
Under review as submission to TMLR

Conditional Density Estimations from
Privacy-Protected Data

Anonymous authors
Paper under double-blind review

Abstract

Many modern statistical analysis and machine learning applications require training models
on sensitive user data. Under a formal definition of privacy protection, differentially private
algorithms inject calibrated noise into the confidential data or during the data analysis
process to produce privacy-protected datasets or queries. However, restricting access to
only privatized data during statistical analysis makes it computationally challenging to
make valid statistical inferences. In this work, we propose simulation-based inference
methods from privacy-protected datasets. In addition to sequential Monte Carlo approximate
Bayesian computation, we adopt neural conditional density estimators as a flexible family
of distributions to approximate the posterior distribution of model parameters given the
observed private query results. We illustrate our methods on discrete time-series data
under an infectious disease model and with ordinary linear regression models. Illustrating
the privacy-utility trade-off, our experiments and analysis demonstrate the necessity and
feasibility of designing valid statistical inference procedures to correct for biases introduced
by the privacy-protection mechanisms.

1 Introduction

Motivation. Many AI systems require collecting and training on massive amounts of personal information
(such as income, disease status, location, purchase history, etc.). Despite unprecedented data collection efforts
by companies, governments, researchers, and other agencies, oftentimes, data collectors have to lock the
data inside their own database due to privacy concerns. Differential privacy (DP) provides a mathematical
definition for the protection of individual data. Under this framework, privacy-protecting procedures (i.e., DP
algorithms) have enabled data collectors, such as tech companies, the US Census Bureau, and social scientists,
to share research data in a wide variety of settings while protecting the privacy of individual users. Privacy
researchers typically collect confidential data and then inject calibrated random noise into the confidential
data to achieve the desired levels of privacy protection. Some algorithms aim for DP data analysis, resulting
in DP optimizations (Arora et al., 2023; Bassily et al., 2021), approximations (Chaudhuri et al., 2013; Bie
et al., 2023), or predictions (Rho et al., 2023); while other algorithms produce DP datasets (or descriptive
statistics), which enables data sharing across research teams and entities. Examples of the latter include the
2020 US Census (Abowd et al., 2022; Gong et al., 2022; Drechsler, 2023), the Facebook URL dataset (Evans
& King, 2023), and New York Airbnb Open Data (Guo & Hu, 2023). Our work tackles this data-sharing
regime: we aim to make valid statistical inference with privatized data, and we place a special focus on using
complex models such as continuous-time Markov jump processes.

Although the DP data-sharing regime corrupts confidential information in order to satisfy privacy, since
the probabilistic design of such mechanisms can be publicly known, in principle analysts can still conduct
reliable estimation and uncertainty quantification by accounting for bias and noises introduced during
privatization. However, in practice, valid inference based on privatized data is a challenge that requires the
revision of existing statistical methods designed originally for confidential data (Foulds et al., 2016). Even for
well-understood procedures such as ordinary linear regression and generalized linear models, adding the extra
layer of privacy protection has introduced new theoretical and methodological questions in statistics (Cai
et al., 2021; Alabi & Vadhan, 2022; Li et al., 2023; Barrientos et al., 2019).
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However, for complex models, even the confidential data likelihood functions are intractable or time-consuming
to compute. Accounting for privacy noise on top of that is a formidable challenge. Without developing
valid inference procedures under this regime, we must either make biased estimations or restrict ourselves to
simple models. In this work, we propose methods to estimate the parameters of complex models that underlie
privacy-protected data.

Related works. There is a fast-growing literature on statistical inference under differential privacy. We point
out several Bayesian inference methods from privatized data. Markov Chain Monte Carlo (MCMC) methods
have been proposed in some specific models and priors, such as exponential family distributions (Bernstein &
Sheldon, 2018) and Bayesian linear regression (Bernstein & Sheldon, 2019). As for generic algorithms, Ju
et al. (2022) proposed a data-augmentation MCMC strategy to overcome the intractable marginal likelihood
resulting from privatization, and Gong (2022) derived point estimates of the posterior distribution using
the Expectation-Maximization algorithm. Several frequentist inference methods have also been developed.
Karwa et al. (2015) employed a parametric bootstrap method to construct confidence intervals for the model
parameters of the log-linear model. Awan & Wang (2023) proposes simulation-based inference methods for
hypothesis testing and confidence intervals.

To the best of our knowledge, only two papers (Waites & Cummings, 2021; Su et al., 2023) have incorporated
normalizing flows (Kobyzev et al., 2020; Papamakarios et al., 2021) and DP, and both works design DP-
versions of normalizing flow. In contrast, our work uses flow-based methods as a neural density estimation
tool to analyze DP-protected data.

Our contributions. In this work, we propose several likelihood-free inference methods that make statistical
inferences from privacy-protected data. First, we highlight that sequential Monte Carlo approximate
Bayesian computation (SMC-ABC) can be used for this purpose, which improves the current practice of
using ABC (Gong, 2022). Next, we propose SPPE and SPLE, two sequential neural density estimation
methods using neural networks as a flexible family of distributions to approximate the private data posterior
distribution. Unlike likelihood-based methods to learn from private data, SMC-ABC, SPPE, and SPLE
require only simulations from a generative model for confidential data, and hence are more flexible. We
demonstrate the efficiency and utility of our methods on an infectious disease model using synthetic and
several real disease outbreak data. We also propose a privacy mechanism for the release of the infection curve.
Our experiments also demonstrate the privacy-utility trade-off in linear regression.

2 Background and challenges

Let θ ∈ Θ be the model parameter and x = (x1, · · · , xn) ∈ Xn represent the confidential database, containing
a total of n records. We model the database with some likelihood function f(x | θ). This confidential data
model can be a ‘simulator’ whose likelihood can be impossible to compute. Without privacy concerns, our
objective is to perform inference with the posterior distribution π(θ | xo) ∝ π(θ)f(xo | θ), where xo is some
observed sample and π(θ) is the prior. Our work studies posterior inference under the constraint of DP,
where we must learn about xo through some DP query result sdp instead of through xo directly.

Differential privacy. Given confidential data x, let η be a randomized algorithm to produce a ‘differentially
private statistic’ sdp from x. We also use η(sdp | x) to denote the conditional density of the private output sdp
given the confidential data x. Intuitively, a procedure is private when perturbing one individual’s response
in the dataset leads to only a small change in the algorithm’s outcome. This is characterized by the ϵ-DP
definition from Dwork et al. (2006), based on neighboring databases.
Definition 1 (ϵ-DP). A randomized algorithm η satisfies ϵ-DP if for all possible values of sdp and for all
pairs of ‘neighboring’ databases (x, x′) ∈ Xn × Xn, which are databases differing by only one record [denoted
by d(x, x′) ≤ 1], the following probability ratio is bounded:∫

A
η(sdp | x) dsdp∫

A
η(sdp | x′) dsdp

≤ exp(ϵ), ∀A ⊆ Image(η). (1)
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The parameter ϵ is referred to as the privacy loss budget, and it plays a pivotal role in determining the extent
to which sdp discloses information about x: Larger values of ϵ correspond to reduced privacy guarantees,
whereas ϵ = 0 signifies perfect privacy.

Output perturbation methods achieve privacy by first computing a query s : Xn → S (such as mean, median,
histogram, contingency tables) of the database and then releasing s(x) with added noise. To satisfy ϵ-DP, the
query s must have finite sensitivity.
Definition 2 (Global sensitivity (Nissim et al., 2007)). The Lp sensitivity of a function s, denoted ∆p(s), is
the maximum Lp-norm change in the function’s value between neighboring databases x and x′, namely

∆p(s) = max
d(x,x′)=1

∥s(x)− s(x′)∥p .

A common output perturbation technique is the Laplace mechanism.
Proposition 3 (Laplace mechanism (Dwork et al., 2006)). For a real-valued query s : Xn → S, adding
zero-centered Laplace noise with parameter ∆1(s)/ϵ achieves ϵ-DP.

Chaudhuri et al. (2013) provides a multivariate version of the Laplace mechanism. Other mechanisms include
the exponential mechanism and the Gaussian mechanism (Liu, 2018). There are also relaxations of ϵ-DP,
such as (ϵ, δ)-DP and Gaussian DP (Dong et al., 2022).

Since many queries are embedded in lower dimensional spaces than the confidential data, this might facilitate
efficient computations. In Section 3.3, we leverage the low dimensionality of sdp by incorporating quasi-Monte
Carlo techniques.

Intractable likelihood and posterior. A key challenge with data analysis on privatized data is the
intractable private data marginal likelihood.

f(sdp | θ) =
∫
Xn

f(x | θ)η(sdp | x)dx. (2)

When the confidential data likelihood f(x | θ) can be evaluated, Ju et al. (2022) proposed a data-augmentation
MCMC algorithm to approximate the doubly-intractable private data posterior

π(θ | sdp) ∝ f(sdp | θ)π(θ). (3)

The data augmentation strategy circumvents the intractability of evaluating equation 2 by working with
the joint posterior distribution p(θ, x | sdp) ∝ f(x | θ)π(θ)η(sdp | x) instead of the marginal posterior in
equation 3.

In this work, we study the challenging scenarios when the confidential likelihood f(x | θ) is intractable. This
situation is ‘triply intractable’, as there are three levels of intractability in f(x | θ), f(sdp | θ), and π(θ | sdp).

Likelihood-free inference. For complex confidential data generating processes (Gourieroux et al., 1993;
Brehmer et al., 2020), several studies have trained conditional density estimators to perform likelihood-free
inference. Recent advances have embraced the use of neural networks, in particular, normalizing flows (Dinh
et al., 2017; Papamakarios et al., 2017; Durkan et al., 2019; Papamakarios et al., 2021) as a highly flexible
family of conditional densities.

Here, we review neural density approximations on the confidential data posterior; proposed methods for
private data posterior are presented in Section 3. We train some neural density estimator from some variational
family {qϕ(θ | x)}ϕ to approximate the target posterior distribution π(θ | xo) with the ideal loss function
ϕ̂ = arg minϕ Ep(θ,x) [− log qϕ(θ | x)] where p(θ, x) = π(θ)f(x | θ). Since the expectation is intractable due to
complex f(x | θ), training is performed on sample-based approximations of the integral, and one can design
sequential training procedures (Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019) to improve its efficiency. Besides posterior density approximation, other neural density approaches
include approximating likelihood functions (Papamakarios et al., 2019) or likelihood ratios (Miller et al.,
2022). We refer the readers to (Cranmer et al., 2020; Lueckmann et al., 2021) for systematic reviews on this
topic. Finally, simulation-based inference under model misspecification has recently been studied in (Ward
et al., 2022; Kelly et al., 2023).
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3 Methods

First and foremost, we recognize that SMC-ABC methods are viable solutions to approximate the private
data posterior, as long as the privacy mechanism is publicly known and can be replicated by the data analyst.
In Section 4, we will use SMC-ABC as a baseline to test and validate our methods.

Next, we focus on two neural density approximation methods that leverage state-of-the-art simulation-based
inference methods and can be more efficient than the SMC-ABC baseline. We present two complementary
approaches: a) approximate the private data marginal likelihood f(sdp | θ) in equation 2 and b) approximate
π(θ | sdp) from equation 3 directly.

3.1 Private data likelihood estimation

Our first strategy is to approximate the private data marginal likelihood f(sdp | θ) with a neural likelihood
estimator qϕ(sdp | θ). When training qϕ(sdp | θ) ≈ f(sdp | θ), we aim to minimize their average KL divergence
under the prior π(θ), corresponding to minimizing

Eπ(θ) [DKL (f(sdp | θ)∥qϕ(sdp | θ))] . (4)

After some derivations (in Appendix A), equation 4 is equivalent to Ep(θ,sdp) [− log qϕ(sdp | θ)] up to a
constant independent of ϕ, where the expectation is taken with respect to the intractable distribution.
p(θ, sdp) = π(θ) · f(sdp | θ). To facilitate computations, let’s write equation 4 with respect to the confidential
data generating process, resulting in

ℓPLE(ϕ) = Ep(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(sdp | θ)dsdp

]
. (5)

The resulting private data likelihood estimation has parameter ϕ̂ = arg min ℓPLE(ϕ) and likelihood q
ϕ̂
(sdp | θ).

When the primary inference goal is the maximum likelihood estimator, one can approximate it with θ̂MLE =
arg maxθ q

ϕ̂
(sdp | θ). Under the Bayesian paradigm, the posterior approximation of equation 3 can be

π̂PLE(θ) ∝ π(θ)q
ϕ̂
(sdp | θ). Quantities such as posterior median, mean, and credible regions can be estimated

accordingly.

3.2 Private data posterior estimation

Now we approximate the private data posterior π(θ | sdp) in equation 3 directly with a neural posterior
estimator qϕ(θ | sdp), bypassing the synthetic likelihood step in Section 3.1. To find qϕ(θ | sdp) ≈ π(θ | sdp),
let’s minimize their KL divergence

DKL (π(θ | sdp)∥qϕ(θ | sdp)) = Eπ(θ|sdp)

[
log π(θ | sdp)

qϕ(θ | sdp)

]
.

As shown in Section A, this is equivalent to

ℓPPE(ϕ) = Ep(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(θ | sdp)dsdp

]
. (6)

Many Bayesian problems use uninformative priors π(θ), which are dispersed in the parameter space. As a
result, a naive Monte Carlo strategy to approximate expectations in equation 5 or equation 6 has most of its
samples falling in low-density regions, leading to low efficiency. In importance sampling, one utilizes a proposal
distribution p̃ to change the bases of integration and thus reduce the variance of numerical integration. The
automatic posterior transformation (APT) method (Greenberg et al., 2019) uses p̃(θ, x) = p̃(θ)f(x | θ) as
proposal and has (unnormalized) importance weights

q̃ϕ(θ | sdp) ∝ qϕ(θ | sdp) p̃(θ)
π(θ) . (7)
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The resulting loss function is

ℓPPE−A(ϕ) = Ep̃(θ,x)

[
−

∫
S

η(sdp | x) log q̃ϕ(θ | sdp)dsdp

]
, (8)

and it is useful for the sequential training strategy we introduce in Section 3.4. The derivation of equation 8
is in Appendix A.

3.3 Nested RQMC estimators

We can inspect the general form of loss functions in equations 5 and 8 with

ℓ(ϕ) = −Ep̃(θ,x)

[∫
S

η(sdp | x)g(sdp, θ)dsdp

]
. (9)

Here g(sdp, θ) = log q̃ϕ(θ | sdp) for PPE-A and g(sdp, θ) = log qϕ(sdp | θ) for PLE. Equation 9 is a double
integral, where the outer expectation is with respect to some proposal distribution p̃ and the inner integral
involves the privacy mechanism η and the neural estimator qϕ.

With independent and identically distributed (i.i.d.) samples from the joint density {(θ(i), x(i))}N
i=1 ∼

p̃(θ, x) = p̃(θ)f(x | θ), we can unbiasedly approximate equation 9 with

ℓ̂(ϕ)MC = −
N∑

i=1

[∫
S

η(sdp | x(i))g(sdp, θ(i))dsdp

]
. (10)

The inner integrals I(θ, x) =
∫

η(sdp | x)g(sdp, θ)dsdp can be approximated with standard Monte Carlo
integration techniques, as popular DP mechanisms such as Laplace, Gaussian, and Exponential can be easily
simulated. Using M i.i.d. samples, the root-mean-squared-error (RMSE) to estimate I(θ, x) approximations
are typically on the order of O(M−1/2) due to the central limit theorem.

In many applications, the DP query result sdp serves as a private descriptive statistic of a dataset x. This
statistic is commonly embedded in a low-dimensional space S, where the dimension r = dim(S) is significantly
less than the dimension of the data space dim(Xn). For the privacy mechanisms, we typically model
the generation process as τ : (u, s(x)) 7→ sdp where u ∼ U [0, 1]r is a uniform random variable from the
r-dimensional hypercube. For example, the process τ(u, s(x)) = s(x) − ∆1(s)

ϵ sgn(u − 1
2 ) log

[
1− 2|u− 1

2 |
]

achieves ϵ−DP for 1-dimensional queries.

Randomized quasi-Monte Carlo (RQMC) methods, as detailed in (Owen, 1997a;b), differ from traditional
Monte Carlo (MC) methods in that it generate correlated, low-discrepancy sequences {v(1), · · · , v(M)} ⊂ [0, 1]r.
These sequences cover the parameter space more evenly than the pseudo-random sequences used by MC
methods. This low-discrepancy feature helps to reduce the variance of the estimators, which is particularly
useful in low-dimensional integration tasks (L’Ecuyer, 2018). The estimator used in RQMC can be described
as

ÎRQMC
θ,x = 1

M

M∑
j=1

g(τ(v(j); x), θ) := 1
M

M∑
j=1

g̃θ,x(v(j)). (11)

The RQMC estimator is unbiased and has a smaller RMSE compared to MC estimators. The ⋆-discrepancy of
the point set {v(1:M)}, denoted by D⋆(v(1:M)) is of the order O(M−1(log M)r) = O(M−1+δ) for a positive con-
stant δ. If our neural approximation family g̃θ,x(·) has bounded Hardy-Krause variation VHK[g̃θ,x(·)] (Aistleit-
ner et al., 2017), then, according to Basu & Owen (2016), the mean squared error of the RQMC estimator in
equation 11 satisfies

E
[(

ÎRQMC
θ,x − I(θ, x)

)2
]
≤ V 2

HK(g̃θ,x)(D⋆)2 = O(M−2+2δ). (12)

Thus, the RMSE of the RQMC estimator is of the order O(M−1+δ), achieving faster convergence than an
MC estimator with O(M−1/2). We verify this improvement in convergence from the RQMC estimator on the
SIR model and linear regression example with the neural spline flow approximation family (Durkan et al.,
2019), in Appendix C, Figure 7.
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3.4 Sequential neural estimations

This section presents our sequential neural approximation methods on privacy-protected data. Our central
goal is to approximate the private data posterior distribution π(θ | sdp) given observed privatized data
query sdp. We summarize the Sequential Private Posterior Estimation (SPPE) algorithm in Algo.1 and the
Sequential Private Likelihood Estimation (SPLE) in Algo.2.

Algorithm 1 Sequential private-data posterior estimation (SPPE)
Input: observed privatized summary statistics so

dp, neural estimation family qϕ(θ | sdp), and confidential
data simulator f(x | θ)
Initialization: set p̃0(θ) = π(θ), simulated data filtration D0 = {}
for r = 1, 2, · · · , R do

Sample {θ(i)}i=1:N from p̃r−1(θ)
Simulate x(i) ∼ f(· | θ(i)) for each i
Update filtration Dr = Dr−1 ∪ {(θ(i), x(i))}i=1:N
Update ϕ← arg minϕ ℓ̂PPE−A(ϕ) using ÎRQMC equation 11 on Dr

Set proposal p̃r(θ) = qϕ(θ | so
dp)

end for
return π̂(θ | so

dp) = qϕ(θ | so
dp)

Algorithm 2 Sequential private-data likelihood estimation (SPLE)
Input: observed privatized summary statistics so

dp, neural estimation family qϕ(sdp | θ), and confidential
data simulator f(x | θ)
Initialization: set p̃0(θ) := π(θ), simulated data filtration D0 = {}
for r = 1, 2, · · · , R do

Sample {θ(i)}N
i=1 from p̃r−1(θ).

Simulate x(i) ∼ f(· | θ(i)) for each i
Update filtration Dr = Dr−1 ∪ {(θ(i), x(i))}i=1:N
Update ϕ← arg minϕ ℓ̂PLE(ϕ) using ÎRQMC equation 11 on Dr

Set proposal p̃r(θ) ∝ π(θ)qϕ(so
dp | θ)

end for
return posterior estimation π̂(θ | so

dp) = p̃R(θ) and likelihood estimation f̂θ(sdp | θ) = qϕ⋆(sdp | θ)

Both SPPE and SPLE use normalizing flows as the variational family to minimize some KL divergence, which
takes the general form of equation 9. We have designed their sequential training procedures to be sample
efficient, in the sense that training data generated during previous rounds are kept and used in subsequent
rounds.

In a sequential approximation procedure, we iteratively refine the neural approximations towards the target
distribution. After the rth training round, we incorporate the current neural density estimator qϕ into the
proposal distribution of the next training round, using the automatic posterior transformation weights and
loss functions described in equations 7 and 8 respectively. Sequential training procedures can gradually move
qϕ towards high-density regions of the private data posterior, and thus achieve good accuracy with fewer
samples from the simulator.

4 Applications

Here we illustrate our methods on the susceptible-infected-recovered (SIR) model and linear regression. We
include experiments on the Naïve Bayes log-linear model in the Appendix.
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4.1 SIR model for disease spread

The SIR model is a time-series model that describes how an infectious disease spreads in a closed population.
It is most often used as a deterministic ordinary differential equation (ODE), but can also be represented by
a Markov jump process.

To the best of our knowledge, inference on privacy-protected data with the SIR model has not been studied
in the literature. Our proposed methods are particularly suitable for this problem for two reasons. First, our
methods are simulation-based and thus are applicable under the ODE model, when other likelihood-based
methods can no longer be applied. Second, in the SIR model, low-dimensional summary statistics can be
very informative about model parameters. Then the RQMC methods discussed in Section 3.3 can provide
efficiency and accuracy gains when evaluating the loss functions.

We describe a stochastic SIR model in a closed population with K people. As the disease spreads, the
individuals progress through the three states: susceptible, infected, and recovered. We use S(t), I(t), and R(t)
to denote the number of individuals within each compartment at time t. We make the following assumptions:
(a) individuals are infected at a rate β SI

K , resulting in a decrease of S by one and an increase of I by one, (b)
infected individuals recover with a rate γI, leading to a decrease of I by one and an increase of R by one.
The confidential data likelihood of this continuous-time Markov jump process is hard to compute. Our goal
is to infer the infection and recovery rates θ = (β, γ), under initial conditions (S, I, R) = (K − 1, 1, 0).

Privatizing the infection curve. Here, we propose a mechanism to privatize the infection trajectory
I(t)/K, which is the proportion of infected individuals at each t.
Proposition 4 (DP infection trajectory.). Consider a sequence of L points {t1, · · · , tL} in the time interval
[0, T ], our privatized query can be sdp = (s1, · · · , sL) where each si ∼ Binomial

(
n, I(ti)+m

K+2m

)
independently.

The mechanism generating sdp = (s1, · · · , sL) satisfies ϵ-DP, with ϵ = n
m L.

This algorithm adds calibrated noise to the SIR process to produce sdp, a differential private time series.
It can probably protect each individual’s infection status. We demonstrate that analysts can still make
inferences about population parameters (β, γ) by only knowing sdp, which retains information about the
speed of disease spread.

Experiments on synthetic data. We illustrate the performance of SPPE and SPLE on synthetic privatized
SIR model data. The data generating parameters are set to emulate a measles outbreak. We describe prior
specifications and implementation details in the Appendix.

Figure 1-A describes the convergence of the posterior approximations π̂(θ | so
dp) towards the SMC-ABC (Beau-

mont et al., 2009) baseline, requiring up to 5× 105 simulations. We use SMC-ABC as the baseline because
it does not resort to the variational approximations employed by SPPE and SPLE. Both SPPE and SPLE
quickly adapt to meet the SMC-ABC results, with orders of magnitudes fewer simulations needed. After
the first round of simulations, SPPE can identify the high probability region of π(θ | sdp), while the SPLE
posterior is still exploring the parameter space. See Appendix for the SPLE approximation after r = 1. After
r = 5 rounds, both methods can concentrate around the posterior mean and have captured the posterior
correlation cov(β, γ | sdp). By inspecting marginal posterior histograms (Figure 6), we find that, in this
example, the posterior approximated by SPPE is slightly more concentrated than those from SMC-ABC and
SPLE.

To quantitatively evaluate the performance of our methods, we use the following metrics: (1) MMD (Gretton
et al., 2012): maximum mean discrepancy between the neural estimated posteriors and SMC-ABC posterior;
(2) C2ST (Lopez-Paz & Oquab, 2016): classifier two sample tests; (3) NLOG: negative log density at true
parameters; and (4) LMD: log median distance from simulated to observed sdp. Smaller values indicate better
performance for all four metrics. In Figure 1-B, we compare the performance of these methods at various
numbers of simulation samples/rounds. After Round 5, SPLE and SPPE have similar accuracy. We also
compare their runtime in Table 1 of the Appendix. To achieve MMD lower than 0.1, SPPE is 6x faster and
SPLE is 2x faster than SMC-ABC.
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Figure 1: Inference on SIR model. A. Convergence of sequential posterior estimations given DP-protected
infection trajectory. Each round entails N = 1000 simulations. B. Approximation accuracy by SPPE (orange)
and SPLE (red) against the number of rounds, the error bars represent the mean with the upper and lower
quartiles over 20 random trials.
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Figure 2: Inference on real infectious disease outbreaks. A. Visualization of the posterior distribution given
private infection curve applied to flu, Ebola [in a) Guinea, b) Liberia, and c) Sierra Leone], and Covid-19 in
Clark County, Nevada. datasets. B. Mean and 95% credible intervals for R0 = β/γ with different methods in
each dataset. Grey: SMC-ABC; orange: SPPE; red: SPLE.

Real disease outbreaks. We apply our privacy mechanism and inference methods to several real infectious
disease outbreaks: influenza, Ebola, and Covid-19. In Figure 2-A, we compare the posterior distributions
π(β, γ | sdp) obtained from SMC-ABC, SPPE, and SPLE. The results are similar to synthetic data experiments:
when SPPE and SPLE use the same computational resources, the SPPE posterior converges faster than
SPLE. In Figure 2-B, we inspect the 95%-credible interval for the ratio R0 = β/γ, which is known as the
basic reproduction number. Our R0 estimates using privatized data are consistent with common estimates of
R0 for these diseases (Eisenberg, 2020), with the exception of the flu outbreak (which should be modeled by
the SI model instead of SIR).

4.2 Bayesian linear regression

We demonstrate our methods on a linear regression model, and compare it to existing work on DP regression
analysis like (Ju et al., 2022; Bernstein & Sheldon, 2019). We consider linear regression with n subjects
and p predictors. Denote x0 ∈ Rn×p as the design matrix without intercept terms, and let x = (1n×1, x0)
represent the design matrix with the intercept. Ordinary linear regression models assume that the outcomes
y satisfy y|x0 ∼ Nn(xβ, σ2In). Under the constraint of differential privacy, both outcomes y and predictors
x0 are subject to calibrated noise. In a Bayesian setting, we model the predictors with x0,i ∼ Np(m, Σ) for
i = 1, 2, · · · , n independently. Our parameter of interest is β, which represents the (p + 1)-dimensional vector
of regression coefficients. Our experiments assume that σ, m, and Σ are fixed, to illustrate our algorithm. In
practice, one can also estimate these parameters from data. Our setting is the same as that used in Ju et al.
(2022).
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Figure 3: Kolmogorov-Smirnov test statistics between approximations of posterior marginals, at ϵ = 10.

Private sufficient statistics. We achieve ϵ-DP on confidential data (x, y) by adding Laplace noise to
sufficient statistics. Achieving privacy requires finite ℓ1 sensitivity on confidential data. As a result, before
adding noise for privacy, we first need to clamp the predictors and the responses, and then normalize them to
take values in [−1, 1]. Let’s denote the clamped confidential data as x̃ and ỹ, respectively. We then define the
summary statistics of clamped data as s̃ :=

( 1
n x̃⊤ỹ, 1

n ỹ⊤ỹ, 1
n x̃⊤x̃

)
. We have refined the sensitivity analysis

of Ju et al. (2022) to ∆(s) = 1
n (p2 + 3p + 3). The privacy summary statistics sdp is achieved by adding

independent Laplace(0, ∆1(s̃)/ϵ) noise to each entry of s̃. This output perturbation mechanism satisfies ϵ-DP.
Details of clamping and sensitivity analysis are in the supplementary materials.

Posterior approximations. We compare the 95% posterior credible intervals obtained by methods
applicable to linear regression, including SMC-ABC, SPPE, SPLE, Data-augmentation MCMC (DA-MCMC)
(Ju et al., 2022), Gibbs-SS (Bernstein & Sheldon, 2019), and RNPE (Ward et al., 2022). See Table 2 and
Table 3 for marginal posterior credible intervals of β | sdp at privacy levels ϵ = 10 and 3 respectively. Both
tables are in Appendix C. We also use the Kolmogorov-Smirnov test to assess the similarity of empirical
posterior marginal, shown in Figure 3 at a privacy level of ϵ = 10. Results from SPPE, SPLE, SMC-ABC,
and DA-MCMC reach agreement on the posterior marginals. However, results from Gibbs-SS and RNPE are
qualitatively different from the other four methods, yielding biased approximations for β0 and β1 respectively.
Among the likelihood-free methods, SPLE attempts to approximate the likelihood function and is the most
similar to DA-MCMC, our likelihood-based baseline.

The cost of privacy. Although it has been a standard practice in many DP work (Bernstein & Sheldon,
2018; 2019; Ju et al., 2022; Gong, 2022) to achieve finite global sensitivity through clamping, this benefit of
privacy protection comes at the cost of accuracy of the subsequent statistical analysis.

First of all, we highlight that it is necessary to design a valid inference procedure after DP data release, as a
naive plug-in estimator (plugging in sdp as s into the conjugate posterior π(θ | s)) gives the wrong posterior;
See the second rows in Tables 2 and 3. Second, achieving privacy protection comes at the cost of estimation
accuracy: private data posterior π(θ | sdp) is different from the confidential data posterior π(θ | x) even under
a high loss budget of ϵ = 10 (small privacy noise) setting; See the first rows in Table 2 and 3. With small
privacy noise, data corruption primarily comes from the clamping step. Evaluating this censoring bias is still
an open problem in DP data analysis, with some recent attempts in Biswas et al. (2020); Evans et al. (2019);
Covington et al. (2021).

5 Discussion

In this work, we propose three simulation-based inference methods to learn population parameters from
privacy-protected data: SMC-ABC, SPPE, and SPLE. The latter two are neural density estimation methods.
We have designed SPPE and SPLE to leverage state-of-the-art computational tools, such as normalizing flows
and randomized quasi-Monte Carlo, to be computationally efficient for complex data models. SPPE aims to
approximate the posterior-data posterior, and SPLE approximates the posterior-data marginal likelihood.

9
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We compare our methods to similar DP data analysis work that focuses on post processing of privacy-protected
datasets (or their summary statistics). Compared with existing ABC-based analysis for DP data (Gong, 2022),
SPPE and SPLE do not reject training samples and hence are more computationally efficient. Compared
with DA-MCMC (Ju et al., 2022), our method does not require that the confidential data likelihood can be
evaluated easily. Our methods require only that one can simulate from the prior distribution π(θ) and the
confidential model f(x | θ). They also all scale linearly with the sample size of the confidential database.

Our work contributes to the growing literature on statistical analysis with privatized data. In particular,
our simulation-based inference framework can be applied to complex models with intractable likelihood
functions and the resulting triply-intractable private data posterior. We hope our methods can catalyze
DP-protected data sharing between data collectors and analysts. Our experiments and analysis demonstrate
the necessity and feasibility of designing valid statistical inference procedures to correct for biases introduced
by privacy-protection mechanisms. We advocate for increases in both sharing privacy-protected data by
collectors and using valid inference procedures.

We acknowledge the limitations of the present work and point out future directions. Our methods leverage
the fact that popular DP mechanisms can be efficiently achieved with random number generators. In some
tasks, such as DP principle component analysis (Chaudhuri et al., 2013), the privacy mechanism is actually
intractable to simulate from but its density is easy to evaluate. Our method is not applicable to this type
of DP mechanism. Additionally, since our method scales linearly in sample size, it might not be ideal for
massive datasets, such as the Facebook URL dataset (Evans & King, 2023), which concerns millions of users.
It is of interest to develop methods that scale sub-linearly in sample size.
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A Derivations for SPLE and SPPE objectives

Lemma 5. For private data likelihood estimation, minimizing the average KL divergence
DKL (f(sdp | θ)∥qϕ(sdp | θ)) under the prior π(θ), is equivalent to minimizing the objective function

ℓPLE(ϕ) = Ep(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(sdp | θ)dsdp

]
. (13)

With respect to the joint distribution p̃(θ, x) ∝ p̃(θ)f(x | θ), the objective function still has the form

ℓPLE(ϕ) = Ep̃(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(sdp | θ)dsdp

]
. (14)
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Proof. Note that

Eπ(θ) [DKL (f(sdp | θ)∥qϕ(sdp | θ))]

=
∫

Θ
π(θ)

[∫
S

f(sdp | θ) (log f(sdp | θ)− log qϕ(sdp | θ)) dsdp

]
dθ

= C1 −
∫∫

S×Θ
π(θ)f(sdp | θ) log qϕ(sdp | θ)dsdpdθ

= C1 −
∫∫∫

S×Θ×Xn

π(θ)η(sdp | x)f(x | θ) log qϕ(sdp | θ)dsdpdθdx

= C1 −
∫∫

Θ×Xn

p(θ, x)
[∫

S
η(sdp | x) log qϕ(sdp | θ)dsdp

]
dθdx

= C1 − Ep(θ,x)

[∫
S

η(sdp | x) log qϕ(sdp | θ)dsdp

]
,

where C1 =
∫∫

S×Θ π(θ)f(sdp | θ) log f(sdp | θ)dsdpdθ is a constant unrelated to ϕ. Furthermore, if θ are
sampled from some proposal p̃(θ), we still have

Ep̃(θ) [DKL (f(sdp | θ)∥qϕ(sdp | θ))]

=
∫∫

S×Θ
p̃(θ)f(sdp | θ) log f(sdp | θ)dsdpdθ − Ep̃(θ,x)

[∫
S

η(sdp | x) log qϕ(sdp | θ)dsdp

]
.

Lemma 6. For private data posterior estimation, minimizing the average KL divergence
DKL (p(θ | sdp)∥qϕ(θ | sdp)) with respect to the marginal evidence p(sdp) =

∫
S π(θ)f(sdp | θ)dθ, is equivalent

to minimizing the objective function

ℓPPE(ϕ) = Ep(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(θ | sdp)dsdp

]
. (15)

With respect to the joint distribution p̃(θ, x) ∝ p̃(θ)f(x | θ), then the objective function has the form

ℓPPE−A(ϕ) = Ep̃(θ,x)

[
−

∫
S

η(sdp | x) log q̃ϕ(θ | sdp)dsdp

]
, (16)

where
q̃ϕ(θ | sdp) := qϕ(θ | sdp) p̃(θ)

π(θ)
1

Z(sdp, ϕ) , Z(sdp, ϕ) =
∫

Θ
qϕ(θ | sdp) p̃(θ)

π(θ)dθ.

Proof. We have

Ep(sdp) [DKL (π(θ | sdp)∥qϕ(θ | sdp))]

=
∫
S

p(sdp)
[∫

Θ
π(θ | sdp) (log π(θ | sdp)− log qϕ(θ | sdp)) dθ

]
dsdp

= C2 −
∫∫

S×Θ
p(sdp)π(θ | sdp) log qϕ(θ | sdp)dsdpdθ

= C2 −
∫∫∫

S×Θ×Xn

π(θ)η(sdp | x)f(x | θ) log qϕ(θ | sdp)dsdpdθdx

= C2 −
∫∫

Θ×Xn

p(θ, x)
[∫

S
η(sdp | x) log qϕ(θ | sdp)dsdp

]
dθdx

= C2 − Ep(θ,x)

[∫
S

η(sdp | x) log qϕ(θ | sdp)dsdp

]
,
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where C2 =
∫∫

S×Θ p(sdp)π(θ | sdp) log π(θ | sdp)dsdpdθ is a constant unrelated to ϕ. Furthermore, if θ are
sampled from some proposal p̃(θ), then

Ep(sdp) [DKL (π̃(θ | sdp)∥q̃ϕ(θ | sdp))]

=
∫∫

S×Θ
p(sdp)π̃(θ | sdp) log π̃(θ | sdp)dsdpdθ − Ep̃(θ,x)

[∫
S

η(sdp | x) log q̃ϕ(θ | sdp)dsdp

]
, (17)

where π̃(θ | sdp) is called proposal posterior (Greenberg et al., 2019), which satisfied

π̃(θ | sdp) = π(θ | sdp) p̃(θ)p(sdp)
π(θ)p̃(sdp) , p̃(sdp) =

∫
Θ

p̃(θ)f(sdp | θ)dθ.

Based on Prop. 1 in the work of Papamakarios & Murray (2016), minimizing equation 17 results in the
convergence of q̃ϕ(θ | sdp) to π̃(θ | sdp) and qϕ(θ | sdp) to π(θ | sdp).

B Proof of Proposition 4

Proposition 4. Consider a sequence of L points {t1, · · · , tL} in the time interval [0, T ], our privatized query
can be sdp = (s1, · · · , sL) where each si ∼ Binomial

(
n, I(ti)+m

K+2m

)
independently. The mechanism generating

sdp = (s1, · · · , sL) satisfies ϵ-DP, with ϵ = n
m L.

Proof. Denote the numbers of infectious as I(t) ∈ {0, 1, · · · , K} and its neighbors Ĩ(t), note that |I(t)− Ĩ(t)| ≤
1 holds for all t ∈ [0, T ] because a change of the infection status of any one of the K individuals will at most
increase or decrease I(t) by only 1. We examine the following density ratio:

p(si | I(ti))
p(si | Ĩ(ti))

=

(
n
si

) (
I(ti)+m
K+2m

)si
(

K−I(ti)+m
K+2m

)(n−si)

(
n
si

) (
Ĩ(ti)+m
K+2m

)si
(

K−Ĩ(ti)+m
K+2m

)(n−si)

=
(

I(ti) + m

Ĩ(ti) + m

)si
(

K − I(ti) + m

K − Ĩ(ti) + m

)(n−si)

:= Hi .

This expression can be analyzed under three distinct cases. In the first case, when Ĩ(ti) > I(ti), we have

Ĩ(ti) = I(ti) + 1, leading to Hi ≤
(

K−I(ti)+m

K−Ĩ(ti)+m

)(n−si)
≤

(
K−I(ti)+m

K−Ĩ(ti)+m

)n

≤
( 1+m

m

)n. In the second case, if

Ĩ(ti) < I(ti), then Ĩ(ti) = I(ti)− 1, and we obtain Hi ≤
(

I(ti)+m

Ĩ(ti)+m

)si

≤
(

I(ti)+m

Ĩ(ti)+m

)n

≤
( 1+m

m

)n. Lastly, when

Ĩ(ti) = I(ti), Hi equals to 1. Thus, p(si|I(ti))
p(si|Ĩ(ti)) ≤

( 1+m
m

)n ≤ exp
(

n
m

)
. Now for sdp = (s1, · · · , sL), we have

p(sdp | {I(t)|t ∈ [0, T ]})
p(sdp | {Ĩ(t)|t ∈ [0, T ]})

= p(sdp | I(t1), · · · , I(tL))
p(sdp | Ĩ(t1), · · · , Ĩ(tL))

≤ exp
( n

m
L

)
,

which gives the mechanism generating sdp = (s1, · · · , sL) satisfies ϵ-DP, with ϵ = n
m L.

C Experimental details

The training and inference processes of the methods were primarily implemented using the Pytorch package
in Python.
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Experimental setup. We employed neural spline flows (Durkan et al., 2019) as the conditional density
estimator, consisting of 8 layers. Each layer was constructed using two residual blocks with 50 units and
ReLU activation function, with 10 bins in each monotonic piecewise rational-quadratic transforms and the
tail bound was set to 5.

In the training process, the number of samples simulated in each round is N = 1000 and there are R = 10
rounds in total. In each round of training, we randomly select 5% of the newly generated samples as validation
data. According to the early stop criterion proposed by Papamakarios et al. (2019), we stop training if the
value of loss on validation data does not increase after 20 epochs in a single round. For stochastic gradient
descent optimizer, we choose the Adam (Kingma & Ba, 2014) with the batchsize of 100, the learning rate of
5× 10−4 and the weight decay is 10−4.

C.1 SIR model

C.1.1 Detailed results on synthetic data

In our experiments, we use the Gillespie algorithm (Gillespie, 1977) to simulate the whole process over a
duration of T = 160 time units and record the populations at intervals of 1-time units. The prior distribution
of β is set to N (log 0.4, 0.5) and prior distribution of γ is set to N (log 0.125, 0.2). The value of K is configured
as 1000000, while N is set to 1000 for the number of observations.

To publish the privatized data about the infection process, we select the infectious group I(t) at L = 10
evenly-spaced points in time [0, T ], with the privacy parameters set to n = 1000 and m = 1000, which satisfied
ϵ-DP with ϵ = 10. The ground truth parameters are

θ∗ = (exp(−0.5), exp(−3)),

and the observed private statistic so
dp simulated from the model with ground truth parameters θ∗ is

so
dp = (0.0010, 0.0310, 0.6140, 0.2630, 0.1230, 0.0470, 0.0180, 0.0090, 0.0050, 0.0030).

Figure 4 illustrates the convergence of the approximate posterior by SPPE and SPLE in each round, and
compares our results with the SMC-ABC method, where we performed simulations up to 5× 105 times for the
SMC-ABC method to generate the near exact ‘True’ posterior. Figure 5 depicts the results of the SMC-ABC
method under the same performance metrics. Our method, after 10 rounds or 104 simulations, achieved
a similar performance as the SMC-ABC method with approximately 105 simulations. The computational
time costs comparison between our methods and SMC-ABC, as illustrated in Table 1, also reveals that our
approaches require significantly fewer simulations, resulting in substantially lower simulation time expenditures
compared to the SMC-ABC method. However, our methods require extra time for the training of normalizing
flows, a duration dependent on the flow’s complexity. Overall, both SPPE and SPLE attain a low MMD
more rapidly than SMC-ABC.

Table 1: Computational Cost to achieve MMD < 0.1 in the SIR Model (Mean ± Standard Deviation)

Method Simulation Time (min) Network Training Time (min) Total Number of Simulations
SMC-ABC 115.38 ± 1.51 - 115.38 ± 1.51 82.85 ± 1.03

SPPE 2.65 ± 1.03 15.73 ± 7.67 18.38 ± 8.63 2.12 ± 0.71
SPLE 7.11 ± 1.01 45.98 ± 14.46 53.09 ± 15.26 5.40 ± 0.77

Finally, we investigate the marginal posterior distributions π(β | sdp) and π(γ | sdp) in Figure 6, and conclude
that SPPE and SPLE perform similarly well. In this example, the posterior approximated by SPPE is slightly
more concentrated than those from SMC-ABC and SPLE.

C.1.2 Inference on real disease outbreaks

We applied our inference methods (SPPE and SPLE) to analyze several real infectious disease outbreaks,
namely influenza, Ebola, and Covid-19.
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Figure 4: Detailed convergence of sequential posterior estimations given DP-protected infection trajectory
under the SIR model. Each round entails N = 1000 simulations. Orange: SPPE; red: SPLE; grey: SMC-ABC.
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Figure 5: Approximation accuracy by SMC-ABC on the SIR model against the number of simulations.

influenza outbreak. We utilized the dataset from a boarding school, obtained from https://search.
r-project.org/CRAN/refmans/epimdr/html/flu.html. The total population in the school was K = 763.
We considered a daily time interval, and the observed private statistic so

dp is

so
dp,flu = (0.0010, 0.0039, 0.0105, 0.0367, 0.0996, 0.2910, 0.3840, 0.3368, 0.3106, 0.2516).

Ebola outbreak in West Africa, 2014. We analyzed datasets from three regions: a) Guinea, b) Liberia,
and c) Sierra Leone. The dataset source is from https://apps.who.int/gho/data/node.ebola-sitrep.
We assumed potential contact individuals of K = 100, 000. We selected 9 equally spaced time intervals of 120
days starting from 03/31/2014. The resulting observed private statistic so

dp is as follows

so
dp,(a) = (0.0010, 0.0111, 0.0085, 0.0129, 0.0510, 0.0520, 0.0224, 0.0212, 0.0084, 0.0023).

so
dp,(b) = (0.0010, 0.0007, 0.0019, 0.0664, 0.2579, 0.0742, 0.0610, 0.0542, 0.0172, 0.0003).

so
dp,(c) = (0.0010, 0.0079, 0.0434, 0.2156, 0.2054, 0.0928, 0.0549, 0.0366, 0.0237, 0.0232).

Covid-19. We examined the Covid-19 dataset for Clark County, Nevada. See https://usafacts.
org/visualizations/coronavirus-covid-19-spread-map/state/nevada/county/clark-county/. We
assumed a potential contact population of K = 100, 000. We selected 9 equally spaced time intervals of 24
days, starting from 09/07/2020. To obtain the number of currently infected individuals, we calculated the
difference in the total confirmed cases with a time interval of 14 days from the original dataset. The resulting
observed private statistic so

dp is:

so
dp,covid = (0.0010, 0.0281, 0.0566, 0.0978, 0.2108, 0.2443, 0.2574, 0.0864, 0.0434, 0.0263).

The numerical results are presented and compared in Figure 4 of the main text.
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Figure 6: Marginal posterior histograms of β, γ, and β/γ in SIR model on synthetic data. Grey: SMC-ABC;
orange: SPPE; red: SPLE. The vertical lines indicate true data generating parameters, set to mimic a measles
outbreak.
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Figure 7: Rate of convergence of MC and RQMC: The x-axis represents the number of samples M used
for integral estimation, and the y-axis shows the logarithmic value of the root-mean-square-error (RMSE).
The results indicate that the RMSE of the MC method is approximately O(M−1/2), while the RMSE of the
RQMC method is approximately O(M−1).

C.2 Bayesian linear regression

Data generating parameters. Following the parameters settings in Ju et al. (2022), we model
the predictors with x0,i ∼ Np(m, Σ), where Σ = In and m = (0.9, −1.17). The outcomes y satisfy
y | x0 ∼ Nn(xβ, σ2In) where σ2 = 2, and the prior for β is independent normal N (0, 1). We set the privacy
loss budget ϵ = 10 and the number of subjects n = 100. The ground truth parameters are denoted as

θ∗ = (−1.79, −2.89, −0.66).

We simulate the summary statistics s̃ from the model using the ground truth parameters θ∗, resulting in

s̃ =

 −0.3742
−0.0629
0.0299

 , 0.2499,

 1.0000 0.0938 −0.1270
0.0938 0.0180 −0.0094
−0.1270 −0.0094 0.0280

 ,

18



Under review as submission to TMLR

its corresponding vector form is

s̃vec = (−0.3742, −0.0629, 0.0299, 0.2499, 0.0938, −0.1270, 0.0180, −0.0094, 0.0280).

Furthermore, the observed private statistic so
dp is given by

so
dp =

 −0.3824
−0.0667
0.0320

 , 0.2720,

 1.0000 0.0988 −0.1385
0.0988 0.0219 −0.0229
−0.1385 −0.0229 0.0341

 ,

its corresponding vector form is

so
dp,vec = (−0.3824, −0.0667, 0.0320, 0.2720, 0.0988, −0.1385, 0.0219, −0.0229, 0.0341).

Experimental results. In Figure 9, we present a comparison of the performance of the SPPE and
SPLE methods across different metrics as the number of simulation rounds increases. The SPLE method
demonstrates a faster convergence in this task. Figure 10 displays the posterior after 10 rounds, where both
the SPPE and SPLE methods achieve results that are close to the near exact posterior obtained by the
SMC-ABC method.

To further characterize the privacy-utility trade-off, we compare the private data posterior distributions
under several levels of privacy loss budget, in Figure 8. The underlying confidential data x is the same for
each ϵ = 0.1, 0.3, 1, 3, 10, 30, 100. For each privacy loss level, we simulate one private summary sdp(ϵ), and
use SPPE and SPLE to approximate the private data posterior π(θ | sdp; ϵ). The two methods yield very
similar results. More interestingly, we use the same confidential data x as Ju et al. (2022) and the posterior
distributions in Figure 8 follow a similar trend with that in Figure 2 of Ju et al. (2022). For larger privacy loss
budget (smaller noise), confidential data are mainly corrupted by clamping, and the proposed methods can
elevate the effect of this censoring bias, as E(θ | sdp) is closer to the confidential data expectation E(θ | x). As
ϵ gets closer to 0 (near perfect privacy), the privacy mechanism has injected so much noise into sdp that the
posterior distribution is more dispersed, and little information about θ can be learned based on observing sdp.
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Figure 8: Marginal posterior histograms of θ = (β0, β1, β2) given sdp generated with several levels of privacy
loss budget on the same confidential data x. Orange: SPPE; red: SPLE. The dash-dotted horizontal lines
indicate the confidential data posterior means, and the dotted lines indicate prior means.

C.3 Naïve Bayes log-linear model

Model description. The naïve Bayes log-linear model is a commonly used approach for modeling categorical
data (Karwa et al., 2015). The input feature-vector, denoted as x = (x1, · · · , xK), consists of K features,
each taking values in the range {1, 2, · · · , Jk}. The output class, denoted as y, represents the target
category and takes values in {1, 2, · · · , I}. The model assumes that the conditional probability of the input
given the output, denoted as p(x | y), can be factorized as the product of individual feature probabilities:
p(x | y) =

∏K
k=1 p(xk | y). The model parameters are pk

ij , which represents the probability p(xk = j |
y = i), with prior (pk

i,1, · · · , pk
i,Jk

) ∼ Dirichlet(αk
i,1, · · · , αk

i,Jk
) for all i and k; and pi = p(y = i), with prior

(p1, · · · , pI) ∼ Dirichlet(α1, · · · , αI).
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Table 2: Estimated posterior mean and 95% credible intervals for the linear regression example using various
methods: SMC-ABC, DA-MCMC, SPPE, SPLE, Gibbs-SS, RNPE. Here privacy loss budget is set to ϵ = 10.

β0 β1 β2

Confidential Posterior given x -2.15 (-2.68, -1.61) -2.79 (-3.08, -2.50) -0.83 (-1.08, -0.58)
Naive posterior approximation -4.63 (-5.04, -4.22) -6.23 (-6.57, -5.90) -5.10 (-5.40, -4.79)

DA-MCMC -0.62 (-2.50, 0.99) -2.72 (-3.74, -0.96) 0.54 (-1.06, 2.46)
SMC-ABC -0.59 (-2.28, 0.93) -2.44 (-3.67, -0.38) 0.85 (-0.88, 2.77)

SPPE -0.51 (-2.25, 1.07) -2.40 (-3.61, -0.30) 0.90 (-0.89, 2.85)
SPLE -0.64 (-2.31, 0.96) -2.61 (-3.65, -0.98) 0.64 (-0.93, 2.48)

Gibbs-SS -0.46 (-2.22, 1.39) -0.50 (-2.08, 1.28) 0.41 (-1.68, 2.13)
RNPE -1.40 (-3.59, 0.94) -2.15 (-3.34, 0.51) 0.29 (-2.11, 2.97)

Table 3: Estimated posterior mean and 95% credible intervals for the linear regression example using various
methods: SMC-ABC, DA-MCMC, SPPE, SPLE, Gibbs-SS, RNPE. Here privacy loss budget is set to ϵ = 3.

β0 β1 β2

Confidential Posterior given x -2.15 (-2.68, -1.61) -2.79 (-3.08, -2.50) -0.83 (-1.08, -0.58)
Naive posterior approximation 0.00 (-0.28, 0.28) -1.84 (-3.08, -0.59) 0.63 (-0.42, 1.68)

DA-MCMC -0.99 (-2.71, 0.73) -1.37 (-2.78, 0.43) 1.11 (-0.33, 2.54)
SMC-ABC -1.03 (-2.60, 0.53) -1.25 (-2.77, 0.49) 1.19 (-0.33, 2.64)

SPPE -1.01 (-2.59, 0.72) -1.28 (-2.83, 0.39) 1.22 (-0.30, 2.72)
SPLE -1.03 (-2.73, 0.67) -1.22 (-2.81, 0.66) 1.23 (-0.31, 2.70)

Gibbs-SS -0.43 (-2.36, 1.54) -0.20 (-1.90, 1.71) 0.25 (-1.51, 2.10)
RNPE -1.34 (-3.48, 1.40) -1.21 (-3.31, 1.78) 1.02 (-1.59, 3.38)

We assume that (nk
i,1, · · · , nk

i,Jk
) ∼ Multinomial(ni; pk

i,1, · · · , pk
i,Jk

) for all i and k and (n1, · · · , nI) ∼
Multinomial(n; p1, · · · , pI). Here nk

i,j represents the counts #(y = i, xk = j). One sufficient statistics
of the model is the proportion of the counts rk

i,j := 1
n nk

i,j , where n =
∑I

i=1
∑Jk

j=1 nk
i,j for all k. To protect the

privacy of the dataset, Laplace noise ek
i,j is added to the proportion of the counts, resulting in the privatized

proportion mk
i,j = rk

i,j + ek
i,j . When ek

i,j ∼ Laplace(0, 2K
nϵ ), the released private statistic {mk

i,j}i,j,k satisfied
ϵ-DP.

In our simulation, we set αk
i,j = αi = 2 for all i, j, k, and n = 100, with I = 2, K = 2 and Jk = 2 for all k.

The privacy loss budget ϵ = 10. The ground truth parameters are

p1
1,1 = 0.3887, p1

1,2 = 0.6113, p2
1,1 = 0.7537, p2

1,2 = 0.2463,

p1
2,1 = 0.6534, p1

2,2 = 0.3466, p2
2,1 = 0.5834, p2

2,2 = 0.4166,

p1 = 0.8489, p2 = 0.1511.
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Figure 9: Approximation accuracy by SPPE (orange) and SPLE (red) on the Bayesian linear regression
model against number of rounds, the error bars represent the mean with the upper and lower quartiles.
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Figure 10: Posterior comparison on the Bayesian linear regression model. Grey: SMC-ABC; orange: SPPE;
red: SPLE. The vertical lines and black dots indicate true data generating parameters.

and the observed private statistic simulated from the model with ground truth parameters are

r1
1,1 = 0.3275, r1

1,2 = 0.4520, r2
1,1 = 0.5862, r2

1,2 = 0.1827,

r1
2,1 = 0.1293, r1

2,2 = 0.0858, r2
2,1 = 0.1288, r2

2,2 = 0.0954.

Experimental results. Figure 11 illustrates the performance of the SPPE and SPLE methods across
four different metrics, and Figure 12 shows the marginal posterior histograms after 10 rounds, our methods
stabilize in performance after round 3.
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Figure 11: Approximation accuracy by SPPE (orange) and SPLE (red) on the log-linear model against the
number of rounds, the error bars represent the mean with the upper and lower quartiles.

D Statement on Computing Resources

Our numerical experiments were conducted on a computer equipped with four GeForce RTX 2080 Ti graphics
cards and a pair of 14-core Intel E5-2690 v4 CPUs.
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Figure 12: Marginal posterior histograms of the log-linear model. Grey: SMC-ABC; orange: SPPE; red:
SPLE. The vertical lines indicate true data generating parameters.
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