
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEP-AWARE POLICY OPTIMIZATION FOR REASON-
ING IN DIFFUSION LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion language models (dLLMs) offer a promising, non-autoregressive
paradigm for text generation, yet training them for complex reasoning remains
a key challenge. Current reinforcement learning approaches often rely on sparse,
outcome-based rewards, which can reinforce flawed reasoning paths that lead to
coincidentally correct answers. We argue that this stems from a fundamental mis-
match with the natural structure of reasoning. We first propose a theoretical frame-
work that formalizes complex problem-solving as a hierarchical selection process,
where an intractable global constraint is decomposed into a series of simpler, lo-
calized logical steps. This framework provides a principled foundation for algo-
rithm design, including theoretical insights into the identifiability of this latent rea-
soning structure. Motivated by this theory, we identify unstructured refinement—a
failure mode where a model’s iterative steps do not contribute meaningfully to
the solution—as a core deficiency in existing methods. We then introduce Step-
Aware Policy Optimization (SAPO), a novel RL algorithm that aligns the dLLM’s
denoising process with the latent reasoning hierarchy. By using a process-based
reward function that encourages incremental progress, SAPO guides the model to
learn structured, coherent reasoning paths. Our empirical results show that this
principled approach significantly improves performance on challenging reasoning
benchmarks and enhances the interpretability of the generation process.

1 INTRODUCTION

Diffusion large language models (dLLMs) have emerged as a compelling alternative to tradi-
tional autoregressive models, offering significant inference speed-ups through their parallel, non-
sequential generation process (Nie et al., 2025; Sahoo et al., 2024; Gong et al., 2024; Ye et al., 2025).
In particular, mask-based dLLMs (MdLLMs) initialize a sequence with special token [MASK] and
iteratively refine this sequence into coherent text. While this paradigm has shown promise on various
tasks, training MdLLMs for complex, multi-step reasoning remains a significant challenge.

The core of this challenge, we argue, lies in a mismatch between how existing models are trained and
the inherent structure of complex reasoning. We posit that sophisticated reasoning is not a monolithic
task but a hierarchical process. A high-level problem imposes a complex global constraint that is
intractable to solve in a single step. Humans overcome this by decomposing the problem into a
hierarchy of simpler, more manageable sub-goals or logical steps. We formalize this intuition as
a hierarchical selection model, which serves as a principled theoretical foundation for designing
reasoning algorithms. This framework provides novel theoretical insights, including a key result on
the conditions under which the latent logical hierarchy is identifiable from problem-solution data.
This core insight that a decomposed reasoning structure can be learned from observation is the
primary motivation for our entire approach.

However, current reinforcement learning (RL) methods for MdLLMs fail to leverage this poten-
tial. Techniques such as GRPO (Shao et al., 2024), as adapted by works like diffu-GRPO (Zhao
et al., 2025), DiffuCoder (Gong et al., 2025), and wd1 (Tang et al., 2025), typically rely on sparse,
outcome-based rewards—judging a generated response solely based on the correctness of its fi-
nal answer. This approach can inadvertently reinforce “correct-by-chance” solutions that arise from
flawed or nonsensical reasoning; see Figure 1 for an illustrative example. We term this critical failure
mode unstructured refinement: the model wastes most of its iterative steps on unproductive tokens,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Step-aware Reward
(SAPO)

Accuracy Reward
(diffu-GRPO)

Problem:
Using only the provided
numbers [51, 99, 13],
create an arithmetic

expression that evaluates
to exactly the provided

target number 61.

To find an arithmetic expression that
evaluates to 61 using the numbers 51, 99, and
13, we need to consider the operations +, -,
*, and / and ensure each number is used
exactly once.

\boxed{99-51+13}

We, we, we, we, we, we, we, we, we, we, we,
we, we, we, we, we, we. we we, we, we, we,
we, we, we, we,

<reasoning> We need to reach 61 using the
numbers [51, 99, 13], each exactly once, with
operations +, -, *, or /.

\boxed{99-51+13}

Start with the largest difference: 99-51=48.
Then add the remaining number: 48+13=61.
This matches the target exactly.

Rollouts

Rollouts

MDLLM

correct
answer
99-51+13

Accuracy Reward doesn't
distinguish them.

Some rollouts contain meaningless repetitive
tokens while the final answer is correct.

meaningless
tokens

correct
answer

correct
answer
99-51+13 meaningful

tokens

correct
answer

Finegrained
step-aware reward

Figure 1: The problem of unstructured refinement. A standard MdLLM trained with an outcome-
only reward produces a correct answer but fills its reasoning trace with meaningless, repetitive to-
kens. This indicates the iterative process is not contributing meaningfully to the solution.

failing to progressively simplify the problem and forcing it to solve the complex global constraint in
a few high-difficulty steps.

To address this, we propose Step-Aware Policy Optimization (SAPO), a principled RL framework
designed to align the denoising process of MdLLMs with the latent hierarchy of reasoning. The
core of SAPO is a process-based reward function that measures the contribution of each interval of
the denoising trajectory. By rewarding denoising steps that demonstrably increase the probability of
reaching a correct solution, SAPO provides the necessary inductive bias to discover the underlying
reasoning structure. This encourages the model to learn a structured policy where each refinement
stage corresponds to resolving a logical constraint at a specific level of the reasoning hierarchy.

Our contributions are as follows:

1. We propose a novel theoretical formulation of complex reasoning as a hierarchical selection
process. This framework provides key insights into principled reasoning model design and
includes a foundational result on the identifiability of the latent logical structure, which
yields the key design principle.

2. We identify unstructured refinement as a key failure mode in existing MdLLM training
paradigms and propose Step-Aware Policy Optimization (SAPO), an algorithm motivated
by our theoretical framework. We demonstrate empirically that SAPO leads to significant
improvements in both final performance and the quality of generated reasoning paths.

2 RELATED WORK

Mask-based diffusion-based large language models. LLaDA (Nie et al., 2025) proposes a mask-
based diffusion-based large language model (dLLMs). It gradually removes the mask token in each
diffusion step. Based on LLaDA, diffu-GRPO (Zhao et al., 2025) assumes the generated tokens are
independent and proposes a randomly masked prompt to estimate the token probability for reinforce-
ment learning with diffusion models. WINO (Hong et al., 2025) proposes a training-free sampling
strategy to use a low confidence threshold to generate a draft response and use a high threshold for
second verification. TSE (Wang et al., 2025c) observes that the answers generated in intermediate
diffusion steps can also be correct and therefore proposes a weighted voting strategy to get the final
answer. ReMDM (Wang et al., 2025a) proposes a remasking sampler to address the problem that the
generated tokens in dLLMs cannot be revoked. wd1 (Tang et al., 2025) proposes a weighted likeli-
hood estimation for the sequence. Many approaches have been proposed to improve the efficiency
of dLLMs, such as KV-cache (Wu et al., 2025; Song et al., 2025; Liu et al., 2025b; Ma et al., 2025).
MDLM (Sahoo et al., 2024) derives a continuous-time, Rao-Blackwellized objective for training
mask-based dLLM. LongLLaDA (Liu et al., 2025a) proposes an NTK-based RoPE extrapolation to
allow long-context text generation. DiffuCoder (Gong et al., 2025) proposes a coupled sampling
scheme to estimate the likelihood for GRPO training.

Process reward model. Verification models have been shown to improve the multi-step reasoning
ability of LLMs. Unlike the outcome verifier (Cobbe et al., 2021; Yu et al., 2023) which exam-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ines the correctness of the final outcome, the process reward models enhance feedback accuracy by
identifying and localizing errors within generated responses. However, collecting step-wise feed-
back can be costly, especially with human annotators (Uesato et al., 2022; Lightman et al., 2023).
Therefore, many efforts have been devoted to the automatic extraction of process rewards. One
standard way to assess process correctness is by estimating, via Monte Carlo (MC) methods, the
empirical probability of reaching the correct final answers. Given an intermediate step of reasoning,
MATH-SHEPHERD (Wang et al., 2023) asks completers to finalize multiple subsequent reasoning
processes and estimate the potential of this step based on the correctness of all decoded answers.
(Luo et al., 2024) proposes a Monte Carlo Tree Search algorithm to identify the first error in the rea-
soning process. (Zhang et al., 2025) argues that the MC-based estimation can be noisy and requires
an additional LLM-as-judge to filter the process reward data. Inspired by (Wang et al., 2023), (Wang
et al., 2025b) constructs process rewards for multi-modal LLMs. (Zhang et al., 2024) proposes a tree
search policy with process rewards. Implicit process rewards (Yuan et al., 2024; Cui et al., 2025)
trains the outcome reward model and can obtain the token-level process reward as log-likelihood
ratios of the policy and reference models.

3 A HIERARCHICAL FORMULATION FOR MULTI-STEP REASONING

We postulate that complex reasoning problems can be understood through the lens of a hierarchical
generative process. This formulation begins by defining the task itself as a top-level constraint and
then decomposes the solution-finding process into a sequence of tractable, hierarchically organized
steps. This perspective not only aligns with human cognition but also provides a principled basis for
designing effective reasoning algorithms.

High-Complexity
Direct Selection

Q1 Q2 Q3

R1R2R3R4R5R6R7R8

Low-Complexity
Decomposed Selection

Q1 Q2 Q3

S1,1 S1,2 S1,3 S1,4

S2,1S2,2S2,3 S2,4S2,5S2,6

R1R2R3R4R5R6R7R8

Figure 2: Decomposition of reasoning complexity via hierarchical selection. The arrows repre-
sent the bottom-up selection process where lower-level variables determine higher-level concepts
(Eq. (1)). (Left) A direct selection model requires a single, high-complexity function where all ele-
ments of the response R jointly determine the validity of the question Q. (Right) Our hierarchical
model decomposes this into simple, localized selection functions with intermediate selection vari-
ables S, greatly reducing complexity.

3.1 THE HIERARCHICAL DECOMPOSITION OF COMPLEX REASONING

A reasoning task begins with a problem, such as a mathematical question, which we model as
a high-level constraint or question, Q. The goal is to generate an observable response, R, that
satisfies this constraint. Directly generating a valid R is often intractable due to the vast search
space. We formalize the natural human approach of problem decomposition using a hierarchical
selection model. This model introduces latent intermediate variables {S1, . . . ,SL} to bridge the
problem and the response. The validity of higher-level concepts is determined by those below them,
defining a bottom-up selection function:

Sl := gSl
(Sl+1), for l = 0, . . . , L− 1, with S0 := Q. (1)

We visualize this process in Figure 2 (right). The core premise is that the single, complex constraint
between Q and R is factorized into a series of simpler, localized functions {gSl

}. To solve the prob-
lem, this process is inverted into a top-down generative model, where each step Sl+1 ∼ P [Sl+1|Sl]
is a manageable, low-complexity sampling task. For instance, in solving a Sudoku puzzle, a high-
level constraint Sl might be the logical state “the top-left 3x3 box is validly filled.” The sampling

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

step to generate Sl+1 would then be to determine the specific number placements within that box
that satisfy the constraint. This is a far simpler, more localized task than trying to generate the entire
solved grid R at once. By decomposing the global problem into a hierarchy of logical constraints,
we ensure each generative step is manageable.

Expressiveness of the hierarchical abstraction. We do not posit this hierarchical structure as a
rigid, universal cognitive model. Rather, we propose the hierarchy as a flexible abstraction for a
set of problems and their corresponding solution patterns. The full graph represents the potential
reasoning complexity required for a given domain (e.g., a math dataset). Simpler problems within
this domain activate only a sparse subgraph of the available constraints.

3.2 FROM HIERARCHICAL STRUCTURES TO PRINCIPLED ALGORITHM DESIGN

The hierarchical model implies a core principle for algorithm design: progressive complexity re-
duction. Decomposing the complex global mapping from Q to R into simpler functions {gSl

}
suggests that the remaining problem complexity should decrease with each step down the hierarchy.
Our theoretical analysis (detailed in the appendix) serves as a formal certificate for this intuition.
The identifiability theorem, in particular, validates this principle:
Theorem 3.1 (Informal: Recovering the Latent Reasoning Process). A learned model can recover
the true latent reasoning steps (S2, . . . ,SL) of a reasoning process if it matches the true process’s
observable outputs and satisfies key structural conditions. Specifically, if the model favors the sim-
plest explanation (i.e., sparsity constraint on individual constituent functions) and the true rea-
soning structure is sufficiently rich—with diverse influence between steps and unique dependency
”fingerprints” for each step—then each true step Sl,i is identifiable up to a benign indeterminacy.

The theorem’s sparsity constraint is key. It provides a theoretical basis for why decomposing a
complex problem into a composition of sparse, simple functions is the preferred way to learn the
true reasoning structure. This confirms that the complexity should indeed decrease towards the final
response level. While directly enforcing a sparsity constraint on a neural network’s latent functions
is challenging, the principle of progressive complexity reduction offers a practical path forward. A
plausible, if looser, alternative is to enforce a reduction in the unresolved problem complexity at each
step. This motivates an algorithm that rewards meaningful, incremental progress.

This principle, however, is overlooked by current training paradigms. Mask-based diffusion lan-
guage models (dLLMs) (Nie et al., 2025; Sahoo et al., 2024) exhibit what we term unstructured re-
finement: their training is agnostic to intermediate progress. The denoising path is not incentivized
to progressively reduce complexity. Instead, the model often wastes steps on irrelevant tokens (Fig-
ure 1), failing to decompose the problem and forcing it to learn the intractable mapping from Q to
R in a few final, high-complexity steps.

In light of this gap between the principle of complexity reduction and current practice, we propose
an algorithm that explicitly rewards the progressive reduction of problem complexity in Section 4.

4 STEP-AWARE POLICY OPTIMIZATION FOR STRUCTURED REASONING

Our formulation in Section 3 established that effective reasoning corresponds to a structured, hier-
archical decomposition of a complex problem. We also identified unstructured refinement as a key
failure mode in standard diffusion language models, where the iterative denoising process fails to
align with this latent reasoning hierarchy.

To address this, we introduce a Step-Aware Policy Optimization (SAPO) algorithm. SAPO is a
reinforcement learning framework built upon Group Relative Policy Optimization (GRPO) that is
specifically designed for MdLLMs. Its core innovation is a novel process-based reward function
that incentivizes each segment of the denoising trajectory to make a meaningful contribution toward
the final solution. This encourages the model to learn an internal policy that mirrors the structured,
level-by-level constraint satisfaction outlined in our hierarchical model.

4.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO is a powerful on-policy algorithm for enhancing the capabilities of language models (Shao
et al., 2024). We adapt it for the MdLLM setting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Prompt

Masked Tokens

PromptStep t2

Denoise

PromptStep t1

Step-aware reward for :

Step t1

Step t2

...
...

N1 rollouts

N2 rollouts

of
N2

Step t1 () - Step t2 ()# of
N1

Denoise

PromptStep 0

Denoise

Denoise

Step T

Figure 3: Illustration of the proposed step-aware reward. To encourage intermediate generations
to contribute meaningfully to the final outcome, we generate new rollouts from randomly selected
steps t1, t2 and estimate their contribution by the difference in outcome rewards. A larger difference
indicates a higher contribution toward the final correct answer.

Response sampling. Given a question Q, we use the current policy πθ to generate G candidate
responses {R(1),R(2), . . . ,R(G)}. Each response R(i) is assigned a reward ri, based on the cor-
rectness of the final answer. From these, we can compute a mean-normalized advantage for each
response, Ai = ri−mean({rj}Gj=1). This advantage is distributed across all tokens in the response.

Learning objective. The optimization follows the standard proximity policy optimiza-
tion(PPO) (Schulman et al., 2017)-style clipped objective for stable updates, regularized by a KL-
divergence term against a reference policy πref:

LGRPO(θ) = EQ∼D, R(1),...,R(G)∼πθ(·|Q)

[
1

G

G∑
i=1

1

|R(i)|

|R(i)|∑
k=1

min
(
ρkiAi, clip(ρ

k
i , 1− ε, 1 + ε)Ai

)
− β DKL[πθ(· | Q) ∥πref(· | Q)]

]
,

(2)
where the likelihood ratio for the k-th token of response R(i) is ρki = πθ(R

(i),k|Q,R(i),<k)
πθold (R

(i),k|Q,R(i),<k)
. A key

challenge in applying this to MdLLMs is estimating the sequence likelihood πθ(R
(i) | Q), which

we address with existing techniques (Zhao et al., 2025; Gong et al., 2025; Tang et al., 2025).

4.2 STEP-AWARE STRUCTURED REFINEMENT FOR MDLLMS

Standard GRPO for MdLLMs defines the advantage Ai based solely on outcome-based rewards
(e.g., final answer accuracy). This may lead to unstructured refinement, as it can equally reinforce
responses that are correct by chance despite having flawed reasoning as illustrated in Fig.1. To
enforce a structured reasoning process, we introduce a step-aware reward.

Denoising steps in MdLLMs. Given an input question Q, MdLLM begins by preparing a sequence
of mask tokens [mask] of pre-defined length and initializing the denoising process at step t = T .
At each iteration, the model receives the partially masked sequence and incrementally replaces mask
tokens with decoded tokens according to a chosen decoding strategy (e.g., decoding only those
tokens whose confidence exceeds a specified threshold). At an intermediate step t, the sequence
thus contains a mixture of text and mask tokens, such as “an apple [mask] [mask] is on the
[mask]”. When t = 0, all mask tokens [mask] are fully resolved into text tokens.

Evaluating denoising steps with step-aware reward. To encourage structured reasoning within the
denoising process, one possible approach is to manually annotate intermediate generations, follow-
ing the methodology of process reward models developed for ARMs (Uesato et al., 2022). However,
unlike ARMs, where tokens are decoded sequentially and intermediate outputs are inherently struc-
tured and separable, annotating intermediate states in MdLLMs poses additional challenges. This
difficulty arises because MdLLM intermediate generations consist of a mixture of text and mask
tokens, often arranged in a non-deterministic order due to the parallel decoding mechanism. For

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

instance, an intermediate state might appear as “an apple [mask] [mask] is on the [mask]”,
where incomplete decoding obscures clear annotation.

To address this challenge, we propose measuring the incremental progress achieved between dif-
ferent stages of the denoising process. Specifically, we randomly sample two denoising timesteps,
t1 and t2, such that 0 ≤ t1 < t2 ≤ T . Let xt1 and xt2 denote the intermediate generations at
these steps. To evaluate the contribution of the denoising steps between t2 and t1, we generate full
response rollouts from each state, yielding {R(j)(xt1)}

N1
j=1 and {R(j)(xt2)}

N2
j=1.

The step-aware reward is defined as the difference in the expected outcome rewards:

Rprocess(t1, t2) =
1

N1

N1∑
j=1

1[R(j)(xt1)]−
1

N2

N2∑
j=1

1[R(j)(xt2)], (3)

where 1[·] denotes an indicator function that evaluates the correctness of the final response. A
positive value of Rprocess indicates that the denoising steps between t2 and t1 made a meaningful
contribution, thereby reducing its complexity. Importantly, this formulation eliminates the need to
manually annotate intermediate diffusion states or to design task-specific process reward models.

Efficient reward estimation. Although MdLLMs offer faster inference compared to ARMs, gen-
erating multiple responses from intermediate states at two different timesteps can still be computa-
tionally expensive. To mitigate this cost, we focus on an important special case where t2 = T . At
this point, the intermediate generation xt2 consists entirely of mask tokens [mask] . . .[mask].
Consequently, the second term 1

N2

∑N2

j=1 1[R
(j)(xt2)] in Eq. 3 corresponds to the model’s accu-

racy when conditioned solely on the input question prompt Q. In this case, we set t2 = T ,
R(j)(xt2) = R(j), and N2 = G. Since full response rollouts are already available from GRPO-
based accuracy reward computation, this term can be directly estimated without additional inference.
In other words, we substitute the mean accuracy reward as a surrogate for the second term, effec-
tively halving the inference cost required to compute Rprocess(t1, t2).

In principle, the full trajectory reward could be computed by evaluating all denoising steps from T
down to 0, but this approach would incur prohibitively high computational cost. Instead, we find that
estimating the reward using a randomly sampled interval (t1, t2) serves as an effective and efficient
approximation of the overall reasoning process during generation. Accordingly, we define

Rprocess := Rprocess(t1, t2). (4)

Up-weighted advantage computation. In GRPO (Shao et al., 2024) and diffu-GRPO (Zhao et al.,
2025), the advantage is computed by normalizing all rewards across rollouts for a given input
prompt. However, in our preliminary experiments, we observe that directly applying such nor-
malization to the step-aware reward can degrade model performance. This occurs because samples
with Rprocess = 0 are pushed further away during mean-normalization, yielding negative advantages.
Such treatment is suboptimal, as these samples (with correct answers and flawed reasoning steps)
may still contribute positively to model learning. To address this issue, we introduce an up-weighted
strategy for computing the total advantage of response R(i):

Atotal
i = Ai + 1[Ai > 0] ·Rprocess (5)

where Ai is the advantage for response R(i). Crucially, up-weighting is applied only to responses
that both yield a correct final answer and already possess a positive advantage. This design ensures
that we reinforce valid reasoning paths without rewarding intermediate progress that ultimately leads
to incorrect solutions, and without penalizing correct answers that may contain imperfect reasoning.

This composite advantage thus integrates correctness with structured, productive reasoning, directly
incentivizing the model to adhere to the principle of hierarchical decomposition.

Link to the hierarchical model. Our process reward is motivated by the principles of our theoretical
hierarchical model. While the complex dynamics of an MdLLM’s latent space do not map perfectly
one-to-one with the discrete levels of our formulation, the process reward serves as an effective
heuristic to guide the model toward a more structured reasoning process. We can view the denoising
interval from t2 to t1 as a proxy for resolving a set of logical constraints. A positive process reward,
Aprocess(t1, t2) > 0, provides an empirical signal that this interval was productive. Intuitively, by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of generated responses across models. LLaDA (Nie et al., 2025) and diffu-
GRPO (Zhao et al., 2025) both produce incorrect answers to the evaluation question. LLaDA’s re-
sponse includes a brief but partially meaningful reasoning step toward the end, whereas diffu-GRPO
continues generating verbose sentences that contribute little to the final prediction. In contrast, our
model provides a structured reasoning process and successfully arrives at the correct answer. This
highlights that optimizing solely for accuracy-based rewards may lead to sub-optimal outcomes, as
such rewards overlook the quality and coherence of reasoning within the response.

consistently rewarding such incremental progress, SAPO encourages the learned transition kernel
pθ(xt−1|xt,Q) to approximate the sampling procedure Sl+1 ∼ P [Sl+1|Sm]. This encourages the
alignment of the denoising path with a valid reasoning trajectory.

5 EXPERIMENTS

5.1 SETUP

We build our model on top of diffu-GRPO (Zhao et al., 2025) and adopt the same experimental setup
unless otherwise specified. We provide implementation details in the Appendix.C.

Datasets. We evaluate on four benchmarks: (1) GSM8K (Cobbe et al., 2021), using 7,374 train-
ing and 1,319 test problems; (2) MATH (Lightman et al., 2023), with 7,500 training and 500 test
problems; (3) COUNTDOWN, a synthetic dataset of 490K training and 256 test samples requiring
arithmetic expression generation; and (4) SUDOKU, 4× 4 puzzles evaluated on a 256-sample split.

Baselines. We compare against recent state-of-the-art MdLLMs: LLaDA (Nie et al., 2025), Diffu-
GRPO (Zhao et al., 2025), TSE (Wang et al., 2025c), and WINO (Hong et al., 2025), as well as
models further fine-tuned on the reasoning dataset s1K (Muennighoff et al., 2025).

5.2 RESULTS

Alignment of reasoning process and final answer. To assess how well MDLLMs produce inter-
mediate reasoning that is consistent with the final answer, we analyze the alignment between the
reasoning process and the output. Specifically, we input generations from LLaDA (Nie et al., 2025),
diffu-GRPO (Zhao et al., 2025), and our model into GPT-5, asking it to evaluate “whether a user can
reach the final answer by following the reasoning step by step.” Results on the COUNTDOWN and
GSM8K datasets are shown in Fig. 5. Our method achieves substantially higher alignment ratios
across both datasets. This large improvement helps explain the performance gains in Table 1, as our
proposed reward explicitly encourages the model to maintain consistency between reasoning steps
and final answers through the diffusion-based generation process. We also provide example out-
puts from the three models in Fig. 1. As shown, LLaDA and diffu-GRPO generate less meaningful
reasoning in their responses and ultimately produce incorrect answers.

Superior benchmark performance. Table 1 reports results on benchmarks: GSM8K, MATH,
COUNTDOWN, and SUDOKU. Our approach outperforms baselines across most datasets and even
surpasses those fine-tuned with additional reasoning dataset s1K (Muennighoff et al., 2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

COUNTDOWN GSM8K SUDOKU MATH
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA 20.7 19.5 16.0 68.7 76.7 78.2 11.7 6.7 5.5 26.0 32.4 36.2
diffu-GRPO 33.2 31.3 37.1 72.6 79.8 81.9 18.4 12.9 11.0 33.2 37.2 39.2
TSE-Vote 25.0 23.4 16.4 70.1 78.7 78.9 × × × 28.4 35.6 36.2
WINO - 33.2 - - 75.8 - - 15.2 - - 34.2 -
SFT 20.3 14.5 23.8 66.5 78.8 81.1 16.5 8.5 4.6 26.2 32.6 34.8
SFT + diffu-GRPO 34.8 32.0 42.2 73.2 81.1 82.1 22.1 16.7 9.5 33.8 38.6 40.2
SFT + TSE-Reward 41.5 42.6 54.7 72.1 80.0 83.0 × × × 31.2 35.4 41.4
Ours 51.6 52.0 56.3 72.9 82.2 82.4 22.4 20.3 16.1 32.0 40.0 38.4

Table 1: Performance comparison on COUNTDOWN, GSM8K, SUDOKU, and MATH at different
sequence lengths. “–” denotes unreported results; “×” denotes unsupported tasks. Without addi-
tional SFT on the reasoning dataset s1K (Muennighoff et al., 2025), our method achieves superior
performance across all four tasks.

Model Training SVAMP ARC
LLaDA - 83.3 90.2
diffu-GRPO GSM8K 83.0 89.8
Ours GSM8K 84.0 90.2
diffu-GRPO MATH 83.7 91.8
Ours MATH 85.7 93.0
diffu-GRPO COUNTDOWN 84.0 90.6
Ours COUNTDOWN 84.0 87.5
diffu-GRPO SUDOKU 85.0 91.0
Ours SUDOKU 86.7 90.6

Table 2: Generalization ability compari-
son. The trained models are evaluated on
unseen datasets: the reasoning benchmark
SVAMP (Patel et al., 2021) and the common-
sense benchmark ARC (Clark et al., 2018).

Step COUNTDOWN GSM8K
diffu-GRPO Ours diffu-GRPO Ours

1 1.56 1.17 12.81 16.53
8 2.73 1.56 9.48 16.91
16 3.12 2.34 13.04 19.33
24 4.69 1.95 17.21 21.61
32 6.64 27.34 24.26 30.86
40 12.50 33.98 39.27 41.17
48 19.53 37.11 49.96 50.57
64 33.2 51.6 72.6 72.9

Table 3: Accuracy of intermediate answers with
sequence length 128 and 64 diffusion steps. In-
termediate answers are obtained by decoding nor-
mally up to a target step and then decoding all re-
maining tokens in one pass.

The proposed reward is effectively learned and facilitates training. We visualize the training re-
wards of diffu-GRPO (Zhao et al., 2025) and our model in Fig. 8. Our method consistently achieves
higher total rewards—which combine both accuracy and format rewards—explaining the substantial
performance gains observed on these datasets. For MATH, however, the training rewards of both
methods remain similar. A similar phenomenon was also reported in (Zhao et al., 2025), where the
diffu-GRPO model after SFT on s1k dataset (Muennighoff et al., 2025) attained rewards similar to
those without SFT. We hypothesize that the MATH500 problems may be too challenging for the
8B base model and may be addressed with a larger dLLM. We further present the reward training
curves in Fig. 7. The upward trend indicates that the model learns to favor responses yielding correct
answers while adhering to reasoning processes that support the final outcome.

Our model demonstrates strong generalization ability. To thoroughly examine the proposed
framework, we further evaluate our models on two unseen datasets: SVAMP (Patel et al., 2021)
and ARC (Clark et al., 2018). The SVAMP dataset consists of numerous mathematical reasoning
problems, while the ARC dataset focuses on commonsense reasoning tasks (e.g., “When oxygen
combines with hydrogen, which substance is formed?”), where the model must select the correct
answer from multiple choices. Notably, ARC is fundamentally different from our training datasets
(e.g., GSM8K). Our model noticeably improves performance on both SVAMP and ARC.

Our method enables further acceleration through higher intermediate accuracy. Accelerating
MDLLMs has been an active area of research (Li et al., 2025; Hong et al., 2025). Many approaches
rely on the quality of intermediate responses: if these responses are accurate and contribute meaning-
fully to the final answer, generation can be accelerated. For instance, Prophet (Li et al., 2025) decides
whether to decode all remaining tokens in a single step. Motivated by this, we analyze the accuracy
of intermediate responses produced by our method. Specifically, during diffusion denoising, at each

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

128 256 512
Sequence Length

0

10

20

30

40

50

G
PT

 A
lig

nm
en

t R
at

io

56.8 56.3 55.7
51.2 50.0 48.6

41.6 40.9 40.3

COUNTDOWN

128 256 512
Sequence Length

0

10

20

30

40

G
PT

 A
lig

nm
en

t R
at

io

46.3 45.9 45.4

38.4
36.5 36.2

34.1 33.7 33.5

GSM8K

Ours diffu-GRPO LLaDA

Figure 5: Model reasoning–outcome alignment ratio.

2 4 6 8
Number of Samples (N)

30

40

50

60

Ac
cu

ra
cy

COUNTDOWN

Sequence Length
128
256
512

Figure 6: Ablation study.

1000 2000 3000 4000 5000 6000
Gradient Update Steps

0.030

0.035

0.040

0.045

St
ep

-A
wa

re
 R

ew
ar

d

COUNTDOWN

1000 2000 3000 4000 5000 6000
Gradient Update Steps

0.026

0.028

0.030

0.032

0.034

0.036

St
ep

-A
wa

re
 R

ew
ar

d

SUDOKU

0 2000 4000 6000 8000
Gradient Update Steps

0.02

0.03

0.04

St
ep

-A
wa

re
 R

ew
ar

d

GSM8K

2000 4000 6000 8000
Gradient Update Steps

0.016

0.018

0.020

0.022

0.024

0.026

St
ep

-A
wa

re
 R

ew
ar

d

MATH

Figure 7: The training curve of our proposed step-aware reward.

1000 2000 3000 4000 5000 6000
Gradient Update Steps

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

COUNTDOWN
d1
Ours

2000 4000 6000
Gradient Update Steps

0.05

0.10

0.15

Re
wa

rd

SUDOKU

d1
Ours

2000 4000 6000 8000
Gradient Update Steps

0.5

1.0

1.5

2.0

Re
wa

rd

GSM8K

d1
Ours

2000 4000 6000 8000
Gradient Update Steps

1.0

1.2

1.4

1.6

Re
wa

rd

MATH
d1
Ours

Figure 8: Reward curves during GRPO training. For fair comparison, we exclude our step-aware
reward. The step-aware reward emphasizes responses that contain both the correct answer and
meaningful reasoning, which in turn enhances the accuracy reward.

step, we additionally generate an answer by unmasking all remaining tokens at once. This gives us
intermediate answers at every step, in addition to the final output obtained from fully decoding the
masked sequence. We present results in Table.3. Across both datasets, our method achieves higher
intermediate accuracy, suggesting that it may offer advantages over diffu-GRPO (Zhao et al., 2025)
when combined with MdLLM acceleration techniques.

Effect of the number of samples on the reward. Our step-aware reward function is based on an
averaged estimation of the accuracy of generated responses. To assess its reliability, we perform an
ablation study by varying the number of samples, N ∈ {1, 3, 6, 9}. As illustrated in Fig. 6, when
N = 1, the estimation becomes noisy and leads to suboptimal performance. In contrast, when
N ≥ 3, we observe substantial improvements over both baseline methods, LLaDA (Nie et al., 2025)
and Diffu-GRPO (Zhao et al., 2025), across sequence lengths of 128, 256, and 512. These results
highlight the robustness of our proposed reward under different sampling configurations.

6 CONCLUSION AND LIMITATIONS

We address the challenge of training diffusion language models for complex reasoning, identifying
unstructured refinement as a key failure mode. To overcome this, we introduce SAPO, an RL algo-
rithm motivated by a novel theoretical framework that models reasoning as a hierarchical selection
process. SAPO incorporates a process-based reward to encourage structured, multi-step progress.
Our results show SAPO improves performance on complex reasoning benchmarks and produces
more coherent reasoning paths. Limitation. Our method relies on the mean-field assumption in
diffu-GRPO (Zhao et al., 2025) to estimate the log-likelihood of generated responses, which ne-
glects token-level dependency. We leave addressing this open question for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration. arXiv preprint arXiv:2506.20639, 2025.

Feng Hong, Geng Yu, Yushi Ye, Haicheng Huang, Huangjie Zheng, Ya Zhang, Yanfeng Wang, and
Jiangchao Yao. Wide-in, narrow-out: Revokable decoding for efficient and effective dllms. arXiv
preprint arXiv:2507.18578, 2025.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica, 2016.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859–868. PMLR, 2019.

Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor
Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 11455–11472. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/kong22a.html.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
Unlocking long context capabilities in diffusion llms. arXiv preprint arXiv:2506.14429, 2025a.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025b.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

10

https://proceedings.mlr.press/v162/kong22a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He,
and Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv
preprint arXiv:2508.02558, 2025.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy opti-
mization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025a.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
multimodal reasoning. arXiv preprint arXiv:2503.10291, 2025b.

Wen Wang, Bozhen Fang, Chenchen Jing, Yongliang Shen, Yangyi Shen, Qiuyu Wang, Hao Ouyang,
Hao Chen, and Chunhua Shen. Time is a feature: Exploiting temporal dynamics in diffusion
language models. arXiv preprint arXiv:2508.09138, 2025c.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning
in mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint
arXiv:2412.01981, 2024.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735–64772, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
beyond. arXiv preprint arXiv:2206.07751, 2022.

Yujia Zheng, Shaoan Xie, and Kun Zhang. Nonparametric identification of latent concepts. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=cW9Ttnm1aC.

12

https://openreview.net/forum?id=cW9Ttnm1aC
https://openreview.net/forum?id=cW9Ttnm1aC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
A LLM USAGES.

Large Language Models (LLMs) were used solely for polishing the writing and improving the clar-
ity of presentation. All ideas, analyses, results, and conclusions are original contributions of the
authors.

B THEORETICAL ANALYSIS

In this section, we provide a theoretical foundation for our work. The central insight is that if the
underlying hierarchical structure of reasoning can be learned from data, then there is a principled
basis for designing algorithms that explicitly seek this structure. We establish this by showing that
the latent concepts at each level of our proposed hierarchy are identifiable up to benign ambiguities.

B.1 IDENTIFIABILITY OF LATENT CONCEPTS FROM OBSERVATIONS

Consider any level l in the hierarchy. The concepts Sl+1 at the next level are sampled based on Sl

via a generating function Sl+1 = fSl+1
(Sl, ϵl), where ϵl denotes the exogenous variables injected

into level l + 1, independent of Sl and all variables at higher levels. The final response R can be
expressed as Sl and the collection of exogenous variables El := (ϵm)Lm=l via an invertible function
R = ql(Sl,El).

The following lemma shows how the hierarchically-dependent latent concepts Sl+1 can be disen-
tangled from the independent exogenous variables El+1 for any 0 ≤ l < L. The proof is inspired
by previous work (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Kong et al., 2022).

lemma]lemma Assume the following data-generating process at a fixed, arbitrary 0 ≤ l < L:
Sl+1 ∼ P [Sl+1|Sl] , El+1 ∼ P [El+1] , R := ql+1(Sl+1,El+1). (6)

We have the following conditions.

Lemma B.0 (Single-level Subspace Identifiability). i Informativeness: The function ql+1(·) is
a diffeomorphism.

ii Smooth Density: The probability density function p(Sl+1,El+1|Sl) is smooth.

iii Sufficient Variability: At any value Sl+1, there exist n(Sl+1)+1 distinct values of Sl, denoted
as {S(n)

l }n(Sl+1)
n=0 , such that the vectors w(Sl+1,S

n
l) − w(Sl+1,S

0
l) are linearly independent

where w(Sl+1,Sl) =
(

∂ log p(Sl+1|Sl)
∂Sl+1,1

, . . . , ∂ log p(Sl+1|Sl)
∂Sl+1,n(Sl+1)

.
)

If a model θ satisfies i,ii, and iii, another model θ̂ satisfies i,ii, and they generate identical distri-
butions P [R|Sl] = P̂[R|Sl], then the latent concepts Sl+1 are identifiable up to an invertible map,
disentangled from El+1: there exists an invertible mapping Sl+1 7→ Ŝl+1 where Sl+1 and Ŝl+1 are
generated in model θ and θ̂ respectively.

Proof. Since we have matched distributions, it follows that:
p(R|Sl) = p̂(R|Sl). (7)

As the generating function ql+1 has a smooth inverse (i), we can derive:

p(ql+1(Sl+1,El+1)|Sl) = p(q̂l+1(Ŝl+1, Êl+1)|Sl) =⇒

p(Sl+1,El+1|Sl)
∣∣∣Jq−1

l+1

∣∣∣ = p̂(q−1
l+1 ◦ q̂l+1(Ŝl+1, Êl+1)|Sl)

∣∣∣Jq−1
l+1

∣∣∣ .
Notice that the Jacobian determinant

∣∣∣Jq−1
l+1

∣∣∣ > 0 because of ql+1(·)’s invertibility and let h :=

q−1
l+1 ◦ q̂l+1 : (Ŝl+1, Êl+1) 7→ (Sl+1,El+1) which is smooth and has a smooth inverse thanks to

those properties of ql+1 and q̂l+1. It follows that

p(Sl+1,El+1|Sl) = p̂(h(Ŝl+1, Êl+1)|Sl) =⇒
p(Sl+1,El+1|Sl) = p̂(Ŝl+1, Êl+1|Sl) |Jh−1 | .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The independence relation in the generating process implies that

log p(Sl+1|Sl) +
∑

i∈[n(El+1)]

log p(El+1,i) = log p̂(Ŝl+1|Sl) +
∑

i∈[n(Êl+1)]

log p̂(Êl+1,i) + log |Jh−1 | .

(8)

For any realization S0
l , we subtract (8) at any Sl ̸= S0

l with that at S0
l :

log p(Sl+1|Sl)− log p(Sl+1|S0
l) = log p̂(Ŝl+1|Sl)− log p̂(Ŝl+1|S0

l). (9)

Taking derivative w.r.t. Êl+1,j for j ∈ [n(Êl+1)] yields:∑
i∈[n(Sl+1)]

∂

∂Sl+1,i
(log p(Sl+1|Sl)− log p(Sl+1|S0

l)) ·
∂Sl+1,i

∂Êl+1,j

= 0. (10)

The left-hand side zeros out because Ŝl+1 is not a function of Êl+1.

Condition iii ensures the existence of at least n(Sl+1) such equations with S1
l , . . . ,S

n(Sl+1)
l that are

linearly independent, constituting a full-rank linear system. Since the choice of j ∈ [n(El+1)] is
arbitrary. It follows that

∂Sl+1,i

∂Êl+1,j

= 0,∀i ∈ [n(Sl+1)], j ∈ [n(El+1)]. (11)

Therefore, the Jacobian matrix Jh is of the following structure:

Jh =

∂El+1

∂Êl+1

∂El+1

∂Ŝl+1

∂Sl+1

∂Êl+1

∂Sl+1

∂Ŝl+1
.

 (12)

(11) suggests that the block ∂Sl+1

∂Êl+1
= 0. Since Jh is full-rank, we can deduce that ∂Sl+1

∂Ŝl+1
must have

full row-rank and n(Sl+1) ≤ n(Ŝl+1). Assuming the dimensions of the latent spaces are equal,
n(Sl+1) = n(Ŝl+1). Moreover, since Jh is full-rank and the block ∂Sl+1

∂Êl+1
is zero, we can derive

that the corresponding block ∂Ŝl+1

∂El+1
in its inverse matrix Jh−1 is also zero. Therefore, there exists an

invertible map Sl+1 7→ Ŝl+1, which concludes the proof.

With Lemma in hand, we can prove the following lemma that refines subspace invertible mappings
Sl+1 7→ Ŝl+1 into component-wise invertible mappings Sl+1,i 7→ Ŝl+1,̂i. That is, one can identify
single dimensions on the level l.

To formalize our theoretical results, we introduce the following notation. For a matrix M , we denote
its i-th row and j-th column as Mi,· and M·,j respectively. We use · to indicate all the indices in
that dimension. Recall the definition Sl+1 := fl+1(Sl, ϵl) and R := ql+1(Sl+1,El+1). We denote
DSl

fSl+1
as the partial derivative of the function fSl+1

with respect to the higher-level variables Sl.
Let T be an arbitrary, fixed matrix with the same support as the matrix-valued function T(·) in the
relationship between two models’ Jacobians: DSl

f̂Sl+1
= TDSl

fSl+1
. Given a subset of indices

S ⊆ {1, . . . , n}, we define the subspace Rn
S as {s ∈ Rn | si = 0 if i /∈ S}. The support of the

generative process for level l + 1 is defined as Dl := supp(DSl
fSl+1

). The dependency structure
is captured by a binary matrix Ml, where Ml,ij = 1 if and only if (i, j) ∈ Dl. Let Ak be the set of
indices for variables in Sl+1 that depend on the higher-level variable Sl,k. Let d(Sl) represent the
dimensionality of Sl. The following conditions follow prior work Zheng et al. (2025; 2022).

assumption]assumption Suppose two alternative models θ and θ̂, with an ℓ0 regularization
on DSl

f̂Sl+1
such that |D̂l| ≤ |Dl|, there exists a set of points {(Sl, θ)

(ℓ)}|Dl,·,i|
ℓ=1 for each

Sl+1,i, such that:

Assumption B.0 (Non-degenerative Subspace Zheng et al. (2022)). 1. The vectors
{DSl

fSl+1
((Sl, θ)

(ℓ)))·,i}
|Dl,·,i|
ℓ=1 are linearly independent.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2. The transformed vectors lie in a subspace:
[
TDSl

fSl+1
((Sl, θ)

(ℓ))
]
·,i ∈ Rn(Sl+1)

D̂l,·,i
.

We adapt a theoretical result from Zheng et al. (2025) as the following lemma.

lemma]lemma Let θ :=
(
fSl+1

, qSl+1

)
and θ̂ :

(
f̂Sl+1

, q̂Sl+1

)
be two alternative models. Suppose

θ satisfies Condition -i,ii, and Condition [0 , and θ̂ satisfies Condition -i,ii, and an ℓ0 constraint
min

∥∥∥suppDŜl
f̂Sl+1

∥∥∥
0
. If θ and θ̂ are observationally equivalent, i.e., P [R|Sl] = P̂[R|Sl] for all

Sl. Then, the Jacobian of the transformation between the latent spaces satisfies:

∂Ŝl+1,π(Ai\Aj)

∂Sl+1,Aj

= 0 and
∂Ŝl+1,π(Aj\Ai)

∂Sl+1,Ai

= 0, (13)

where π is a permutation of the variable indices.

assumption]assumption For any index i of the variable Sl+1, there exists a nonempty index set
J and a specific index j ∈ J for Sl such that i is the unique index in Aj that satisfies {i} =
Aj \ ∪k∈J\{j}Ak. Moreover, the union ∪k∈JAk is equal to the entire index space [d(Sl)].

lemma]lemma Let θ :=
(
fSl+1

, qSl+1

)
and θ̂ :

(
f̂Sl+1

, q̂Sl+1

)
be two alternative models. Sup-

pose θ satisfies Condition -i,ii,iii and Condition , and θ̂ satisfies Condition -i,ii,iii, and a con-
straint on the support cardinality min |DŜl

f̂Sl+1
|. If θ and θ̂ are observationally equivalent, i.e.,

P [R|Sl] = P̂[R|Sl] for all Sl, then the variables Sl+1 and Ŝl+1 are identifiable up to permuta-
tions and invertible transformations. Specifically, for any index i, there exists an invertible mapping
Sl+1,i 7→ Ŝl+1,π(i) for a permutation π.

Proof. Notice that we have assumed all conditions for Lemma and Lemma .

For any variable index i on the level l + 1, invoking Lemma yields that

∂Ŝl+1,π(i)

∂El+1
= 0. (14)

Assumption suggests the existence of an index j and an index set J (j ∈ J) for the variable Sl,
such that the intersection such that i is the only index in Aj that is unique to Aj (relative to other
index sets {Ak}k∈J,k ̸=j). Lemma implies that

∂Ŝl+1,π(i)

∂Sl+1,∪k∈JAk\{i}
= 0. (15)

Moreover, since ∪k∈JAk = [d(Sl+1)] (Assumption), we can deduce that

∂Ŝl+1,π(i)

∂Sl+1,[d(Sl+1)]\{i}
= 0. (16)

Combining (14) and (16) yields

∂Ŝl+1,π(i)

∂Sl+1,[d(Sl+1)]∪[d(El+1)]\{i}
= 0. (17)

Recall that the mapping (Sl+1,El+1) 7→ (Ŝl+1, Êl+1) is invertible. We can deduce from (17) that
the mapping Sl+1,i 7→ Ŝl+1,π(i) is invertible. Since the choice of i ∈ [d(Sl+1)] is arbitrary, we have
arrived at the desired conclusion.

Now, we are ready to present the identifiability for the entire hierarchical model. For ease of expo-
sition, we consider the question variables Q as the top-level variable S1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem B.1 (Identifiability of the Reasoning Hierarchy). Let θ :=
(
fSl+1

, qSl+1

)
l∈[L]

and θ̂ :(
f̂Sl+1

, q̂Sl+1

)
l∈[L]

be two alternative models. Suppose every two adjacent levels Sl and Sl+1

from θ satisfy Condition -i,ii,iii and Condition , and every two adjacent levels Ŝl and Ŝl+1 from
θ̂ satisfy Condition -i,ii,iii, and a constraint on the support cardinality min |DŜl

f̂Sl+1
|. If θ and θ̂

are observationally equivalent, i.e., P [R|S1] = P̂[R|S1], then the variables Sl and Ŝl (l > 1) are
identifiable up to permutations and invertible transformations. Specifically, for any index l > 1 and
i ∈ d(Sl), there exists an invertible mapping Sl,i 7→ Ŝl,πl(i) for a permutation πl.

Proof. Our proof is inductive. Theorem shows that if the variables at level l are identifiable, then
those at the next level, l + 1, are also identifiable. Since the top-level S1 is given, i.e., the question
Q, we can derive that all the variables in the hierarchical model are identifiable up to permutation
and invertible transformations. That is, for any index l > 1 and i ∈ d(Sl), there exists an invertible
mapping Sl,i 7→ Ŝl,πl(i) for a level-specific permutation πl.

C IMPLEMENTATION

We build our model based on the code repository by diffu-GRPO (Zhao et al., 2025). We apply
GRPO to LLaDA-8B-Instruct (Nie et al., 2025). Following diffu-GRPO, we generate 6 rollouts per
problem with a temperature of 0.9 and perform 12 update iterations per step (for Sudoku, we follow
diffu-GRPO and use a temperature of 0.3 with 8 iterations). The model is trained with LoRA of
rank 128 in 4-bit precision and evaluated in float16 precision. The learning rate is set to 3 × 10−6

with 600 warm-up steps. During evaluation, we use zero-shot prompting and greedy decoding, with
generation lengths of 128, 256, and 512 tokens, consistent with diffu-GRPO.

In order to compute the step-aware reward, we randomly select a timestep during the generation
of rollouts for optimization. At this point, we take the intermediate generations consisting only of
the text tokens that have been produced so far. We then concatenate 64 additional mask tokens
to this partial sequence and feed the extended input back into the model. The model continues the
process by performing iterative denoising based on this new input. Empirically, we find that using 64
mask tokens provides an effective trade-off between efficiency and performance on the benchmark
datasets. After obtaining the outputs, we first compute the accuracy of the original rollouts, which
reflects the correctness of the answers generated from the question alone. Next, we compute the
accuracy of the newly generated answers obtained from the intermediate generations. Finally, we
define the step-aware reward as the difference between these two accuracies, which quantifies the
contribution of the intermediate generations to the final outcome.

D ADDITIONAL EXAMPLES

Here are additional responses comparisons for COUNTDOWN dataset.

Problem:Using only the provided numbers [19,3,5], create an arithmetic expression
evaluates to exactly the target number 52

To reach the target number using the given numbers,
we need to consider the operations of addition,
subtraction, multiplication, and division. We can start
by using the largest number (19) and the smallest
number (3) to form a larger number. Then, we can use
the remaining number (5) to adjust the result. The, we
can use the remaining number to adjust the result.
Finally, we can use the remaining number to adjust the
result.
</reasoning>
<answer>
\boxed{19 * 3 - 5 - 3 - 3}
</answer><|eot_id|><|endoftext|>

To reach the target number using the given
numbers, we need to consider the operations of
addition, subtraction, multiplication, and
division. We can start by trying to use the
numbers in a way that sums up to the target
number. However, since the target number is
larger than the sum of the given numbers, we
need to use multiplication to reach the target..
We try multiplying the given numbers in
different combinations. We find that multiplying
19 by 3 gives us exactly the 52.
</reasoning>
<answer>
\boxed{19 * 3}
</answer><|eot_id|><|endoftext|>

To create an arithmetic expression that
evaluates to exactly target number 52 using
the numbers 19, 3, and 5, we need to consider
the combinations of the operations +, -, *,
and /. Let's try a few combinations:

1. 19 * 3 - 5
2. 19 - 5 * 3

From the above, we can that 19 * 3 - 5
works..
</reasoning>
<answer>
\boxed{19 * 3 - 5}
</answer><|eot_id|><|endoftext|>

LLaDA diffu-GRPO Ours
Answer:
Reasoning:

Answer:
Reasoning:

Answer:
Reasoning:

Figure 9: Comparison of generated responses across models. We can see that LLaDA generated
meaningless steps and diffu-GRPO generate wrong reasoning steps. Our model correctly answer
the question.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Problem:Using only the provided numbers [37,1,73], create an arithmetic expression
evaluates to exactly the target number 37

To get the target number 37 using the numbers 37, 1,
and 73, we need to find a combination of operations
that, when applied to these numbers, result in 37. We
can start by considering the simplest operations and
see if we can reach the target.
</reasoning>
<answer>
\boxed{73 - 36}
</answer><|eot_id|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>

To get the target number 37 using the numbers
37, 1, and 73, we need to find a combination of
operations that, when applied to these numbers,
result in 37. We can start by considering the
simplest operations and see if we can reach the
target.
</reasoning>
<answer>
\boxed{73 - 37}
</answer><|eot_id|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>

To create an arithmetic expression that
evaluates to exactly the target number 37
using the numbers 37, 1, and 73, we need to
consider the operations +, -, *, and /. Let's
try different combinations:

1. 73 - 37 + 1
2. 73 + 1 - 37

Both of these expressions evaluate to the
target number 37. We can choose either one.
</reasoning>
<answer>
\boxed{73 - 37 + 1}
</answer><|eot_id|><|endoftext|>

LLaDA diffu-GRPO Ours
Answer:
Reasoning:

Answer:
Reasoning:

Answer:
Reasoning:

Figure 10: Comparison of generated responses across models. Both LLaDA and diffu-GRPO gen-
erated meaningless <|endoftext|> tokens and doesn’t follow the question. Only our model can
effectively solve the problem.

17

	Introduction
	Related Work
	A Hierarchical Formulation for Multi-Step Reasoning
	The Hierarchical Decomposition of Complex Reasoning
	From hierarchical structures to principled algorithm design

	Step-Aware Policy Optimization for Structured Reasoning
	Preliminary: Group Relative Policy Optimization (GRPO)
	Step-Aware structured refinement for MdLLMs

	Experiments
	Setup
	Results

	Conclusion and Limitations
	LLM usages.
	Theoretical Analysis
	Identifiability of Latent Concepts from Observations

	Implementation
	Additional Examples

