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ABSTRACT

Diffusion language models (dLLMs) offer a promising non-autoregressive
paradigm for text generation, but training them for complex reasoning remains
challenging. Current reinforcement learning approaches typically rely on sparse,
outcome-based rewards, which can lead to inefficient exploration and “unstruc-
tured refinement”, where the model’s iterative denoising steps fail to contribute
meaningfully to the solution. While Process Reward Models (PRMs) effectively
mitigate similar issues in autoregressive models, they often require expensive hu-
man annotation or external verifiers. In this work, we propose Step-Aware Policy
Optimization (SAPO), a method to derive automatic process rewards for dLLMs
without external supervision. By leveraging the diffusion model’s natural oper-
ation, we design a reward function that incentivizes distributing problem com-
plexity evenly across the denoising trajectory. This intrinsic process supervision
guides the model to learn structured, robust reasoning paths, reducing the risk of
derailing from correct traces. Our empirical results demonstrate that SAPO signif-
icantly improves performance on challenging reasoning benchmarks and enhances
the interpretability of the generation process.

1 INTRODUCTION

Diffusion large language models (dLLMs) have emerged as a compelling alternative to traditional
autoregressive models (ARMs), offering the potential to significantly speed up model inference
through their parallel, non-sequential generation process (Nie et al., [2025; [Sahoo et al.}|2024;|Gong
et al.,|2024;|Ye et al.,2025)). In particular, mask-based dLLMs (MdLLMs) initialize a sequence with
special token [MASK] and iteratively refine this sequence into coherent text. While this paradigm
has shown promise on various general tasks, effectively training MALLMs for complex, multi-step
reasoning remains a significant challenge.

In the realm of autoregressive models, Process Reward Models (PRMs) (Uesato et al., [2022; |Light-
man et al.l 2023) have become an effective solution for improving reasoning. By providing dense,
step-by-step supervision rather than a single sparse reward at the end, PRMs encourage models to
maintain coherent reasoning throughout the generation. However, obtaining such dense supervision
is costly, often requiring large-scale human annotation or external verifiers. Consequently, current
reinforcement learning (RL) methods for MALLMs, such as GRPO (Shao et al., 2024)) adapted in
diffu-GRPO (Zhao et al.} 2025), typically rely solely on sparse, outcome-based rewards.

This reliance on sparse rewards can be problematic. Without intermediate guidance, models are
prone to what we term unstructured refinement. While models may maintain local textual coherence,
they often fail to utilize the iterative denoising process for logical progression. This results in the
model wasting steps on unproductive tokens—manifesting as repetitive loops (mode collapse) or
coherent but vacuous ’fluff’—forcing the final few steps to bridge the entire complexity gap. This not
only inefficiently uses the diffusion process but also increases the risk of generating hallucinations
or inconsistent reasoning paths that only coincidentally arrive at the correct answer (Figure|[T)).

To address this gap, we propose Step-Aware Policy Optimization (SAPO), an algorithm that ex-
tracts automatic process rewards for dLLMs. Our key insight is that we can leverage the unique,
inherent iterative structure of diffusion models to provide this supervision without external costs.
We introduce a method to estimate the contribution of specific denoising intervals by comparing the
expected outcome of intermediate states. This allows us to reward denoising steps that demonstrably
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Figure 1: The problem of unstructured refinement. A standard MdLLM trained with outcome-only
rewards produces a correct answer but fills its reasoning trace with meaningless tokens. While this
specific example exhibits mode collapse (a coherence failure), it serves as a stark illustration of a
broader issue: the iterative process is not incentivized to reduce problem complexity, allowing the
model to ’spin’ on unproductive steps while coincidentally hitting the correct answer.

reduce the remaining problem complexity, providing a dense supervision signal entirely from within
the model’s own rollouts.

This approach serves as a self-supervised mechanism to align the diffusion process with effective
reasoning structures. By incentivizing incremental progress, we encourage the model to distribute
the problem-solving load across the entire generation process, mitigating the risks associated with
unstructured refinement.

Our contributions are as follows:

1. We identify the lack of process supervision as a key limitation in existing MALLM training,
leading to inefficient and potentially unstable reasoning processes.

2. We introduce SAPO, a novel RL framework that provides automatic process rewards for
dLLMs. It leverages the diffusion model’s natural operation to incentivize progressive
complexity reduction without needing external reward models or verifiers.

3. We demonstrate empirically that SAPO leads to significant improvements in both final
performance and the quality of generated reasoning paths across multiple benchmarks, val-
idating the effectiveness of intrinsic process supervision.

2 RELATED WORK

Mask-based diffusion-based large language models. LLaDA (Nie et al., 2025) proposes a mask-
based diffusion-based large language model (dLLMs). It gradually removes the mask token in each
diffusion step. Based on LLaDA, diffu-GRPO (Zhao et al., [2025)) assumes the generated tokens
are independent and proposes a randomly masked prompt to estimate the token probability for re-
inforcement learning with diffusion models. WINO (Hong et al., [2025) proposes a training-free
sampling strategy to use a low confidence threshold to generate a draft response and use a high
threshold for second verification. TSE (Wang et al., [2025c) observes that the answers generated in
intermediate diffusion steps can also be correct and therefore proposes a weighted voting strategy
to get the final answer. ReMDM (Wang et al., 2025a) proposes a remasking sampler to address the
problem that the generated tokens in dLLMs cannot be revoked. wdl (Tang et al.,[2025)) proposes
a weighted likelihood estimation for the sequence. Many approaches have been proposed to im-
prove the efficiency of dLLMs, such as KV-cache (Wu et al., 2025} |Song et al., 2025} [Liu et al.,
2025b; Ma et al.,[2025). MDLM (Sahoo et al., [2024)) derives a continuous-time, Rao-Blackwellized
objective for training mask-based dLLM. LongLLaDA (Liu et al., 2025a)) proposes an NTK-based
ROPE extrapolation to allow long-context text generation. DiffuCoder (Gong et al., | 2025) proposes
a coupled sampling scheme to estimate the likelihood for GRPO training. MDPO (He et al.| 2025
introduces a running confidence remasking strategy to allow low-confidence tokens to be remasked
again during inference time.
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Figure 2: Illustration of the proposed step-aware reward. To encourage intermediate generations
to contribute meaningfully to the final outcome, we generate new rollouts from randomly selected
steps t1, t2 and estimate their contribution by the difference in outcome rewards. A larger difference
indicates a higher contribution toward the final correct answer.

Process reward model. Verification models have been shown to improve the multi-step reasoning
ability of LLMs. Unlike the outcome verifier (Cobbe et al., 2021} [Yu et al., 2023) which exam-
ines the correctness of the final outcome, the process reward models enhance feedback accuracy by
identifying and localizing errors within generated responses. However, collecting step-wise feed-
back can be costly, especially with human annotators (Uesato et al.| 2022 [Lightman et al., 2023).
Therefore, many efforts have been devoted to the automatic extraction of process rewards. One
standard way to assess process correctness is by estimating, via Monte Carlo (MC) methods, the
empirical probability of reaching the correct final answers. Given an intermediate step of reasoning,
MATH-SHEPHERD (Wang et al.| 2023)) asks completers to finalize multiple subsequent reasoning
processes and estimate the potential of this step based on the correctness of all decoded answers.
(Luo et al., 2024) proposes a Monte Carlo Tree Search algorithm to identify the first error in the
reasoning process. (Zhang et al.| |2025) argues that the MC-based estimation can be noisy and re-
quires an additional LLM-as-judge to filter the process reward data. Inspired by (Wang et al.,|2023)),
(Wang et al., 2025b) constructs process rewards for multi-modal LLMs. (Zhang et al.| [2024a)) pro-
poses a tree search policy with process rewards. Implicit process rewards (Yuan et al., 2024} |Cui
et al.l |2025) trains the outcome reward model and can obtain the token-level process reward as
log-likelihood ratios of the policy and reference models.

3 STEP-AWARE POLICY OPTIMIZATION FOR STRUCTURED REASONING

Our primary goal is to mitigate the risk of inefficient or derailed reasoning in MALLMs. We achieve
this by providing dense, process-level supervision that encourages the model to distribute problem
complexity evenly across generation steps. To obtain this supervision without external annotators or
reward models, we leverage the diffusion model’s own iterative nature.

We introduce Step-Aware Policy Optimization (SAPO), a reinforcement learning framework built
upon Group Relative Policy Optimization (GRPO) specifically adapted for MdLLM:s. Its core inno-
vation is a novel, automatic process-based reward function.

3.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO is a powerful on-policy algorithm for enhancing the capabilities of language models (Shao
et al.| 2024). We adapt it for the MALLM setting.

Response sampling. Given a question Q, we use the current policy 7y to generate G candidate
responses {R™M R(3 ... R}, Each response R(?) is assigned a reward r;, based on the cor-
rectness of the final answer. From these, we can compute a mean-normalized advantage for each
response, A; = r; —mean({r; }JG:I). This advantage is distributed across all tokens in the response.

Learning objective. The optimization follows the standard proximity policy optimization
(PPO) (Schulman et al., |2017)-style clipped objective for stable updates, regularized by a KL-
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challenge in applying this to MALLM s is estimating the sequence likelihood 7y (R | Q), which
we address with existing techniques (Zhao et al.| 2025} |Gong et al., 2025} |Tang et al., [ 2025)).

where the likelihood ratio for the k-th token of response R(" is p¥ =

3.2 STEP-AWARE STRUCTURED REFINEMENT FOR MDLLMSs

Standard GRPO for MdLLMs defines the advantage A; based solely on outcome-based rewards
(e.g., final answer accuracy). This may lead to unstructured refinement, as it can equally reinforce
responses that are correct by chance despite having flawed reasoning as illustrated in Fig[l} To
enforce a structured reasoning process, we introduce a step-aware reward.

Denoising steps in MdLLMs. Given an input question Q, MdLLM begins by preparing a sequence
of mask tokens [mask] of pre-defined length and initializing the denoising process at step ¢t = 7.
At each iteration, the model receives the partially masked sequence and incrementally replaces mask
tokens with decoded tokens according to a chosen decoding strategy (e.g., decoding only those
tokens whose confidence exceeds a specified threshold). At an intermediate step ¢, the sequence
thus contains a mixture of text and mask tokens, such as “an apple [mask] [mask] is on the
[mask]”. When t = 0, all mask tokens [mask] are fully resolved into text tokens.

Evaluating denoising steps with step-aware reward. To encourage structured reasoning within the
denoising process, one possible approach is to manually annotate intermediate generations, follow-
ing the methodology of process reward models developed for ARMs (Uesato et al., 2022). However,
unlike ARMs, where tokens are decoded sequentially and intermediate outputs are inherently struc-
tured and separable, annotating intermediate states in MdLLMs poses additional challenges. This
difficulty arises because MALLM intermediate generations consist of a mixture of text and mask
tokens, often arranged in a non-deterministic order due to the parallel decoding mechanism. For
instance, an intermediate state might appear as “an apple [mask] [mask] is on the [mask]”,
where incomplete decoding obscures clear annotation.

To address this challenge, we propose measuring the incremental progress achieved between dif-
ferent stages of the denoising process. Specifically, we randomly sample two denoising timesteps,
t1 and tg, such that 0 < ¢; < t9 < T. Let ¢, and x4, denote the intermediate generations at
these steps. To evaluate the contribution of the denoising steps between 2 and ¢1, we generate full
response rollouts from each state, yielding {R7) (x;, )};\21 and {RY) (z,,)}32,.

The step-aware reward is defined as the difference in the expected outcome rewards:

N1

1 . ,
Rprocess(tla t2) = E Z 1[R(J) (xh )] - F Z 1[R(j)('rtz)]7 (2)

i=1 2
where 1[-] denotes an indicator function that evaluates the correctness of the final response. A
positive value of Ryrocess indicates that the denoising steps between t» and ¢; made a meaningful
contribution, thereby reducing its complexity. Importantly, this formulation eliminates the need to
manually annotate intermediate diffusion states or to design task-specific process reward models.

Efficient reward estimation. Although MdLLMs offer faster inference compared to ARMs, gen-
erating multiple responses from intermediate states at two different timesteps can still be computa-
tionally expensive. To mitigate this cost, we focus on an important special case where to5 = T'. At
this point, the intermediate generation x;, consists entirely of mask tokens [mask] ... [mask].
Consequently, the second term N%‘ Zj\’:zl 1[RY)(24,)] in Eq. corresponds to the model’s accu-
racy when conditioned solely on the input question prompt Q. In this case, we set to = T,
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Figure 3: Complexity reduction via structured decomposition. (Left) A model without process
supervision attempts to solve the complex mapping from Question Q to Response R directly, often
leading to difficulty bottlenecks. (Right) A model guided by process rewards decomposes the prob-
lem into intermediate latent states S, ensuring each step performs a small, manageable reduction in
complexity (sparsity).

RY)(z;,) = RY), and N, = G. Since full response rollouts are already available from GRPO-
based accuracy reward computation, this term can be directly estimated without additional inference.
In other words, we substitute the mean accuracy reward as a surrogate for the second term, effec-
tively halving the inference cost required to compute Rprocess(t1,t2).

In principle, the full trajectory reward could be computed by evaluating all denoising steps from 7'
down to 0, but this approach would incur prohibitively high computational cost. Instead, we find that
estimating the reward using a randomly sampled interval (¢1,t5) serves as an effective and efficient
approximation of the overall reasoning process during generation. Accordingly, we define

Rprocess = Rprocess(th t2)~ (3)

Up-weighted advantage computation. In GRPO (Shao et al.,[2024) and diffu-GRPO (Zhao et al.,
2025)), the advantage is computed by normalizing all rewards across rollouts for a given input
prompt. However, in our preliminary experiments, we observe that directly applying such nor-
malization to the step-aware reward can degrade model performance. This occurs because samples
with Rprocess = 0 are pushed further away during mean-normalization, yielding negative advantages.
Such treatment is suboptimal, as these samples (with correct answers and flawed reasoning steps)
may still contribute positively to model learning. To address this issue, we introduce an up-weighted
strategy for computing the total advantage of response R(*):

AP = A + 1[A; > 0]+ Rpnocess @

where A, is the advantage for response R(). Crucially, up-weighting is applied only to responses
that both yield a correct final answer and already possess a positive advantage. This design ensures
that we reinforce valid reasoning paths without rewarding intermediate progress that ultimately leads
to incorrect solutions, and without penalizing correct answers that may contain imperfect reasoning.

This composite advantage thus integrates correctness with structured, productive reasoning, directly
incentivizing the model to adhere to the principle of hierarchical decomposition.

3.3 THEORETICAL UNDERSTANDING: COMPLEXITY DISTRIBUTION

To ground our method in a formal framework, we interpret the benefits of intermediate rewards
through the lens of complexity reduction. A reasoning task defines a high-complexity constraint
between a question Q and a response R.. Directly generating R that satisfies Q without structured
guidance is difficult because the search space is vast and the dependency is complex (Figure [3]
Left). We do not posit this hierarchical structure as a rigid, universal cognitive model. Rather,
we propose the hierarchy as a flexible abstraction for the potential reasoning complexity. Simpler
problems activate only a sparse subgraph of the available constraints. In the context of diffusion, this
manifests as trivial transformations where the ’reasoning’ happens implicitly via smooth constraint
satisfaction in the latent space, without requiring complex structural decomposition.
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Figure 4: Comparison of generated responses across models. LLaDA (Nie et al., 2025) and diffu-
GRPO (Zhao et al} [2025) both produce incorrect answers to the evaluation question. LLaDA’s re-
sponse includes a brief but partially meaningful reasoning step toward the end, whereas diffu-GRPO
continues generating verbose sentences that contribute little to the final prediction. In contrast, our
model provides a structured reasoning process and successfully arrives at the correct answer. This
highlights that optimizing solely for accuracy-based rewards may lead to sub-optimal outcomes, as
such rewards overlook the quality and coherence of reasoning within the response.

Standard dLLM training paradigms are often agnostic to intermediate progress, suffering from un-
structured refinement: the model may waste early steps on irrelevant tokens or derail from a logical
path, forcing it to bridge a massive complexity gap in the final few steps.

Ideally, the difficulty of the problem should decrease monotonically and gradually as the diffusion
proceeds. We formally characterize this as a sparsity constraint on the latent reasoning process
(see Appendix |B| for details). Intuitively, if a model can decompose a complex function into a
composition of sparse, simple functions, it can more easily learn a natural, robust reasoning process.

Theorem 3.1 (Informal: Complexity Distribution). A reasoning model that distributes the com-
putational load (e.g., satisfies a sparsity constraint), where each transition resolves only a limited
subset of dependencies, learns a natural, robust reasoning process that is less prone to unstructured
refinement.

Our proposed method, SAPO, directly operationalizes this insight. By rewarding intervals that show
a measurable increase in the probability of correctness, we encourage the model to distribute the
complexity reduction evenly across all steps, ensuring that every stage of the diffusion process con-
tributes a small, manageable piece of the solution.

4 EXPERIMENTS

4.1 SETUP

We build our model on top of diffu-GRPO (Zhao et al.| 2025) and adopt the same experimental setup
unless otherwise specified. We provide implementation details in the Appendix[C|

Datasets. We evaluate on four benchmarks: (1) GSM8K (Cobbe et al.l 2021), using 7,374 train-
ing and 1,319 test problems; (2) MATH (Lightman et al., [2023)), with 7,500 training and 500 test
problems; (3) COUNTDOWN, a synthetic dataset of 490K training and 256 test samples requiring
arithmetic expression generation; and (4) SUDOKU, 4 x 4 puzzles evaluated on a 256-sample split.

Baselines. We compare against recent state-of-the-art MALLMs: LLaDA (Nie et al.| 2025)), Diffu-
GRPO (Zhao et al.| [2025), TSE (Wang et al., 2025c)), and WINO (Hong et al.l 2025)), as well as
models further fine-tuned on the reasoning dataset s1K (Muennighoff et al., 2025).
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COUNTDOWN GSMSK SUDOKU MATH

Model / Seq Len 128 256 512 | 128 256 512|128 256 512|128 256 512
LLaDA 20.7 19.5 16.0 |68.7 76.7 78.2|11.7 6.7 5.5 |26.0 32.4 36.2
diffu-GRPO 332 31.3 37.1(72.6 79.8 81.9|18.4 129 11.0|33.2 37.2 39.2
TSE-Vote 25.0 234 164 |70.1 78.7 789| x X x |28.4 35.6 36.2
WINO - 332 - - 758 - - 152 - - 342 -

SFT 20.3 145 23.8|66.5 78.8 81.1[16.5 8.5 4.6 |26.2 32.6 34.8
SFT + diffu-GRPO |34.8 32.0 42.2 |73.2 81.1 82.1|22.1 16.7 9.5 |33.8 38.6 40.2
SFT + TSE-Reward |41.5 42.6 54.7 |72.1 80.0 83.0| x X x |31.2 354 414
diffu-GRPO+PRM | - - - |71.7 80.9 81.5| - - - 130.8 36.0 36.0
Ours 51.6 52.0 56.3 |72.9 82.2 82.4|22.4 20.3 16.1|32.0 40.0 38.4

Table 1: Performance comparison on COUNTDOWN, GSM8K, SUDOKU, and MATH at different
sequence lengths. “~” denotes unreported results; “x” denotes unsupported tasks. Without addi-
tional SFT on the reasoning dataset s1K (Muennighoff et al., [2025), our method achieves superior
performance across all four tasks.

- Dataset diffu-GRPO Ours

Model/Seq Len ?SSUI\g?OgI; sec/it COUNTDOWN | 4372241 | 3.80£2.04

diffu-GRPO _ ||332 31.3 37.1| 3.19 GSMBK 2.37+0.30 | 2.1240.74

Tiffu-GRPO+PRM | - - 1758 SUDOKU 4314295 | 3.90+2.44

Ours-NoUpweight [ 41.0 414 504 3.42 MATH 3194121 | 3.11+1.24

Ours-Cover 5.1 594 5821623 Table 3: The number of causal links across
Ours-Random 55.4 547 59.8|4.76 - .

5 516 520 563340 timesteps.  With the proposed reward, our

urs : : : : approach learns a sparser hierarchy (smaller

mean), and the changes across timesteps (hier-
archy levels) are smoother and more stable, as
indicated by the smaller standard deviation.

Table 2: Ablation on different designs and
effiency comparisons.

4.2 RESULTS

Alignment of reasoning process and final answer. To assess how well MDLLMs produce inter-
mediate reasoning that is consistent with the final answer, we analyze the alignment between the
reasoning process and the output. Specifically, we input generations from LLaDA (Nie et al.,|2025)),
diffu-GRPO (Zhao et al.,2025), and our model into GPT-5, asking it to evaluate “whether a user can
reach the final answer by following the reasoning step by step.” Results on the COUNTDOWN and
GSMSK datasets are shown in Fig.[6] Our method achieves substantially higher alignment ratios
across both datasets. This large improvement helps explain the performance gains in Table[T] as our
proposed reward explicitly encourages the model to maintain consistency between reasoning steps
and final answers through the diffusion-based generation process. We also provide example out-
puts from the three models in Fig.[l| As shown, LLaDA and diffu-GRPO generate less meaningful
reasoning in their responses and ultimately produce incorrect answers.

Comparison with using pretrained PRM. Since our approach is fundamentally built upon the idea
of process rewards, it is crucial to understand how it compares to an existing and widely adopted
paradigm for process-level supervision: using a pretrained Process Reward Model (PRM) as the re-
ward function. To this end, we adopted the pretrained Mistral-7B PRM checkpoint from Zhang et al.
(2024b). We inserted their reasoning-step tags every 16 timesteps during masked-token decoding,
fed the entire sequence into the PRM, and computed the process reward as the average PRM score
across timestep intervals.

Despite PRMs being effective for test-time selection, we encountered several significant challenges
when attempting to use them as training-time rewards for dLLM policy optimization as shown in
Fig[5} (1) Huge memory consumption. Unlike our approach, which reuses the training model itself
to compute rewards, the pretrained PRM introduces substantial GPU and CPU memory overhead,
leading to much slower training (7.62 sec/it vs. 3.42 sec/it for ours; see Table [Z). (2) Instability.
Generated responses frequently caused the PRM to output NaNs, likely because it expects strictly
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Model Training SVAMP | ARC Ste COUNTDOWN GSMSK
LLaDA - 83.3 90.2 P F4iffu-GRPO Ours | diffu-GRPO Ours
diffu-GRPO GSMSK 83.0 |89.8 1 1.56 1.17 12.81 16.53
Ours GSM8BK 84.0 |90.2 8 2.73 1.56 9.48 16.91
| diffu-GRPO| = MATH =~ | ¢ 83.7 |91.8 16 3.12 2.34 13.04 19.33
Ours MATH 85.7 | 93.0 24 4.69 1.95 17.21 21.61
| diffu-GRPO | COUNTDOWN| 84.0 | 90.6 32 6.64 27.34 24.26 30.86
Ours COUNTDOWN/| 84.0 | 875 40 12.50 33.98 39.27 41.17
diffu"GRPO[ SUDOKU | 85.0 [91.0] | 48 | 1953  37.11| 4996  50.57|
Ours SUDOKU 86.7 | 90.6 64 33.2 51.6 72.6 72.9

Table 5: Accuracy of intermediate answers with
sequence length 128 and 64 diffusion steps. In-
termediate answers are obtained by decoding nor-
mally up to a target step and then decoding all re-
maining tokens in one pass.

Table 4: Generalization ability compari-
son. The trained models are evaluated on
unseen datasets: the reasoning benchmark
SVAMP (Patel et al.,2021]) and the common-
sense benchmark ARC (Clark et al., 2018]).
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Figure 5: Two failure runs when using a pretrained PRM to assign rewards: instability and poten-
tial reward hacking. Unlike our rule-based reward, the PRM must process the full model-generated
response through a large pretrained network. As a result, it often encounters unseen or irregular
response formats, which can lead to numerical instabilities and NaN outputs. In addition, as shown
on the right for the MATH dataset, although the PRM reward steadily increases during training, the
accuracy reward actually decreases. This divergence suggests that the model learns to exploit weak-
nesses in the PRM scoring function—effectively hacking the reward model rather than improving
its reasoning quality.

formatted inputs (e.g., explicit “step1/step2” markers). This forced us to replace NaN scores with
zero, introducing further noise into the learning process. (3) Reward hacking. Although the PRM
reward steadily increased during training, the actual task performance did not improve. This suggests
that the policy model learns to exploit flaws in the PRM scoring function rather than improving its
reasoning quality—a well-known failure mode for reward-model-based optimization. As shown in
Table [T} diffu-GRPO+PRM achieves 71.7, 80.9, and 81.5 on GSM8K, while diffu-GRPO obtains
72.6,79.8, and 81.9. Our method further improves to 72.9, 82.2, and 82.4. These results underscore
that, even when compared against a strong pretrained PRM, our rule-based reward provides more
stable optimization and better downstream performance, reinforcing the motivation for our design.

Ablation study on the model design. We now examine several design choices in our framework.
Ours-NoUpweight removes the up-weighting strategy and applies the reward to all samples rather
than only those with positive advantages. Ours-Cover computes the proposed reward across all
timestep intervals, corresponding to the exact empirical average. Ours-Random selects to uniformly
at random instead of fixing ¢, = T'. The results on the COUNTDOWN dataset are shown in Table[2]

The ablation results demonstrate the contributions of each component. Removing the up-weighting
strategy (Ours-NoUpweight) already yields notable improvements over diffu-GRPO (e.g., 41.0 vs.
33.2 at sequence length 128), indicating that the reward formulation alone provides a substantial
benefit. Computing rewards across all timestep intervals (Ours-Cover) achieves the strongest overall
performance (55.1, 59.4, 58.2), but requires roughly twice the computation time (6.23 sec/it). Sam-
pling ¢2 at random (Ours-Random) achieves similarly strong accuracy (55.4, 54.7, 59.8), though it is
still slower than our approach (4.76 sec/it), as it requires an additional forward pass and cannot reuse
the final completion for filtering. Our full method (Ours) achieves performance close to Ours-Cover
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Figure 9: Reward curves during GRPO training. For fair comparison, we exclude our step-aware
reward. The step-aware reward emphasizes responses that contain both the correct answer and
meaningful reasoning, which in turn enhances the accuracy reward.

and Ours-Random (51.6, 52.0, 56.3), while maintaining a training speed comparable to diffu-GRPO
(3.42 secf/it vs. 3.19 sec/it). This indicates that our design provides an efficient approximation of
the full reward with minimal computational overhead. For completeness, we also report the runtime
of diffu-GRPO+PRM (7.58 sec/it), which is substantially slower due to the additional memory and
computation required by the pretrained PRM model.

Our reward enables a more sparse and stable reasoning hierarchy. Our theoretical analysis sug-
gests that enforcing suitable sparsity constraints should lead the model to learn a more structured
and well-organized reasoning hierarchy. To empirically verify this prediction, we examine the causal
structure induced by the learned models. At each prediction step, we estimate the causal links be-
tween hierarchy levels using token prediction probabilities. For example, given a partially decoded
sequence such as “I am [mask]”, we count how many vocabulary tokens have prediction probability
greater than a small threshold (e.g., 0.01), treating each such token as an active causal link. We then
compute the average and standard deviation of the number of causal links across timesteps.

As shown in Table 3] our approach consistently produces fewer causal links than diffu-GRPO, in-
dicating a sparser learned hierarchy. For instance, on COUNTDOWN, the number of causal links
decreases from 4.37 to 3.80 (a 13.1% reduction), and on SUDOKU it decreases from 4.31 to 3.90 (a
9.5% reduction). Likewise, our model shows smaller standard deviations—e.g., from 2.41 to 2.04
on COUNTDOWN-—demonstrating that the changes across hierarchy levels are smoother and more
stable. Similar trends hold across GSM8K and MATH. These empirical findings align with our
theoretical motivation and confirm that our reward encourages a more structured reasoning process.

Superior benchmark performance. Table |I| reports results on benchmarks: GSM8K, MATH,
COUNTDOWN, and SUDOKU. Our approach outperforms baselines across most datasets and even
surpasses those fine-tuned with additional reasoning dataset s1K (Muennighoff et al., [2025).
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The proposed reward is effectively learned and facilitates training. We visualize the training re-
wards of diffu-GRPO (Zhao et al.,[2025) and our model in Fig.[9] Our method consistently achieves
higher total rewards—which combine both accuracy and format rewards—explaining the substantial
performance gains observed on these datasets. For MATH, however, the training rewards of both
methods remain similar. A similar phenomenon was also reported in (Zhao et al., [2025), where the
diffu-GRPO model after SFT on s1k dataset (Muennighoff et al.| [2025) attained rewards similar to
those without SFT. We hypothesize that the MATHS00 problems may be too challenging for the
8B base model and may be addressed with a larger dLLM. We further present the reward training
curves in Fig.[8] The upward trend indicates that the model learns to favor responses yielding correct
answers while adhering to reasoning processes that support the final outcome.

Our model demonstrates strong generalization ability. To thoroughly examine the proposed
framework, we further evaluate our models on two unseen datasets: SVAMP (Patel et al.| 2021)
and ARC (Clark et al, |2018). The SVAMP dataset consists of numerous mathematical reasoning
problems, while the ARC dataset focuses on commonsense reasoning tasks (e.g., “When oxygen
combines with hydrogen, which substance is formed?”), where the model must select the correct
answer from multiple choices. Notably, ARC is fundamentally different from our training datasets
(e.g., GSMS8K). Our model noticeably improves performance on both SVAMP and ARC.

Our method enables further acceleration through higher intermediate accuracy. Accelerating
MDLLMs has been an active area of research (Li et al., 2025; |Hong et al., 2025; He et al., [2025)).
Many approaches rely on the quality of intermediate responses: if these responses are accurate and
contribute meaningfully to the final answer, generation can be accelerated. For instance, Prophet (Li
et al., [2025) decides whether to decode all remaining tokens in a single step. Motivated by this,
we analyze the accuracy of intermediate responses produced by our method. Specifically, during
diffusion denoising, at each step, we additionally generate an answer by unmasking all remaining
tokens at once. This gives us intermediate answers at every step, in addition to the final output
obtained from fully decoding the masked sequence. We present results in Table[5] Across both
datasets, our method achieves higher intermediate accuracy, suggesting that it may offer advantages
over diffu-GRPO (Zhao et al.| 2025) when combined with MdLLM acceleration techniques.

Effect of the number of samples on the reward. Our step-aware reward function is based on an
averaged estimation of the accuracy of generated responses. To assess its reliability, we perform an
ablation study by varying the number of samples, N € {1,3,6,9}. As illustrated in Fig.[7, when
N = 1, the estimation becomes noisy and leads to suboptimal performance. In contrast, when
N > 3, we observe substantial improvements over both baseline methods, LLaDA (Nie et al., 2025)
and diffu-GRPO (Zhao et al.| [2025)), across sequence lengths of 128, 256, and 512. These results
highlight the robustness of our proposed reward under different sampling configurations.

5 CONCLUSION AND LIMITATIONS

We address the challenge of training diffusion language models for complex reasoning, identifying
the lack of process supervision as a key limitation that leads to unstructured refinement. To over-
come this without incurring the high costs of external verifiers or human annotation, we introduce
SAPO, an RL framework that derives automatic process rewards from the diffusion model’s inherent
iterative structure. Supported by the theoretical insight of progressive complexity reduction, SAPO
incentivizes the model to distribute problem difficulty evenly across the denoising trajectory, fos-
tering structured and robust reasoning. Our empirical results demonstrate that SAPO significantly
improves performance on challenging reasoning benchmarks and enhances the coherence of the
generation process.

Limitation. Our method relies on the mean-field assumption used in diffu-GRPO (Zhao et al.|[2025))
to estimate the log-likelihood of generated responses, which inherently neglects token-level depen-
dencies. Unfortunately, this assumption is difficult to remove because, unlike ARM-based models,
dLLM does not provide a convenient factorization that would allow us to compute likelihoods ex-
actly. For efficiency reasons, we therefore must adopt additional approximations. Addressing this
limitation is an important direction for future work.

10
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Appendix
A LLM USAGES.

Large Language Models (LLMs) were used solely for polishing the writing and improving the clar-
ity of presentation. All ideas, analyses, results, and conclusions are original contributions of the
authors.

B THEORETICAL ANALYSIS

In this section, we provide a theoretical foundation for our work. The central insight is that if the
underlying hierarchical structure of reasoning can be learned from data, then there is a principled
basis for designing algorithms that explicitly seek this structure. We establish this by showing that
the latent concepts at each level of our proposed hierarchy are identifiable up to benign ambiguities.

B.1 IDENTIFIABILITY OF LATENT CONCEPTS FROM OBSERVATIONS

Consider any level [ in the hierarchy. The concepts S;; at the next level are sampled based on S;
via a generating function S;, = fs,,, (S, €), where €; denotes the exogenous variables injected
into level | + 1, independent of S; and all variables at higher levels. The final response R can be
expressed as S; and the collection of exogenous variables E; := (€,,) TI;L: ; Via an invertible function
R = q(S;, Ey).

The following lemma shows how the hierarchically-dependent latent concepts S;;1 can be disen-
tangled from the independent exogenous variables E;; for any 0 < [ < L. The proof is inspired
by previous work (Hyvarinen & Moriokal 2016; Hyvarinen et al., [2019; [Kong et al., [ 2022).

Lemma B.1 (Single-level Subspace Identifiability). Assume the following data-generating process
at a fixed, arbitrary 0 <[l < L:

Si41 ~P[Si11[Si], Eryr ~ P[Era], R = qi1(Sis1, Eiga). (5)
We have the following conditions.
i Informativeness: The function q11(-) is a diffeomorphism.
ii Smooth Density: The probability density function p(S;41, Ej+1|S;) is smooth.
iii Sufficient Variability: At any value S;11, there exist n(S;y1) + 1 distinct values of S, denoted

as {S;")}Z(:SO’“), such that the vectors w(Si+1,S]') — W(Si+1,SY) are linearly independent

_ (9logp(Si+1[S1) Olog p(Si+1[S1)
where w(S;11,S;) = ( BSiit T DSty

If a model 0 satisfies and|iii, another model 6 satisfies EI and they generate identical distri-
butions P [R|S;] = P[R|S;], then the latent concepts S, are identifiable up to an invertible map,
disentangled from Ky 1: there exists an invertible mapping S;+1 — Sl+1 where S;41 and Sl+1 are
generated in model 0 and 0 respectively.

Proof. Since we have matched distributions, it follows that:
p(R[S1) = p(R[S)). (6)
As the generating function ¢;1; has a smooth inverse (i), we can derive:
P41 (Sie1, Bi)[S1) = p(Gi1 (Sign, Biyr)[S) =

P(Si41, Er1]Sy)

Jo = Pla s © Gre1(Sei1, Eig)[S) ‘Jql—;l :

Notice that the Jacobian determinant ’J g
l+1

> 0 because of ¢;41(-)’s invertibility and let i :=

qurll oGyt : (Sz+1, EH) — (Si+1,E;+1) which is smooth and has a smooth inverse thanks to
those properties of ¢;+; and ¢;1. It follows that

p(Si+1, Ei1]St) = p(h(Sis1, Erg1)[S) =
P(Si41, Eig1[S0) = p(Si41, By [S) [T -

14
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The independence relation in the generating process implies that

log p(Si+1[S1) + Z log p(Ei11,:) = log p(Si11[S1) + Z log p(Br41,4) + log |- 1.
i€[n(Bi11)] ic[n(Biy1)]

(7
For any realization SY, we subtract (7) at any S; # S? with that at S?:
log p(S141(S1) — log p(S141(S}) = log H(S1+1[S1) — log H(S141]SY)- (8)

Taking derivative w.r.t. El+1,j for j € [n(E,1)] yields:

0Si41,i
> g (logp(Si41[Si) - log p(Si11(S7)) - aEin =0. 9)
1€[n(Si+1)] 1,0 I+1,5
The left-hand side zeros out because S 1+1 18 not a function of E1+1-
Conditionﬂensures the existence of at least n(S;11) such equations with S}, .. ., Sf(sl“) that are

linearly independent, constituting a full-rank linear system. Since the choice of j € [n(E;;+1)] is
arbitrary. It follows that

O0Si41,i

ey € Bl € brlBr)] 10
OB, i € [n(Si+1)],J € (Eiy1)] 10)

Therefore, the Jacobian matrix Jy, is of the following structure:

OE; 11 OE; 11

| 8E 9S4
In = 08111 08141 (1)

OB 1 9Si41°

(I0) suggests that the block % = 0. Since J}, is full-rank, we can deduce that % must have
I+1 I+1

full row-rank and n(S;y1) < n(SlH). Assuming the dimensions of the latent spaces are equal,
n(Si+1) = n(Si+1). Moreover, since Jy, is full-rank and the block % is zero, we can derive
1+1

that the corresponding block g;:ll in its inverse matrix J; -1 is also zero. Therefore, there exists an
invertible map S; ;1 — Sl+1, which concludes the proof. O

With Lemma [B.1]in hand, we can prove the following lemma that refines subspace invertible map-
pings S;11 +— S;41 into component-wise invertible mappings S; ;1 ; — S . That is, one can
identify single dimensions on the level [.

I+1,

To formalize our theoretical results, we introduce the following notation. For a matrix M, we denote
its i-th row and j-th column as M; . and M. ; respectively. We use - to indicate all the indices in
that dimension. Recall the definition S;41 := fi+1(S;, €;) and R := ¢;41(S;41, Ei+1). We denote
Ds, fs,,, as the partial derivative of the function fs, , with respect to the higher-level variables S;.
Let T be an arbitrary, fixed matrix with the same support as the matrix-valued function T(-) in the

relationship between two models’ Jacobians: Dsg, fsl .1 = TDs, fs,,,. Given a subset of indices
S C {1,...,n}, we define the subspace R% as {s € R™ | s; = 0if¢ ¢ S}. The support of the
generative process for level [ 4- 1 is defined as D; := supp(Ds, fs,,, ). The dependency structure
is captured by a binary matrix M, where M; ;; = 1 if and only if (4, j) € D;. Let Aj, be the set of
indices for variables in S;1 that depend on the higher-level variable S; ;. Let d(S;) represent the
dimensionality of S;. The following conditions follow prior work [Zheng et al.| (2025} [2022).

Assumption B.2 (Non-degenerative Subspace|Zheng et al.[(2022)). Suppose two alternative models
6 and 0, with an Uy regularization on Dg, fs, 1 such that |Z§l\ < |Dy|, there exists a set of points

{(Si, 9)“)}'42[1"’” for each Si41 ;, such that:

1. The vectors {Ds, fs,,, ((S1,0)9)).; lgzll’"i‘ are linearly independent.
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2. The transformed vectors lie in a subspace: [TDs, fs,,, ((Si,0)*)], ; € Rnﬁ(ls"fl).

We adapt a theoretical result from Zheng et al.[(2025)) as the following lemma.

Lemma B.3 (Pair-wise Identification (Zheng et al., [2025)). Ler 6 := (fs,,,.gs,.,) and 6 -
H and Condition
and 0 satisfies Condition |§| and an ¢y constraint min Hsupp Dy, fs | If0 and 6 are obser-

vationally equivalent, i.e., P[R|S;] = P[R|S;] for all S;. Then, the Jacobian of the transformation
between the latent spaces satisfies:

( fsl 410 ds, +1) be two alternative models. Suppose 0 satisfies Condition

OSi11 m(ANA, OS1i1 (AN
HL(ANA) o and HLm(ANAD 0, (12)
OS111.4, OSi141,4,
where T is a permutation of the variable indices.

Assumption B.4 (Structural Diversity (Zheng et al.| 2025)). For any index i of the variable S 1,
there exists a nonempty index set J and a specific index j € J for S; such that i is the unique index
in A; that satisfies {i} = A; \ Upe\(j}Ar. Moreover, the union Uyc ; Ay is equal to the entire
index space [d(S;)].

Lemma B.5 (Single-level Component-wise Identifiability). Let 6 := (fs,,,,qs,,,) and 6 :

(fsl“,(jsl“) be two alternative models. Suppose 0 satisfies Condition iliijiii| and Con-

dition and 6 satisfies Condition and a constraint on the support cardinality
min|Dg, fs,,,|. If @ and 0 are observationally equivalent, i.e., P[R[S;] = P[RI[S,] for all S,
then the variables S; 1 and Sl+1 are identifiable up to permutations and invertible transformations.

Specifically, for any index i, there exists an invertible mapping Sj41,; — S, 1+1,7(s) Jor a permutation
.

Proof. Notice that we have assumed all conditions for Lemma [B.T]and Lemma|B.3]
For any variable index ¢ on the level [ + 1, invoking Lemma B.1]yields that

0S141.7(i) _

0. 13
OE;11 (13)

Assumption [B.4]suggests the existence of an index j and an index set J (j € .J) for the variable S,
such that the intersection such that ¢ is the only index in .A; that is unique to A; (relative to other
index sets { Ay i ks£)- Lemmaimplies that

98141 x(i)
O8141,Ue s A\ (i}
Moreover, since Uy s Ar = [d(S;+1)] (Assumption [B.4), we can deduce that

=0. (14)

Oiriaty  _ (15)
OS 141 d(s1)\ (i}
Combining (T3) and (T3] yields
OSi41,7(i) o (16)

OS141,[d(8141)IUl(BL )i}
Recall that the mapping (S;41, Ei1) — (Si11, Ery1) is invertible. We can deduce from (T6) that
the mapping ;1 1; — Si41,x(;) is invertible. Since the choice of i € [d(S;1)] is arbitrary, we have

arrived at the desired conclusion. O

Now, we are ready to present the identifiability for the entire hierarchical model. For ease of expo-
sition, we consider the question variables Q as the top-level variable S;.
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Theorem B.6 (Identifiability of the Reasoning Hierarchy). Let 6 := (fs,,,,4ds,.,) le(L) and 0 :

( fsl 110 ds, “)l B be two alternative models. Suppose every two adjacent levels S; and S;11 from
elL

0 satisfy Condition m, iifiii|and Condition and every two adjacent levels Sy and Sy from 6

satisfy Condition WIE iii} and a constraint on the support cardinality min |DS, fsil- If@ and 6

are observationally equivalent, i.e., P[R|S,] = P[R|S,], then the variables S; and S; (I > 1) are
identifiable up to permutations and invertible transformations. Specifically, for any index | > 1 and

i € d(Sy), there exists an invertible mapping Sy ; — S) x, (i) for a permutation ;.

Proof. Our proof is inductive. Theorem|B.5|shows that if the variables at level [ are identifiable, then
those at the next level, [ + 1, are also identifiable. Since the top-level S; is given, i.e., the question
Q, we can derive that all the variables in the hierarchical model are identifiable up to permutation
and invertible transformations. That is, for any index [ > 1 and i € d(S;), there exists an invertible

mapping S,; — S’lm(i) for a level-specific permutation 7;. O

C IMPLEMENTATION

We build our model based on the code repository by diffu-GRPO (Zhao et al., 2025). We apply
GRPO to LLaDA-8B-Instruct (Nie et al.,[2025). Following diffu-GRPO, we generate 6 rollouts per
problem with a temperature of 0.9 and perform 12 update iterations per step (for Sudoku, we follow
diffu-GRPO and use a temperature of 0.3 with 8 iterations). The model is trained with LoRA of
rank 128 in 4-bit precision and evaluated in float16 precision. The learning rate is set to 3 x 1076
with 600 warm-up steps. During evaluation, we use zero-shot prompting and greedy decoding, with
generation lengths of 128, 256, and 512 tokens, consistent with diffu-GRPO.

In order to compute the step-aware reward, we randomly select a timestep during the generation
of rollouts for optimization. At this point, we take the intermediate generations consisting only of
the text tokens that have been produced so far. We then concatenate 64 additional mask tokens
to this partial sequence and feed the extended input back into the model. The model continues the
process by performing iterative denoising based on this new input. Empirically, we find that using 64
mask tokens provides an effective trade-off between efficiency and performance on the benchmark
datasets. After obtaining the outputs, we first compute the accuracy of the original rollouts, which
reflects the correctness of the answers generated from the question alone. Next, we compute the
accuracy of the newly generated answers obtained from the intermediate generations. Finally, we
define the step-aware reward as the difference between these two accuracies, which quantifies the
contribution of the intermediate generations to the final outcome.

D ADDITIONAL EXAMPLES

Here are additional responses comparisons for COUNTDOWN dataset.
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Problem:Using only the provided numbers [19,3,5], create an arithmetic expression
evaluates to exactly the target number 52

—/

To reach the target number using the given numbers, To reach the target number using the given To create an arithmetic expression that

we need to consider the operations of addition,
subtraction, multiplication, and division. We can start
by using the largest number (19) and the smallest
number (3) to form a larger number. Then, we can use
the remaining number (5) to adjust the result. The, we
can use the remaining number to adjust the result.

numbers, we need to consider the operations of
addition, subtraction, multiplication, and
division. We can start by trying to use the
numbers in a way that sums up to the target
number . However, since the target number is
larger than the sum of the given numbers, we

evaluates to exactly target number 52 using
the numbers 19, 3, and 5, we need to consider
the combinations of the operations +, -, *,
and /. Let's try a few combinations:

need to use multiplication to reach the target..
We try multiplying the given numbers in
different

Finally, we can use the remaining number to adjust the
result.

i We find that multiplyi From the above, we can that 19 * 3 - 5
ﬁ:‘m‘:g) 19 by 3 gives us exactly the 52. works. -
\boxed{19*3-5-3 -3} </reasoning> </reasoning>
<answer>

<answer>
\boxed{19 * 3 - 5}
</answer><|eot_id|><|endoftext >

<lanswer><[eot.id|><[endoftext]> 0 0 1)

&/answer><|eot_id|><|endoftext|>

LLaDA diffu-6RPO Ours
Answer: X Answer: x Answer:
Reasoning: x Reasoning: x Reasoning:

Problem:Using only the provided numbers [37,1,73], create an arithmetic expression
evaluates to exactly the target number 37

To get the target number 37 using the numbers
37,1, and 73, we need to find a combination of
operations that, when applied to these numbers,
result in 37. We can start by considering the
simplest operations and see if we can reach the
target.

</reasoning>

<answer>

\boxed{73 - 37}

</answer><|eot_id|><|endoftext |><|endoftext|>

To get the target number 37 using the numbers 37, 1,
and 73, we need to find a combination of operations
that, when applied to these numbers, result in 37. We
can start by considering the simplest operations and
see if we can reach the target.
<freasoning>

To create an arithmetic expression that
evaluates to exactly the target number 37
using the numbers 37, 1, and 73, we need to
consider the operations +, -, %, and /. Let's
try different combinations:

wer> 1.73-37+1
\boxed{73 - 36} 2.73+1-37

Both of these expressions evaluate to the
target number 37. We can choose either one.
</reasoning>

<answer>

\boxed{73 - 37 + 1}
</answer><|eot_id|><|endoftext|>

<|endoftext |><|endoftext |><|endoftext|>

LLaDA diffu-6RPO Ours
Answers X Answer: X Answer:
Reasoning: x Reasoning: x Reasoning:

Figure 10: Comparison of generated responses across models. We observe that LLaDA produces
meaningless reasoning steps, while diffu-GRPO generates incorrect reasoning. In contrast, our
model correctly answers the question.
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