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ABSTRACT

Maximum entropy reinforcement learning (MaxEnt-RL) has become the standard
approach to RL due to its beneficial exploration properties. Traditionally, policies
are parameterized using Gaussian distributions, which significantly limits their
representational capacity. Diffusion-based policies offer a more expressive alterna-
tive, yet integrating them into MaxEnt-RL poses challenges—primarily due to the
intractability of computing their marginal entropy. To overcome this, we propose
Diffusion-Based Maximum Entropy RL (DIME). DIME leverages recent advances
in approximate inference with diffusion models to derive a lower bound on the
maximum entropy objective. Additionally, we propose a policy iteration scheme
that provably converges to the optimal diffusion policy. Our method enables the use
of expressive diffusion-based policies while retaining the principled exploration
benefits of MaxEnt-RL, significantly outperforming other diffusion-based meth-
ods on challenging high-dimensional control benchmarks. It is also competitive
with state-of-the-art non-diffusion based RL methods while requiring fewer algo-
rithmic design choices and smaller update-to-data ratios, reducing computational
complexity.

1 INTRODUCTION

The maximum entropy reinforcement learning (MaxEnt-RL) objective augments the task reward in
each time step with the entropy of the policy Ziebart et al. (2008); Toussaint (2009); Haarnoja et al.
(2017; 2018a). This objective has several favorable properties among which improved exploration
Ziebart (2010); Haarnoja et al. (2017) is crucial for RL. Recent successful model-free RL algorithms
leverage these favorable properties and build upon this framework Bhatt et al. (2024); Nauman et al.
(2024) improving sample efficiency and leading to remarkable results. However, the policies are
traditionally parameterized using Gaussian distributions, significantly limiting their representational
capacity. On the other hand, diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song
et al. (2021); Karras et al. (2022) are highly expressive generative models and have proven beneficial
in representing complex behavior policies Reuss et al. (2023); Chi et al. (2023). However, important
metrics such as the marginal entropy are intractable to compute Zhou et al. (2024) which restricts their
usage in RL. Because of this shortcoming, recent methods propose different ways to train diffusion-
based methods in off-policy RL. While these methods are discussed in more detail in the related
work section, most of them require additional techniques to add artificial (in most cases Gaussian)
noise to the generated actions to induce exploration in the behavior generation process. Hence,
they do not leverage the diffusion model to generate potentially non-Gaussian exploration patterns
but fall back to mainly Gaussian exploration. Nonetheless, there have been significant advances in
training diffusion-based models for approximate inference Berner et al.; Richter & Berner. Since
the policy improvement in MaxEnt-RL can also be cast as an approximate inference problem to the
energy-based policy Haarnoja et al. (2017), it is a natural step to explore these parallels.

We propose Diffusion-Based Maximum Entropy Reinforcement Learning (DIME). DIME leverages
recent advances in approximate inference with diffusion models Richter & Berner to derive a lower
bound on the MaxEnt objective. We propose a policy iteration framework with monotonic policy
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improvement that converges to the optimal diffusion policy. Additionally, building on recent off-
policy RL algorithms such as Cross-Q Bhatt et al. (2024) and distributional RL Bellemare et al.
(2017), we propose a practical version of DIME that can be used for training diffusion-based RL
policies. On 13 challenging continuous high-dimensional control benchmarks, we empirically
validate that DIME significantly outperforms other diffusion-based baselines on all environments and
consistently outperforms other state-of-the-art RL methods based on a Gaussian policy on 10 out of
13 environments, while being computationally more efficient and requiring less algorithmic design
choices as the current state of the art baseline BRO Nauman et al. (2024).

2 RELATED WORK

Maximum Entropy RL. The maximum entropy RL framework is using the entropy of the policy
at each time step as additional objective, providing a principled way of inducing exploration in the
RL policy. It is different from entropy regularized RL Neu et al. (2017) where the entropy of the
policy is maximized only for the current time step. Haarnoja et al. (2017) proposed Soft-Q Learning
where amortized Stein variational gradient descent Wang & Liu (2016) (SVGD) is used to train a
parameterized sampler that can sample from the energy-based policy. SAC Haarnoja et al. (2018a)
proposes an actor-critic RL method but frames the policy update as an approximate inference problem
to the energy-based policy using a Gaussian policy parameterization. SAC has been extended to
energy-based policies using SVGD in Messaoud et al. where the authors also propose a new method to
estimate the entropy in closed-form. While SVGD is a powerful method for learning an energy-based
policy, it is harder to scale these approaches to high-dimensional control problems. Recent advances
of SAC also define the state-of-the-art in off-policy RL in many domains such as CrossQ Bhatt et al.
(2024) and BRO Nauman et al. (2024). CrossQ proposed removing the target network by leveraging
batch renormalization and BRO scales to large networks in RL by using several methods such as
optimistic exploration Nauman & Cygan (2023), network resets Nikishin et al. (2022), weight decay
and high update to data ratios.

Diffusion-Based Policies in RL. Early works have researched diffusion models in offline RL Lange
et al. (2012); Levine et al. (2020) as trajectory generators Janner et al. (2022) or as expressive policy
representations Wang et al. (2023); Kang et al. (2023); Hansen-Estruch et al. (2023); Chen et al.
(2023); Ding & Jin (2024). More recently, diffusion models in online RL have become more popular.
DIPO Yang et al. (2023) proposes training a diffusion-based policy using a behavior cloning loss. The
actions in the replay buffer serve as target actions for the policy improvement step and are updated
using the gradients of the Q-function∇aQ(s, a). DIPO has been extended to develop methods for
learning multi-modal behaviorsLi et al. (2024) by leveraging hierarchical clustering to isolate different
behavior modes. DIPO relies on the stochasticity inherent to the diffusion model for exploration and
does not explicitly control it via an objective. QSM Psenka et al. (2024) directly matches the policy’s
score with the gradient of the Q-function ∇aQ(s, a). While their objective avoids differentiating
through the whole diffusion chain, the proposed objective disregards the entropy of the policy and
therefore exploration. Consequently, QSM needs to add noise to the final action of the diffusion
chain. More recently, DACER Wang et al. (2024) proposed using the data-generating process as the
policy representation and backpropagating the gradients through the diffusion chain. However, they
do not consider a backward process as we do and their objective for updating the diffusion model is
based on the expected Q-values only. To incentivize the exploration, DACER adds diagonal Gaussian
noise to the sampled actions, where the variance of this noise is controlled by a scaling term that
is updated automatically using an approximation of the marginal entropy by extracting a Gaussian
Mixture Model from the diffusion policy. Concurrently, QVPO Ding et al. (2024) proposed weighting
their diffusion loss with their respective Q-values after applying transformations. However, QVPO
relies on sampling actions from a uniform distribution to enforce exploration.

DIME distinguishes from prior works in that we use the maximum entropy RL framework for
training the diffusion policy which was not considered before. This allows direct control of the
exploration-exploitation trade-off arising naturally through this objective without the need for addi-
tional approximations. DIME is leveraging the diffusion model to generate non-Gaussian exploration
actions which is in contrast to most other diffusion RL approaches that still require including Gaussian
or uniform exploration noise.
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Approximate Inference with Diffusion Models. Early works on approximate inference with
diffusion models were formalized as a stochastic optimal control problem using Schrödinger-Föllmer
diffusions Dai Pra (1991); Tzen & Raginsky (2019); Huang et al. (2021) and only recently realized
with deep-learning based approaches Vargas et al. (2023); Zhang & Chen (2021). Vargas et al.;
Berner et al. later extended these results to denoising diffusion models. A more general framework
where both, forward and backward processes of the diffusion model are learnable was concurrently
proposed by Richter & Berner; Nusken et al. (2024). Recently, many extensions have been proposed,
see e.g. Akhound-Sadegh et al. (2024); Noble et al. (2024); Geffner & Domke (2023); Zhang et al.
(2023); Chen et al. (2024). Our work can be seen as an instance of the sampler presented in Berner
et al.. However, our formulation allows using different diffusion samplers such as those presented in
Richter & Berner, while we restrict ourselves in this work to the sampler presented in Berner et al..

3 PRELIMINARIES

3.1 MAXIMUM ENTROPY REINFORCEMENT LEARNING

Notation We consider the task of learning a policy π : S ×A → R+, where S and A denote a con-
tinuous state and action space, respectively using reinforcement learning (RL). We formalize the RL
problem using an infinite horizon Markov decision process consisting of the tuple (S,A, r, p, ρπ, γ),
with bounded reward function r : S ×A → [rmin, rmax] and transition density p : S × S ×A → R+

which denotes the likelihood for transitioning into a state s′ ∈ S when being in s ∈ S and executing
an action a ∈ A. We follow Haarnoja et al. (2018a) and slightly overload ρπ which denotes the state
and state-action marginals induced by a policy π. Moreover, γ ∈ [0, 1) denotes the discount factor.
For brevity, we use rt ≜ r(st, at). Lastly, we denote objective functions that we aim to maximize as
J and minimize as L.

Control as inference. The goal of maximum entropy reinforcement learning (MaxEnt-RL) is to
jointly maximize the sum of expected rewards and entropies of a policy

J(π) =

∞∑
t=l

γt−lEρπ [rt + αH(π(at|st))] , (1)

where H(π(a|s)) = −
∫
π(a|s) log π(a|s)da is the differential entropy, and α ∈ R+ controls the

exploration exploitation trade-off Haarnoja et al. (2017). To keep the notation uncluttered we absorb
α into the reward function via r ← r/α. Defining the Q-function of a policy π as

Qπ(st, at) = rt +

∞∑
l=1

γlEρπ
[rt+l +H (π(at+l|st+l))] , (2)

with Qπ : S ×A → R, the MaxEnt objective can be cast as an approximate inference problem of the
form

L(π) = DKL

(
π(at|st)

∣∣∣expQπ(st, at)

Zπ(st)

)
, (3)

in a sense that maxπ J(π) = minπ L(π). Here, DKL denotes the Kullback-Leibler divergence and

Zπ(s) =

∫
expQπ(s, a)da (4)

is the state-dependent normalization constant.

Policy iteration is a two-step iterative update scheme that is, under certain assumptions, guaranteed
to converge to the optimal policy with respect to the maximum entropy objective. The two steps
include policy evaluation and policy improvement. Given a policy π, policy evaluation aims to
evaluate the value of π. To that end, Haarnoja et al. (2018a) showed that repeated application of the
Bellman backup operator T πQk with

T πQ(st, at) ≜ rt + γE [Q(st+1, at+1) +H(at+1|st+1)] , (5)
converges to Qπ as k →∞, starting from any Q. To update the policy, that is, to perform the policy
improvement step, the Q-function of the previous evaluation step, Qπold is used to obtain a new policy
according to

πnew = argmin
π∈Π

DKL

(
π(at|st)

∣∣∣expQπold(st, at)

Zπold(st)

)
, (6)
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where Π is a set of policies such as a family of parameterized distributions. Note that Zπold(st)
is not required for optimization as it is independent of π. Haarnoja et al. (2018a) showed that for
all state-action pairs (s, a) ∈ S × A it holds that Qπnew(s, a) ≥ Qπold(s, a) ensuring that policy
iteration converges to the optimal policy π∗ in the limit of infinite repetitions of policy evaluation and
improvement.

3.2 DENOISING DIFFUSION POLICIES

For a given state s ∈ S, we consider a stochastic process on the time-interval [0, T ] given by an
Ornstein-Uhlenbeck (OU) process 1 Särkkä & Solin (2019)

dat = −βtatdt+ η
√
2βtdBt, a0 ∼ π⃗0(·|s), (7)

with diffusion coefficient β : [0, T ]→ R+, standard Brownian motion (Bt)t∈[0,T ], and some target
policy π⃗0. For t, l ∈ [0, T ], we denote the marginal density of Eq. 7 at t as π⃗t and the conditional
density at time t given l as π⃗t|l. Eq. 7 is commonly referred to as forward or noising process since,
for a suitable choice of β, it holds that π⃗T ≈ N (0, η2I). Denoising diffusion models leverage the
fact, that the time-reversed process of Eq. 7 is given by

dat =
(
−βtatdt− 2η2βt∇ log π⃗t(at|s)

)
+ η

√
2βtdBt, (8)

starting from ⃗πT = π⃗T ≈ N (0, η2I) and running backwards in time Nelson (2020); Anderson
(1982); Haussmann & Pardoux (1986). For the backward, generative or denoising process (Eq.
8), we denote the density as ⃗π. Here, time-reversal means that the marginal densities align, i.e.,
π⃗t = ⃗πt for all t ∈ [0, T ]. Hence, starting from aT ∼ N (0, η2I), one can sample from the target
policy π⃗0 by simulating Eq. 8. However, for most densities π⃗0, the scores (∇ log π⃗t(at|s))t∈[0,T ] are
intractable, requiring numerical approximations. To address this, denoising score-matching objectives
are commonly employed, that is,

LSM(θ) = E
[
βt∥fθ

t (at, s)−∇ log π⃗t|0(at|a0, s)∥2
]
, (9)

where t is sampled on [0, T ] and fθ denotes a parameterized score network Hyvärinen & Dayan
(2005); Vincent (2011). For OU processes, the conditional densities ∇ log π⃗t|0 are explicitly com-
putable, making the objective tractable for optimizing θ Song et al. (2021). Once trained, the score
network fθ can be used to simulate the denoising process

dat =
(
−βtatdt− 2η2βtf

θ
t (at, s)

)
+ η

√
2βtdBt, (10)

to obtain samples a0 ∼ πθ
0 that are approximately distributed according to π⃗0. Here, πθ

t denotes the
marginal distribution of Eq. 10 at time t. While score-matching techniques work well in practice,
they cannot be applied to maximum entropy reinforcement learning. This is because the expectation
in Eq. 9 requires samples a0 ∼ π⃗0 ∝ expQπ which are not available. However, in the next section,
we build on recent advances in approximate inference to optimize diffusion models without requiring
samples from a0, relying instead on evaluations of Qπ .

4 DIFFUSION-BASED MAXIMUM ENTROPY RL

Here, we explain how diffusion models can be used within a maximum entropy RL framework.
To that end, we express the maximum entropy objective as an approximate inference problem for
diffusion models. We then use these results to introduce a policy iteration scheme that provably
converges to the optimal policy. Lastly, we propose a practical algorithm for optimizing diffusion
models.

4.1 CONTROL AS INFERENCE FOR DIFFUSION POLICIES

Directly maximizing the maximum entropy objective

J( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt(st, a

0
t ) + αH( ⃗π0(a

0
t |st))

]
,

1Please note, for clarity, we slightly abuse notation by using t to denote the time in the stochastic process.
This should not be confused with the time step in RL. The distinction becomes clear when we discretize the
processes.
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for a diffusion model is difficult as the marginal entropyH( ⃗π0(a|s)) of the denoising process in Eq.
8 is intractable. Please note that we use superscripts for the actions to indicate the diffusion step to
avoid collisions with the time step used in RL. Moreover, we will again absorb α into the reward and
use rt ≜ r(st, a

0
t ). To overcome this intractability, we propose to maximize a lower bound. We start

by discretizing the stochastic processes introduced in Section 3.2 and use the results as a foundation
to derive this lower bound. Note that while similar results can be derived from a continuous-time
perspective (see e.g., Berner et al.; Richter & Berner; Nusken et al. (2024)), such derivation would
require a background in stochastic calculus, making it less accessible to a broader audience.

The Euler-Maruyama (EM) discretization Särkkä & Solin (2019) of the noising (Eq. 7) and denoising
(Eq. 8) process is given by

an+1 = an − βna
nδ + ϵn and (11)

an−1 = an +
(
βna

n + 2η2βn∇ log π⃗n(a
n|s)

)
δ + ξn, (12)

respectively, with ϵn, ξn ∼ N (0, 2η2βnδI). Here, δ denotes a constant discretization step size such
that N = T/δ is an integer. To simplify notation, we write an, instead of anδ. Under the EM
discretization, the noising and denoising process admit the following joint distributions

π⃗0:N (a0:N |s) = π⃗0(a
0|s)

N−1∏
n=0

π⃗n+1|n(a
n+1

∣∣an, s), (13)

⃗π0:N (a0:N |s) = ⃗πN (aN |s)
N∏

n=1

⃗πn−1|n(a
n−1

∣∣an, s), (14)

in a sense that π⃗0:N and ⃗π0:N converge to the law of (at)t∈[0,T ] in Eq. 7 and 8, as δ → 0, respectively
Doucet et al. (2022). Here, π⃗n+1|n and ⃗πn−1|n are Gaussian transition densities that directly follow
from Eq. 11 and 12.

To obtain a maximum entropy objective for diffusion models, we make use of the following lower
bound on the marginal entropy, that is,H( ⃗π0(a0|s)) ≥ ℓ ⃗π(a

0, s), where

ℓ ⃗π(a
0, s) = E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
. (15)

Please note that similar bounds have been used, e.g., in Agakov & Barber (2004); Tran et al. (2015);
Ranganath et al. (2016); Maaløe et al. (2016); Arenz et al. (2018), or, more generally, follow from the
data processing inequality Cover (1999). A derivation can be found in Appendix A. From Eq. 15, it
directly follows that

J( ⃗π) ≥ J̄( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
. (16)

Next, we cast Eq. 16 as an approximate inference problem to make the objective more interpretable.
To that end, let us define the Q-function of a denoising policy ⃗π with respect to the maximum entropy
objective J̄ as

Q ⃗π(st, a
0
t ) = rt +

∑
l=1

γlEρπ

[
rt+l + ℓ ⃗π(a

0
t+l, st+l)

]
, (17)

with Q ⃗π : S ×A → R. With Eq. 17 we identify the corresponding approximate inference problem
as finding ⃗π which minimizes (please see Appendix A for derivation)

L̄( ⃗π) = DKL
(

⃗π0:N (a0:N |s)|π⃗0:N (a0:N |s)
)
, (18)

where the target policy, i.e., the marginal of the noising process in Eq. 13 is given by the exponentiated
Q-function of the diffusion policy

π⃗0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
. (19)

Recall from Section 3.2 that we aim to time-reverse the noising process, that is, to ensure for all
states s ∈ S, it holds that ⃗π0:N = π⃗0:N . Please note that this is precisely what Eq. 18 is trying to
accomplish, i.e., we aim to learn a diffusion model ⃗π, such that the denoising process time-reverses
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the noising process, and, in particular, has a marginal distribution given by π0 = expQ ⃗π/Z ⃗π . Lastly,
from the data processing inequality it directly follows that

DKL

(
⃗π0(a

0|s)
∣∣∣expQ ⃗π(s, a0)

Z ⃗π(s)

)
≤ DKL

(
⃗π(a0:N |s)|π⃗(a0:N |s)

)
,

which shows the approximate inference problem in Eq. 18 indeed optimizes the same inference
problem stated in Eq. 3. Next, we will use these results to develop a policy iteration scheme for
diffusion models.

4.2 DIFFUSION-BASED POLICY ITERATION

We propose a policy iteration scheme for learning an optimal maximum entropy policy, similar to
Haarnoja et al. (2018a). However, here we restrict the family of stochastic actors to diffusion policies
⃗π ∈ ⃗Π ⊂ Π. Throughout this section, we assume finite action spaces to enable theoretical analysis,

but relax this assumption in Section 4.3. All proofs of this section are deferred to Appendix A.

For policy evaluation, we aim to compute the value of a policy ⃗π. We define the Bellman backup
operator as

T ⃗πQ(st, a
0
t ) ≜ rt + γE

[
Q(st+1, a

0
t+1) + ℓ ⃗π(a

0
t+1, st+1)

]
. (20)

Note that Eq. 20 contains the entropy-lower bound ℓ ⃗π . By applying standard convergence results for
policy evaluation Sutton & Barto (1999) we can obtain the value of a policy by repeatedly applying
T ⃗π as established in Proposition 1.
Proposition 1 (Policy Evaluation). Let T ⃗π be the Bellman backup operator for a diffusion policy
⃗π as defined in Eq. 20. Further, let Q0 : S × A → R and Qk+1 = T ⃗πQk. Then, it holds that

limk→∞ Qk = Q ⃗π where Q ⃗π is the Q value of ⃗π.

For the policy improvement step, we seek to improve the current policy based on its value using the
Q-function. Formally, we need to solve the approximate inference problem

⃗πnew = argmin
⃗π∈ ⃗Π

DKL
(

⃗π0:N (a0:N |s)|π⃗ old
0:N (a0:N |s)

)
, (21)

for all s ∈ S, where π⃗ old
0:N (a0:N |s) is as in Eq. 13 with marginal density

π⃗ old
0 (a0|s) = expQ ⃗πold(s, a0)

Z ⃗πold(s)
. (22)

Indeed, solving Eq. 21 results in a policy with higher value as established below.

Proposition 2 (Policy Improvement). Let ⃗πold, ⃗πnew ∈ ⃗Π be defined as in Eq. 22 and 21, respectively.
Then for all (s, a) ∈ S ×A it holds that Q ⃗πnew(s, a) ≥ Q ⃗πold(s, a).

Combining these results leads to the policy iteration method which alternates between policy evalua-
tion (Proposition 1) and policy improvement (Proposition 2) and provably converges to the optimal
policy in ⃗Π (Proposition 3).

Proposition 3 (Policy Iteration). Let ⃗π0, ⃗πi+1, ⃗πi, ⃗π∗ ∈ ⃗Π. Further, let ⃗πi+1 be the policy obtained
from ⃗πi after a policy evaluation and improvement step. Then, for any starting policy ⃗π0 it holds
that limi→∞ ⃗πi = ⃗π∗, with ⃗π∗ such that for all ⃗π ∈ ⃗Π and (s, a) ∈ S ×A it holds that Q ⃗π∗

(s, a) ≥
Q ⃗π(s, a).

However, performing policy iteration until convergence is in practice often intractable, particularly
for continuous control tasks. As such, we will introduce a practical algorithm next.

4.3 DIME: A PRACTICAL DIFFUSION RL ALGORITHM

To obtain a practical algorithm, we use a parameterized function approximation for the Q-function
and the policy, that is, Qϕ and πθ, with parameters ϕ and θ, respectively. Here, πθ is represented
by a parameterized score network, see Eq. 10. To perform approximate policy evaluation, we can
minimize the Bellman residual,

JQ(ϕ) =
1

2
E
[(
Qϕ(st, a

0
t )−Qtarget(st, a

0
t )
)2]

, (23)
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Figure 1: Reward Scaling Sensitivity (a)-(b). The α parameter controls the exploration-exploitation
trade-off. (a) shows the learning curves for varying values on DMC’s dog-run task. Too high α values
(α = 0.1) do not incentivize learning whereas too small α values (α ≤ 10−5) converge to suboptimal
behavior. (b) shows the aggregated end performance for each learning curve in (a). For increasing
α values, the end performance increases until it reaches an optimum at α = 10−3 after which the
performance starts dropping. Diffusion Policy Benefit (c) and (d). We compare DIME to a Gaussian
policy with the same implementation details as DIME on the (a) humanoid-run and (b) dog-run tasks.
The diffusion-based policy reaches a higher return (a) and converges faster.

using stochastic gradients with respect to ϕ. We provide implementation details in Section 4.4. More-
over, the expectation is computed using state-action pairs collected from environment interactions
and saved in a replay buffer. For policy improvement, we solve the approximate inference problem

L(θ) = DKL
(
πθ
0:N (a0:N |s)|π⃗0:N (a0:N |s)

)
, (24)

where the target policy, i.e., the marginal of the noising process in Eq. 13 is given by the approximate
Q-function

π⃗0(a
0|s) = expQθ(s, a

0)

Zθ(s)
, (25)

where states are again sampled from a replay buffer. Further expanding L(θ) yields

L(θ) =Eπθ

[
log πθ

N (aN |s)−Qϕ(s, a
0) +

N∑
n=1

log
πθ
n|n−1(a

n
∣∣an−1, s)

π⃗n−1|n(an−1
∣∣an, s)

]
+ logZϕ(s), (26)

showing that Zϕ is not needed to minimize Eq. 26 as it is independent of θ. Moreover, contrary
to the score-matching objective (see Eq. 9) that is commonly used to optimize diffusion models,
stochastic optimization of L(θ) does not need access to samples a0 ∼ expQϕ/Zϕ, instead relying
on stochastic gradients obtained via reparameterization trick Kingma (2013) using samples from the
diffusion model πθ.

4.4 IMPLEMENTATION DETAILS

Autotuning Temperature. We follow implementations like SAC Haarnoja et al. (2018b) where the
reward scaling parameter α is not absorbed into the reward but scales the entropy term. Choosing α
depends on the reward ranges and the dimensionality of the action space which requires tuning it per
environment. We instead follow prior works Haarnoja et al. (2018b) for auto-tuning α by optimizing

J(α) = α
(
Htarget − ℓθH

)
, (27)

whereHtarget is a target value for the mismatch between the noising and denoising processes measured
by the log ratio.

Autotuning Diffusion Coefficient. Please note that the objective function in Eq. 26 is fully
differentiable with respect to parameters of the diffusion process. As such, we additionally treat the
diffusion coefficient β as learnable parameter that is optimized end-to-end, further reducing the need
for manual hyperparameter tuning. Further details on the parameterization can be found in Appendix
D.

Q-function. Following Bhatt et al. (2024) we adopt the CrossQ algorithm, i.e., we use Batch
Renormalization in the Q-function and avoid a target network for calculating Qtarget. When updating
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Figure 2: Varying the Number of diffusion steps (a)-(b). The number of diffusion steps might affect
the performance and the computation time. (a) shows DIME’s learning curves for varying diffusion
steps. Two diffusion steps perform badly, whereas four and eight diffusion steps perform similar
but still worse than 16 and 32 diffusion steps which perform similarly. (b) shows the computation
time for 1MIO steps of the corresponding learning curves. The smaller the diffusion steps the less
computation time is required. Learning Curves on Gym Benchmark Suite (c)-(d). We compare
DIME against various diffusion baselines and CrossQ on the (c) Ant-v3 and (d) Humanoid-v3 from
the Gym suite. While all diffusion-based methods are outperformed by DIME, DIME performs
on par with CrossQ on the Ant environment. DIME performs favorably on the high-dimensional
Humanoid-v3 environment where it also outperforms CrossQ.

the Q-function, the values for the current and next state-action pairs are queried in parallel. The
next Q-values are used as target values where the gradients are stopped. Additionally, we employ
distributional Q learning as proposed by Bellemare et al. (2017). The details are described in
Appendix D.

5 EXPERIMENTS

We analyze DIME’s algorithmic features with an intensive ablation study where we clarify the role of
the reward scaling parameter α, the effect of varying diffusion steps, and the gained performance
boost when using a diffusion policy representation over a Gaussian representation. In a broad range
of 13 sophisticated learning environments from different benchmark suits ranging from mujoco gym
Brockman et al. (2016), deepmind control suit (DMC) Tunyasuvunakool et al. (2020), and myo suite
Caggiano et al. (2022) we compare DIME’s performance against recent diffusion-based RL methods
QSM Psenka et al. (2024), Diffusion-QL Wang et al. (2023), Consistency-AC Ding & Jin (2024) and
DIPO Yang et al. (2023). Additionally, we compare against the state-of-the-art RL methods CrossQ
Bhatt et al. (2024) and BRO Nauman et al. (2024), where we have used the provided learning curves
from the latter. Both methods use a Gaussian parameterized policy and have shown remarkable results.
The considered environments are challenging locomotion and manipulation learning tasks with up to
39-dimensional action and 223-dimensional observation spaces. We have run all learning curves for
10 seeds and report the interquartile mean (IQM) with a 95% stratified bootstrap confidence interval
as suggested by Agarwal et al. (2021).

5.1 ABLATION STUDIES

Exploration Control. The parameter α balances the exploration-exploitation trade-off by scaling
the reward signal. We analyze the effect of this parameter by comparing DIME’s learning curves
with different α values on the dog-run task from the DMC (see Fig. 1a). Additionally, we show the
performance of the last return measurements for each learning curve in Fig. 1b. Too high α values
(α = 0.1) do not incentivize maximizing the task’s return leading to no learning at all, whereas small
values (α ≤ 10−5) lead to suboptimal performance because the policy does not explore sufficiently.
We can also see a clear trend that starting from α = 10−12 the performance gradually increases until
the best performance is reached for α = 10−3.

Diffusion Policy Benefit. We aim to analyze the performance benefits of the diffusion-parameterized
policy compared to a Gaussian parameterization in the same setup by only exchanging the policy
and the corresponding policy update. This comparison ensures that the Gaussian policy is trained
with the identical implementation details from DIME as described in Sec. 4.4 and showcases the

8



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(a) Dog Run

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(b) Dog Trot

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(c) Dog Walk

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(d) Dog Stand

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(e) Humanoid Run

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(f) Humanoid Walk

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(g) Humanoid Stand

DIME (ours)
BRO
BRO (Fast)
CrossQ
QSM
Diff-QL
Consistency-AC
DIPO

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
s

R
at

e

(h) Object Hold Hard

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
s

R
at

e

(i) Reach Hard

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
s

R
at

e

(j) Key Turn Hard

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
s

R
at

e

(k) Pen Twirl Hard

Figure 3: Training curves on DMC’s dog, humanoid tasks, and the hand environments from
the MYO Suite. DIME performs favorably on the high-dimensional dog tasks where it significantly
outperforms all baselines (dog-run) or converges faster to the final performance. On the humanoid
tasks, DIME outperforms all diffusion-based baselines, CrossQ and BRO Fast, and performs on
par with BRO on the humanoid-stand task and slightly worse on the humanoid-run and humanoid-
walk tasks. In the MYO SUITE environments, DIME performs consistently on all tasks, either
outperforming the baselines or performing on par.

performance benefits of a diffusion-based policy. Fig. 1c and 1d show the learning curves of both
versions on DMC’s humanoid-run and dog-run environments. The diffusion policy’s expressivity
leads to a higher aggregated return in the humanoid-run and to significantly faster convergence in the
high-dimensional dog-run task. We attribute this performance benefit to an improved exploration
behavior.

Number of Diffusion Steps. The number of diffusion steps determines how accurately the stochastic
differential equations are simulated and is a hyperparameter that affects the performance. Usually,
the higher the number of diffusion steps the better the model performs at the burden of higher
computational costs. In Fig. 2a we plot DIME’s performance for varying diffusion steps on DMC’s
humanoid-run environment and report the corresponding runtimes for 1 Mio environment steps in Fig.
2b on an Nvidia A100 GPU machine. With an increasing number of diffusion steps, the performance
and runtime increases. However, from 16 diffusion steps on, the performance stays the same.

5.2 COMPARISSON AGAINST BASELINES

We consider environments with high dimensional observation and action spaces from three benchmark
suits for a robust performance assessment (please see Appendix C).

Gym Environments. Fig 2c and Fig. 2d show the learning curves for the An-tv3 and Humanoid-v3
tasks respectively. While the diffusion-based baselines perform reasonably well on the Ant-v3 task
with DIPO outperforming the rest, they are all outperformed by DIME and CrossQ which perform
comparably. On the Humanoid-v3 DIME achieves a significantly higher return than all baselines.
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DMC: Dog and Humanoid Tasks (Fig. 3). We benchmark on DMC suit’s challenging dog and
humanoid environments, where we additionally consider BRO and BRO Fast as a Gaussian-based
policy baseline. BRO Fast is identical to BRO but differs only in the update-to-data (UTD) ratio of
two as DIME and CrossQ. Please note that we used the online available learning curves provided by
the official implementation for BRO. DIME outperforms all baselines significantly on the dog-run
environment and converges faster to the same end performance on the remaining dog environments
(see Fig. 3a - 3d). BRO has slightly higher average performance on the humanoid-run and humanoid-
walk (see Fig. 3f - 3e)) tasks indicating that DIME performs favorably on more high-dimensional
tasks like the dog environments and tasks from the myo suite. However, DIME’s asymptotic behavior
in the humanoid-run achieves slightly higher aggregated performance than BRO, where we have
run both algorithms for 3M steps (Fig. 5c). However, BRO requires full parameter resets leading to
performance drops during training and it is run with a UTD ratio of 10 which is 5 times higher than
DIME. This leads to longer training times. As reported in their paper Nauman et al. (2024), BRO
needs an average training time of 8.5h whereas DIME trains in approximately 4.5h with 16 diffusion
steps on the humanoid-run with the same Hardware (Nvidia A100).

MYO Suite (Fig. 3). Except for pen twirl hard (Fig. 3k), DIME consistently outperforms BRO and
BRO Fast in that it converges to a higher or faster to the end success rate. DIME also consistently
outperforms CrossQ in terms of the achieved success rates on all the tasks except for the object hold
hard task 3h where DIME converges faster.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced DIME, a method for learning diffusion models for maximum entropy
reinforcement learning by leveraging connections to approximate inference. We view this work as
a starting point for exciting future research. Specifically, we explored denoising diffusion models,
where the forward process follows an Ornstein-Uhlenbeck process. However, approximate inference
with diffusion models is an active and rapidly evolving field, with numerous recent advancements
that consider alternative stochastic processes. For example, Richter & Berner proposed learning both
the forward and backward processes, while Nusken et al. (2024) further enhanced exploration by
incorporating the gradient of the target density into the diffusion process. Additionally, Chen et al.
(2024) combined learned diffusion models with Sequential Monte Carlo Del Moral et al. (2006),
resulting in a highly effective inference method. These approaches hold significant promise for
further improving diffusion-based policies in RL. We have conducted preliminary experiments on the
framework from Richter & Berner and provide them in Appendix F. Finally, we note that the loss
function used in this work (see Eq. 24) is based on the Kullback-Leibler divergence. However, in
principle, any divergence could be used. For instance, the log-variance divergence Richter & Berner
has shown promising results in optimizing diffusion models for approximate inference Chen et al.
(2024); Noble et al. (2024). Exploring alternative objectives could lead to additional performance
improvements.
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A DERIVATIONS

Lower-Bound Derivation. H(π0(a0|s)) ≥ ℓ ⃗π(a
0, s)

H(π0(a0|s)) = −E ⃗π0:N

[
log

⃗π0:N (a0:N |s)
⃗π1:N |0(a1:N |s, a0)

]
(28)

= −E ⃗π0:N

[
log

⃗π0:N (a0:N |s)π⃗1:N |0(a
1:N |s, a0)

⃗π1:N |0(a1:N |s, a0)π⃗1:N |0(a1:N |s, a0)

]

= E ⃗π0:N

[
log

π⃗1:N |0(a
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⃗π0:N (a0:N |s)

]
+ E ⃗π0:N

[
log

⃗π1:N |0(a
1:N |s, a0)

π⃗1:N |0(a1:N |s, a0)

]
(29)

= E ⃗π0:N

[
log
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1:N |s, a0)

⃗π0:N (a0:N |s)

]
+ Eπ0

[
DKL

(
⃗π1:N |0(a

1:N |s, a0)∥ π⃗1:N |0(a
1:N |s, a0)

)]
(30)

≥ E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
, (31)

where we have used the relation

π0(a0|s) =
⃗π0:N (a0:N |s)

⃗π1:N (a1:N |0|s, a0) (32)

and the fact that the KL divergence is always non-negative

Approximate Inference Formulation. Recall the definition of the Q-function

Q ⃗π(st, a
0
t ) = rt +

∑
l=1

γlEρπ

[
rt+l + ℓ ⃗π(a

0
t+l, st+l)

]
. (33)

and

ℓ ⃗π(a
0, s) = E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
. (34)

We start reformulating the objective

J( ⃗π) ≥ J̄( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
. (35)

=

∞∑
t=l+1

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
+ Eρπ

[
rl + ℓ ⃗π(a

0
l , sl)

]
(36)

= Eρπ

[
Q ⃗π(st, a

0
t )
]
+ Eρπ

[
ℓ ⃗π(a

0
l , sl)

]
(37)

= Eρπ

[
Q ⃗π(st, a

0
t ) + ℓ ⃗π(a

0
l , sl)

]
(38)

= Eρπ, ⃗π0:N

[
Q ⃗π(st, a

0
t ) + log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
(39)

= −Eρπ

[
DKL

(
⃗π(a0:N |s)∥ π⃗(a0:N |s)

)
− logZ ⃗π(s)

]
, (40)

where we used

π⃗0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
(41)

in the last step. When minimizing, the negative sign in front of the KL vanishes. Please note that
the expectation over the marginal state distribution was ommited in the main text to avoid cluttered
notation.
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B PROOFS

Proof of Proposition 1 (Policy Evaluation). Let’s define the entropy-augmented reward of a
diffusion policy as

r ⃗π(st, a
0
t ) ≜ rt(st, a

0
t ) + E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
(42)

and the update rule for the Q-function as

Q(st, a
0
t )← r ⃗π(st, a

0
t ) + γEst+1∼p,a0

t+1∼ ⃗π

[
Q(st+1, a

0
t+1)

]
. (43)

This formulation allows us to apply the standard convergence results for policy evaluation as stated in
Sutton & Barto (1999).

Proof of Proposition 2 (Policy Improvement). It holds that

⃗π(i+1)(a0:N |s) = expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s) (44)

Moreover, using the fact that the KL divergence is always non-negative, we obtain

0 = DKL

(
⃗π(i+1)(a0:N |s)∥ ⃗π(i+1)(a0:N |s)

)
≤ DKL

(
⃗π(i)(a0:N |s)∥ ⃗π(i+1)(a0:N |s)

)
(45)

Rewriting the KL divergences yields

E ⃗π(i+1)

[
log

⃗π(i+1)(a0:N |s)
⃗π(i+1)(a0:N |s)

]
≤ E ⃗π(i)

[
log

⃗π(i)(a0:N |s)
⃗π(i+1)(a0:N |s)

]
(46)

⇐⇒ E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
− E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
(47)

≤ E ⃗π(i)

[
log ⃗π(i)(a0:N |s)

]
− E ⃗π(i)

[
log ⃗π(i+1)(a0:N |s)

]
⇐⇒ E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
− E ⃗π(i+1)

[
log

expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s)

]
(48)

≤ E ⃗π(i)

[
log ⃗π(i)(a0:N |s)

]
− E ⃗π(i)

[
log

expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s)

]

⇐⇒ E ⃗π(i+1)

[
Qπ(i)

(s, aN )
]
+ E ⃗π(i+1)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i+1)(a0:N |s)

]
(49)

≥ E ⃗π(i)

[
Qπ(i)

(s, aN )
]
+ E ⃗π(i)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i)(a0:N |s)

]

To keep the notation uncluttered we use

d(i+1)(s, aN ) = E ⃗π(i+1)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i+1)(a0:N |s)

]
and d(i)(s, aN ) = E ⃗π(i)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i)(a0:N |s)

]
(50)
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Figure 4: Considered environments. The Humanoid-v3 and the Ant-v3 are environments from the
mujoco gym benchmark Brockman et al. (2016). The three environmentshumanoid-run,humanoid-
walk and humanoid-stand are from the deepmind control suite (DMC) benchmark Tunyasuvunakool
et al. (2020). The dog environments consist of dog-run, dog-walk, dog-stand, dog-trot and are also
from the DMC sutie benchmark. Finally, the myo suite hand environments object-hold-hard,reach-
hard, key-turn-hard, pen-twirl-hard are from the myo suite Caggiano et al. (2022).

Qπ(i)

(s, aN ) = r0 + E
[
γ
(
d(i)(s1, a

N
1 ) + E ⃗π(i)

[
Qπ(i)

(s1, a
N
1 )

])]
(51)

≤ r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + E ⃗π(i+1)

[
Qπ(i)

(s1, a
N
1 )

])]
(52)

= r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + r1

)
+ γ2

(
d(i)(s2, a

N
2 ) + E ⃗π(i)

[
Qπ(i)

(s2, a
N
2 )

])]
(53)

≤ r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + r1

)
+ γ2

(
d(i+1)(s2, a

N
2 ) + E ⃗π(i+1)

[
Qπ(i)

(s2, a
N
2 )

])]
(54)

... (55)

≤ r0 + E

[ ∞∑
t=1

γt
(
d(i+1)(st, a

N
t ) + rt

)]
= Qπ(i+1)

(s, aN ) (56)

Since Q improves monotonically, we eventually reach a fixed point Q(i+1) = Q(i) = Q∗

Proof of Proposition 3 (Policy Iteration). From Proposition 2 it follows that Q ⃗πi+1

(s, a) ≥
Q ⃗πi

(s, a). If for limk→∞ ⃗πk = ⃗π∗, then it must hold that Q ⃗π∗(s,a) ≥ Q ⃗π(s, a) for all ⃗π ∈ ⃗Π which
is guaranteed by Proposition 2.

C ENVIRONMENTS

All environments are visualized in Fig. 4. We consider the Ant-v3 and the Humanoid-v3 environments
from mujoco gym Brockman et al. (2016). The humanoid-stand, humanoid-walk , humanoid-
run, dog-stand, dog-walk, dog-trot and dog-run environments from the deepmind control suite
(DMC) Tunyasuvunakool et al. (2020). The hand environments from myo suite are the object-hold-
random,reach-random, key-turn-random and pen-twirl-random environments Caggiano et al. (2022).
The action and observation spaces of the respective environments are shown in Table 1.

D IMPLEMENTATION DETAILS

We consider a score network with 3 layers and a 256 dimensional hidden layer with gelu activation
function. We use Fourier features to encode the timestep and scale the embedding using a feed-
forward neural network with two layers with a hidden dimension of 256. For the diffusion coefficient
we use a cosine schedule and additionally optimize a scaling parameter for the diffusion coefficient
per dimension end-to-end (i.e. we learn the parameter β).

We employ distributional Q following Bellemare et al. (2017), where the Q-model outputs probabili-
ties q over b bins. Using the bellman backup operator for diffusion models from Eq. 20 and the bin
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Training Environment Observation Space Dim. Action Space Dim.
Ant-v3 111 8
Humanoid-v3 376 17
dog-run 223 38
dog-walk 223 38
dog-trot 223 38
dog-stand 223 38
humanoid-run 67 24
humanoid-walk 67 24
humanoid-stand 67 24
myoHandObjHoldRandom-v0 91 39
myoHandReachRandom-v0 115 39
myoHandKeyTurnRandom-v0 93 39
myoHandPenTwirlRandom-v0 83 39

Table 1: Observation and Action Space Dimensions for Various Training Environments

values b we follow Bellemare et al. (2017) and calculate the target probabilities qtarget. Using the
entropy-regularized cross-entropy loss L(ϕ) = −∑

qtarget log qϕ − 0.005
∑

qϕ log qϕ we update
the parameters ϕ of the Q-function. Please note that the entropy regularization was not proposed in
the original paper from Bellemare et al. (2017), however, we noticed that a small regularization helps
improve the performance in the early learning stages but does not change the asymptotic performance.
Additionally, we follow Nauman et al. (2024) and use the mean of the two Q-values instead of the
min as it has usually been used in RL so far.

The expected Q-values for updating the actor can be easily calculated using the expectation Q(s, a0t ) =∑
i qi(st, a

0
t )bi

Action Scaling. Practical applications have a bounded action space that can usually be scaled to
a fixed range. However, the action range of the diffusion policy ⃗π is unbounded. Therefore, we
follow recent works Haarnoja et al. (2018a) and propose applying the change of variables with a tanh
squashing function at the last diffusion step n = 0. For the backward process ⃗q0:N (u0:N |s) with
unbounded action space u ∈ RD we can squash the action a0 = tanhu0 such that a0 ∈ (−1, 1) and
its density is given by

⃗π0:N (a0:N |s) = ⃗q0:N (u0:N |s) det
∣∣∣∣∣
(

da0

du0

)∣∣∣∣∣
−1

, (57)

with the corresponding log-likelihood

log ⃗π0:N (a0:N |s) = log ⃗qN (uN ) +

N∑
n=1

log ⃗qn−1(u
n−1|un, s)−

D∑
i=1

log
(
1− tanh2

(
uN
i

))
. (58)

This means that the Gaussian kernels of the diffusion chain have the same log probabilities except for
the correction term of the last step at n = 0

18



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Algorithm 1 DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

Input: Initialized parameters θ, ϕ, α, learningrates λ
1: for k = 1 to M do
2: if k % UTD then
3: a0:Tt ∼ πθ

0:N (a0:N |st)
4: st+1 ∼ p(st+1|a0t , st)
5: D ← D⋃{st, a0t , rt, st+1}
6: end if
7: ϕ← ϕ− λϕ∇ϕJQ(ϕ) (Eq. 23)
8: if k % POLICYDELAY then
9: θ ← θ − λθ∇θL(θ) (Eq. 24)

10: α← α− λαJ(α) (Eq. 27)
11: end if
12: end for

Algorithm 1 shows the learning procedure of DIME. Note that policy delay refers to the number of
delayed updates of the policy compared to the critic. UTD is the update to data ratio.

E LIST OF HYPERPARAMETERS

DIME BRO BRO Fast CrossQ QSM Diff-QL Consistency-AC DIPO
Polyak weight N/A 0.005 0.005 N/A 0.005 N/A N/A N/A
Update-to-data ratio 2 10 2 2 1 1 1 1
Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
batch size 256 128 128 256 256 256 256 256
Buffer size 1e6 1e6 1e6 1e6 1e6 1e5 1e5 1e6
Htarget 4dim(A) dim(A) dim(A)/2 dim(A) N/A N/A N/A N/A
Critic hidden depth 2 BRONET BRONET 2 2 3 3 3
Critic hidden size 2048 512 512 2048 2048 256 256 256
Actor/Score depth 3 BRONET BRONET 3 3 4 4 4
Actor/Score size 256 256 256 256 256 256 256 256
Num. Bins/Quantiles 100 100 100 N/A N/A N/A N/A N/A
Temp. Learn. Rate 1e-3 3e-4 3e-4 3e-4 N/A N/A N/A N/A
Learn. Rate Critic 3e-4 3e-4 3e-4 7e-4 3e-4 3e-4 3e-4 3e-4
Learn. Rate Actor/Score 3e-4 3e-4 3e-4 7e-4 3e-4 1e-5 1e-5 3e-4
Optimizer Adam AdamW AdamW Adam Adam Adam Adam Adam
Diffusion Steps 16 N/A N/A N/A 15 5 N/A 100
Prior Distr. N (0, 2.5) N/A N/A N/A N (0, 1) N/A N/A N/A
Exploration Steps 5000 2500 2500 5000 1e4 1e4 1e4 1e4
Score-Q align. factor N/A N/A N/A N/A 50 N/A N/A N/A

Table 2: Hyperparameters of all algorithms for all benchmark suits. Varying hyperparameters for
different benchmark suits are described in the text.

DIME. For DIME we use distributional Q where the maximum values for the bins have been chosen
per benchmark suite. We have used vmin = −1600 and vmax = 1600 for the gym environments,
vmin = −200 and vmax = 200 for the DMC suite and vmin = −3600 and vmax = 3600 for the
myo suite.

QSM. In certain environments, we observed that QSM with default hyperparameters performed
poorly, particularly in several DMC tasks and the Gym Ant-v3 tasks. To address this, we fine-tuned
the hyperparameters for QSM in each of these underperforming tasks. For the DMC tasks, we found
that QSM often requires an α value—representing the alignment factor between the score and the
Q-function Psenka et al. (2024)—in the range of 100-200, rather than the default value of 50 reported
in QSM’s original implementation. In the Ant-v3 task, we determined that α needs to be set to 1. In
the original implementation, the number of diffusion steps is set to be 5, however, we found using
more steps, such as 10 and 15, can significantly improve the performance in these under performed
tasks.

CrossQ. We used the hyperparameters from the original paper Bhatt et al. (2024) for the gym
benchmark suite. However, we used a different set of hyperparameters for the DMC and MYO suites
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for improved performance. More precisely, we increased the policy size to 3 layers with 256 hidden
size. Additionally, we reduced the learning rate to 7e-4.

F GENERAL DIFFUSION POLICIES

DIME’s maximum entropy reinforcement learning framework for training diffusion policies is not
specifically restricted to denoising diffusion policies but can be extended to general diffusion policies.
This can be realized using the General Bridges framework as presented in Richter & Berner. In this
case, we can write the forward and backward process as

dat = [f(at, t) + βu(at, s, t)] dt+
√
2βtdBt, a0 ∼ π⃗0(·|s), (59)

dat = [f(at, t)− βv(at, s, t)] dt+
√

2βtdBt, aT ∼ N (0, I), (60)

with the drift and control functions f, u, v : Rd × [0, T ]→ Rd, the diffusion coefficient β : [0, T ]→
R+, standard Brownian motion (Bt)t∈[0,T ] and some target policy π⃗0. Again we denote the marginal
density of the forward process as π⃗t and the conditional density at time t given l as π⃗t|l for t, l ∈ [0, T ].
The backward process starts from ⃗πT = π⃗T ∼ N (0, I) and runs backward in time where we denote
its density as ⃗π.

The respective discretization using the Euler Maruyama (EM) Särkkä & Solin (2019) method are
given by

an+1 = an + [f(an, n) + βu(an, s, n)] δ + ϵn, (61)

an−1 = an − [f(an, n)− βv(an, s, n)] δ + ξn, (62)

where ϵn, ξn ∼ N (0, 2βδI), with the constant discretization step size δ such that N = T/δ is an
integer. We have used the simplified notation where we write an instead of anδ . The discretizations
admit the joint distributions

π⃗0:N (a0:N |s) = π0(a
0|s)

N−1∏
n=0

π⃗n+1|n(a
n+1

∣∣an, s), (63)

⃗π0:N (a0:N |s) = ⃗πN (aN |s)
N∏

n=1

⃗πn−1|n(a
n−1

∣∣an, s), (64)

with Gaussian kernels

π⃗n+1|n(a
n+1

∣∣an, s) = N (an+1|an + [f(an, n) + βu(an, s, n)] δ, 2βδI) (65)

⃗πn−1|n(a
n−1

∣∣an, s) = N (an−1|an − [f(an, n)− βv(an, s, n)] δ, 2βδI) (66)

Following the same framework presented in the main text, we can now optimize the controls u and v
using the same objective

L̄(u, v) = DKL
(

⃗π0:N (a0:N |s)|π⃗0:N (a0:N |s)
)
, (67)

where the target policy at time step n = 0 is given as

π0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
. (68)

In practice, we optimize the control functions u and v using parameterized neural networks. We have
run preliminary results using the general bridge framework within the maximum entropy objective as
suggested in our work. The learning curves can be seen in Fig. 5.
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(a) DIME and GB on Dog Run
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Figure 5: Preliminary results for the GB sampler on the dog run (a) and humanoid run (b)
environments from DMC. Comparison to BRO on the humanoid run for 3 million steps.

expQπ/Zπ N (0, I)t

(a) α < 1

expQπ/Zπ N (0, I)t

(b) α = 1

expQπ/Zπ N (0, I)t

(c) α > 1

Figure 6: The effect of the reward scaling parameter α. The figures in (a)-(b) show diffusion
processes for different α values starting at a prior distribution N (0, I) and going backward in time
to approximate the target distribution exp (Qπ/α)/Zπ. Small values for α (a) lead to concentrated
target distributions with less noise in the diffusion trajectories especially at the last time steps. The
higher α becomes (b) and (c), the more the target distribution is smoothed and the distribution of the
samples at the last time steps becomes more noisy. Therefore, the parameter α directly controls the
exploration by enforcing noisier samples the higher α becomes.
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