follows:

* We show that non-gradient terms naturally arise in biologically plausible networks due to
sign-diverse plasticity. In contrast to many previously considered alternatives to backpropa-
gation, here the learning dynamics cannot be written as gradient descent on any objective
due to the existence of non-gradient “curl”-like terms.

* We develop a theoretical framework to isolate and systematically analyze the effect of curl
terms in large linear feedforward networks. Leveraging random matrix theory, we identify a
dynamical phase transition in which the zero-error solution manifold loses stability.

* We demonstrate that the location of this phase transition depends on architectural parameters,
particularly the expansion ratio between the input and hidden layers.

* Finally, we provide numerical evidence that, in certain nonlinear architectures, curl descent
can accelerate learning, even in the absence of true gradient flow.

Our results suggest a previously unexplored mechanism through which biological learning rules
could give rise to fundamentally non-gradient dynamics that still support effective learning.

2 Non-gradient terms arise in biologically plausible neural networks

Our curl descent learning rule introduces non-gradient terms into the learning dynamics by flipping
the sign of the gradient descent update for selected synapses. To motivate this approach, in this
section we demonstrate how non-gradient learning dynamics can arise from sign-diverse plasticity in
biological networks. We return to the curl descent rule in the following section.

Unlike artificial networks, neurons in the brain exhibit a variety of plasticity mechanisms and
physiological properties that directly influence how a synapse is updated in relation to the local
gradient. We begin our analysis by showing that sign diversity in effective learning rules — whether
from plasticity mechanisms or the neural dynamics of excitatory-inhibitory networks — gives
rise to provably non-gradient terms in the learning dynamics. While we focus on recurrent linear
architectures for brevity, it is straightforward to extend this analysis to nonlinear dynamics.

Excitatory-inhibitory (E-I) networks. Non-gradient terms can emerge in recurrent E-I Hebbian
networks. Consider a linear recurrent neural network (RNN) described by:

T,y = —y + WDy +f, forD =diag(ds,...,dn) withd; € {+1, -1}, )]



where y € R¥ represents the firing rates of the N neurons, W & R];'OXN denotes non-negative
recurrent weight magnitudes, d; determines whether neuron i is excitatory or inhibitory, 7, > 0 is
a time constant, and f € R¥ is an external drive. The Taylor expansion of the neural dynamics at
steady state gives y* = (I + WD + O(W?))f. Under Hebbian plasticity (with weight decay), we
obtain the following learning dynamics:

wW =yy —yW &' + WDE' + ' DW T —yW. )
Here, v > 0 regulates weight decay to prevent unbounded growth [Gerstner and Kistler, 2002].
While the first and last terms can be written as gradients — namely, ff' = Vy Tr(ff'W ')

and YW = IVy Tr (WWT) — the two intermediate terms cannot, unless ff ' D is symmetric.
However, this symmetry holds only when the inhibitory neurons receive no external input; see
Supplementary Material for details. This is the case in previous normative studies that derive
excitatory-inhibitory Hebbian networks from a similarity matching objective [Pehlevan et al.,[2015]]
(see Supplementary Material[A.4). In the general case, networks that respect Dale’s law will therefore
include non-gradient terms in their learning dynamics.

Hebbian/anti-Hebbian networks. A similar argument can be made for networks where the learning
rule of individual synapses are sign-flipped as a result of mixed Hebbian and anti-Hebbian plasticity;
see Supplementary Material [A.2]for details.

3 Curl descent in a student-teacher framework

To better understand the effect of non-gradient terms (here called “curl” terms in analogy with the
Helmholtz decomposition), we next turn to an analytically tractable setting in which the learning
dynamics of gradient descent is well understood [Saxe et al.,|2014} |Advani et al., 2020} |Goldt et al.,
2020, Baldi and Hornik} 1989, [Le Cun et al 1991} Seung et al.l|[1992]: linear feedforward networks
with a single hidden layer.

We adopt a student-teacher framework in which a two-layer teacher network (parametrized by
weights W7 € RV*M and Wy € RY) maps an input vector x € RM to scalar output y € R via
y = W3 Wix. The student uses the same architecture, and its output is given by § = Wsh, where
h = Wjx is the hidden layer activity. The student’s goal is to modify its weights W and W5 to
match the teacher’s output y and minimize the quadratic loss £ = % (€2), where e := §) — y is the
signed error and (-) denotes an average over the input distribution.

Standard gradient descent gives the following updates:

AWE™ = Uy L= W) WoWixx| — W, yx| = x" 3)
AWE™ = V. L =—Wohh" +yh" = —ch' )
Each term is the outer product of a and the presynaptic activity, and can be

considered a supervised “Hebbian-like” learning rule [Melchior et al., 2024, Refinetti et al.| 2021].

Curl descent rule. To model the diverse behavior of plasticity rules observed in biological neural
networks, we flip the sign of a subset of synapses using diagonal matrices D; € RM*M and
Dy € RVXN.

AW = x ' Dy, AWS™ = —ch' D, 3)
where Dy = diag(di1,...,d1,m), D2 = diag(da,...,d2 ), and d; ; € {+1,—1}. Therefore,
all synapses associated with presynaptic neuron j in layer [ follow either an unchanged learning
rule (d;,; = +1) or a flipped learning rule (d; ; = —1). If both types of learning rule are present
in the student, no scalar potential function exists whose gradient reproduces the weight updates

(see Supplementary Material). Thus, the addition of rule-flipped plasticity induces intrinsically
non-gradient curl terms in the learning dynamics.

4 Analytical results

Following previous work on the learning dynamics of linear networks [Saxe et al.l 2014]], we assume
whitened inputs (xx ') = I, and take the continuous time limit (small learning rate) giving the



following nonlinear dynamical system for the weights:
Wi =W, (s —WaWi)Dy  and W = (s — WaWi)W, Do, (6)

where s := W3 W7 represents the effective function implemented by the teacher. If D; = I, and
Dy = I, the learning dynamics reduce to gradient flow.

Since curl descent only changes the sign of the plasticity rule, it will have the same fixed-point
solutions as gradient descent: these include a continuous manifold corresponding to WoW; = s
(here called the solution manifold) plus a discrete fixed point at the origin (W; = Wy = 0). In
gradient descent, the hyperbolic solution manifold is known to be stable, whereas the origin is a
saddle [Saxe et al.|[2014]]. However, curl terms can have a significant impact on the learning dynamics
by changing the stability properties of fixed points. Flipping the sign of all the synapses would have a
clearly disastrous impact as it would lead the weights to ascend the gradient. Surprisingly, however,
the stability of the solution manifold can be robust to moderate amounts of rule-flipped plasticity
depending on the network architecture, as we will demonstrate below.

4.1 Toy example: A two-neuron network
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Figure 1: Toy model analysis. a) Learning trajectories in weight space for gradient flow (dark purple
curve) and curl flow (light purple curve). The heatmap represents the log loss, which determines the
gradient descent dynamics. The hyperbolic solution manifold (dark red curves) is a global minimum.
Curl descent reshapes the learning dynamics and adds a rotational field (flow-field overlain in light
purple curves with arrows). b) Schematic of the toy model network. ¢) Log error vs. training epoch
for the same learning trajectories shown in panel a. Inset: Same figure zoomed on the first 10 epochs,
showing that curl descent initially ascends the loss function.

We first build intuition by considering a minimal two-neuron network (M = N = 1). We will denote
the resulting scalar weights of the teacher and student as w; and wy, for [ = 1, 2. The continuous-time
gradient flow dynamics are given by:

'lbl = U}Q(S — ’LUQU)l), wg = wl(s — 'lUQ’LUl). (7)
Flipping the sign of the hidden neuron’s plasticity rule instead yields the following dynamics:
Wy = wa(s — wawy), Wy = —wi (s — wowy) (®)

How does this sign flip modify the stability of the solution manifold? To test this we analyze the
change of stability of fixed points by calculating the curl flow Jacobian:

&)

—w3 (s — 2wowy)
T Qwawy — 8) w?

On the solution manifold (s = wyws), the eigenvalues are A\; = 0 and Ay = w% — w% Hence, only
the fixed points satisfying |wz| > |w;| will remain (neutrally) stable, while the other half of the
solution manifold loses stability.



The origin, a saddle under the original gradient flow dynamics, is converted to a center with purely
imaginary eigenvalues \; o = +is (Fig. 1a). The phase plane shows two qualitatively distinct dynam-
ical regimes: convergence to a minimum on the solution manifold or small-amplitude oscillations,
depending on the initialization of the weights. These regimes are separated by heteroclinic orbits on
the circle w? + w? = s.

Under curl flow, the weights evolve according to rotational dynamics induced by the curl terms, but
can still descend the loss and converge to the solution manifold. Intriguingly, in some cases curl
flow can lead to faster convergence compared to gradient flow (Fig. 1). In particular, this happens
when the weights would otherwise be stuck along the stable manifold of the saddle at the origin. This
hints at a possible benefit of curl terms in helping weight dynamics escape saddles, but comes at a
significant cost: half of the solution manifold has lost stability, and small-amplitude initializations
no longer converge. This can partially be explained by the fact that in this two-neuron network, we
flipped the sign of an “entire layer” to add a curl term. In the following section, we consider large
networks where we have finer control over the magnitude of the curl terms.

4.2 Large networks

Returning to the general case (arbitrary M, N), we derive the Jacobian J of the learning dynamics at
the origin and on the solution manifold. The eigenvalues of the Jacobian matrix at a given point in
parameter space reveal the local stability at this point: if all eigenvalues’ real parts are negative, then
the point is stable, otherwise it is unstable. We thus analyze the eigenvalues of the Jacobian as we
systematically increase the fraction of rule-flipped neurons in either the hidden layer or the readout
layer. For this, we quantified by the fraction of negative diagonal elements in D1 or D> as:

M N
1 1
an =17 Z Hdi; <0} op = Z 1{dy; < 0} (10)
j=1 Jj=1
where 1 denotes the indicator function (derivation details can be found in the Supplementary Material).

Spectrum at the origin. At the origin, the characteristic polynomial can be derived as:
N M
det(J = AI) = (V)M = doiX), 2= duys? (11)
i=1 j=1

Therefore, the origin can have at most 2N nonzero eigenvalues: A = +,/d;%. In the case of
gradient flow, all d; ; = 1 and X > 0, yielding purely real eigenvalues of positive and negative sign
(a saddle). If we now add rule-flipped plasticity in the readout layer, then every hidden neuron whose
plasticity is sign-flipped (i.e., for each ds ; = —1) will convert two of those eigenvalues to be purely
imaginary, turning one of the N planes with embedded saddle dynamics to a center point. Instead,
if we add sufficient rule-flipped plasticity to the hidden layer (enough so that X < 0), all NV of the
saddle planes will turn into centers. This strong dependency on the layer foreshadows the important
role that the network architecture will play in determining how curl flow impacts learning dynamics.

Spectrum on the solution manifold. Using the Schur complement, we can derive the characteristic
polynomial of J evaluated on the solution manifold (W1 W5 = s) as:

det(J — AI) = (—1)NMENNMNEN=M qot( NI + [|[Wa||? Dy + Wy DoaWy). (12)

Hence, at most M eigenvalues are nonzero and their values will be governed by the determinant on
the right-hand side in (T2). In the case of gradient flow, this reduces to the characteristic polynomial
of a second matrix:

det(MIa + A) =0, A= ||[Wa|[*In + W, W1 (13)

Since A is positive definite, the eigenvalues of —A, and hence the nonzero eigenvalues of .J, are
negative, demonstrating that the solution manifold is stable under gradient flow.

How does the stability of the solution manifold change under curl flow? If we flip the sign of all
neurons (ap = a, = 1), all eigenvalues will flip their sign in correspondence. However, there may
be intermediate values of oy, or «,. before the solution manifold loses stability. Indeed, we can
directly infer from the structure of Eq. that stability depends on two factors: the ratio between



the variances of W; and W5, given by the ratio M /N, and the fraction of flipped synapses, either
ap, or o, depending on the layer being modified. This simplification arises because the stability is
determined by the point at which the largest eigenvalue is zero and does not rely on other properties
of the eigenvalue distribution.

The characteristic polynomial is difficult to evaluate in general, but we can leverage random matrix
theory to predict when the bounded support of the eigenvalue distribution crosses zero in large
networks. Here we use the i.i.d. random distribution of teacher weights, and assume that the student
weights share the same statistics on the solution manifold [He et al.,2015]], namely:

(Wh)ij = N(0,1/M) (Wa)ij "™ N(0,1/N). (14)

We consider the infinitely wide limit (M, N — oo) with a fixed “compression” ratio ¢ := M /N,
allowing us to characterize how the stability properties change as a function of the network architec-
ture. First, we ask how the spectrum of the Jacobian changes as we vary oy, (keeping o, = 0). In
this case, we can derive a fourth-order polynomial whose double roots provide the endpoints of the
spectral support (see Supplementary Material). The double roots can be solved numerically to obtain
the stability boundary as a function of ¢ (Fig. 2] top). The stability boundaries for the complementary
case, in which we instead vary «,. (keeping o, = 0), can be found using the method of [|Kumar and
Sai Charan| [2020] (Fig. 2] bottom).

and

Curl-induced destabilization depends on network architecture.
The phase diagrams in Figure 2] highlight a clear trend: expansive
networks (¢ < 1) are inherently more robust to curl terms. When
added to the hidden layer, curl flow destabilizes the solution manifold
once the compression ratio exceeds ¢ ~ 0.3 (Fig. [2| top). This
critical value depends only weakly on «v,. In contrast, for the readout
layer (Fig. 2} bottom), the stability of the solution manifold depends
strongly on the magnitude of the curl terms. In particular, at most half
of the readout layer can obey rule-flipped plasticity before stability
is lost. These results demonstrate the conditions under which curl
descent may converge to the same solution manifold as gradient
descent. To understand how the learning dynamics change at the
stability boundary, we turn to simulations.
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To test our theoretical results on the stability of the solution mani-
fold, we simulated networks with a total of M + N = 220 neurons,
while varying the compression ratio c and the fraction of rule-flipped
neurons (either a; or ay). The hidden and read-out weights of the
teacher were sampled i.i.d. from zero-mean distributions, with vari-
ance scaled by the number of input neurons to each layer, ensuring
that stability depends only on the compression ratio ¢ = M /N and
not on the statistics of the weights. The student networks had iden-
tical architectures to the teacher networks, with weights initialized
from the same distribution (unless otherwise specified). Inputs were

sampled as 2;%N(0,1/1/2), and along with the teacher’s outputs,
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Figure 2: Analytical phase
diagrams. Stability of the
solution manifold as a func-
tion of the compression ratio ¢

provided the training data for the students. Weight updates were
made on the whole training set (Vi,in = 250 samples) with a learn-
ing rate 0.1/Nyain 0Ver Nepochs = 10° epochs. To ensure numerical

and the fraction of rule-flipped
neurons in each layer o, (hid-
den) and o, (readout).

stability, W and W5 were re-normalized at every epoch to match

their initial Frobenius norm. When analyzing the stability regimes, we focused on linear networks to
be able to compare directly to theory; however, we note that the qualitative properties also extend to
nonlinear networks (see Supplementary Material [C). Furthermore, in our final results on convergence
speed in curl descent we implemented nonlinear networks with tanh activation functions.

Dynamics beyond stability. In our analytical results, we have shown that above the critical values
of ¢ and oy, or a., the solution manifold loses its stability. What happens to the weight dynamics in
this case? Interestingly, this depends on which layer we are flipping: hidden or readout.
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Figure 3: Hidden layer curl terms lead to chaos. a) Test error as a function of the compression
ratio c and the fraction of rule-flipped neurons ay, (averaged over 10 random seeds). Black curve:
analytical stability boundary (cf. Fig. top). Inset: Close-up for ¢ € [0.1,0.7]. b) Order parameter ¢
(averaged over 10 seeds) plotted for varying o, (top) and ¢ (bottom). Dashed lines indicate analytical
transition to instability. ¢) Example weight dynamics in the unstable regime (¢ = 0.8, o, = 0.6).
d) Example weight autocorrelation functions. Inset: Weight dynamics projected onto its first two
principal components. Compute resources: 4 hours on 500 CPUs (local cluster).

Rule-flipped plasticity in the hidden layer. Our simulations show that introducing rule-flipped
weights in the hidden layer induces chaotic learning dynamics when the solution manifold loses
stability (Fig. ). The emergence of chaotic weight dynamics is analogous to the transition to chaos
in large disordered networks [Kadmon and Sompolinskyl, [2015]]. This can occur when the Jacobian
always has at least one unstable direction. Notably, our analysis found this to be the case on the
solution manifold. Still, our simulations suggest that the dynamics are everywhere unstable, as can
be seen from the order parameter quantifying the mean fluctuations:

_E[((w — (w))?)]
Vi{{w)]
where (-) represents an average over epochs, and E[-], V[-] represent mean, variance over (I, 4, j). Here,
the transition to chaos appears even in linear networks, because the learning dynamics themselves

are inherently nonlinear [Saxe et all 2014]]. The resulting chaos can be understood as a result of a
nonlinear weight update combined with structural (quenched) disorder [Sompolinsky et al. [T988].

with w := (W;);; for the sake of notation (15)
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Figure 4: Readout layer curl terms result in low error even when the solution manifold is
unstable. a) Low test error with readout curl terms. Same as Fig. 3a while varying «,.. The black
curve shows the analytical stability boundary. b) Peak error over learning (maximum over 20 random
seeds, initialized near the solution manifold). Inset: Test error vs. epoch in the unstable regime,
showing large weight transients that re-descend the loss (¢ = 1, o, = 0.6). ¢) Example weight
dynamics in the unstable regime (¢ = 1, a,, = 0.6). d) Example weight autocorrelation functions.
Inset: Weight dynamics projected onto its first two principal components. Compute resources: 4
hours on 500 CPUs (local cluster).

Rule-flipped plasticity in the readout layer. Surprisingly, destabilizing the solution manifold by
introducing rule-flipped plasticity in the readout layer did not necessarily prevent the network from
reaching small test error (Fig. Bh). To verify that the solution manifold was indeed unstable, we
tried initializing the student networks’ weights away from the solution manifold by adding a 10~1°
perturbation. The typical error evolution showed a spike in the loss before going down to another
stable minimum (Fig. @p-d), reminiscent of the dynamics of the two-neuron model in Fig. [} The
dynamics suggest that the solution manifold was indeed unstable, but the weights were nevertheless
able to find other low-error regions of the parameter space. We suspect this difference, compared
with the chaotic learning dynamics observed when including rule-flipped plasticity in the hidden
layer, may be due to the low-dimensional (scalar) output.
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Figure 5: Nonlinear networks: curl descent leads to faster convergence in a broad parameter
regime. a) Network schematic. b) Test error for gradient descent and curl descent with a single
rule-flipped readout neuron (Ny,i, = 2000, weight initialization scale = 2; error bars indicate mean
+ sem, averaged over 10 random seeds). Inset: activation function (tanh). ¢) Convergence speed of
curl descent and gradient descent as a function of training set size (weight initialization scale = 2).
d) Same as c as a function of the weight initialization range (NVy.in = 10000). e) Convergence speed
as a function of the teacher weights initialization scale. f) Convergence speed as a function of the
fraction of rule-flipped readout neurons. Compute resources: 12 hours on 500 CPUs (local cluster).

Faster convergence in nonlinear networks. These results led us to ask whether curl descent could
have any numerical advantage compared to gradient descent. In the toy example, we saw that in
some circumstances, curl descent could descend the loss faster than gradient descent (Fig. [T). To test
this, we simulated contracting tanh networks with A/ = 100 input units and N = 10 hidden units
while flipping the learning-rule sign for a single weight in the readout layer: i.e., only one of the
model’s 1010 trainable parameters (Fig. [TTh). Indeed, a single flipped weight was able to significantly
reshape the learning trajectory, leading to faster convergence (Fig. [[Ip). This improved performance
increased in the high data regime (Fig. [Tk, p < .01 for Ny, > 500, paired t-test) and was robust to

a broad range of student weight initialization scales (Fig. |1 1), where W3udnt — gcale - Jy/student,

We next tested whether convergence speed differences generalized to more complex tasks. Using
prior results [Poole et al.,|2016| Bahri et al., 2020]], we modulated the teacher’s function complexity
by parametrically expanding the initialization range of the teacher weights. We observed a critical
value of the teacher weight initialization scale (Fig[TTk): above it both curl descent and gradient
descent exhibited a sharp reduction in performance with both rules performing similarly poorly, but
below it, curl descent consistently outperformed gradient descent (p < .01, paired t-test).

Lastly, we investigated the robustness of curl descent’s rapid convergence by increasing the proportion
of rule-flipped neurons in the readout layer (Fig. [ITf). As expected, the speed advantage of curl
descent diminished as the fraction of rule-flipped neurons rose, as the resulting learning dynamics
became increasingly unstable. However, curl descent was nevertheless able to descend the error faster
than gradient descent for < 50% rule-flipped readout weights (p < .01, paired t-test).

Further tests will be necessary to fully resolve the impact of curl descent in complex, real-world tasks.
Nevertheless, our numerical results demonstrate that in a broad range of hyperparameter settings, curl
descent can counterintuitively speed learning by allowing the weight dynamics to find other low-error
solutions than those found by gradient descent.

6 Related work

Non-equilibrium neural dynamics. The curl descent rule induces non-equilibrium learning dy-
namics by breaking the symmetry of the Jacobian. Such non-gradient systems have also been



studied in the context of complex networks in the absence of plasticity, including in brain dynam-
ics [Nartallo-Kaluarachchi et al., [2025| |Daie et al.| 2025]. Here, non-reciprocal connections between
neurons introduce curl terms that can give rise to a host of different dynamical regimes [Yan et al.,
2013 [Fruchart et al., [2021]]. To our knowledge, this is the first study to systematically investigate
non-equilibrium learning dynamics.

Natural gradients. Natural gradient descent [[Amari, | 1998|] replaces the standard gradient descent
update with A§ = —1nG~1V4L, where the preconditioning matrix G is positive definite. Selecting
G equips the parameter space with a Riemannian geometry, determining the learning flow field [Surace
et al.;[2020]. When G is positive-definite, each step is guaranteed to decrease the objective, yielding
monotonic improvement [Richards and Kording} 2023} Richards et al.,|2019]. Non-Euclidean metrics
have been shown to better reproduce observed weight distributions in the brain [Pogodin et al., 2023].
Curl descent does not induce a Riemannian metric: the corresponding preconditioning matrix is
indefinite, possessing both positive and negative eigenvalues. This violates the assumption of natural
gradients, producing weight dynamics with qualitatively new behavior, including rotational vector
fields and periodic orbits in the parameter space.

These new dynamics are interesting to compare to recent work which argues that a wide class of
learning rules can be viewed as natural gradients for a particular metric [Shoji et al.| 2024]]. The
authors give a constructive proof that any rule which monotonically decreases a cost function over
some time window implements a form of natural gradients. However, this condition is not satisfied
by curl descent: for example, in the toy model in Fig. 1a, small amplitude initial weights result in
periodic dynamics. In simulations in larger networks, we did not observe non-decreasing loss curves
(as long as only a minority of neurons in the readout layer were flipped), but we cannot a priori rule
out the existence of pathological weight initialization regimes that would lead to such behavior.

Feedback alignment. A growing body of work uses random projections of the error as a biologically
plausible mechanism to circumvent the weight transport problem [Lillicrap et al., 2016, [Ngkland,
2016} Refinetti et al., 2021}, [Hanut and Kadmonl, 2025, |Clark et al., 2021l Moskovitz et al., 2019]
Lindsey and Litwin-Kumar, 2020, Boopathy and Fiete, 2022]]. The weight updates are then given
by: AW, = x" and AW, = —¢h', where B is a feedback matrix. If B = W, , we recover
gradient descent. Unless BW5 is symmetric, this learning rule cannot be expressed as deriving from
a gradient. In classic feedback alignment, B is chosen to be random, therefore, this condition is
unlikely to be satisfied (note that W, has been numerically observed to partially align to B through
the weight dynamics [Lillicrap et al.l 2020]). The fact that this algorithm offers little control over
the non-gradient terms makes it difficult to test their effect systematically. Curl descent enables this
control by flipping the learning rule for a randomly selected fraction of neurons.

Exact learning dynamics. Our work extends previous analytical studies of exact learning dynamics
of gradient descent in linear neural networks [Saxe et al., 2014, |Advani et al.| 2020 |Pellegrino et al.|
2023, |Bordelon and Pehlevan, 2025, [Hanut and Kadmon, [2025]]. A contribution of our framework is
to devise a tractable learning rule that enables mathematical analysis of how different amounts of
non-gradient terms influence weight dynamics. Unlike previous work, our model highlights cases
where the dynamics cannot be captured by a potential.

Normative theories of Hebbian learning. Decades of work has shown that Hebbian-like learning
rules can optimize specified objectives [Bahroun et al., 2023, [Melchior et al.| 2024, Pehlevan et al.,
2015, |Pehlevan and Chklovskii, 2019, [Tolmachev and Manton, 2020, |[Hyvirinen and Oja, [1998|
Seung and Zung| 2017, |Foldiakl, [1990, Seung, |2018}, |Xie and Seung, 2003 [Lim/ 2021} |Obeid et al.}
2019, Halvagal and Zenke} 2023, |[Flesch et al.l 2023| |Brito and Gerstner, [2016} Lipshutz et al., 2023
O’Reilly, 2001} [Eckmann et al.| [2024]. [Pehlevan et alJ 2015]] propose a biologically plausible
neural network with Hebbian updates for the excitatory feedforward connections and rule-flipped
updates for the lateral inhibitory neurons. The design of this specific network architecture effectively
annihilates the curl terms, enabling their Hebbian/anti-Hebbian learning rules to optimize a similarity
matching function. Our work demonstrates that in more general architectures, the sign diversity of
Hebbian/anti-Hebbain learning rules induces curl terms into the dynamics.

Excitatory-Inhibitory networks. Recent work derived learning rules for Dale’s law-compliant net-
works from optimization principles [Cornford et al.,[2024]. Other studies have found that excitatory-



inhibitory plasticity enhances memory formation and retrieval in neural networks [|[Gong and Brunel,
2024, |Vogels et al., 2011} Miehl and Gjorgjieva, 2022} [Wu et al.| 2022, |Agnes and Vogels| [2024]],
without explicitly deriving these rules from a cost function. Our work argues that curl terms originat-
ing from the sign diversity inherent in excitatory-inhibitory networks could contribute to improved
task performance, using a mechanism distinct from the standard optimization view. In addition, it
proposes constraints on the architectures that can support gradient learning with inhibitory neurons.

7 Discussion

Here, we demonstrated that non-gradient terms arise due to sign diversity in biologically motivated
plasticity rules. We further developed a controlled framework to quantify the impact of increasing
non-gradient “curl” components in neural learning. Our results show that depending on network
architecture, curl terms can generate chaotic learning dynamics, or they can counterintuitively descend
a loss function even if the gradient descent solution manifold is no longer stable — in some cases,
even converging faster than gradient descent. More broadly, we have argued for a need to investigate
how non-gradient learning dynamics may play a role in task performance in neural networks.

We have shown how easily curl terms could arise through sign-diverse cell types (i.e., E-I) or
through sign-diverse plasticity rules. However, gradient descent and sign diversity are not inherently
incompatible. For instance, cell-specific plasticity rules might simply reflect how gradient-based
optimization manifests differently across neurons, compensating for variations in intrinsic properties
or connectivity motifs. For example, cell-specific plasticity in E-I networks can implement gradient
descent of a similarity matching objective [Pehlevan et al., 2015]. In Supplementary Material [A.4]
we show that such networks are able to implement gradient flow by choosing a specific architecture
that nullifies curl terms. Sign diversity has also been reported within single neurons, depending on
the distance of the synapse to the soma [[Froemke} 2010} |Sjostrom and Hausser, 2006]: this effect
has been argued to be compatible with specific implementations of gradient descent [Richards et al.|
2019]. Similarly, neuromodulator-induced sign-flips can arise as a natural consequence of negative
reinforcement in reward-modulated plasticity rules [Frémaux and Gerstner, 2015]].

Another possibility that different plasticity rules could represent competition between distinct objec-
tives locally optimized by different neural populations, such as error minimization versus homeostatic
regulation. Indeed, previous work has argued that an interplay of diverse plasticity rules may underlie
stable network performance [[Confavreux et al., 2025} [Zenke et al., 2015[]. In the curl descent we
examine, however, the plasticity rules do not differ in functional form but instead exhibit opposite
signs. Each rule-flipped neuron effectively attempts to ascend the gradient, meaning its cost function
becomes the negative of the original loss. These neurons can thus be viewed not merely as competitive
but as adversarial. From this perspective, it is particularly striking that the learning dynamics remain
robust to such adversarial neurons — and, in some cases, are even accelerated by their presence.

Our results rest on several assumptions that could be relaxed in future work. First, we considered
only i.i.d. inputs; structured stimuli may alter stability and convergence properties. Second, our
analysis focused on the local stability of critical points, whereas a full investigation of the accelerated
convergence observed with curl descent will require a detailed treatment of the global nonlinear
dynamics. Third, we limited curl rules to presynaptic identity-based sign flips; exploring fine-
grained, synapse-specific sign flips, perhaps correlated with the structural or neuromodulatory factors
mentioned above, could reveal additional regimes. Fourth, we restricted our study to two-layer
feedforward networks with scalar outputs, whereas the recurrent and deeper architectures common in
the brain may exhibit qualitatively different curl-induced phenomena.

Despite these limitations, our framework integrates readily with existing learning rules — gradient
descent, feedback alignment, and natural-gradient methods — by treating curl terms as a tunable
perturbation. Overall, our results challenge the dominant view that effective learning must follow a
gradient [Richards and Kording| |2023]. Instead, biologically plausible diversity in plasticity rules
may support optimization through intrinsically non-gradient mechanisms. This suggests that what
may appear as biological irregularity could in fact be a feature: an evolutionary strategy that leverages
non-gradient dynamics for efficient and robust learning. Embracing this perspective could inform
new optimization principles and architectures in machine learning, expanding the landscape beyond
traditional gradient descent.

Code accompanying our paper is available at https://github. com/caycogajiclab/Curl_Descent,
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions of the paper, which
include the investigation of non-gradient "curl" terms in neural network learning dynamics
and their impact on optimization and stability. The claims are consistent with the theoretical
and experimental results presented.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: The paper discusses limitations in Section[7]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides theoretical results with assumptions and the main ideas
followed in the proofs. The detailed proofs are provided in the Supplementary Material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed information on the experimental setup, including
network architectures, initialization methods, and training procedures.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The figure data and simulations code will be made accessible upon publication.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies training and test details, including the use of white inputs,
network architectures, learning rates and rescaling of the weights.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper includes error bars and statistical significance information in the
figures and simulations, particularly in the results sections where performance metrics are
discussed.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details on the computers resources used for making each
figure.
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9.

10.

11.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors state that they have read and ensured the research is conform to
NeurIPS’ code of ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While a better understanding of learning mechanisms in the brain can have
significant medical applications in the long term, this theoretical work does not directly
address societal impacts. The research focuses on foundational aspects of neural network
learning dynamics without immediate societal implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of data or models that pose a high risk
for misuse, hence safeguards are not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets that require licensing or crediting, hence
this is not applicable.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets that require documentation, hence
this is not applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects,
hence this is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects, hence this is not
applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs as an important or non-standard component of
the core methods, hence this is not applicable.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Learning rules that can not be expressed as gradient descent

In this section we provide proofs that certain learning rules cannot be written as the gradient of any
objective.

A.1 Curl descent learning rule

We will first demonstrate that the curl descent learning rule for feedforward networks (Equation [3]in
the main text) cannot be written as a gradient. Here we provide a proof by contradiction for the readout
layer (AW = —eh' Dy). An analogous derivation for the hidden layer (AW; = —W, ez " D)
shows that it too cannot be obtained as the gradient of any function.

Proof. Suppose there exists an energy function Ler(W5) such that —Vyy, Legr = —eh " Dsy. In that
case, the ijth element of the gradient is given by:

{gﬁjﬂm - [ehTDZ} ij (1o
[-07p), )
_ [WthT Dy — yhTDQ} ; (18)
- kZ:W27Z-k [hhTDQ} - [yhTDg} " (19)

Since L. has a continuous second derivative, we may apply Schwarz’ theorem:
02 Legr O* Lot

= . 20
W yOWa 5  OWa i;0Wa j (20)
Substituting equation[I9]in[20] we obtain
0 (& 0 (&
T _ T

Wom > Waik[hh Dali; | = an > Wy ik[hh" DaJx @1

, k=1 T \k=1
[hh" Doy = [hh' Da)ji. (22)

Therefore, hh T Dy must be a symmetric matrix. However, since D- is a diagonal matrix, it will
rescale the ith column of hh " (itself symmetric) by the Dy ;;. This can only result in a symmetric
matrix if Dy = 1. Therefore, when D5 is sign diverse, there exists no function L.g for which the
curl descent rule can be written as gradient descent. []

A.2 Hebbian/anti-Hebbian networks

Consider a linear recurrent neural network (RNN) in which synaptic plasticity can be either Hebbian
or anti-Hebbian. The RNN dynamics are given by 7,y = —y + Wy +f, where y € RY are the
firing rates of the IV neurons in the network, W € RV *™ are the recurrent weights, Ty > 0is the
time constant, and f € R¥ is an external drive. We consider a sign-diverse learning rule where any
synapse can be either Hebbian or anti-Hebbian:

TwW =yy' ®M, with M € RYV*N with elements M;; € {+1,-1} (23)

where © denotes the Hadamard product. If synaptic changes occur on a much slower timescale
than neural dynamics, we can assume that the firing rates reach a steady state. Since individual

weights are typically of order 1/+/N or smaller [Rubin et al., 2017], the steady state can be written
asy* = (I — W)~ = I+ W + O(W?))f. The weight dynamics are then given by

W~ (BT +ETWT +WHET) o M. (24)

Here, the first term can be written as the negative gradient of an objective function: ffT © M =
—Vw Tr (—(F7 © M)W T). However, the last two terms cannot be generally written as the gradient
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of any function (unless specific assumptions are made on M and W). Thus, the sign diversity of the
plasticity rule results in learning dynamics that are governed by both gradient and non-gradient terms.

Proof. The first term can be expressed as the negative gradient ffT ® M = — Vy, L(W), where
LW) =—Tr((f" © M)WT). It will therefore suffice to demonstrate that the second and third
terms cannot be written as a gradient. These terms can be grouped together as:

F(W) = SWT +Wx)o M, (25)
where we have defined the covariance-like matrix for the inputs as:
Y = ff7  (or X := (ff ") for time-varying inputs). (26)

A necessary condition for a dynamical system to define a gradient flow is that its Jacobian matrix is
symmetric at every point W [Perkol 2001]|. This symmetry condition implies that:

OF,; (W)  OFu(W)

= ] . 2
OWee oW, Vi, j, k, € 27)

In the general case that W is not symmetric, this condition reduces to
(5jk Yie + 6 Eej) M;; = (5M Yk + ik Elj) M. (28)
In particular, setting ¢ = j = k and ¢ # i gives
2% My = e Mg, (29)

which would force 3y; = 0 for ¢ # i. Since ¥ is rank-one, this would require no more than one
neuron receives input (or, in the time-varying case, it requires inputs to be uncorrelated). If neither
of these assumptions holds, there is no choice of M (which elements are +1) can symmetrize the
Jacobian. [J

A.2.1 Special case: Gradient flow for symmetric 1 and homogenous plasticity

We have shown that in the general case, Hebbian/anti-Hebbian networks cannot be written as gradient
descent. However, for specific choices of the architecture, the dynamics can follow a gradient. For
example, suppose W = W T. To ensure this holds for all time, the weight dynamics must also be
symmetric, which further requires M = M ". Then, following the logic above, we can derive the
following terms for the Jacobian:

OF;; (W

ﬁ = (00 8k + 0k Zie + 0i0 Zjg + i Zj) Miij, (30)
OWge

OF (W

Then, the symmetry condition yields two constraints:
e If i = kand j # ¢, then Xy; M;; = M;; ¢, so for each row ¢ and any column pair (7, £)
with 3,; # 0, one must have M;; = M;,.
e If j = ¢ andi # k, then X, M;; = My, X;, so for each column j and any row pair (7, k)
with 3, # 0, one must have M;; = My,;.

In the generic case ¥;; # 0 for all 4, j, these conditions force M to be either the all-ones matrix 117
or its negative. Hence, in the case of symmetric matrices, a gradient flow can be realized only for
purely Hebbian or purely anti-Hebbian networks. Indeed, if M = 11T, the learning rule in Equation
(24) is symmetric, so that any symmetric initial W (0) remains symmetric, and the learning rule can
be written as the following gradient descent:

W R E+IW+WE = LV (- Te(SWT +WSWT)). (32)

If M = —117, the minus-sign simply flips the gradient.
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A.3 Hebbian plasticity in excitatory—inhibitory networks

We will next follow a similar logic to demonstrate that the learning rule (Equation[2]in the main text)
cannot be written as gradient descent in general:

wW =8T + WDR" + £T DWW, (33)

+1, if neuron ¢ is excitatory,

here D € RV*N jg di 1 with D;; =
where D) € 15 dragonal wi ' {1, if neuron ¢ is inhibitory.

Proof. As before, define . := ff " (or (ff ") for time-varying inputs). The first term in (33) can be
written as a negative gradient: ¥ = —Vyy (=T (ff T WT)) Since Equation (33)) is symmetric,
we may restrict attention to W = W T ; otherwise, requiring symmetry of the Jacobian alone would
force ¥ = 0, similar as before. To test for a gradient flow, we again inspect the Jacobian symmetry
condition, where we now consider the following function corresponding to the second and third terms
of the learning dynamics:

F(W) = WD+ YDW'. (34)
A direct calculation gives:
aFij
— = Ojrdg Xgj + Ojedi Xgj + Ojrde Lo + S50 dis Xige, (35)
OF
=0kid; Xje + Ojrdi Big + Opi dj By + g di Xis.- (36)
8Wij

In particular, setting ¢ = k and j # ¢ results in the following constraint:
deXe; = djXe VL. (37)

Thus, whenever ¥,; # 0, one must have d, = d;. In the generic case ¥,; # 0 for every pair (3, j),
this forces D = £l and so eliminates excitatory/inhibitory diversity. Therefore,in general the
Hebbian learning rule in excitatory—inhibitory networks cannot correspond to a gradient flow. [

Remark. Note however, that if inhibitory neurons receive zero external input (so that corresponding
rows and columns of ¥ vanish), the constraint in Equation (A3) is satisfied without collapsing D
to =1, and the curl terms are nullified. In Section we will demonstrate that previous work
proposing excitatory-inhibitory circuits that can optimize a similarity matching function [Pehlevan
et al.l 2015 fall into this category, where the curl terms are eliminated by the choice of structure of
the network.

A.4 Obtaining gradient flow in EI networks by nullifying curl terms

As in [Pehlevan et al.| [2015]], we consider a neural network made of an excitatory feedforward layer
connecting the input to a hidden layer of excitatory neurons, which themselves form a recurrent loop
with inhibitory interneurons. This architecture is commonly used for feature extraction in biologically
plausible neural networks [[Foldiak, |1990, [Rubner and Tavan, |1989, [Kung et al., {1994, |[Leen, |1990].

Pehlevan et al.| [2015] showed that Hebbian/anti-Hebbian plasticity in such networks can optimize a
similarity matching function. Here we take the inverse approach: instead of asking what is the neural
architecture and learning rule that can support the optimization of a given cost function, we impose a
neural architecture equipped with a Hebbian learning rule and ask what objective it is optimizing.

Grouping neurons by their structural role, the activity of the full network can be written as: y =
[VFF; YRecEs yReCI]T. Using the framework in Section [2| of the main text, the neural dynamics are
given by

where the weight matrix (following the circuit structure in[Pehlevan et al.|[2015]]) can be written in
block form as:

0 0 0
W = | Wer—RecE 0 WrRecl—sRecE (39)
0 WRecE—>RecI 0
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where the 0 matrices correspond to non-existing synapses. The correlation matrix of the input is

FT 0 0 Sk 00
s=(0 o0 o]l=(0 0 0, (40)
0 0 0 0 0 0

as only the excitatory neurons receive external input, and the D matrix is

I 0 0
D:(O I 0). (41)
0 0 —I

Taking the Taylor expansion of the neural dynamics at steady state around W gives y* = (I —
WD)=f = (I+ WD + (WD)? + (WD)3 + O(W*))f. Under Hebbian plasticity, and noticing
that DY = XD = ¥ due to the lack of input to inhibitory neurons, we obtain the following weight
dynamics:

W =yy ' S+ WS+ SW ' +(WD)?22 + WEW T + (DWW T)? (42)
+ (WD)E + (WD?2SW T + WE(DW )2 + S(DW )3, (43)

If we take a close look at the structure of each of these terms one-by-one, in comparison to the block
structure of W in Equation (A-4), we can observe that many of the terms are effectively nullified as
they predict weight updates for synapses that structurally do not exist.

* X maps onto non-existant FF—FF synapses and is therefore nullified.

0 0 0
W = (WFF%RecgEFF 0 O) maps onto FF—RecE synapses and is maintained.
0 0 0

0 ZI;FFVVI;IEHReCE 0

cXWT = {0 0 0 | maps onto nonexistant RecE—FF synapses is nullified.
0 0 0
0 0 0
s (WD)?Y = 0 0 O] maps onto nonexistant FF—Recl
WrecE—sRecd WEF—RecEXFF 0 0
synapses and is nullified. Its transpose (DWW T)2, is also nullified.
0 0 0
s WEIWT = |0 WFFQRGCEZFFWFTF _recs 0| = XRrec is the covariance matrix of the
0 0 0

recurrent excitatory neuron activities driven by the feedforward input. It too maps onto
non-existant RecE—RecE synapses and is nullified.

0 0 YprWrrrecE WRecE—Recl
e X(DWT)?2 = (0 0 0 maps onto non-existant Rec[—FF
0 0 0
synapses and is nullified.
0 00
s (WD)3Y = [ —WreclRecEWRecE—sRect WFF—RecEXFF 0 0 | is maintained.
0 00
0 0 0
s (WD)??SWT =WDSgee = [0 0 0

.
0 WrecE—Rect WrF—RecEXFFWEE Rece 0

is maintained.

0

* WE(DWT)? = Spee DW T = WeF—RecE SFFWeE s Reck WReck s Recl

oo O
oo O

18 maintained.
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0 —Xpr WFI:% RecE Wl;[acEHRecI WI;recIHRecE 0 .
e X(DWT2 = [0 0 0 | maps onto non-existant
0 0 0

RecE—FF synapses and is nullified.

Note that terms of order 0 and 2 are nullified and we are left only with terms of order 1 and 3 in W.
Collecting the non-nullified terms results in the following weight dynamics:

TwW =~ WS + (WD)*S + (WD)2SW ' + WE(DW )2 (44)

Since the update for Wrecr—recE 18 the transpose of that of Wrecg—rec, One can assume that these
two matrices will converge to be the transpose of one another, and after collecting terms the update
rule can be expressed as:

wW a — iV Tr (M — 1) Srec). (45)

Here, M = Wrecl—sRreckE WRecE—Recl denotes the disynaptic inhibitory feedback from the recurrent
excitatory neurons, and X is the covariance matrix of the recurrent excitatory neuron activities
driven by the feedforward input. Minimizing this energy function achieves two principal goals:

1. First, the term — Tr (X,) promotes the maximization of the total variance captured by
the excitatory neurons, thereby driving the feedforward weights to perform a PCA-like
extraction of high-variance features from the input covariance X .

2. Second, the term Tr (M X,.) is minimized. The inhibitory feedback matrix M learns the
covariance structure of ... This second term will therefore reduce the learning of features
already learned.

Overall, this energy function drives the excitatory population to acquire a progressively decorrelated
set of features.

This architecture, equipped with a Hebbian learning rule, allows its learning dynamics to be expressed
as a gradient flow. This result is consistent with previous work in which this architecture was
previously derived from normative principles [Pehlevan et al.| 2015| Kung et al.,|1994], although
the learning rule and objective here are slightly different. However, introducing input-to-inhibitory
synapses as well as recurrent excitatory-to-excitatory or inhibitory-to-inhibitory connections would
introduce curl terms in the learning dynamics, which could no longer be written as the gradient of
any function.
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B Large networks

In this section, we provide detailed analytical derivations regarding a two-layer linear neural network
with M input neurons, N hidden neurons, and scalar output, and whose weights evolve under curl
descent (Equation [5]in the main text). In section[B.I] we provide an expression of the Jacobian of
the weights’ dynamics of our system in the general case, and then use this expression to derive its
eigenvalues on two types of critical points: the origin saddle (section[B.2)) and the solution manifold of
gradient descent (section . Finally, in the latter case, we leverage random matrix theory (section
to characterize, in the large M, N limit, when the support of the Jacobian’s eigenvalues on the
solution manifold crosses the origin, characterizing the phase transition from stability (exclusively
negative eigenvalues) to instability (including positive eigenvalues).

B.1 Full derivation of the Jacobian

Consider W; € RV*M matrix and Wy, € R matrix, D; and D5 two diagonal matrices of
respective sizes M x M and N x N, with diagonal elements d; ; = +1 and do ; = £1.

As in the main text, the curl descent learning dynamics are given by:

Wl = W;(S — WQWl)Dl (46)
WQ = (S — WQWl)WlTDQ (47)

We will use E := s — WoW; € RM, vec(W;) € RVM and vec(Ws) € RY. The full Jacobian
expression can be broken down to a block matrix with four blocks:

Full Jacobian expression.
Jin o Ji2
= 4
7 (J21 J22> )

We proceed to compute the expression of each of these blocks.

J11 computation of ggi .
Wi = Wa,Ejdy; (49)
Wl,ij = Wz,i(Sj - Z WZ,kWij)dlj (50)
k
3W1,i'
m = —W2,iWap (d1,40jq) (51)
o)1%
Jii = aWi = — (W3 Ws) ® Dy (52)
J12 computation of gvvilg .
(9W17i‘
WZZ = —Wa ;Wi njdij + Oni <3j - zk:Wz,kWij> (53)
= OpiEidi; — Wao Wi njdi ; 4
oW
[J12](7;j)7h = [EWV;] = OniEid1; — Wao Wi njdi j (55)
(i4),h
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OWs

Jo1 computation of

8W1 ¢
' M
Wa,e = Z Ex Wi okdae  with By, = s, — Z Wa e Wi 1k (56)
k=1 t
1%
aWqu = SepEqda,c — Wap Wi qda.s (57)
oW
[J21],(pg) = [61/1/2] = 0ppEqda,e — Wap Wi eqda e (58)
1
£,(pq)
Joo computation of g% .
. M
Wae =Y ExWidse with By = s — > Wa Wa (59)
k=1 t

aWQ VA T
Jog = — = — Wi hieW1 ekda e = — | DaW1 W, 60
22 Do n Xk: 1,0k W1 ekda ¢ (DWW, ]Eh (60)
(61)

The eigenvalues of this Jacobian are given by det(J — AI) = 0.
_ (J1n = Alnm Jia (A B

J=Al= < Ja o e )\]IN) = (c D ©2)
(63)

B.2 Evaluating the Jacobian eigenvalues at the origin

At the critical point (W1, Wy) = (0,0), we have W, = 0T ED; and Wy = E0' Dy, with E =
s — WyW7 = s. The Jacobian blocks become

Ji1 = OnpmxNm (64)
[J12](ijy.n = Onisjda (65)
(21} (pg) = OipSqd2,i (66)
Joog = Onxn (67)
And therefore
_(—Myym Ji2
J(0,0) — M\ = ( Ta - A]IN> (68)

If M > 1, then NM # N and det (J(0,0) — 0) = 0, meaning that A = 0 is an eigenvalue of the
Jacobian.

For the nonzero eigenvalues, the Schur complement yields:

det(J — AI) = det(—Alyas) det (—ALy — Jo1 (—MIyar) ' Ji2) (69)
1

= (=A\)MM det (—)\]IN + Angle) (70)

= (=N)MMN det (NLy — Jo1J12) (71)

31



[J21J12],, = Z5li5jd2,l5hi8jd1,j (72)

j

M
= dai0un Y di ;s (73)
j=1
M
= Z d17j S? D2 (74)
=1 ih
Hence we have
N M
det(J(0,0) = AI) = (=N)MN"NTT [ N —doi Y da s (75)
1. =

Therefore the origin, which is the only saddle point in parameter space, has M N — N zero eigenvalues
and 2N non-zero eigenvalues:

M .
/S dy 82 ifdy; =1
A =+ Z] 101,555 2, (76)

; Z $2 i —
2 j= 1d17] 3 1fd27i =-1
The origin is turned into a saddle-center.

B.3 Evaluating the Jacobian eigenvalues on the solution manifold (£ = 0)

The Schur complement formula gives det(J — AI) = det(A) det(D — CA~! B) provided that A is
invertible. We will investigate the stability of the fixed points of the dynamics verifying £ = 0.

We compute the determinant of matrix A = — (W, W) ® Dy — Al n by computing the determinant
of each block A4; = —dy ;(W, Ws) — My for i € [1; M]. Noticing that W, W5 is rank 1 and
applying the matrix determinant lemma results in

det(A;) = ()N (A + WoWy dy )AV ! (77)
= (“D)NANTE O+ dy i |Wa ). (78)
Therefore
M
det(A) = H(_l)N)‘N_l()“i'dl,iHW2”2) (79)
i=1
M
= (=)MNAMON=DTTO A+ do i [ W2 ]?). (80)
=1

We now compute the Schur complement D — C A~! B, starting with the A~! matrix. Using the
Sherman-Morrison formula:
d1 1W2T W2 I N

A7l = ’ - = 1
Y P A 1 ATET Y @1

Importantly, W, is an eigenvector of the A; ' matrices:

—W2T

A7 Wl = — "2
2 T Nt dWa?

(82)
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Therefore simplifying the calculation of A;lBj for one block j:

_ Wa Wi pj
AT'B] = —=2 Y g 83
[ 7 J]ih )\+d17]||W2H2 1,5 ( )
Yielding
_ Wa,iWi n;
A"Bl . = er B g ’4
[ ](zg),h )\+d17j||W2||2 1,5 (34
Multiplying on the left by [C]; (pq) = —Wa , W1 14d2,; yields:
W2 1W1h
CA™'B], Wo,iWh 1;d ! —d 85
[ ZZ 2,iW1,15 2l)\—|—d1]||W2H2 1,5 (85)
= —[| W% ZW v (36)
2 2,1 1lj)\+d jHW2||2 1,5h
87)
Finally,
d
-1 _ 1.j T
[D—CA™'B],, = [-DaWiW," — Aly],, + [ Wal® dQlZW1 ZJWWW (88)
dy,j|[Wa|? Atdy 'W2||2>
= —\dy, +d Wi - — . Lin (89
! 27!; o (A+d1,j|W2||2 A+ dy 5| Wal? an (&)
M 1
= —Ain, — Ad Wi~ W, 90
Ih 2,1]222 l’lj)\+d1]||W2||2 1,5k (90)
1
X (DoaWi AW, +1 ith A == diag | ——————— 91
( AT N) h lag(x\—i—dLj W2||2> oD
92)
And we have, as for the expression of the determinant of D — CA-1B:
det(D — CA™'B) = det (=X (D2 W1AW, +1y)) (93)
= (=A\)N det (Iy + DoW1AWY") (94)
= (=\)N det (Ins + Wy DoWiA)  as det(I+ XY) = det(I+YX) (95)
= (=A)Vdet (A" + W, DaWy) A) (96)
= (=A)Vdet (A™" + W, DoW7) det (A) (97)
Noticing that det(A) = (—1)MN\M(N=1) det(A)~1, the full determinant of (J — AI) now reads:

det (J — M) = (—1)VMHAN\MN+N=M ot (dlag(A+d1,]||W2|| )+ Wy D2W1> (98)

The eigenvalues of the Jacobian at the solution points are determined by the equation det (J — All) =
0. One can therefore look at the conditions on the network’s architecture parameters M and N such
that the solution manifold remains stable upon the introduction of rule-flipped neurons in either the
hidden layer or the readout.

33



B.4 Evaluating the stability of solution points (Jacobian eigenvalue distribution for £ = 0)

In the following, we determine the conditions on the architecture parameters M, N and the plasticity
parameters conveyed by D1, Do needed to ensure the stability of the solution manifold determined
by E = 0. We will separate two case scenarios: one where D; has a mix of £1 with Dy = Iy, and
inversely where Dy = [, and D» has a mix of £1.

B.4.1 D; with mixed signature and D, = I,

In that case, we have from equation [0§]

det (J — M) = (—1)VMHAN)\MN+EN=M {or (diag(A +dy | Wa?) + WlTW1> (99)

The Jacobian therefore has M N + N — M null eigenvalues and the others verify the equation

det (diag(A+d1,j||W22)+WfW1> =0 (100)
det (— Al — (diag(dl,j||W2||2) + Wle) ) =0 (101)
=X

That is, we would like to determine the eigenvalue distribution of the above defined X € RMxM
matrix which is a sum of a diagonal indefinite matrix with a Wishart matrix.

To proceed, we will assume that:
Wi ™ N(0,1/M), Wi, " N(0,1/N) (102)

The 1/M and 1/N scaling for the W, and W5 matrices account for He initialization He et al.| [2015]]
and ensures that W, W, has a non-divergent spectrum without any further rescaling.

For large N, the law of large numbers gives ||Ws]|? ~ 1.

Without loss of generality, let

Dy =diag(+1,...,+1,—1,...,—1),  aj:= % A= (1—ap)—ap = 1-2ay € [-1,1].
m+ m
(103)
Define the ratio o
M 104
=& (104)

The object of interest is X := Dy + W, W," € RM*M in the joint limit M, N — oo with fixed c.

Cauchy transform of D;. For z ¢ {1},
-y ap z+ A

= = 105
G (2) z—1+z+1 22 -1 (105)

Blue transform of D;. Setw := Gp,(z) and invert:
wiz*—1)=z4+A = wz*—z— (w+A) =0. (106)

Solving this quadratic equation for z and choosing the branch with Bp, (w) ~ 1/w as w — 0 yields

14+ 4/1+4w(w+ A)

2w

Bp, (w) = (107)
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R-transform of D;. The R-transform is defined as R(w) = B(w) — 1. Hence

1+4w(w+A) -1

Rp, (w) = " (108)

Marcenko-Pastur law with variance 1/M. Let S := W;W,". Note that here the entries have
variance 1/M, and not the usual sample-covariance prefactor 1/N. Mar¢enko and Pastur [1967] give
the limiting law

s = MP(c), support [(1 —v/c)?/c, (1 +v/¢)?/c] (109)

R-transform of S := W, W,'. Using the property of the R-transform R, x (w) = aRx (aw) with
a = ¢ we obtain

1

Rs(w) = c(l—w)

(110)

Asymptotic freeness of D; and S. S = WW T is orthogonally invariant, i.e. USUT < S for
any deterministic U € O(M ), because W is Gaussian. An orthogonally invariant random matrix is
asymptotically free from any deterministic matrix |Collins and Male|[2014]. Therefore

D and S are free (111)
Combined R-transform of X. From (108)—-(110)
1+4ww+A)—1 1
Rx(w) = Rp, (w) + R(w) = VAW 8 =1 (112)

2w c(1—w)

Blue transform of X.

_l _ 1+ 1+ 4w(w+ A) 1
Bx(w) w + Rx(w) = 2w + c(lfw)' (113)

Implicit equation for the Cauchy transform. Let Gx(z) be the Cauchy transform of X. By
definition of the Blue transform:

Write w := Gx (%) and z = x € R (real spectral parameter). Introduce
1
Alw,x) :== Zw[m— m} -1, R(w) =14 4w(w + A) (115)
Equation ((113)) is equivalent to
A(w, r)* = R(w). (116)
Multiply (TT6) by (1—w)? to clear the denominator. Collecting terms produces the quartic polynomial
P, (w) := agw* + azw® + asw? + a1w + ag = 0, (117)
with coefficients:
ay =4 (2% - 1), (118)
CLS:74Acf80:z:2—401+8ch89:7 (119)
c
Ac? 4 4?22 2x —4c® — —4c+14
gy = 2RO AT RS ZAC ZSer A i A1 20y, (120)
c
—4Ac—4 4
a; = C—W—’ (121)
c
ap = 0. (122)
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Differentiating this polynomial gives

_ _ 2
P (w) =16(a? — 1)o? 4 1200 = Her” = 2ex + e+ AUr 5
C

16Ac? + 8¢222 4 16¢%z — 8¢2 — 16¢cx — 8¢+ 8 —4Ac — 4dex + 4
+ 2 w+ c .

(123)

(124)

with A =1 —2¢qy,

Support of the spectrum An endpoint of the support occurs when w becomes a double root of

(17, i.e.
Py(w)=0,  Plw)=0. (125)

Eliminating w from (I123) yields a quartic polynomial in z; its real roots appear pairwise. The
eigenvalues support will therefore be the union of at most two intervals.

When the support yields exclusively negative eigenvalues, then the solution manifold is stable. The
theoretical boundary for the solution manifold stability corresponds to when the support crosses 0,
that is when the Jacobian on the solution manifold starts having positive eigenvalues.

B.4.2 D, with mixed signature and D, = I,

The stability boundaries for the complementary case, in which we instead vary «,. (keeping o, = 0),
can be found using the method of [Kumar and Sai Charan, [2020].
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C Simulations for tanh networks

In the main text, we showed that in linear networks, the learning dynamics beyond the stability
boundary yielded a transition to chaos when rule-flipped neurons were introduced in the hidden
layer, destroying performance. We also showed that when destabilizing the solution manifold by
introducing rule-flipped neurons in the readout layer, the network still managed to reach small testing
error. In this section, we provide additional simulation results for nonlinear tanh networks. The
qualitative behavior of the tanh networks is similar to that of the linear ones: we recover the transition
to chaos (Figure[7) and the ascend then re-descend mechanism (Figure[9) and the phase diagrams
show similar trends although the boundary are shifted to lower ¢ values (figures|[6|and g).
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Figure 6: Hidden layer phase transition for tanh networks. a) Test error as a function of the
compression ratio ¢ and the fraction of rule-flipped neurons o, (averaged over 10 seeds). Black curve:
analytical stability boundary derived for linear networks. b) Close-up for ¢ € [0.1,0.7]. Compute
resources: 6 hours on 500 CPUs (local cluster).
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Figure 7: Hidden layer curl terms lead to chaos in tanh networks. Example simulation of a tanh
network with Ny, = 110 neurons, ¢ = 0.8 and «;, = 0.6. a) Weight dynamics as a function of the
epochs. b) Weight autocorrelation functions. ¢) Weight dynamics projected on its first two principal
components.
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Figure 8: Readout layer phase transition for tanh networks. a) Test error as a function of the
compression ratio ¢ and the fraction of rule-flipped neurons oy, (averaged over 10 seeds). Black
curve: analytical stability boundary derived for linear networks. b) Peak learning error (maximum
over 20 random seeds, initialized near the solution manifold). The black curve shows the analytical
boundary derived in the linear case. Compute resources: 6 hours on 500 CPUs (local cluster).
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Figure 9: Readout layer curl terms in tanh networks result in low error even when the solution
manifold is unstable. Example simulation of a tanh network, with Ny, = 110 neurons, ¢ = 1 and
o, = 0.6. a) Training error for Curl descent initialized a small distance away from the solution
manifold by adding a 10~'5 perturbation on the weights (light purple), and training error for gradient
descent, initialized randomly (dark purple). b) Same as a for testing error. ¢) Weight dynamics
projected on its first two principal components. d) Weight dynamics as a function of the epochs. e)
Weight autocorrelation functions.
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D Faster convergence for ReLLU networks

To verify that the accelerated learning we observed with curl descent in tanh networks is not restricted
to sigmoidal activation functions, we replicated the experiments obtained for tanh networks in feed-
forward architectures whose units employed rectified-linear (ReLLU) activations. We used the same
student-teacher set-up (M = 100 inputs, N = 10 hidden units), and identical parameters. The
faster convergence effect on ReLU networks was smaller, hence the 40 random seeds for statistical
significance. The results are shown in figure [I0}
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Figure 10: Relu networks: curl descent leads to faster convergence in a broad parameter regime.
a) Test error for curl descent and gradient descent (NVy,in = 1400, weight initialization scale = 2;
error bars indicate + sem, averaged over 40 random seeds). b) Convergence speed of curl descent
and gradient descent as a function of training set size (weight initialization scale = 2, p < 0.05
for Niin > 1000). ¢) Same as b) as a function of the weight initialization range (N, = 10000,
p < 0.05 for weight initialization scales 3,4, 6, 7 and 8). Compute resources: 24 hours on 500 CPUs
(local cluster).

E Faster convergence without the weight renormalization step
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Figure 11: Nonlinear networks: curl descent without renormalizing the weight matrices at each
time step leads to faster convergence in a broad parameter regime. a) Convergence speed of curl
descent and gradient descent as a function of training set size (weight initialization scale = 2). b)
Same as c as a function of the weight initialization range (NVyin = 10000). ¢) Log of the test error
after 20, 000 epochs as a function of the teacher weights initialization scale. d) Convergence speed as
a function of the fraction of rule-flipped readout neurons. Compute resources: 12 hours on 500 CPUs
(local cluster).
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