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ABSTRACT

In our study, we conducted a comprehensive analysis of three widely used datasets
in the domain of building footprint extraction using deep neural networks: the
INRIA Aerial Image Labelling dataset, SpaceNet 2: Building Detection v2, and
the AICrowd Mapping Challenge datasets. Our experiments revealed several issues
in the AICrowd Mapping Challenge dataset, where nearly 90% (about 250k) of the
training split images had identical copies, indicating a high level of duplicate data.
Additionally, we found that approximately 56k of the 60k images in the validation
split were also present in the training split, amounting to a 93% data leakage.
Furthermore, we present a data validation pipeline to address these issues of dupli-
cation and data leakage, which hinder the performance of models trained on such
datasets. Employing perceptual hashing techniques, this pipeline is designed for ef-
ficient de-duplication and leakage identification. It aims to thoroughly evaluate the
quality of datasets before their use, thereby ensuring the reliability and robustness
of the trained models.

1 INTRODUCTION

In recent years, deep learning and pattern recognition techniques have had a significant impact
on remote sensing. In particular, a number of works have employed popular CNN architectures
such as UNets and ResNets (Ronneberger et al., 2015; He et al., 2016; Chatterjee & Poullis, 2019;
Zorzi et al., 2021; Girard et al., 2021; Li et al., 2021a; Xu et al., 2023) as well as attention-based
architectures (Li et al., 2019; Zorzi et al., 2022; Hu et al., 2023) for tasks such as building footprint
extraction, road network extraction, etc., which have important applications in downstream urban
understanding tasks such as land use and land cover classification, urban planning, navigation, etc.
Deep learning solutions that can generalize to unseen data distributions require an abundance of
data, which has a significant impact on their applicability. Hence, the availability of large-scale,
high-resolution remote sensing image datasets is crucial for the success of such methods. In light of
this, it is imperative to assess the quality of such datasets to determine their suitability for developing
such deep-learning solutions.

Benchmark Datasets: Owing to the need for large-scale image datasets of high quality, the
majority of deep learning literature tends to adopt widely used publicly available benchmark
datasets to train and evaluate their methods and compare with existing state-of-the-art works. For
building footprint extraction, the need for high-quality, curated datasets containing polygonal
building footprints has prompted a significant amount of recent literature to utilize the AICrowd
mapping challenge dataset (Mohanty et al., 2020) extensively for training and testing their methods,
as well as for comparison with other state-of-the-art methods. Other popular datasets include
the INRIA Aerial Image Labelling Dataset (Maggiori et al., 2017) and the SpaceNet Building
Detection dataset (Etten et al., 2018), however, these datasets either only provide raster building
mask annotations or provide data in a non-standard format (e.g., GeoJSON, GeoTIFFs) for the
computer vision and deep learning research community. The AICrowd dataset claims to solve
this problem by providing large-scale, high-resolution satellite images with polygonal building
footprint annotations made available in the popular MS-COCO format (Lin et al., 2014), allowing the
immediate use of this dataset by the computer vision research community. Consequently, many recent
works addressing the task of polygonal building footprint extraction have evaluated their methods
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using the AICrowd mapping challenge dataset, either in conjunction with other datasets or exclusively.

State-of-the-art trained on the AICrowd Mapping Challenge dataset: Our experiments on the
three datasets and subsequent analyses, as explained later in the paper, revealed significant issues with
the AICrowd Mapping Challenge dataset. Furthermore, several recent studies (Li et al., 2019; Zhang
& Aliaga, 2022; Zorzi et al., 2021; Lee et al., 2021; Girard et al., 2021; Xu et al., 2023; Hu et al.,
2023; Wei et al., 2023) that focus on the task of building footprint extraction from remotely sensed
imagery have used this contaminated AICrowd Mapping Challenge dataset in their experiments to
evaluate their proposed methods. In some studies (Zhao et al., 2020; Wang & Zhang, 2022; Zorzi
et al., 2022), this dataset has even been used exclusively to benchmark and evaluate the proposed
methods. Upon reviewing these works, it is evident that the AICrowd dataset has been extensively
used in recent literature, which further motivates us to evaluate the quality of this dataset and inform
the research community of the several issues discovered in this dataset.

Impact of Dataset Quality on Deep Learning Models: The issues discovered in the AICrowd
dataset, and our subsequent analyses of methods using the dataset, make it clear that contamination
in large image datasets negatively impacts the reusability, robustness, and generalization of models
trained on such datasets. Excessive duplication and leakage in a benchmark dataset often lead to
the trained models exhibiting overfitting behavior and performing poorly on out-of-distribution
data at test time. Issues like data leakage also have implications for the fairness and reliability of
machine learning benchmarks commonly used by the research community to evaluate ongoing
research efforts. Therefore, such datasets must be carefully analyzed for issues such as data
leakage, excessive duplication, etc., before being used for model training/evaluations. However,
this has become increasingly difficult to perform for large image datasets such as the ImageNet
dataset (Deng et al., 2009), MS-COCO dataset (Lin et al., 2014), the Cityscapes datasets (Cordts
et al., 2016), etc., which can have up to several million image-annotation pairs, and also newer
datasets such as the LAION-5B dataset (Schuhmann et al., 2022) that can even have billions of
image-annotation pairs. Therefore, there is an imperative need to develop efficient methods to evaluate
and mitigate dataset quality issues (such as duplication and data leakage) on such large image datasets.

De-duplication of Large Image Datasets: Recent research has focused on de-duplicating large image
datasets using neural network feature representations of images to detect duplicates. In CE-Dedup
(Li et al., 2021c), the authors use a hashing-based image de-duplication technique to significantly
reduce the size of the dataset while still maintaining the accuracy of downstream image classification
tasks. In Jafari O. et al (Jafari et al., 2021), the authors study the suitability of locality-based hashing
in a variety of downstream applications, such as machine learning and image/video processing. The
authors in (Li et al., 2021b) present QHash, a hashing algorithm for image de-duplication in datasets
containing images with small visual differences, such as medical images.

In contrast to the hashing-based approaches described above, more recent methods also employ
self-supervised pretraining schemes to learn image descriptors that are then used in identifying similar
images in the dataset (Pizzi et al., 2022; Zhang et al., 2023). Although such pretraining approaches
could potentially achieve a higher degree of de-duplication for specific datasets, pretraining on very
large datasets can be challenging and may not generalize well to other substantially different datasets.
In light of these recent works, we adopt a perceptual hashing strategy to investigate the degree of data
duplication and leakage in the AICrowd dataset.

Motivation and Contributions: The INRIA Aerial Image Labelling and SpaceNet 2: Building
Detection v2 datasets were observed to indicate no major issues upon scrutiny. However, the same
cannot be said for the AICrowd Mapping Challenge dataset.

Due to its significant size and the availability of building footprint annotations, numerous state-of-the-
art methods have employed the AICrowd dataset extensively for training and validation (Zorzi et al.,
2021; Girard et al., 2021; Li et al., 2021a; Xu et al., 2023; Li et al., 2019; Zorzi et al., 2022; Hu et al.,
2023). However, a careful examination of this dataset reveals a plethora of issues. These include
duplication and data leakage across officially provided splits. These issues have a considerable impact
on the performance of downstream applications where this dataset is used for training and evaluating
building footprint extraction methods.
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Figure 1: The pipeline used for computing the perceptual hash, Hp of an image. The input image
is first downsampled by a downsampling factor, d. The 32× 32 discrete cosine transform, t of the
downsampled image is computed and the lowest frequencies, tL (top-left 8× 8 values) are retained.
Finally, tL is thresholded by the mean of the retained low frequencies and flattened to result in the
64− d perceptual hash, Hp of the input image.

This underlines the impetus for our study: the demand for an effective, easy-to-adopt pipeline to
swiftly evaluate the quality of large-scale image datasets. Such pipelines could conserve the time and
effort of the research community, allowing for more efficient use of available resources. Specifically,
our contributions are as follows:

• Our study presents a thorough analysis of three key large-scale remote-sensing datasets,
with a particular focus on the AICrowd Mapping Challenge dataset. In this in-depth analysis,
we identify and highlight critical issues such as extensive duplication, where nearly 89% of
the training images are duplicates (either exact or augmented), and significant data leakage,
with about 97% of the validation images also present in the training split.

• Complementing our analytical findings, we present a deduplication and leakage detection
pipeline, specifically tailored for large-scale image datasets. By utilizing perceptual hashing
methods to detect collisions, this pipeline is a practical and easy-to-adopt method for identi-
fying and eliminating data duplication and leakage issues. Its application in analyzing the
INRIA Aerial Image Labelling dataset, SpaceNet 2: Building Detection v2, and particularly
the AICrowd Mapping Challenge, demonstrates its practicality and efficacy in enhancing
dataset integrity, thereby contributing to improving the robustness of machine learning
pipelines.

2 METHODS

We present an effective method for detecting and eliminating data duplication and leakage in large-
scale image datasets. The pipeline is independent of any particular dataset and it is based on the
calculation of perceptual hashes of images in the dataset, as shown in Figure 1. This method efficiently
identifies exact duplicates as well as augmented copies of images in a dataset. Augmented copies
are images that have undergone transformations such as rotations and flips but remain inherently the
same image.

Datasets: We have evaluated three popular benchmark datasets widely used for training deep neural
networks on building and building footprint segmentation: INRIA Aerial Image Labelling dataset
(Maggiori et al., 2017), SpaceNet 2: Building Detection v2 (Etten et al., 2018), and AICrowd Mapping
Challenge (Mohanty et al., 2020).

The INRIA Aerial Image Labelling Dataset (Maggiori et al., 2017) consists of public domain
aerial images and building footprint masks of size 5000 × 5000 with a spatial resolution of 0.3m.
The official train split consists of 180 such tiles with corresponding binary ground truth building
masks. The official test split consists of another set of 180 images whose annotations are not publicly
available. In our experiments, we split each image in the dataset into 250px× 250px non-overlapping
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patches to result in 72,000 patches in the train split and 72,000 in the test split. These splits were
used in our de-duplication and leakage detection experiments.

The SpaceNet 2: Building Detection v2 dataset (Etten et al., 2018) consists of 24,586 satellite
image scenes across four areas (Las Vegas, Paris, Shanghai, and Khartoum). The images are of size
650px × 650px with a spatial resolution of 0.3m. The officially provided train and test splits were
used in our de-duplication and leakage detection experiments.

The AICrowd Mapping Challenge dataset (Mohanty et al., 2020), derived from the larger SpaceNet
v2 challenge dataset, is composed of 300× 300 RGB patches of WorldView 3 satellite images, each
with a spatial resolution of 0.3m. The dataset is reasonably large, with 280,741 images in the training
set and 60,317 images in the validation set. All images include MS-COCO annotations of polygonal
building footprints (Lin et al., 2014).

We apply our method to the above datasets. The INRIA Aerial Image Labelling Dataset (Maggiori
et al., 2017) and the SpaceNet 2: Building Detection v2 dataset (Etten et al., 2018) passed the scrutiny
of our pipeline without revealing any major issues. These datasets consist of aerial and satellite
images, respectively, with spatial resolutions of 0.3m, and are used in their officially provided train
and test splits. However, when applying our pipeline to the AICrowd Mapping Challenge dataset, we
discovered several issues as discussed in the next subsection.

2.1 DATA LEAKAGE & DE-DUPLICATION

To illustrate the applicability of the proposed method and subsequent de-duplication, we use the
AICrowd Mapping Challenge dataset as a representative example. Below we describe the steps taken
to analyze and address the issues identified.

Initial Observations. To determine the scope of data leakage between the official training and
validation splits of the AICrowd dataset, we calculated the perceptual hashes, as shown in Figure 1
of the images in the official training and validation splits and also their corresponding augmented
versions.

Search Set Targets Set Total number of images in Search set Number of targets in Search set Overlap %

Official Train 166,193 59.19%
Official Train Official Val 280,741 95,241 33.92%

Official Test 95,884 34.15%
Official Train 56,368 93.45%

Official Val Official Val 60,317 10,658 17.67%
Official Test 20,642 34.22%
Official Train 56,608 93.26%

Official Test Official Val 60,697 20,639 34.00%
Official Test 10,701 17.63%
Augmented Train 280,741 251,403 89.55%

Augmented Train Augmented Val 1,684,446 642,741 38.16%
Augmented Test 1,684,446 645,205 38.30%
Augmented Train 361,902 351,182 97.04%

Augmented Val Augmented Val 60,317 46,151 76.51%
Augmented Test 361,902 139,330 38.49%
Augmented Train 364,182 353,041 96.94%

Augmented Test Augmented Val 364,182 139,349 38.26%
Augmented Test 60,697 46,483 76.58%

Table 1: Data Leakage and Duplication. Summary of the extent of data leakage/duplication in the
train, validation, and test splits of the AICrowd dataset. The ‘Official’ train/val/test sets are those
provided by the AICrowd Mapping Challenge dataset (Mohanty et al., 2020). The ‘Augmented’
train/val/test sets refer to those obtained after augmenting the official sets with 90◦, 180◦, 270◦

rotations, and horizontal and vertical flips.

After computing the hashes for all images in the official splits provided in the AICrowd dataset, we
checked for exact duplicates across the splits by searching for exact hash collisions. We observed
significant data leakage between the official training and validation splits of the AICrowd dataset.
The results of these comparisons are displayed in Table 1 with some examples illustrated in Figure 2.
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figure2.tiff

Figure 2: Data Leakage. Here we show examples of data leakage in the AICrowd dataset (Mohanty
et al., 2020) (CC BY-NC-SA 4.0). We sample four images from the validation split and show
duplicates occurring in the training split.

Leakage Detection in the Official Splits. Further analysis showed that several additional images in
the training split were augmented copies of images in the validation split. To detect such augmented
duplicates, we augmented every image in the validation split with the following augmentation: 90◦,
180◦, 270◦ rotations, and horizontal and vertical flips. The perceptual hashes of this augmented
validation set were then compared to that of the training images. In this case, we found that 38.72%
(108,707) of the official training images were exact or augmented duplicates of images found in the
official validation split. Based on these findings, it is evident that a significant portion of the validation
split appears multiple times in the training split of the AICrowd dataset, resulting in significant data
leakage.

Eliminating Augmented Duplicates. The following procedure was adopted to address the issue
of data leakage between the official training and validation splits of the AICrowd dataset. First,
we augmented all images in the official train split with 90◦, 180◦, 270◦ rotations, and horizontal
and vertical flips. Then we calculated the perceptual hashes of all images in the augmented train
split, identified exact and augmented duplicates by detecting hash collisions, and retained only truly
unique train images. The retained image from each set of duplicates was determined arbitrarily. We
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followed the same procedure for the official validation split to obtain a subset of unique images for
final validation.

Removal of Data Leakage. Finally, for these remaining images, we examined hash collisions
between the train and validation splits and eliminated all instances of leaked validation images in the
train split.

3 TECHNICAL VALIDATION & REPRODUCIBILITY

In our experiments, we used a perceptual hashing algorithm with a bit depth of 64 to compute and
store the hashes of each image in a dataset. For hash collision detection, we treated exact hash
matches as a collision, i.e., adopted a Hamming distance threshold of 0 between the computed hashes.
On average, hash computation for a single image takes around 4ms. Hash comparisons were made by
a simple equality check, resulting in a highly efficient and fast-to-compute de-duplication/leakage
detection workflow for large-scale image datasets. All experiments were conducted on a machine
with an AMD Epyc 7313 processor and 32GB of memory.

Search Set Targets Set Total number of images in Search set Number of targets in Search set Overlap %

Official Train Official Train 72,000 2 2.78× 10−3%
Official Test 72,000 6 8.33× 10−3%

Official Test Official Train 72,000 7 9.72× 10−3%
Official Test 72,000 4 5.56× 10−3%

Augmented Train Augmented Train 72,000 12 16.67× 10−3%
Augmented Test 432,000 58 13.42× 10−3%

Augmented Test Augmented Train 432,000 86 19.91× 10−3%
Augmented Test 72,000 18 25× 10−3%

Table 2: Data Leakage and Duplication. Summary of the extent of data leakage/duplication in
the train and test splits of the INRIA dataset. The ‘Official’ train/test sets are those provided by the
INRIA Aerial Image Labelling dataset (Maggiori et al., 2017). The ‘Augmented’ train/test sets refer
to those obtained after augmenting the official sets with 90◦, 180◦, 270◦ rotations, and horizontal and
vertical flips.

figure3.tiff

Figure 3: Qualitative comparisons. Examples from the original AICrowd (Mohanty et al., 2020)
(CC BY-NC-SA 4.0) validation set where images are annotated incorrectly. We show example
predictions from PolyWorld (Zorzi et al., 2022) (first row) and HiSup (Xu et al., 2023) (second row).
The ground truth is shown in the third row. In these examples, it can be seen that these methods
replicate the incorrect/incomplete ground truth annotations, indicating overfitting due to data leakage
between the train and validation splits.
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3.1 EVALUATION OF INRIA AERIAL IMAGE LABELLING DATASET

We used our de-duplication pipeline to evaluate the quality of the INRIA Aerial Image Labelling
dataset (Maggiori et al., 2017). The results of these evaluations are presented in Table 2.

From Table 2, it can be seen that there is negligible data leakage or duplication in the official splits of
the INRIA Aerial Image Labelling dataset (Maggiori et al., 2017). Furthermore, the detected leaked
samples were simply low-contrast images containing only water bodies or grasslands with little to no
buildings. Therefore, these detected leaked samples could be treated as false positives, indicating that
there is no real data leakage or duplication in the officially provided training and test splits.

In Figure 7, we depict some qualitative examples of detected data leakage instances across the official
train and test splits of the INRIA Aerial Image Labelling dataset (Maggiori et al., 2017). From Figure
7, it can be seen that the hashing technique detects leakage instances despite these patches being
from different geographical locations. This is because the hashing technique is invariant to color and
small structural changes. The technique can be made more sensitive to smaller structural changes
by increasing the bit depth of the hashing algorithm, however, we found that a bit depth of 64 was
sufficient for the scope of this study.

Search Set Targets Set Total number of images in Search set Number of targets in Search set Overlap %

Official Train Official Train 10,593 105 0.991%
Official Test 10,593 96 0.906%

Official Test Official Train 3,526 43 1.219%
Official Test 3,526 30 0.851%

Augmented Train Augmented Train 10,593 163 1.539%
Augmented Test 63,558 708 1.114%

Augmented Test Augmented Train 21,156 313 1.479%
Augmented Test 3,526 43 1.219%

Table 3: Data Leakage and Duplication. Summary of the extent of data leakage/duplication in the
train and test splits of the SpaceNet v2 dataset. The ‘Official’ train/test sets are those provided by the
SpaceNet v2 dataset (Etten et al., 2018). The ‘Augmented’ train/test sets refer to those obtained after
augmenting the official sets with 90◦, 180◦, 270◦ rotations, and horizontal and vertical flips.

Search Set Targets Set Total # of images in Search set Duplicates detected using PHash Duplicates detected using AHash
Official Train 166,193 167,829

Official Train Official Val 280,741 95,241 97,950
Official Test 95,884 98,519
Official Train 56,368 56,431

Official Val Official Val 60,317 10,658 11,225
Official Test 20,642 21,204
Official Train 56,608 56,740

Official Test Official Val 60,697 20,639 21,293
Official Test 10,701 11,338

Table 4: Comparison of Duplicates and Leakage Detection Using Perceptual and Average
Hashing Techniques. Summary of the extent of data leakage/duplication in the official train,
validation, and test splits of the AICrowd dataset (Mohanty et al., 2020). It can be seen that the
presence of data leakage and duplication in the AICrowd dataset is confirmed by both perceptual
hashing (PHash) and average hashing (AHash) approaches.

3.2 EVALUATION OF SPACENET 2: BUILDING DETECTION V2 DATASET

The results of the duplication and data leakage evaluations conducted on the SpaceNet 2: Building
Detection v2 dataset (Etten et al., 2018) are presented in Table 3. From Table 3, it can be seen that
the SpaceNet 2 dataset also exhibits negligible data leakage and duplication. In this case, as well,
the detected leaked/duplicate samples were simply no data rasters, which are a common artifact of
georeferenced satellite imagery. Therefore, these could also be considered false positives, indicating
there is no real data duplication/leakage in the SpaceNet 2 dataset.

In Figure 8, we depict some qualitative examples of detected instances of leakage between the official
train and test splits of the SpaceNet 2: Building Detection v2 dataset (Etten et al., 2018). It can be
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seen that all of the detected instances of leakage are due to the ‘no data’ regions. Although there are
very minor differences between the detected instances of leakage, the hashing algorithm is invariant
to such minor structural differences.

3.3 EVALUATION OF AICROWD MAPPING CHALLENGE DATASET

Data Leakage between train, validation, and test splits of the AICrowd dataset: Initial compar-
isons indicated that 93.45% (56,368) of the 60,317 official validation images were also present in
the training split. In contrast, 33.92% (95,241) of the 280,741 official training images were exact
duplicates of images in the validation split. Furthermore, 93.26% (56,608) of the 60,697 official test
split images were also present in the training split. The results of these experiments are presented in
Table 1 and some examples are illustrated in Figures 2, 5, and 6.

De-duplication of the AICrowd dataset: After removing duplicates and augmented duplicates from
the official train and validation splits of the AICrowd dataset, the train split contained 29,338 unique
images (out of the original 280,741) and the validation split contained 14,166 unique images (out of
the original 60,317). From this subset, instances of leakage of validation images in the training split
were identified and removed to further prune the training split to 15,392 images. This demonstrates
that the AICrowd dataset exhibits severe redundancy and duplication of images.

Overfitting exhibited by methods reporting on the AICrowd dataset: Due to the presence of
substantial duplication and data leakage in the official splits of the AICrowd dataset, it was discovered
that several recently reported methods exhibit severe overfitting. This is particularly evident when
these methods even replicate incorrect ground truth annotations from the training dataset. Qualitative
examples of this behavior are shown in Figure 3. This explains why these methods achieve such high
evaluation scores on the dataset.

3.4 COMPARISON OF THE PERCEPTUAL HASHING PIPELINE WITH AVERAGE HASHING

To reasonably verify the results of the analyses conducted using the perceptual hashing pipeline, we
also ran checks using a standard average hashing algorithm for detecting data leakage and duplicates
across the official train, validation, and test splits of the AICrowd dataset (Mohanty et al., 2020). The
results of these comparisons are presented in Table 4. Therefore, it can be seen that analyses using
both perceptual hashing and average hashing detect a similar extent of data leakage and duplication
in the official train, validation, & test splits of the AICrowd dataset. This confirms that the AICrowd
dataset suffers from considerable data leakage and duplication issues. The minor difference in the
detected number of duplicates is because average hashing is prone to false positives, where similar
images are sometimes incorrectly flagged as duplicates, as shown in Figure 4. From these results,
it is clear that perceptual hashing is less prone to false positive errors and hence is a more suitable
choice for evaluating large-scale image datasets.

3.5 DISCUSSION

From the results presented above, it can be observed that the deduplication pipeline is effective
at detecting instances of duplication and leakage in large image datasets. The issues of leakage
and duplication discovered in the AICrowd Mapping Challenge dataset render it unsuitable for
benchmarking building footprint extraction methods without removing the leakage and duplication
instances. This also potentially invalidates the quantitative metrics reported on this dataset by
several preceding works. We also observe that the INRIA Aerial Image Labelling and SpaceNet 2:
Building Detection v2 datasets are generally devoid of such major issues and could serve as more
suitable datasets for benchmarking future research focusing on the task of building footprint detection.

Experimental details: The hash computations and comparisons for all experiments were conducted
on a machine with an AMD EPYC 7313 server-grade CPU after allocating 8 cores for the jobs.
The experiments revealed average runtimes of 4ms per image for hash computation and 4ms per
comparison for hash comparisons.

Choice of Datasets: The objective of this study was to evaluate the quality of the most common and
popular geospatial datasets in the building footprint extraction literature. However, the proposed
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figure8.tiff

Figure 4: Qualitative Comparisons of Duplicates detected using Perceptual Hashing vs. Average
Hashing. Here we show examples of data leakage in the AICrowd dataset (Mohanty et al., 2020) (CC
BY-NC-SA 4.0). We sample two images from the test split in the 1st column and show duplicates
occurring in the training split in the 2nd, 3rd, and 4th columns. It can be seen that the Perceptual
Hashing approach is less prone to false positives when compared to the Average Hashing approach.

deduplication pipeline can be easily used for the assessment of any large-scale image dataset such
as ImageNet (Deng et al., 2009), VOC (Everingham et al., 2010), MS-COCO (Lin et al., 2014),
Cityscapes (Cordts et al., 2016), etc.

Limitations: Despite the effectiveness of the proposed pipeline, there are also some limitations worth
noting. In the present pipeline, although the perceptual hashing algorithm is invariant to radiometric
augmentations (such as brightness & contrast changes), it is not inherently invariant to geometric
augmentations such as rotation or flips. We overcome this limitation by augmenting the input images
before the hash computation as part of the pipeline. The augmentations were chosen based on an
initial visual inspection of the nature of duplications occurring in the datasets. Therefore, the choice
of augmentations depends on the statistics of the dataset, i.e., some a priori information about the
dataset is required before choosing appropriate augmentations. These limitations could be addressed
in future research by developing more robust hashing algorithms that are inherently invariant to strong
geometric and radiometric transformations.
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A APPENDIX

In this appendix, we show qualitative examples of data leakage and duplication discovered in the
AICrowd Mapping Challenge dataset (Mohanty et al., 2020) in Figures 5 and 6. Additionally, in
the case of the INRIA Aerial Image Labelling Dataset (Maggiori et al., 2017) and the SpaceNet 2
Building Detection v2 dataset (Etten et al., 2018), we also depict some examples of the false positive
duplicates identified by the deduplication pipeline in Figures 7 and 8 respectively.
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figure6.tiff

Figure 5: Additional examples of data leakage. Here we show additional examples of data leakage
in the AICrowd Mapping Challenge dataset (Mohanty et al., 2020) (CC BY-NC-SA 4.0). We sample
four images from the validation split in column 1 and show duplicates occurring in the training
split in columns 2, 3, and 4.
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figure7.tiff

Figure 6: Additional examples of data leakage. Here we show additional examples of data leakage
in the AICrowd Mapping Challenge dataset (Mohanty et al., 2020) (CC BY-NC-SA 4.0). We sample
four images from the test split in column 1 and show duplicates occurring in the training split in
columns 2, 3, and 4.
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figure4.tiff

Figure 7: False positive examples of data leakage. Here we show falsely detected examples of data
leakage in the INRIA Aerial Image Labelling dataset (Maggiori et al., 2017). We sample images from
the test split in column 1 and show duplicates occurring in the training split in columns 2 and 3.
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figure5.tiff

Figure 8: False positive examples of data leakage. Here we show examples of falsely detected
examples of data leakage in the SpaceNet 2: Building Detection v2 dataset (Etten et al., 2018) (CC
BY-SA 4.0). We sample four images from the test split in column 1 and show duplicates occurring
in the training split in columns 2, 3, and 4.
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