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ABSTRACT

In-context learning (ICL) on large language models (LLMs) has received great at-
tention, and this technique can also be applied to vision-language models (VLMs)
built upon LLMs. These VLMs can respond to queries by conditioning responses
on a series of multimodal demonstrations, which comprise images, queries, and
answers. Though ICL has been extensively studied on LLMs, its research on
VLMs remains limited. The additional visual information in the demonstrations
motivates the following research questions: which modality in the demonstration
is more significant? How can we select effective multimodal demonstrations to
enhance ICL performance? This study investigates the significance of both vi-
sual and language information. Our findings indicate that ICL in VLMs is pre-
dominantly driven by the textual information in the demonstrations whereas the
visual information in the demonstrations barely affects the ICL performance. Mo-
tivated by our analysis, we propose a simple yet effective approach, termed Mixed
Modality In-Context Example Selection (MMICES). MMICES considers both vi-
sual and language modalities when selecting demonstrations and shows better ICL
performance. Extensive experiments are conducted to support our findings and
improvement of the ICL performance of VLMs.

1 INTRODUCTION

The in-context learning (ICL) ability of large language models (LLMs) has received great atten-
tion and demonstrated impressive performance on various downstream tasks Brown et al. (2020);
Touvron et al. (2023); Hoffmann et al. (2022); Chowdhery et al. (2022); Liang et al. (2022). The
principal benefit of ICL is its ability to learn and adapt from the context by providing a set of
question-and-answer pairs, referred to as demonstrations, without requiring any model parameter
updates Brown et al. (2020); Bommasani et al. (2021). Recent vision-language models (VLMs)
built upon LLMs have also displayed ICL ability Alayrac et al. (2022); Laurençon et al. (2023);
Tsimpoukelli et al. (2021); Awadalla et al. (2023); Zhao et al. (2023); Peng et al. (2023). These
pre-trained models can rapidly adapt to vision-language tasks using few-shot demonstrations, com-
prised of images, queries, and answers. For example, as shown in Fig. ??, two images and the
corresponding questions and answers are selected as demonstrations from an available support set.
Then a pre-trained VLM generates answers for the query based on the demonstrations. While the
ICL ability of LLMs has been intensively explored Min et al. (2022); Yoo et al. (2022); Wei et al.
(2023); Lu et al. (2022); Liu et al. (2022); An et al. (2023), the understanding of such capability on
VLMs remains largely underexplored. Unlike language models, the in-context demonstrations in
VLMs integrate extra visual information. The question of whether visual or textual data in demon-
strations contributes more significantly to ICL performance remains open. Furthermore, effective
strategies for selecting ICL demonstrations in VLMs have yet to be established.

This study initially investigates the significance of both visual and language information within
demonstrations via experiments across a diverse range of VLMs and vision-language tasks. Our
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experimental results indicate that textual information is crucial for successful ICL in VLMs. Sur-
prisingly, omitting visual information barely affects the ICL performance. Specifically, when the
images in the demonstrations are removed or replaced with blank images, ICL performance hardly
drops. In comparison, altering text in the demonstrations degrades performance significantly.

Based on our analysis, we propose a simple yet effective strategy for choosing demonstrations for
ICL on VLMs. This strategy, termed Mixed Modality In-Context Example Selection (MMICES),
considers both visual and language modalities when selecting demonstrations. Firstly, the visual
modality is used to filter potential demonstration candidates. Then MMICES ranks and selects
demonstrations considering the language modality. By factoring in both visual and language infor-
mation, demonstrations selected by MMICES are related to both the query image and text. Extensive
experiments have verified the effectiveness of MMICES across multiple models and various datasets.
To summarize, our main contributions are as follows:

• Finding: Our research examines the ICL ability of VLMs and reveals that textual informa-
tion plays a more significant role than visual information in the demonstrations. Surpris-
ingly, removing images from the demonstrations results in a negligible decline in the ICL
performance whereas corruption of texts leads to a significant decrease.

• Improvement: Motivated by our analysis, we propose a simple yet effective method,
dubbed MMICES, to enhance the in-context learning performance of pre-trained vision-
language models. Extensive experiments show that MMICES outperforms existing demon-
stration selection methods in various settings.

2 INVESTIGATING THE IMPORTANCE OF VISUAL AND TEXTUAL
INFORMATION IN ICL

Experimental Setting for ICL Evaluation. Four popular vision-language datasets across three VL
tasks are applied in this study to evaluate the significance of visual and textual information in ICL on
VLMs, namely VQAv2 Goyal et al. (2017) and OK-VQA Marino et al. (2019) for visual question
answering (VQA), GQA Hudson & Manning (2019) for visual reasoning, and MSCOCO Chen et al.
(2015) for image captioning. Flamingo Alayrac et al. (2022) is used as an example in the following.
Please refer to Appendix. C for more results.
Importance of Visual Information. ICL on VLMs incorporates visual information into the demon-
stration. This visual information can take the form of images used for tasks such as VQA. To evaluate
the significance of images in the demonstrations, we have devised the following settings:

• standard: demonstrations and queries have respective original image-question pairs.

• demo w/o images: the visual information from the demo context C is removed by deleting
all the images in C. This results in the context C with N text-only instructions such as the
questions in VQA or the captions in the task of image captioning.

• demo w/ blank images: the original images are replaced with blank images, i.e., all the
pixel values are set to 255. Although there are still images in the demonstrations, they do
not provide any valuable information.

• demo w/o query images: the image Iq presented in the query input Q is removed whereas
the images in the demonstrations are retained.

Two common approaches to selecting demonstrations are investigated here, i.e., random selection
and Retrieval-based In-Context Examples Selection (RICES) Yang et al. (2022); Alayrac et al.
(2022); Awadalla et al. (2023). The first approach randomly selects demonstrations from the support
set, disregarding different queries. On the other hand, RICES retrieves demonstrations with similar
images by comparing them to the query images.

Fig. 1 presents the ICL performance in different visual demonstration settings, given randomly se-
lected demonstrations. Compared with the standard setting, both the demo w/o images and demo
w/ blank settings retain most of the ICL performance and some performances remain relatively un-
changed. Conversely, the demo w/o query images setting results in a substantial decline in the ICL
performance, with up to a 50% performance drop on VQA and nearly a 100% performance decrease
on image captioning. Fig. 1 suggests that the visual information in the demonstrations has a minimal
impact on the ICL performance.
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Figure 1: The top row shows that the ICL performance is almost the same when removing images in
the demonstration. Compared to the standard scenario, exclusion and replacement of images in the
demonstration hardly impact the performance (as shown in the first three bars of each sub-figure).
Conversely, the removing query image results in substantial performance degradation (as indicated
by the last bar in each sub-figure). The bottom row shows that the performance of RICES barely
changes when removing the images in the demonstrations selected by visual similarity.

Compared to random selection, RICES has been proven useful to boost the ICL performance on
various tasks Alayrac et al. (2022); Awadalla et al. (2023). If visual information has a minimal
impact on ICL performance, why does RICES yield better results? To answer this question, we
applied the demo w/o images setting to RICES, referred to as RICES demo w/o images. It means
that the images in the context demonstrations selected by RICES are removed and all the other tex-
tual information remains unchanged. The results are presented in Fig. 1. Surprisingly, nearly all
of the ICL performances in the RICES demo w/o images setting remain relatively unchanged. This
suggests that the images in the selected demonstrations do not significantly contribute to the perfor-
mance gain. Instead, the remaining textual information plays a more crucial role. The demonstration
texts retrieved by RICES contain query-related background information, which is a crucial factor in
achieving such performance gain. For instance, given a query image depicting a dinner table laden
with food, RICES selects demonstrations that are also related to food and dinner. This relevant back-
ground knowledge aids the model in better comprehending the context and recalling the necessary
information for generating an appropriate response to the query Liu et al. (2022); Yang et al. (2022);
Dai et al. (2023); Olsson et al. (2022). Besides exploring the impact of visual information, we also
assess the significance of textual information under several settings as shown in Appendix C.2. The
experiments show that changes in texts can severely affect ICL performance. Hence, we conclude
that in VLMs, in-context learning is primarily driven by textual information, which shows a more
substantial influence than images. We also investigated the potential factors and suggested that the
masked cross-attention layers could contribute to this phenomenon. More details are in Appendix D.

In summary, this section shows that language is more significant than visual information in the
demonstrations. Excluding images from the demonstrations results in a negligible performance
decline whereas text corruption and removing query images lead to a significant decrease.

3 IMPROVING ICL PERFORMANCE ON VISION-LANGUAGE MODELS

Previous analysis has revealed the dominant role of textual information in the demonstrations.
Therefore, the demonstration selection should also consider this textual information. Random selec-
tion neglects the necessary context for different queries. Demonstrations retrieved based on visual
similarity outperform random selection, but this performance gain can be mostly attributed to the
informative text within the selected examples, as discussed in Sec. 2. However, context demonstra-
tions chosen solely on visual similarity may not always be informative for a specific query. This is
because questions related to visually similar images are not necessarily interconnected. As demon-
strated in the first row of Fig. 8 in the appendix, the query question addresses the store selling the
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Dataset Method 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 53.52 ±0.11 53.74 ±0.19 53.33 ±0.26 52.38 ±0.10

RICES 54.03 ±0.13 54.67 ±0.06 55.39 ±0.12 55.77 ±0.08

MMICES 53.11 ±0.03 53.56 ±0.05 54.04 ±0.04 55.14 ±0.02

OK-VQA
Random 39.62 ±0.29 41.56 ±0.20 43.40 ±0.39 42.97 ±0.11

RICES 42.13 ±0.13 43.87 ±0.15 44.90 ±0.10 46.15 ±0.06

MMICES 44.18 ±0.11 45.61 ±0.08 46.93 ±0.08 46.79 ±0.10

GQA
Random 36.32 ±0.29 37.74 ±0.32 38.28 ±0.10 37.85 ±0.11

RICES 36.92 ±0.33 38.54 ±0.14 40.16 ±0.14 40.21 ±0.32

MMICES 40.73 ±0.09 41.85 ±0.10 42.21 ±0.12 42.07 ±0.08

MSCOCO
Random 89.82 ±0.23 96.81 ±0.10 99.44 ±0.19 100.53 ±0.26

RICES 93.45 ±0.07 99.74 ±0.27 105.76 ±0.03 109.12 ±0.20

MMICES 100.24 ±0.20 104.90 ±0.30 108.66 ±0.17 109.64 ±0.24

Dataset Method 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 54.90 ±0.05 56.16 ±0.02 56.93 ±0.18 57.21 ±0.17

RICES 54.79 ±0.09 56.45 ±0.05 57.49 ±0.06 58.52 ±0.02

MMICES 56.15 ±0.01 58.17 ±0.03 59.23 ±0.01 59.69 ±0.02

OK-VQA
Random 49.24 ±0.22 49.54 ±0.12 50.89 ±0.12 51.86 ±0.12

RICES 48.82 ±0.02 50.55 ±0.05 52.42 ±0.03 53.22 ±0.04

MMICES 49.63 ±0.02 52.16 ±0.03 53.65 ±0.07 54.16 ±0.05

GQA
Random 39.35 ±0.26 40.54 ±0.17 41.38 ±0.18 41.86 ±0.13

RICES 39.86 ±0.13 41.27 ±0.29 42.65 ±0.21 43.67 ±0.19

MMICES 42.66 ±0.05 44.22 ±0.08 45.19 ±0.05 45.36 ±0.09

MSCOCO
Random 96.45 ±0.36 100.85 ±0.36 103.96 ±0.38 105.02 ±0.43

RICES 91.20 ±0.10 102.58 ±0.15 108.93 ±0.10 111.02 ±0.08

MMICES 101.13±0.12 109.31 ±0.09 112.72 ±0.05 113.37 ±0.09

Table 1: The performances of random selection, RICES, and MMICES on OF-9B (left) and
IDEFICS-9B (right). The highest performance in each shot scenario is highlighted in bold. The re-
sults are averaged over 5 evaluation seeds and are reported along with their standard deviations. The
performance metric for the MSCOCO dataset is CIDEr, while for the remaining datasets, accuracy
is reported in percentages. MMICES achieves the best ICL performance in almost all settings.

pizza, while the retrieved demonstrations ask about the type and shape of the pizza. To identify more
informative demonstrations for queries, the retrieval process should not exclusively depend on visual
information. It should also integrate the available textual information from both demonstrations and
queries to find more useful demonstrations. Despite the importance, retrieval based exclusively on
text presents its own challenges. For instance, general queries such as ”What is in this picture?”
often fail to provide sufficient information.

Addressing the above challenges, we utilize both modalities to select demonstrations and design a
simple yet effective method, named Mixed Modality In-Context Example Selection (MMICES). It
initially selects candidates based on image similarity, followed by a reranking based on text simi-
larity, as shown in Alg. 1. The objective is to select N context demonstrations for each query q in
the query dataset Q (e.g., the test dataset of VQAv2) from the support dataset S (e.g., the training
dataset of VQAv2). First, K pre-filtered samples from S are selected based on visual feature simi-
larity. The visual features are extracted from the vision encoder of the vision-language model, and
K is a hyperparameter. Then MMICES considers textual information and selects N most similar
ones from the pre-filtered K samples based on textual similarity calculated by a text encoder.

4 EXPERIMENTS

Experimental Setup. We investigate 7 different models from OpenFlamingo Awadalla et al. (2023)
(OF) and IDEFICS Laurençon et al. (2023). Models used in this study vary in their model size (from
3B to 9B), pre-trained datasets, and whether fine-tuned by instruction tuning. Three representative
VL tasks (visual question answering, visual reasoning, and image captioning) and 4 well-known
VL datasets are applied in this work, including VQAv2 Goyal et al. (2017), OK-VQA Marino et al.
(2019), GQA Hudson & Manning (2019) and MSCOCO Chen et al. (2015). Accuracy and CIDEr
are used as metrics. More detailed information is in Appendix. B.
Results. MMICES outperforms random selection and RICE across almost all datasets on both
models, as shown in Tab. 1. MMICES consistently boosts the ICL performance on OpenFlamingo
across various vision-language tasks. On GQA, MMICES with only 4 shots (40.73%) is better than
the 32-shot random selection (37.85%) and 32-shot RICES (40.35%). MMICES is also consistently
better on OK-VQA where given only 8 context examples, the performance (i.e., 45.5%) is better than
random 32 shots (42.97%) and RICES’s 16 shots (44.70%). The performance gain is also evident
on IDEFICS-9B across all datasets. For instance, MMICES increases the accuracy on GQA by
around 10% given 8 context examples (from 40.54% to 44.22%) compared to random selection and
by around 7% compared to RICES (from 41.27% to 44.22%). All the 16-shot performances from
MMICES are higher compared to 32-shot random selection and 32-shot RICES, which indicates that
with only half of the context examples, MMICES achieves even better results. Overall, MMICES
achieves better performance compared to random selection in all scenarios and RICES in most cases.
More results and analysis are in Appendix. E.
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5 CONCLUSION

This study explores the in-context learning capabilities of vision-language models. We find that
the visual information in the demonstrations has a minimal impact on the ICL performance, while
the text is more important. Based on our analysis, we propose selecting demonstrations based on
both visual and text modalities and have designed the Mixed Modality In-Context Example Selec-
tion (MMICES) algorithm, which outperforms existing in-context example selection methods. We
believe this study can help the community better understand the ICL ability of VLMs.
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A RELATED WORK

In-Context Learning on Vision-Language Models. Frozen Tsimpoukelli et al. (2021) is the first
attempt for ICL in multimodality by leveraging a frozen GPT-like LM. Flamingo Alayrac et al.
(2022) demonstrated stronger ICL performance and can handle flexible interleaved text and visual
sequences. It utilizes a masked cross-attention mechanism that integrates visual information into
pre-trained LLMs and allows any number of visual inputs. This capability makes the ICL possible
and many VLMs are therefore not suitable for ICL such as BLIP Li et al. (2022), MiniGPT Zhu
et al. (2023a), etc. OpenFlamingo Awadalla et al. (2023) and IDEFICS Laurençon et al. (2023) are
popular open-source reproductions of Flamingo with competitive ICL performance. Otter Li et al.
(2023a) adopts instruction tuning to support more flexible tasks but its model architecture is the same
as Flamingo’s and still uses masked cross-attention to incorporate visual information. Besides, Yang
et al. has explored better in-context configurations but this work has not studied the importance of
visual and textual information and only conducted experiments on image captioning. Some other
works aim to alleviate the dependency on large-scale pre-training, such as SINC Chen et al. (2023)
and MetaVL Monajatipoor et al. (2023). However, their performances are not competitive compared
to pre-trained VLMs such as Flamingo. In contrast to these studies, we focus on the understanding
of the in-context learning ability of vision-language models and seek more effective demonstration
selection strategies for diverse vision-language tasks.

Understanding In-Context Learning. LLMs have demonstrated impressive ICL ability (Brown
et al., 2020; Touvron et al., 2023; Hoffmann et al., 2022; Chowdhery et al., 2022), i.e., adapting to
a new task conditioned on a few in-context demonstrations without any gradient update. A line of
research focuses on understanding the importance of different aspects of the ICL demonstrations
on LLMs Min et al. (2022); Yoo et al. (2022); Lu et al. (2022); Liu et al. (2022); An et al. (2023).
Min et al. found that the correct input-label mapping is not as important as expected whereas label
space exposure and demonstration distribution have much more influence on the ICL performance.
Yoo et al. further found that correct demonstration labels can impact the ICL performance in certain
specific scenarios. Moreover, Lu et al. demonstrated the influence of order sensitivity on the ICL
performance. Liu et al. revealed that semantically similar examples to a test query can lead to better
ICL performance. Besides, An et al. focused on how the diversity, similarity, and complexity of
demonstrations affect ICL ability. Moreover, some works studied ICL on LLMs from the perspective
of model architectures Olsson et al. (2022); Bansal et al. (2022) and revealed that model components
are closely related to ICL performance. However, ICL on VLMs differs due to the additional visual
information in the demonstrations and different model components. This study focuses on ICL on
VLMs and aims to understand which aspect of information in the multimodal demonstrations holds
greater significance.

B EXPERIMENTAL SETUP
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Model Vision Encoder Language Model

OF-3B CLIP Vit-L/14 MPT-1B Team et al. (2023)
OF-3B-I CLIP Vit-L/14 MPT-1B-I Team et al. (2023)
OF-4B CLIP Vit-L/14 RedPajama-3B together.ai (2023)

OF-4B-I CLIP Vit-L/14 RedPajama-3B-I together.ai (2023)
OF-9B CLIP Vit-L/14 MPT-7B Team et al. (2023)

IDEFICS-9B OpenCLIP Vit-H/14 LLaMA-7B Touvron et al. (2023)
IDEFICS-9B-I OpenCLIP Vit-H/14 LLaMA-7B Touvron et al. (2023)

Table 2: Vision-language models studied in this work. OF stands for OpenFlamingo Awadalla et al.
(2023) and I means instructed version.

Vision-language Models.
We investigate different
models from Open-
Flamingo Awadalla
et al. (2023) and
IDEFICS Laurençon et al.
(2023) with various model
sizes as shown in Tab. 2.
OpenFlamingo Awadalla
et al. (2023) and
IDEFICS Laurençon
et al. (2023) are popular
open-source reproductions
of Flamingo with com-
petitive ICL performance.
The architecture of these
models consists of a frozen
large language model with
decoder-only structure
(e.g., MPT Team et al.
(2023) in OpenFlmaingo

and LLaMA Touvron et al. (2023) in IDEFICS), a frozen visual encoder (e.g., CLIP-ViT Radford
et al. (2021)) followed by a trainable perceiver resampler. There are also trainable gated cross-
attention layers interleaved between pre-trained LM layers to bridge the gap between visual and
language information. Per-image attention masking is adopted in these cross-attention layers. This
ensures that at any particular text token, the model focuses solely on the visual tokens from the
immediately preceding image in the interleaved sequence, rather than on all preceding images.
The 7 models used in this study vary in their model size (from 3B to 9B), pre-trained datasets,
and whether fine-tuned by instruction tuning. OpenFlamigo is trained on 2B image-text pairs in
LAION-2B Schuhmann et al. (2022) and 43M interleaved image-text sequences in Multimodal
C4 Zhu et al. (2023b). IDEFICS is trained on OBELICS Laurençon et al. (2023) which contains
141M multimodal Engish web documents with 353M images and 115B tokens. Both models
achieve competitive performance compared to Flamingo Alayrac et al. (2022). The instruction-
finetuned versions are also used in this work. For instance, IDEFICS-9B-I starts from the base
IDEFICS models and is fine-tuned by unfreezing all the parameters on various datasets, such as
M3IT Li et al. (2023b) and LLaVA-Instruct Liu et al. (2023).

Evaluation Datasets and Metrics. Three popular VL tasks (i.e., visual question answering, vi-
sual reasoning, and image captioning) and 4 well-known VL datasets are applied in this work.
For visual question answering, VQAv2 Goyal et al. (2017) and OK-VQA Marino et al. (2019)
are adopted. Additionally, we incorporate GQA Hudson & Manning (2019) for visual reasoning
and MSCOCO Chen et al. (2015) for image captioning. The statistics are in Tab. 3. Accuracy on
the Karpathy-test split is evaluated for VQAv2. For OK-VQA, accuracy on the validation split is
evaluated, and accuracy on the test-dev split is used for GQA. CIDEr Vedantam et al. (2015) on the
Karpathy-test split is used in MSCOCO.
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Task Dataset # Images # Image-text pairs

Visual Question Answering VQAv2 Antol et al. (2015) 123.2K 658.1K
OK-VQA Marino et al. (2019) 14K 14K

Visual Reasoning GQA Hudson & Manning (2019) 82.3K 1087.7K
Image Captioning MSCOCO Chen et al. (2015) 123.2K 576.8K

Table 3: Dataset Statistics. Four well-known datasets from three popular vision-language tasks are
used in this study.

Setting demo image demo question demo response query image query question

standard What sign is this? Turn left What does the sign mean?

demo w/o images What sign is this? Turn left What does the sign mean?

demo w/ blank images What sign is this? Turn left What does the sign mean?

demo w/o query images What sign is this? Turn left What does the sign mean?

Table 4: Examples for different visual demonstration settings with one demonstration and one query.
Demo w/o images removes the images in the demonstration. demo w/ blank images replaces the
images with blank ones. demo w/o query images removes the images in the query.

Setting demo image demo question demo response query image query question

standard What sign is this? Turn left What does the sign mean?

different answer for same question What sign is this? No entry What does the sign mean?

random question What kind of food is this? Turn left What does the sign mean?

random words as labels What sign is this? Hello What does the sign mean?

Table 5: Examples for different textual demonstration settings with one demonstration and one
query. The differences compared to the standard setting are highlighted in blue.
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C ADDITIONAL RESULTS OF IMPORTANCE INVESTIGATION ON VISUAL AND
TEXTUAL INFORMATION

In-Context Learning Formulation on VLMs. In vision-language in-context learning, an input
query q from a query set, i.e., an image Iq and a question/instruction Tq , coming after a context
prompt Cq , is sent to a pre-trained vision-language model f . The context prompt Cq consists of N
task demonstrations from a support set S. Each demonstration includes image Ii, instruction Ti, and
response Ri. Then f generates a response Rq to the input query q, e.g., the answer to Tq , based on
image Iq and the demo context Cq . Specifically, the ICL can be written as Rq = f([Cq, q]) where
q = ⟨Iq, Tq⟩, Cq = {⟨Ii, Ti, Ri⟩}N .

C.1 IMPORTANCE OF VISUAL INFORMATION

To evaluate the importance of visual information, we have designed various demonstration settings
as shown in Tab. 4.

• standard setting refers to the scenario where both demonstrations and queries incorporate
their respective original image-question pairs.

• demo w/o images describes the case where the visual information from the demo context
is removed by deleting all the images in the context demonstration. The context then only
includes N text-only instructions such as the questions in VQA or the captions in the task
of image captioning.

• demo w/ blank images refers to the scenario where the images and image position tokens
in the demonstrations are kept but the original images are replaced with blank images, i.e.,
all the pixel values are set to 255. Although there are still images in the demonstrations,
they do not provide any valuable information.

• demo w/o query images refers to the setting in which the image presented in the query
input is removed whereas the images in the demonstrations are retained.

Performance of OF-9B and IDEFICS-9B across 4 datasets given random selected demonstrations
are presented in Tab. 6 and Tab. 7. When compared to the standard setting, the demo w/o images
and demo w/ blank settings largely maintain the ICL performance, with some aspects showing little
change. In contrast, the demo w/o query images setting leads to a significant reduction in ICL
performance, including up to a 50% decrease in VQA performance and nearly a 100% decrease in
image captioning performance. We also conducted experiments using RICES, i.e., Retrieval-based
In-Context Examples Selection, in the demo w/o images setting and the results are in Tab. 8 and
Tab. 9. The results also suggest that the images in the selected demonstrations do not significantly
contribute to the performance gain. Instead, the remaining textual information is more important.

C.2 IMPORTANCE OF TEXTUAL INFORMATION

Importance of Textual information. Besides exploring the impact of visual information, we also
assess the significance of textual information given randomly selected demonstrations using the
following settings:

• standard refers to the case where demonstrations incorporate their respective original
image-question pairs.

• different answer for same question corresponds to the case where the original answer is
replaced with another one from the same question. Despite the question remains the same,
the replacement answer can vary due to the differences in the image content.

• random question describes the case where the original question Ti is replaced with another
Tj that has different content but the answer remains unchanged.

• random words as labels refers to the case where the original response Ri in the demonstra-
tion, such as answers in VQA and captions in image captioning, is replaced with random
English words.
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Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 53.60 53.85 53.60 52.74
demo w/o img 53.61 54.15 53.36 53.15

demo w/ blank img 54.13 53.71 53.12 52.10
demo w/o query img 36.72 37.11 37.95 37.67

OK-VQA

standard 39.62 41.56 43.40 42.97
demo w/o img 40.98 42.86 44.61 43.91

demo w/ blank img 41.77 42.57 43.64 42.82
demo w/o query img 20.42 22.38 22.95 22.67

GQA

standard 36.32 37.74 38.28 37.85
demo w/o img 36.86 38.13 38.40 38.23

demo w/ blank img 37.63 37.73 38.36 38.03
demo w/o query img 29.39 30.24 31.23 31.41

MSCOCO

standard 91.22 96.88 99.44 100.53
demo w/o img 87.26 91.49 98.35 98.85

demo w/ blank img 89.25 93.88 97.91 96.91
demo w/o query img 3.57 4.30 4.90 4.85

Table 6: The performances of OF-9B on different visual demonstration settings given random se-
lected demonstrations.

Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 54.90 56.16 56.93 57.21
demo w/o img 53.66 54.57 55.41 55.34

demo w/ blank img 53.69 54.38 54.98 55.04
demo w/o query img 38.64 39.27 39.71 39.99

OK-VQA

standard 49.24 49.54 51.47 51.86
demo w/o img 47.63 48.28 48.74 48.99

demo w/ blank img 47.66 48.55 49.83 50.24
demo w/o query img 26.91 27.70 28.32 28.67

GQA

standard 39.35 40.54 41.38 41.87
demo w/o img 38.64 39.45 40.27 40.85

demo w/ blank img 38.36 39.94 40.71 41.36
demo w/o query img 31.82 32.47 33.12 33.50

MSCOCO

standard 97.45 101.85 102.96 105.62
demo w/o img 67.77 81.01 85.81 90.72

demo w/ blank img 88.75 92.27 95.49 96.83
demo w/o query img 2.86 3.14 3.05 3.02

Table 7: The performances of IDEFICS-9B on different visual demonstration settings given ran-
dom selected demonstrations.
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Figure 3: The ICL performance varies under different language demonstration settings. Performance
in different answer for same question can still be maintained (the light orange bar in each sub-figure).
However, performance significantly decreases in random question and random words as labels, as
depicted by the green and blue bars respectively.
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Dataset Method 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 53.60 53.85 53.60 52.74
RICES 54.17 54.67 55.39 55.77

RICES demo w/o img 54.38 55.46 55.56 55.71

OK-VQA
Random 39.62 41.56 43.40 42.97
RICES 42.00 43.87 44.70 46.15

RICES demo w/o img 42.23 44.94 46.20 46.65

GQA
Random 36.32 37.74 38.28 37.85
RICES 36.92 38.54 40.17 40.35

RICES demo w/o img 37.21 39.37 397.84 40.05

MSCOCO
Random 91.22 96.88 99.44 100.53
RICES 93.45 99.74 105.76 109.12

RICES demo w/o img 88.49 97.82 103.67 107.69

Table 8: The performances of OF-9B on different visual demonstration settings given demonstra-
tions selected by RICES.

Dataset Method 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 54.90 56.16 56.93 57.21
RICES 54.79 56.45 57.49 58.60

RICES demo w/o img 54.94 56.20 57.19 57.67

OK-VQA
Random 49.24 49.54 51.47 51.86
RICES 48.82 50.55 52.42 53.22

RICES demo w/o img 48.02 50.24 51.60 51.76

GQA
Random 39.35 40.54 41.38 41.87
RICES 39.86 41.27 43.01 43.67

RICES demo w/o img 39.33 41.15 42.44 43.41

MSCOCO
Random 97.45 101.85 102.96 105.62
RICES 91.20 102.58 108.93 111.03

RICES demo w/o img 64.15 73.62 79.45 84.92

Table 9: The performances of IDEFICS-9B on different visual demonstration settings given
demonstrations selected by RICES.
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Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 53.60 53.85 53.46 52.74
diff ans for same question 52.49 52.70 52.06 50.92

random question 41.48 33.94 27.93 20.03
random words as labels 3.59 0.03 0.00 0.00

OK-VQA

standard 39.62 41.56 43.40 42.97
diff ans for same question 39.63 41.23 42.41 42.44

random question 25.03 18.23 13.00 8.59
random words as labels 3.95 0.10 0.01 0.00

GQA

standard 36.23 35.92 37.29 34.38
diff ans for same question 36.38 37.25 37.75 37.58

random question 28.01 22.83 17.71 15.44
random words as labels 2.06 0.05 0.00 0.00

MSCOCO
standard 91.23 96.88 99.44 100.53

diff ans for same question 84.96 94.95 97.44 99.71
random words as labels 1.60 0.62 0.17 0.00

Table 10: The performances of OF-9B on different textual demonstration settings given random
selected demonstrations.

Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 54.90 56.16 56.93 57.21
diff ans for same question 54.10 55.21 56.15 57.01

random question 47.25 45.94 43.53 39.48
random words as labels 5.91 0.34 0.03 0.00

OK-VQA

standard 49.24 49.54 51.47 51.86
diff ans for same question 49.25 50.18 51.11 50.95

random question 38.41 34.04 30.08 29.53
random words as labels 7.38 1.33 0.30 0.11

GQA

standard 39.35 40.54 41.38 41.87
diff ans for same question 38.80 40.07 41.49 41.92

random question 33.65 33.61 32.13 30.04
random words as labels 3.14 0.27 0.02 0.03

MSCOCO
standard 97.45 101.85 102.96 105.62

diff ans for same question 84.12 64.83 52.70 53.38
random words as labels 0.00 0.00 0.00 0.00

Table 11: The performances of IDEFICS-9B on different textual demonstration settings given
random selected demonstrations.

ICL performance across these settings is displayed in Fig. 3. Compared to standard setting, differ-
ent answer for same question only marginally impacts performance, regardless of incorrect labels
related to the provided query image. This finding is consistent with the conclusion from previous
experiments, indicating that images have minimal influence on the outcomes. However, random
question leads to a significant drop in performance, and altering labels to random words drastically
reduces the performance to nearly zero, as seen in the last bar of each sub-figure. Performance of
OF-9B and IDEFICS-9B across 4 datasets given randomly selected demonstrations are presented
in Tab. 10 and Tab. 11. When compared to results in Fig. ??, changes in texts can severely affect ICL
performance. Hence, we conclude that in VLMs, in-context learning is primarily driven by textual
information, which shows a more substantial influence than images.
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Figure 4: Model block supporting interleaved image-text inputs. Visual and language information,
i.e., I and T , are first fused using a masked cross-attention layer, where each text token is only
conditioned on the last preceding image. Visual embeddings I1 and I2 from demonstration images
cannot directly influence query text embedding Tq, and Tq only sees Iq in the masked cross-
attention, as shown in the last row of Ac.

D UNDERSTANDING MULTIMODAL INFORMATION FLOW INSIDE MODEL

The empirical examination outlined in Sec. 2 highlights the dominant role of textual information in
ICL for VLMs, yet leaves several questions unanswered: 1) Why do the images in context demon-
strations barely affect the ICL performance? 2) Why is the query image still useful? 3) Why does the
textual information dominate the ICL ability? To fully investigate the underlying reasons, this sec-
tion delves into the model details to analyze the influence of both visual and language information
in the context demonstrations.

VLMs with ICL ability can handle interleaved text and visual sequences, making in-context few-shot
learning possible Alayrac et al. (2022). An illustration is presented in Fig. 4, with two demonstra-
tions and a query, each of which contains an image and corresponding text such as I1 and T1 in the
first demonstration. The masked cross-attention layer enables the language models to incorporate vi-
sual information for the next-token prediction. This layer also limits which visual tokens the model
sees at each text token. Specifically, at a given text token, the model only attends to the visual to-
kens of the last preceding image, rather than to all previous images in the interleaved sequence. For
example, text embedding Tq can only attend to the query image representation Iq in the masked
cross-attention layer, as shown in the last row of Ac in Fig. 4. Therefore, demonstration images
I1 and I2 cannot directly pass their visual information to the query text embedding Tq, as Tq is
limited to interacting with the query image representation Iq in the masked cross-attention layer.
Only in the subsequent self-attention layer can Tq indirectly access the information from I1 and I2
through the demonstration text embeddings T1 and T2. Because they have already processed the
visual information from I1 and I2 in the masked cross-attention layer. We argue that the masked
cross-attention mechanism with such per-image attention masking Alayrac et al. (2022) complicates
the realization of text tokens’ dependency on all previous images. In other words, relying solely on
the self-attention layer for transferring visual information to text tokens is difficult. Thus, in the ICL
settings, it is observed that the generated output tokens primarily focus on the latest image, i.e., the
query image. However, it largely disregards the visual information of the previous demonstration
images.
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and then average the results over the whole dataset.
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Figure 7: The left figure shows the cosine similarity between hidden states in the standard setting and
removing images in the demonstrations (blue bars). Grey bars are cosine similarity between standard
setting and removing query images. The right figure shows the similarity of the corresponding
attention weights in the last decoder layer. Omitting demonstration visual embeddings leads to
similar hidden states, but excluding query images increases their dissimilarity.

To verify our assumptions, we design experiments to compare the self-attention weights and self-
attention outputs of the language decoder block in the standard setting with two scenarios, i.e.,
with and without providing visual information in demonstrations. If the combination of masked
cross-attention across modalities and the self-attention on text tokens maintains the dependency
on previous images, excluding visual information from previous demonstration images will lead
to different attention behaviors, e.g., different attention weights and hidden states. Otherwise, if
the weights and hidden states remain almost the same after removing visual information in the
demonstration examples, it indicates that the model does not much attend to previous demonstration
images. Specifically, we have devised three settings.

• standard refers to the original ICL setting where visual embeddings in demonstrations and
queries are retained.

• hide demo visual embedding describes the case where the visual embeddings from demon-
stration images are masked and the model can only see the images from the query, as shown
in the left side of Fig. 5.

• hide query visual embedding refers the case where the visual embeddings from query
images are masked, as shown in the right side of Fig. 5.

To examine the varying effects of visual embeddings in demonstrations and queries, we can compare
the hidden states and attention weights in the last layer. In particular, we extract the last row of the
hidden states (referred to as TL

q in Fig. 6) and the attention weights in the last layer. We then
compute the cosine similarity between these extracted values and their counterparts in the standard
setting. we compute the cosine similarity on the last row of hidden states and attention weights
in the last decoder layer for each generation forward and then average the results over the whole
dataset. To remove the visual information in the demonstration, we mask the visual embeddings of
the demonstration images, such as I1 and I2, in demonstrations by setting the corresponding weights
to 0 and keeping the query image embedding Iq.

Fig. 7 presents the results. The removal of demonstration visual embeddings leads to around 90%
similar hidden states whereas excluding query images makes the hidden states much more dissimilar.
These differences in similarity confirm our assumption and analysis above. They further highlight
the insignificance of demonstration images when applying in-context learning to existing vision-
language models.

In summary, this section explores the information flow in the masked cross-attention layers in VLMs
and assesses the impact of the visual information in the demonstrations. The analysis reveals that:
1) Image embeddings from demonstrations do not directly contribute to the attention computation
for the answer generation, thus, they have a minimal effect on the ICL performance. 2) However,
query image embeddings directly connect with the answer token embeddings, making these images
valuable. 3) Textual information from demonstrations can directly influence the generated answer
embeddings during the self-attention process, exhibiting a significant influence on model generation.
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In-context demonstration selected by similar images

Model Completion

In-context demonstration selected by MMICES

Model Completion

Query

Pizza Hut.

What is a famous chain that 
might serve this?

What kind of pizza is this? 
Supreme

What geometry shape is this? 
Circle

What restaurant sells this? 
Fast food

Where did they get this pizza?
Domino

Italy.

Query

What is a famous chain that 
might serve this?

Figure 8: Demonstrations selected by similar images (the first row) and selected by MMICES (the
second row) given the same query. Demonstrations containing similar images do not necessarily
include related textual information to the given query. MMICES considers both visual and language
modalities during retrieval and can provide more informative demonstrations for ICL.

E MORE RESULTS ON THE ICL PERFORMANCE IMPROVEMENT

E.1 MORE RESULTS

Algorithm 1: MMICES
Input: query dataset Q, support dataset S, vision encoder

Ev , text encoder Et, K, N
Output: context demonstrations C chosen from S for Q

1 Initialization: C ← [];
2 for query q ∈ Q do
3 vq ← Ev(q) ;
4 tq ← Et(q) ;
5 visual similar samples← choose K most similar samples

from S based on vq ;
6 demos← choose N most similar demos from visual

similar samples based on tq ;
7 C += demos ;
8 end

We have conducted experiments us-
ing various models and VL datasets,
which are listed in Table 2 and Ta-
ble 3. The results, based on all
models, are obtained from demon-
strations selected using random se-
lection, RICES, and MMICES, and
are presented in Table 12 to Ta-
ble 18. Overall, MMICES outper-
forms the other two methods and
achieves the best results in most
cases. Tab. 22 presents examples se-
lected by MMICES and RICES.

E.2 ABLATION STUDY

The choices of K. The number of
pre-filtered samples, denoted as K, selected by visual similarity is a hyperparameter in MMICES.
A larger value of K allows for a broader selection space for the second filtering stage, while a
smaller value of K is more efficient. The performance comparison for different values of K (k ∈
{50, 100, 200, 300}) is presented in Table 19. A larger K results in a greater number of candidate
demonstrations filtered by visual similarity, which is particularly useful when the number of shots is
small. However, a larger K may also include visual-unrelated demonstrations despite having similar
text, potentially leading to a negative impact on performance.

Textual information on image captioning. MMICES considers both visual and textual information
when selecting demonstrations. It chooses demonstrations that have both similar images and similar
texts. However, in the task of image captioning, the textual information in the queries cannot be
directly used as the desired response. To obtain the desired textual information, MMICES first uses
the generated captions from the in-context learning setting with randomly selected demonstrations.
It then further selects similar demonstrations. The performance comparison for different shot num-
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Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 43.45 (0.16) 44.79 (0.12) 45.05 (0.05) 45.30 (0.17) 45.64 (0.20)
RICES 43.45 (0.16) 44.64 (0.09) 45.71 (0.12) 46.30 (0.03) 47.48 (0.05)

MMICES 43.45 (0.16) 47.00 (0.06) 48.46 (0.07) 49.50 (0.06) 49.68 (0.03)

OK-VQA
Random 28.18 (0.25) 30.46 (0.29) 30.29 (0.50) 31.40 (0.25) 31.40 (0.44)
RICES 28.18 (0.25) 30.89 (0.09) 32.47 (0.04) 33.97 (0.12) 34.85 (0.04)

MMICES 28.18 (0.25) 35.34 (0.19) 37.41 (0.01) 38.00 (0.13) 38.23 (0.09)

GQA
Random 28.70 (0.22) 30.57 (0.09) 32.31 (0.19) 33.49 (0.30) 33.33 (0.10)
RICES 28.70 (0.22) 30.96 (0.06) 32.69 (0.20) 34.08 (0.11) 35.02 (0.04)

MMICES 28.70 (0.22) 37.70 (0.06) 38.49 (0.10) 38.85 (0.17) 38.37 (0.16)

MSCOCO
Random 75.14 (0.69) 76.48 (0.50) 82.01 (0.35) 86.52 (1.00) 90.53 (0.42)
RICES 75.14 (0.69) 90.30 (0.09) 97.38 (0.36) 102.91 (0.26) 105.62 (0.10)

MMICES 75.14 (0.69) 99.21 (0.23) 103.42 (0.35) 106.94 (0.21) 109.19 (0.31)

Table 12: The performances of random selection, RICES, and MMICES on OF-3B. The highest
performance in each shot scenario is highlighted in bold. The results are averaged over 5 evalua-
tion seeds and are reported along with their standard deviations. The performance metric for the
MSCOCO dataset is CIDEr, while for the remaining datasets, accuracy is reported in percentages.
MMICES achieves the best performance in all settings on all datasets.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 43.55 (0.18) 45.54 (0.12) 45.77 (0.19) 45.71 (0.15) 45.05 (0.19)
RICES 43.55 (0.18) 45.06 (0.09) 45.41 (0.07) 45.65 (0.04) 46.11 (0.12)

MMICES 43.55 (0.18) 48.41 (0.01) 48.38 (0.05) 48.96 (0.05) 48.86 (0.04)

OK-VQA
Random 29.07 (0.17) 31.26 (0.44) 31.85 (0.10) 32.08 (0.20) 31.37 (0.12)
RICES 29.07 (0.17) 32.30 (0.11) 33.76 (0.14) 34.52 (0.07) 35.51 (0.03)

MMICES 29.07 (0.17) 37.10 (0.13) 38.65 (0.09) 39.04 (0.10) 38.24 (0.03)

GQA
Random 29.68 (0.17) 32.07 (0.06) 33.43 (0.30) 33.75 (0.24) 33.18 (0.28)
RICES 29.68 (0.17) 30.96 (0.06) 33.27 (0.26) 34.17 (0.15) 34.36 (0.08)

MMICES 29.68 (0.17) 37.72 (0.11) 38.64 (0.06) 38.58 (0.03) 38.25 (0.15)

MSCOCO
Random 75.10 (0.24) 82.11 (0.68) 86.14 (0.39) 90.17 (0.46) 92.86 (0.44)
RICES 75.10 (0.24) 92.43 (0.23) 99.36 (0.23) 104.48 (0.33) 106.88 (0.21)

MMICES 75.10 (0.24) 100.43 (0.14) 104.82 (0.13) 107.61 (0.18) 109.44 (0.25)

Table 13: The performances of random selection, RICES, and MMICES on OF-3BI. MMICES
achieves the best performance in all settings on all datasets.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 44.05 (0.20) 47.74 (0.24) 47.10 (0.04) 44.32 (0.12) 41.88 (0.25)
RICES 44.05 (0.20) 47.70 (0.04) 46.68 (0.18) 44.91 (0.07) 42.86 (0.08)

MMICES 44.05 (0.20) 48.89 (0.04) 48.61 (0.09) 46.45 (0.07) 43.73 (0.06)

OK-VQA
Random 31.31 (0.32) 35.01 (0.25) 33.87 (0.20) 29.04 (0.16) 27.09 (0.29)
RICES 31.31 (0.32) 34.97 (0.16) 33.41 (0.07) 29.47 (0.09) 28.79 (0.08)

MMICES 31.31 (0.32) 37.46 (0.09) 37.20 (0.10) 33.99 (0.12) 30.23 (0.05)

GQA
Random 27.16 (0.01) 31.45 (0.35) 33.07 (0.25) 33.17 (0.33) 32.64 (0.13)
RICES 27.16 (0.01) 31.38 (0.24) 33.68 (0.18) 34.58 (0.25) 34.42 (0.19)

MMICES 27.16 (0.01) 38.54 (0.16) 39.53 (0.13) 39.31 (0.12) 37.22 (0.11)

MSCOCO
Random 76.45 (0.65) 81.41 (0.19) 90.48 (0.35) 92.83 (0.66) 93.72 (0.61)
RICES 76.45 (0.65) 89.25 (0.17) 96.60 (0.24) 102.70 (0.20) 105.14 (0.05)

MMICES 76.45 (0.65) 98.61 (0.17) 102.56 (0.13) 105.66 (0.04) 105.89 (0.21)

Table 14: The performances of random selection, RICES, and MMICES on OF-4B. MMICES
achieves the best performance in all settings on all datasets.
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Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 45.55 (0.29) 47.74 (0.11) 46.20 (0.15) 44.01 (0.23) 46.33 (0.14)
RICES 45.55 (0.29) 48.24 (0.08) 46.27 (0.12) 44.32 (0.13) 47.55 (0.12)

MMICES 45.55 (0.29) 49.03 (0.04) 48.22 (0.07) 47.42 (0.03) 48.85 (0.05)

OK-VQA
Random 32.15 (0.21) 34.56 (0.31) 33.73 (0.27) 31.61 (0.15) 34.29 (0.62)
RICES 32.15 (0.21) 34.86 (0.05) 34.40 (0.09) 32.52 (0.13) 36.73 (0.06)

MMICES 32.15 (0.21) 38.14 (0.07) 38.23 (0.16) 36.08 (0.09) 37.32 (0.14)

GQA
Random 28.42 (0.07) 32.10 (0.23) 33.53 (0.32) 34.32 (0.25) 35.53 (0.29)
RICES 28.42 (0.07) 32.59 (0.08) 34.51 (0.25) 35.19 (0.15) 37.07 (0.10)

MMICES 28.42 (0.07) 38.61 (0.09) 39.48 (0.16) 39.73 (0.13) 39.56 (0.06)

MSCOCO
Random 80.30 (0.15) 85.97 (0.46) 91.71 (0.12) 96.70 (0.19) 98.06 (0.31)
RICES 80.30 (0.15) 92.67 (0.08) 101.38 (0.15) 105.75 (0.13) 108.22 (0.05)

MMICES 80.30 (0.15) 100.59 (0.07) 105.16 (0.22) 108.08 (0.10) 107.96 (0.20)

Table 15: The performances of random selection, RICES, and MMICES on OF-4BI. MMICES
achieves the best performance in most cases.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 51.38 (0.17) 53.52 (0.11) 53.74 (0.19) 53.33 (0.26) 52.38 (0.10)
RICES 51.38 (0.17) 54.03 (0.13) 54.67 (0.06) 55.39 (0.12) 55.77 (0.08)

MMICES 51.38 (0.17) 53.11 (0.03) 53.56 (0.05) 54.04 (0.04) 55.14 (0.02)

OK-VQA
Random 37.62 (0.39) 39.62 (0.29) 41.56 (0.20) 43.40 (0.39) 42.97 (0.11)
RICES 37.62 (0.39) 42.13 (0.13) 43.87 (0.15) 44.90 (0.10) 46.15 (0.06)

MMICES 37.62 (0.39) 44.18 (0.11) 45.61 (0.08) 46.93 (0.08) 46.79 (0.10)

GQA
Random 34.04 (0.19) 36.32 (0.29) 37.74 (0.32) 38.28 (0.10) 37.85 (0.11)
RICES 34.04 (0.19) 36.92 (0.33) 38.54 (0.14) 40.16 (0.14) 40.21 (0.32)

MMICES 34.04 (0.19) 40.73 (0.09) 41.85 (0.10) 42.21 (0.12) 42.07 (0.08)

MSCOCO
Random 79.52 (0.31) 89.82 (0.23) 96.81 (0.10) 99.44 (0.19) 100.53 (0.26)
RICES 79.52 (0.31) 93.45 (0.07) 99.74 (0.27) 105.76 (0.03) 109.12 (0.20)

MMICES 79.52 (0.31) 100.24 (0.20) 104.90 (0.3) 108.66 (0.17) 109.64 (0.24)

Table 16: The performances of random selection, RICES, and MMICES on OF-9B. MMICES
achieves the best performance in most cases.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 52.59 (0.30) 54.90 (0.05) 56.16 (0.02) 56.93 (0.18) 57.21 (0.17)
RICES 52.59 (0.30) 54.79 (0.09) 56.45 (0.05) 57.49 (0.06) 58.52 (0.02)

MMICES 52.59 (0.30) 56.15 (0.01) 58.17 (0.03) 59.23 (0.01) 59.69 (0.02)

OK-VQA
Random 44.77 (0.22) 49.24 (0.22) 49.54 (0.12) 50.89 (0.12) 51.86 (0.12)
RICES 44.77 (0.22) 48.82 (0.02) 50.55 (0.05) 52.42 (0.03) 53.22 (0.04)

MMICES 44.77 (0.22) 49.63 (0.02) 52.16 (0.03) 53.65 (0.07) 54.16 (0.05)

GQA
Random 36.45 (0.22) 39.35 (0.26) 40.54 (0.17) 41.38 (0.18) 41.87 (0.13)
RICES 36.45 (0.22) 39.86 (0.13) 41.27 (0.29) 42.65 (0.21) 43.67 (0.19)

MMICES 36.45 (0.22) 42.66 (0.05) 44.22 (0.08) 45.19 (0.05) 45.36 (0.09)

MSCOCO
Random 48.61 (0.52) 96.45 (0.36) 100.85 (0.36) 103.96 (0.38) 105.02 (0.43)
RICES 48.61 (0.52) 91.20 (0.10) 102.58 (0.15) 108.93 (0.10 111.02 (0.08)

MMICES 48.61 (0.52) 101.13 (0.12) 109.31 (0.09) 112.72 (0.05) 113.37 (0.09)

Table 17: The performances of random selection, RICES, and MMICES on IDEFICS-9B.
MMICES achieves the best performance in all cases.
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Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 62.99 (0.03) 63.94 (0.13) 64.43 (0.14) 64.64 (0.10) 64.87 (0.09)
RICES 62.99 (0.03) 64.13 (0.08) 64.69 (0.03) 65.11 (0.05) 65.22 (0.03)

MMICES 62.99 (0.03) 63.51 (0.13) 64.46 (0.04) 65.26 (0.04) 65.50 (0.02)

OK-VQA
Random 46.18 (0.17) 48.78 (0.48) 49.92 (0.16) 51.18 (0.20) 51.41 (0.12)
RICES 46.18 (0.17) 49.80 (0.03) 51.32 (0.02) 52.42 (0.05) 53.35 (0.03)

MMICES 46.18 (0.17) 51.65 (0.08) 53.21 (0.03) 53.89 (0.03) 54.14 (0.01)

GQA
Random 41.83 (0.21) 43.99 (0.20) 45.70 (0.16) 46.39 (0.08) 46.89 (0.17)
RICES 41.83 (0.21) 44.79 (0.18) 45.63 (0.07) 46.57 (0.16) 46.82 (0.06)

MMICES 41.83 (0.21) 46.33 (0.12) 47.51 (0.09) 47.87 ( 0.13) 48.47 (0.11)

MSCOCO
Random 124.15 (0.63) 132.80 (0.63) 133.02 (0.39) 132.23 (0.37) 132.93 (0.32)
RICES 124.15 (0.63) 124.97 (0.11) 126.84 (0.10) 127.85 (0.10) 128.76 (0.08)

MMICES 124.15 (0.63) 125.42 (0.12) 128.50 (0.09) 129.71 (0.06) 130.55 (0.09)

Table 18: The performances of random selection, RICES, and MMICES on IDEFICS-9BI.
MMICES achieves the best performance in most cases.

Dataset K 4-shot 8-shot 16-shot 32-shot

GQA

50 39.43 40.50 40.99 40.48
100 40.72 41.15 41.89 41.09
200 40.73 41.85 42.21 42.07
300 40.76 41.63 42.28 42.20

OK-VQA

50 43.46 45.79 47.48 47.21
100 43.40 45.72 46.50 47.17
200 44.18 45.61 46.93 46.79
300 44.21 45.66 46.00 46.79

Table 19: Performance of MMICES given different K.

bers is shown in Tab. 20. MMICES achieves the best performance when using generated captions
based on the 4-shot setting.

Different Choice of Modality Mixture. Compared to RICES, which only compares image similar-
ity, MMICES considers both visual and language modalities. We also investigate the performance of
ICL when examples are retrieved using only text similarity (referred to as text), and when retrieved
by first comparing language and then selecting based on image similarity (referred to as text-image).
Full results are presented in Table 21. Factoring in both modalities consistently improves ICL per-
formance compared to selecting based solely on one modality.

ICL Setting 4-shot 8-shot 16-shot 32-shot
Random 89.82 96.81 99.44 100.53
RICES 93.45 99.74 105.76 109.12

MMICES given Random
0-shot 95.31 100.53 105.06 107.90
4-shot 97.72 102.81 107.37 110.15
8-shot 99.90 104.95 108.20 110.31
16-shot 100.08 104.82 109.11 110.26
32-shot 100.24 104.90 108.66 109.64

Table 20: MMICES on MSCOCO with generated captions from ICL with randomly selected demon-
strations. Based on results with 0-shot, MMICES obtain better results in r-shot and 8-shot settings.
Given generated captions with 4-shot, MMICES achieves the best results in all settings.
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Data Method 4-shot 8-shot 16-shot 32-shot

VQAv2

Random 53.52 53.74 53.33 52.38
RICES 54.03 54.67 55.39 55.77

text 47.71 47.46 47.49 47.83
text-image 50.27 50.37 49.84 50.56
MMICES 53.11 53.56 54.04 55.14

OK-VQA

Random 39.62 41.56 43.40 42.97
RICES 42.13 43.87 44.90 46.15

text 42.80 43.54 44.01 44.07
text-image 43.61 45.53 45.01 45.50
MMICES 44.18 45.61 46.93 46.79

GQA

Random 36.32 37.74 38.28 37.85
RICES 36.92 38.54 40.16 40.21

text 39.18 40.68 41.59 41.58
text-image 40.93 42.12 42.70 42.63
MMICES 40.73 41.85 42.21 42.07

COCO

Random 89.82 96.81 99.44 100.53
RICES 93.45 99.74 105.76 109.12

text 99.84 102.88 105.57 106.52
text-image 100.72 104.93 106.97 108.56
MMICES 100.24 104.90 108.66 109.64

Table 21: Performance with different modality mixture. RICES compares image similarity. text only
considers text similarity. text-image selects demonstrations by first comparing language similarity
and then comparing image similarity.

F ADDITIONAL EXPERIMENTAL ANALYSIS

This study has conducted extensive experiments on various vision-language models, using different
sizes, backbone language models, and pre-training datasets (as shown in Tab. 2). This section further
discusses our observations and findings for these different models.

Experiments across models with different sizes. The ICL performance of different sizes of Open-
Flamingo models is presented in Fig. 9 to Fig. 11. MMICES consistently improves the ICL perfor-
mance on these datasets across various model sizes. Larger models, such as OF-9B, demonstrate
better performance compared to smaller models, particularly in visual question answering (Fig. 9)
and visual reasoning (Fig. 10). It is worth noting that MMICES achieves better performance on
smaller-size models compared to larger-size models using RICES and random selection, especially
in the 4 and 8-shot settings.

Experiments across different models. The performance gained from MMICES is consistent across
different models, as shown in Fig. 12 to Fig. 14. IDEFICS achieves better performance compared to
OpenFlamingo, and this difference can be attributed to the use of different pre-training datasets and
language models in these two models Laurençon et al. (2023).

Impact of Underlying Vision-language Models. This study has also conducted extensive exper-
iments on different vision-language models with varying sizes. Fig. 16 presents a performance
comparison on the GQA dataset across models from OF-3B to OF-9B. MMICES consistently out-
performs random selection and RICES by a notable margin. It is worth mentioning that MMICES on
smaller-size models can achieve better performance, compared to larger-size models using RICES
and random selection, especially in 4 and 8-shot settings. Moreover, the performance gained from
MMICES is consistent across different models as shown in Fig. 17.

Ablation Study. The number of pre-filtered samples, i.e., K defined in Alg. 1, selected by visual
similarity is a hyperparameter in MMICES. Besides different K, as MMICES considers both visual
and language modalities, we also investigate the ICL performance when the examples are retrieved
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Figure 9: The performance of ICL (on OK-VQA) is consistently enhanced by MMICES on Open-
Flamingo with different sizes.
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Figure 10: The performance of ICL (on GQA) is consistently enhanced by MMICES on Open-
Flamingo with different sizes.
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Figure 11: The performance of ICL (on COCO) is consistently enhanced by MMICES on Open-
Flamingo with different sizes.
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Figure 12: The performance of ICL (on OK-VQA) is consistently enhanced by MMICES across
different models.
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Figure 13: The performance of ICL (on GQA) is consistently enhanced by MMICES across different
models.
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Figure 14: The performance of ICL (on COCO) is consistently enhanced by MMICES across dif-
ferent models.
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Figure 15: Comparison of performance on OK-VQA given different K (left) and different mixture
of modality (right).
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Figure 16: MMICES consistently enhances the ICL performance across models of varying sizes.
MMICES on smaller models can even outperform RICES on larger models. Results here are from
GQA and more results are in Appendix. E.

only by text similarity (termed as text), and when retrieved by first comparing language and then se-
lecting based on image similarity (termed as text-image). Fig. 15 shows the performance comparison
on OK-VQA. A larger K leads to more candidate demonstrations filtered by visual similarity and
is more useful when the number of shots is small. Regarding the mixture of modalities, the results
are consistent with our analysis in Sec. 3. Retrieval based on a single modality, such as RICES on
visual and text, underperforms mixed modality retrieval. Besides, MMICES consistently achieves
better results compared to text-image (more analysis in Appendix. F).
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Query Method Demo 1 Demo 2 Demo 3 Model Generation

Who makes the guitar on the wall?

MMICES

Who makes the luggage in this room?
samsonite

Who invented the device pictured?
steve job

Who manufactures this bag?
ll bean

fender

RICES

What kind of suitcase is this?
carry on

Where can you buy these luggages?
walmart

What items would you typically find in these bags?
cloth

yamaha

Name the material used to make this umbrella
shown in this picture?

MMICES

What material are the umbrellas made of?
straw

What is the pattern on the umbrella?
striped

What do you call this type of window covering?
blind

plastic

RICES

What causes high and low tides?
moon

What is the orange triangle in the road called?
cone

When is it bad luck to open the black and pink object in the photo?
inside

rubber

What were they fixing?

MMICES

What happened here?
accident

What safety precaution did both of these people take?
helmet

What is being done on this road?
construction

power line

RICES

What purpose does the white and red striped bar in the picture serve?
stop traffic

Is this person crossing illegally or legally?
legally

What is the job title for the man pictured here?
electrician

light pole

What food item do you think this ornament resembles?

MMICES

What food is this?
carrot cake

What food is this?
cake

What food is this?
candy apple

donut

RICES

What can this make you become if you eat a lot of it?
fat

What type of computer is shown in this image?
desktop

What are donuts topped with?
ice

cookie

What is the purpose of the elephant here?

MMICES

What is the elephant doing?
paint

Why does the elephant go to the water?
thirsty

Why are they riding an elephant?
for fun

decoration

RICES

What country was this photograph taken in?
thailand

How tall do these animals typically grow to be?
11 feet

When was this type of vehicle with two equal sized wheels invented?
1850

park meter

What color is the taxi?

MMICES

What is the name of the body style of the grey vehicle?
minivan

What make and model is the car pictured?
toyota avalon

What liquid makes the vehicle in the picture move?
gasoline

yellow

RICES

What is the use of that pink object over her head?
keep dry

What photo technique is being used?
sephia

Who invented the blue item in this picture?
samuel fox

black

Name a metal shown?

MMICES

What is the silver tool called?
tong

What type of jewelry uses a term similar to one of these veggies?
carrot

Which of these items depicted grows underground?
potato

stainless steel

RICES

When would i eat this?
dinner

How is the the meat in this dish prepared?
grilled

What food group is mostly represented?
meat

copper

What do these animals eat?

MMICES

What do these animals eat?
plant

What do you feed these animals?
hay

What is a staple of the diet of these animals?
fish

grass

RICES

What type of food does this animal eat?
berry

What is a staple of the diet of these animals?
fish

what do these animals do in the winter?
hibernate

berry

Table 22: Examples of demonstrations selected by MMICES and RICES on OK-VQA. Model gen-
erations in green are correct and red means wrong prediction.
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Figure 17: The performance of ICL (on OK-VQA) is consistently enhanced by MMICES across
different models.
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