
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEP-AWARE POLICY OPTIMIZATION FOR REASON-
ING IN DIFFUSION LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion language models (dLLMs) offer a promising non-autoregressive
paradigm for text generation, but training them for complex reasoning remains
challenging. Current reinforcement learning approaches typically rely on sparse,
outcome-based rewards, which can lead to inefficient exploration and “unstruc-
tured refinement”, where the model’s iterative denoising steps fail to contribute
meaningfully to the solution. While Process Reward Models (PRMs) effectively
mitigate similar issues in autoregressive models, they often require expensive hu-
man annotation or external verifiers. In this work, we propose Step-Aware Policy
Optimization (SAPO), a method to derive automatic process rewards for dLLMs
without external supervision. By leveraging the diffusion model’s natural oper-
ation, we design a reward function that incentivizes distributing problem com-
plexity evenly across the denoising trajectory. This intrinsic process supervision
guides the model to learn structured, robust reasoning paths, reducing the risk of
derailing from correct traces. Our empirical results demonstrate that SAPO signif-
icantly improves performance on challenging reasoning benchmarks and enhances
the interpretability of the generation process.

1 INTRODUCTION

Diffusion large language models (dLLMs) have emerged as a compelling alternative to traditional
autoregressive models (ARMs), offering the potential to significantly speed up model inference
through their parallel, non-sequential generation process (Nie et al., 2025; Sahoo et al., 2024; Gong
et al., 2024; Ye et al., 2025). In particular, mask-based dLLMs (MdLLMs) initialize a sequence with
special token [MASK] and iteratively refine this sequence into coherent text. While this paradigm
has shown promise on various general tasks, effectively training MdLLMs for complex, multi-step
reasoning remains a significant challenge.

In the realm of autoregressive models, Process Reward Models (PRMs) (Uesato et al., 2022; Light-
man et al., 2023) have become an effective solution for improving reasoning. By providing dense,
step-by-step supervision rather than a single sparse reward at the end, PRMs encourage models to
maintain coherent reasoning throughout the generation. However, obtaining such dense supervision
is costly, often requiring large-scale human annotation or external verifiers. Consequently, current
reinforcement learning (RL) methods for MdLLMs, such as GRPO (Shao et al., 2024) adapted in
diffu-GRPO (Zhao et al., 2025), typically rely solely on sparse, outcome-based rewards.

This reliance on sparse rewards can be problematic. Without intermediate guidance, models are
prone to what we term unstructured refinement. While models may maintain local textual coherence,
they often fail to utilize the iterative denoising process for logical progression. This results in the
model wasting steps on unproductive tokens—manifesting as repetitive loops (mode collapse) or
coherent but vacuous ’fluff’—forcing the final few steps to bridge the entire complexity gap. This not
only inefficiently uses the diffusion process but also increases the risk of generating hallucinations
or inconsistent reasoning paths that only coincidentally arrive at the correct answer (Figure 1).

To address this gap, we propose Step-Aware Policy Optimization (SAPO), an algorithm that ex-
tracts automatic process rewards for dLLMs. Our key insight is that we can leverage the unique,
inherent iterative structure of diffusion models to provide this supervision without external costs.
We introduce a method to estimate the contribution of specific denoising intervals by comparing the
expected outcome of intermediate states. This allows us to reward denoising steps that demonstrably

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Step-aware Reward
(SAPO)

Accuracy Reward
(diffu-GRPO)

Problem:
Using only the provided
numbers [51, 99, 13],
create an arithmetic

expression that evaluates
to exactly the provided

target number 61.

To find an arithmetic expression that
evaluates to 61 using the numbers 51, 99, and
13, we need to consider the operations +, -,
*, and / and ensure each number is used
exactly once.

\boxed{99-51+13}

We, we, we, we, we, we, we, we, we, we, we,
we, we, we, we, we, we. we we, we, we, we,
we, we, we, we,

<reasoning> We need to reach 61 using the
numbers [51, 99, 13], each exactly once, with
operations +, -, *, or /.

\boxed{99-51+13}

Start with the largest difference: 99-51=48.
Then add the remaining number: 48+13=61.
This matches the target exactly.

Rollouts

Rollouts

MDLLM

correct
answer
99-51+13

Accuracy Reward doesn't
distinguish them.

Some rollouts contain meaningless repetitive
tokens while the final answer is correct.

meaningless
tokens

correct
answer

correct
answer
99-51+13 meaningful

tokens

correct
answer

Finegrained
step-aware reward

Figure 1: The problem of unstructured refinement. A standard MdLLM trained with outcome-only
rewards produces a correct answer but fills its reasoning trace with meaningless tokens. While this
specific example exhibits mode collapse (a coherence failure), it serves as a stark illustration of a
broader issue: the iterative process is not incentivized to reduce problem complexity, allowing the
model to ’spin’ on unproductive steps while coincidentally hitting the correct answer.

reduce the remaining problem complexity, providing a dense supervision signal entirely from within
the model’s own rollouts.

This approach serves as a self-supervised mechanism to align the diffusion process with effective
reasoning structures. By incentivizing incremental progress, we encourage the model to distribute
the problem-solving load across the entire generation process, mitigating the risks associated with
unstructured refinement.

Our contributions are as follows:

1. We identify the lack of process supervision as a key limitation in existing MdLLM training,
leading to inefficient and potentially unstable reasoning processes.

2. We introduce SAPO, a novel RL framework that provides automatic process rewards for
dLLMs. It leverages the diffusion model’s natural operation to incentivize progressive
complexity reduction without needing external reward models or verifiers.

3. We demonstrate empirically that SAPO leads to significant improvements in both final
performance and the quality of generated reasoning paths across multiple benchmarks, val-
idating the effectiveness of intrinsic process supervision.

2 RELATED WORK

Mask-based diffusion-based large language models. LLaDA (Nie et al., 2025) proposes a mask-
based diffusion-based large language model (dLLMs). It gradually removes the mask token in each
diffusion step. Based on LLaDA, diffu-GRPO (Zhao et al., 2025) assumes the generated tokens
are independent and proposes a randomly masked prompt to estimate the token probability for re-
inforcement learning with diffusion models. WINO (Hong et al., 2025) proposes a training-free
sampling strategy to use a low confidence threshold to generate a draft response and use a high
threshold for second verification. TSE (Wang et al., 2025c) observes that the answers generated in
intermediate diffusion steps can also be correct and therefore proposes a weighted voting strategy
to get the final answer. ReMDM (Wang et al., 2025a) proposes a remasking sampler to address the
problem that the generated tokens in dLLMs cannot be revoked. wd1 (Tang et al., 2025) proposes
a weighted likelihood estimation for the sequence. Many approaches have been proposed to im-
prove the efficiency of dLLMs, such as KV-cache (Wu et al., 2025; Song et al., 2025; Liu et al.,
2025b; Ma et al., 2025). MDLM (Sahoo et al., 2024) derives a continuous-time, Rao-Blackwellized
objective for training mask-based dLLM. LongLLaDA (Liu et al., 2025a) proposes an NTK-based
RoPE extrapolation to allow long-context text generation. DiffuCoder (Gong et al., 2025) proposes
a coupled sampling scheme to estimate the likelihood for GRPO training. MDPO (He et al., 2025)
introduces a running confidence remasking strategy to allow low-confidence tokens to be remasked
again during inference time.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Prompt

Masked Tokens

PromptStep t2

Denoise

PromptStep t1

Step-aware reward for :

Step t1

Step t2

...
...

N1 rollouts

N2 rollouts

of
N2

Step t1 () - Step t2 ()# of
N1

Denoise

PromptStep 0

Denoise

Denoise

Step T

Figure 2: Illustration of the proposed step-aware reward. To encourage intermediate generations
to contribute meaningfully to the final outcome, we generate new rollouts from randomly selected
steps t1, t2 and estimate their contribution by the difference in outcome rewards. A larger difference
indicates a higher contribution toward the final correct answer.

Process reward model. Verification models have been shown to improve the multi-step reasoning
ability of LLMs. Unlike the outcome verifier (Cobbe et al., 2021; Yu et al., 2023) which exam-
ines the correctness of the final outcome, the process reward models enhance feedback accuracy by
identifying and localizing errors within generated responses. However, collecting step-wise feed-
back can be costly, especially with human annotators (Uesato et al., 2022; Lightman et al., 2023).
Therefore, many efforts have been devoted to the automatic extraction of process rewards. One
standard way to assess process correctness is by estimating, via Monte Carlo (MC) methods, the
empirical probability of reaching the correct final answers. Given an intermediate step of reasoning,
MATH-SHEPHERD (Wang et al., 2023) asks completers to finalize multiple subsequent reasoning
processes and estimate the potential of this step based on the correctness of all decoded answers.
(Luo et al., 2024) proposes a Monte Carlo Tree Search algorithm to identify the first error in the
reasoning process. (Zhang et al., 2025) argues that the MC-based estimation can be noisy and re-
quires an additional LLM-as-judge to filter the process reward data. Inspired by (Wang et al., 2023),
(Wang et al., 2025b) constructs process rewards for multi-modal LLMs. (Zhang et al., 2024a) pro-
poses a tree search policy with process rewards. Implicit process rewards (Yuan et al., 2024; Cui
et al., 2025) trains the outcome reward model and can obtain the token-level process reward as
log-likelihood ratios of the policy and reference models.

3 STEP-AWARE POLICY OPTIMIZATION FOR STRUCTURED REASONING

Our primary goal is to mitigate the risk of inefficient or derailed reasoning in MdLLMs. We achieve
this by providing dense, process-level supervision that encourages the model to distribute problem
complexity evenly across generation steps. To obtain this supervision without external annotators or
reward models, we leverage the diffusion model’s own iterative nature.

We introduce Step-Aware Policy Optimization (SAPO), a reinforcement learning framework built
upon Group Relative Policy Optimization (GRPO) specifically adapted for MdLLMs. Its core inno-
vation is a novel, automatic process-based reward function.

3.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO is a powerful on-policy algorithm for enhancing the capabilities of language models (Shao
et al., 2024). We adapt it for the MdLLM setting.

Response sampling. Given a question Q, we use the current policy πθ to generate G candidate
responses {R(1),R(2), . . . ,R(G)}. Each response R(i) is assigned a reward ri, based on the cor-
rectness of the final answer. From these, we can compute a mean-normalized advantage for each
response, Ai = ri−mean({rj}Gj=1). This advantage is distributed across all tokens in the response.

Learning objective. The optimization follows the standard proximity policy optimization
(PPO) (Schulman et al., 2017)-style clipped objective for stable updates, regularized by a KL-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

divergence term against a reference policy πref:

LGRPO(θ) = EQ∼D, R(1),...,R(G)∼πθ(·|Q)

[
1

G

G∑
i=1

1

|R(i)|

|R(i)|∑
k=1

min
(
ρkiAi, clip(ρ

k
i , 1− ε, 1 + ε)Ai

)
− β DKL[πθ(· | Q) ∥πref(· | Q)]

]
,

(1)
where the likelihood ratio for the k-th token of response R(i) is ρki = πθ(R

(i),k|Q,R(i),<k)
πθold (R

(i),k|Q,R(i),<k)
. A key

challenge in applying this to MdLLMs is estimating the sequence likelihood πθ(R
(i) | Q), which

we address with existing techniques (Zhao et al., 2025; Gong et al., 2025; Tang et al., 2025).

3.2 STEP-AWARE STRUCTURED REFINEMENT FOR MDLLMS

Standard GRPO for MdLLMs defines the advantage Ai based solely on outcome-based rewards
(e.g., final answer accuracy). This may lead to unstructured refinement, as it can equally reinforce
responses that are correct by chance despite having flawed reasoning as illustrated in Fig.1. To
enforce a structured reasoning process, we introduce a step-aware reward.

Denoising steps in MdLLMs. Given an input question Q, MdLLM begins by preparing a sequence
of mask tokens [mask] of pre-defined length and initializing the denoising process at step t = T .
At each iteration, the model receives the partially masked sequence and incrementally replaces mask
tokens with decoded tokens according to a chosen decoding strategy (e.g., decoding only those
tokens whose confidence exceeds a specified threshold). At an intermediate step t, the sequence
thus contains a mixture of text and mask tokens, such as “an apple [mask] [mask] is on the
[mask]”. When t = 0, all mask tokens [mask] are fully resolved into text tokens.

Evaluating denoising steps with step-aware reward. To encourage structured reasoning within the
denoising process, one possible approach is to manually annotate intermediate generations, follow-
ing the methodology of process reward models developed for ARMs (Uesato et al., 2022). However,
unlike ARMs, where tokens are decoded sequentially and intermediate outputs are inherently struc-
tured and separable, annotating intermediate states in MdLLMs poses additional challenges. This
difficulty arises because MdLLM intermediate generations consist of a mixture of text and mask
tokens, often arranged in a non-deterministic order due to the parallel decoding mechanism. For
instance, an intermediate state might appear as “an apple [mask] [mask] is on the [mask]”,
where incomplete decoding obscures clear annotation.

To address this challenge, we propose measuring the incremental progress achieved between dif-
ferent stages of the denoising process. Specifically, we randomly sample two denoising timesteps,
t1 and t2, such that 0 ≤ t1 < t2 ≤ T . Let xt1 and xt2 denote the intermediate generations at
these steps. To evaluate the contribution of the denoising steps between t2 and t1, we generate full
response rollouts from each state, yielding {R(j)(xt1)}

N1
j=1 and {R(j)(xt2)}

N2
j=1.

The step-aware reward is defined as the difference in the expected outcome rewards:

Rprocess(t1, t2) =
1

N1

N1∑
j=1

1[R(j)(xt1)]−
1

N2

N2∑
j=1

1[R(j)(xt2)], (2)

where 1[·] denotes an indicator function that evaluates the correctness of the final response. A
positive value of Rprocess indicates that the denoising steps between t2 and t1 made a meaningful
contribution, thereby reducing its complexity. Importantly, this formulation eliminates the need to
manually annotate intermediate diffusion states or to design task-specific process reward models.

Efficient reward estimation. Although MdLLMs offer faster inference compared to ARMs, gen-
erating multiple responses from intermediate states at two different timesteps can still be computa-
tionally expensive. To mitigate this cost, we focus on an important special case where t2 = T . At
this point, the intermediate generation xt2 consists entirely of mask tokens [mask] . . .[mask].
Consequently, the second term 1

N2

∑N2

j=1 1[R
(j)(xt2)] in Eq. 2 corresponds to the model’s accu-

racy when conditioned solely on the input question prompt Q. In this case, we set t2 = T ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

High-Complexity
Unstructured Refinement

Q1 Q2 Q3

R1R2R3R4R5R6R7R8

Low-Complexity
Structured Decomposition

Q1 Q2 Q3

S1,1 S1,2 S1,3 S1,4

S2,1S2,2S2,3 S2,4S2,5S2,6

R1R2R3R4R5R6R7R8

Figure 3: Complexity reduction via structured decomposition. (Left) A model without process
supervision attempts to solve the complex mapping from Question Q to Response R directly, often
leading to difficulty bottlenecks. (Right) A model guided by process rewards decomposes the prob-
lem into intermediate latent states S, ensuring each step performs a small, manageable reduction in
complexity (sparsity).

R(j)(xt2) = R(j), and N2 = G. Since full response rollouts are already available from GRPO-
based accuracy reward computation, this term can be directly estimated without additional inference.
In other words, we substitute the mean accuracy reward as a surrogate for the second term, effec-
tively halving the inference cost required to compute Rprocess(t1, t2).

In principle, the full trajectory reward could be computed by evaluating all denoising steps from T
down to 0, but this approach would incur prohibitively high computational cost. Instead, we find that
estimating the reward using a randomly sampled interval (t1, t2) serves as an effective and efficient
approximation of the overall reasoning process during generation. Accordingly, we define

Rprocess := Rprocess(t1, t2). (3)

Up-weighted advantage computation. In GRPO (Shao et al., 2024) and diffu-GRPO (Zhao et al.,
2025), the advantage is computed by normalizing all rewards across rollouts for a given input
prompt. However, in our preliminary experiments, we observe that directly applying such nor-
malization to the step-aware reward can degrade model performance. This occurs because samples
with Rprocess = 0 are pushed further away during mean-normalization, yielding negative advantages.
Such treatment is suboptimal, as these samples (with correct answers and flawed reasoning steps)
may still contribute positively to model learning. To address this issue, we introduce an up-weighted
strategy for computing the total advantage of response R(i):

Atotal
i = Ai + 1[Ai > 0] ·Rprocess (4)

where Ai is the advantage for response R(i). Crucially, up-weighting is applied only to responses
that both yield a correct final answer and already possess a positive advantage. This design ensures
that we reinforce valid reasoning paths without rewarding intermediate progress that ultimately leads
to incorrect solutions, and without penalizing correct answers that may contain imperfect reasoning.

This composite advantage thus integrates correctness with structured, productive reasoning, directly
incentivizing the model to adhere to the principle of hierarchical decomposition.

3.3 THEORETICAL UNDERSTANDING: COMPLEXITY DISTRIBUTION

To ground our method in a formal framework, we interpret the benefits of intermediate rewards
through the lens of complexity reduction. A reasoning task defines a high-complexity constraint
between a question Q and a response R. Directly generating R that satisfies Q without structured
guidance is difficult because the search space is vast and the dependency is complex (Figure 3,
Left). We do not posit this hierarchical structure as a rigid, universal cognitive model. Rather,
we propose the hierarchy as a flexible abstraction for the potential reasoning complexity. Simpler
problems activate only a sparse subgraph of the available constraints. In the context of diffusion, this
manifests as trivial transformations where the ’reasoning’ happens implicitly via smooth constraint
satisfaction in the latent space, without requiring complex structural decomposition.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of generated responses across models. LLaDA (Nie et al., 2025) and diffu-
GRPO (Zhao et al., 2025) both produce incorrect answers to the evaluation question. LLaDA’s re-
sponse includes a brief but partially meaningful reasoning step toward the end, whereas diffu-GRPO
continues generating verbose sentences that contribute little to the final prediction. In contrast, our
model provides a structured reasoning process and successfully arrives at the correct answer. This
highlights that optimizing solely for accuracy-based rewards may lead to sub-optimal outcomes, as
such rewards overlook the quality and coherence of reasoning within the response.

Standard dLLM training paradigms are often agnostic to intermediate progress, suffering from un-
structured refinement: the model may waste early steps on irrelevant tokens or derail from a logical
path, forcing it to bridge a massive complexity gap in the final few steps.

Ideally, the difficulty of the problem should decrease monotonically and gradually as the diffusion
proceeds. We formally characterize this as a sparsity constraint on the latent reasoning process
(see Appendix B for details). Intuitively, if a model can decompose a complex function into a
composition of sparse, simple functions, it can more easily learn a natural, robust reasoning process.

Theorem 3.1 (Informal: Complexity Distribution). A reasoning model that distributes the com-
putational load (e.g., satisfies a sparsity constraint), where each transition resolves only a limited
subset of dependencies, learns a natural, robust reasoning process that is less prone to unstructured
refinement.

Our proposed method, SAPO, directly operationalizes this insight. By rewarding intervals that show
a measurable increase in the probability of correctness, we encourage the model to distribute the
complexity reduction evenly across all steps, ensuring that every stage of the diffusion process con-
tributes a small, manageable piece of the solution.

4 EXPERIMENTS

4.1 SETUP

We build our model on top of diffu-GRPO (Zhao et al., 2025) and adopt the same experimental setup
unless otherwise specified. We provide implementation details in the Appendix.C.

Datasets. We evaluate on four benchmarks: (1) GSM8K (Cobbe et al., 2021), using 7,374 train-
ing and 1,319 test problems; (2) MATH (Lightman et al., 2023), with 7,500 training and 500 test
problems; (3) COUNTDOWN, a synthetic dataset of 490K training and 256 test samples requiring
arithmetic expression generation; and (4) SUDOKU, 4× 4 puzzles evaluated on a 256-sample split.

Baselines. We compare against recent state-of-the-art MdLLMs: LLaDA (Nie et al., 2025), Diffu-
GRPO (Zhao et al., 2025), TSE (Wang et al., 2025c), and WINO (Hong et al., 2025), as well as
models further fine-tuned on the reasoning dataset s1K (Muennighoff et al., 2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

COUNTDOWN GSM8K SUDOKU MATH
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA 20.7 19.5 16.0 68.7 76.7 78.2 11.7 6.7 5.5 26.0 32.4 36.2
diffu-GRPO 33.2 31.3 37.1 72.6 79.8 81.9 18.4 12.9 11.0 33.2 37.2 39.2
TSE-Vote 25.0 23.4 16.4 70.1 78.7 78.9 × × × 28.4 35.6 36.2
WINO - 33.2 - - 75.8 - - 15.2 - - 34.2 -
SFT 20.3 14.5 23.8 66.5 78.8 81.1 16.5 8.5 4.6 26.2 32.6 34.8
SFT + diffu-GRPO 34.8 32.0 42.2 73.2 81.1 82.1 22.1 16.7 9.5 33.8 38.6 40.2
SFT + TSE-Reward 41.5 42.6 54.7 72.1 80.0 83.0 × × × 31.2 35.4 41.4
diffu-GRPO+PRM - - - 71.7 80.9 81.5 - - - 30.8 36.0 36.0
Ours 51.6 52.0 56.3 72.9 82.2 82.4 22.4 20.3 16.1 32.0 40.0 38.4

Table 1: Performance comparison on COUNTDOWN, GSM8K, SUDOKU, and MATH at different
sequence lengths. “–” denotes unreported results; “×” denotes unsupported tasks. Without addi-
tional SFT on the reasoning dataset s1K (Muennighoff et al., 2025), our method achieves superior
performance across all four tasks.

Model/Seq Len COUNTDOWN sec/it
128 256 512

diffu-GRPO 33.2 31.3 37.1 3.19
diffu-GRPO+PRM - - - 7.58
Ours-NoUpweight 41.0 41.4 50.4 3.42

Ours-Cover 55.1 59.4 58.2 6.23
Ours-Random 55.4 54.7 59.8 4.76

Ours 51.6 52.0 56.3 3.42

Table 2: Ablation on different designs and
effiency comparisons.

Dataset diffu-GRPO Ours
COUNTDOWN 4.37±2.41 3.80±2.04

GSM8K 2.37±0.80 2.12±0.74
SUDOKU 4.31±2.95 3.90±2.44

MATH 3.19±1.21 3.11±1.24

Table 3: The number of causal links across
timesteps. With the proposed reward, our
approach learns a sparser hierarchy (smaller
mean), and the changes across timesteps (hier-
archy levels) are smoother and more stable, as
indicated by the smaller standard deviation.

4.2 RESULTS

Alignment of reasoning process and final answer. To assess how well MDLLMs produce inter-
mediate reasoning that is consistent with the final answer, we analyze the alignment between the
reasoning process and the output. Specifically, we input generations from LLaDA (Nie et al., 2025),
diffu-GRPO (Zhao et al., 2025), and our model into GPT-5, asking it to evaluate “whether a user can
reach the final answer by following the reasoning step by step.” Results on the COUNTDOWN and
GSM8K datasets are shown in Fig. 6. Our method achieves substantially higher alignment ratios
across both datasets. This large improvement helps explain the performance gains in Table 1, as our
proposed reward explicitly encourages the model to maintain consistency between reasoning steps
and final answers through the diffusion-based generation process. We also provide example out-
puts from the three models in Fig. 1. As shown, LLaDA and diffu-GRPO generate less meaningful
reasoning in their responses and ultimately produce incorrect answers.

Comparison with using pretrained PRM. Since our approach is fundamentally built upon the idea
of process rewards, it is crucial to understand how it compares to an existing and widely adopted
paradigm for process-level supervision: using a pretrained Process Reward Model (PRM) as the re-
ward function. To this end, we adopted the pretrained Mistral-7B PRM checkpoint from Zhang et al.
(2024b). We inserted their reasoning-step tags every 16 timesteps during masked-token decoding,
fed the entire sequence into the PRM, and computed the process reward as the average PRM score
across timestep intervals.

Despite PRMs being effective for test-time selection, we encountered several significant challenges
when attempting to use them as training-time rewards for dLLM policy optimization as shown in
Fig.5: (1) Huge memory consumption. Unlike our approach, which reuses the training model itself
to compute rewards, the pretrained PRM introduces substantial GPU and CPU memory overhead,
leading to much slower training (7.62 sec/it vs. 3.42 sec/it for ours; see Table 2). (2) Instability.
Generated responses frequently caused the PRM to output NaNs, likely because it expects strictly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Training SVAMP ARC
LLaDA - 83.3 90.2
diffu-GRPO GSM8K 83.0 89.8
Ours GSM8K 84.0 90.2
diffu-GRPO MATH 83.7 91.8
Ours MATH 85.7 93.0
diffu-GRPO COUNTDOWN 84.0 90.6
Ours COUNTDOWN 84.0 87.5
diffu-GRPO SUDOKU 85.0 91.0
Ours SUDOKU 86.7 90.6

Table 4: Generalization ability compari-
son. The trained models are evaluated on
unseen datasets: the reasoning benchmark
SVAMP (Patel et al., 2021) and the common-
sense benchmark ARC (Clark et al., 2018).

Step COUNTDOWN GSM8K
diffu-GRPO Ours diffu-GRPO Ours

1 1.56 1.17 12.81 16.53
8 2.73 1.56 9.48 16.91
16 3.12 2.34 13.04 19.33
24 4.69 1.95 17.21 21.61
32 6.64 27.34 24.26 30.86
40 12.50 33.98 39.27 41.17
48 19.53 37.11 49.96 50.57
64 33.2 51.6 72.6 72.9

Table 5: Accuracy of intermediate answers with
sequence length 128 and 64 diffusion steps. In-
termediate answers are obtained by decoding nor-
mally up to a target step and then decoding all re-
maining tokens in one pass.

0 500 1000 1500 2000
Gradient Update Steps

0.0

0.2

0.4

0.6

0.8

Co
rre

ct
ne

ss
 R

ew
ar

d

GSM8K

0 500 1000 1500 2000
Gradient Update Steps

0.078

0.079

0.080

0.081

PR
M

 R
ew

ar
d

GSM8K
NaN

500 1000 1500
Gradient Update Steps

0.76

0.77

0.78

PR
M

 R
ew

ar
d

MATH

500 1000 1500 2000
Gradient Update Steps

0.3

0.4

0.5

0.6

Co
rre

ct
ne

ss
 R

ew
ar

d

MATH

Figure 5: Two failure runs when using a pretrained PRM to assign rewards: instability and poten-
tial reward hacking. Unlike our rule-based reward, the PRM must process the full model-generated
response through a large pretrained network. As a result, it often encounters unseen or irregular
response formats, which can lead to numerical instabilities and NaN outputs. In addition, as shown
on the right for the MATH dataset, although the PRM reward steadily increases during training, the
accuracy reward actually decreases. This divergence suggests that the model learns to exploit weak-
nesses in the PRM scoring function—effectively hacking the reward model rather than improving
its reasoning quality.

formatted inputs (e.g., explicit “step1/step2” markers). This forced us to replace NaN scores with
zero, introducing further noise into the learning process. (3) Reward hacking. Although the PRM
reward steadily increased during training, the actual task performance did not improve. This suggests
that the policy model learns to exploit flaws in the PRM scoring function rather than improving its
reasoning quality—a well-known failure mode for reward-model-based optimization. As shown in
Table 1, diffu-GRPO+PRM achieves 71.7, 80.9, and 81.5 on GSM8K, while diffu-GRPO obtains
72.6, 79.8, and 81.9. Our method further improves to 72.9, 82.2, and 82.4. These results underscore
that, even when compared against a strong pretrained PRM, our rule-based reward provides more
stable optimization and better downstream performance, reinforcing the motivation for our design.

Ablation study on the model design. We now examine several design choices in our framework.
Ours-NoUpweight removes the up-weighting strategy and applies the reward to all samples rather
than only those with positive advantages. Ours-Cover computes the proposed reward across all
timestep intervals, corresponding to the exact empirical average. Ours-Random selects t2 uniformly
at random instead of fixing t2 = T . The results on the COUNTDOWN dataset are shown in Table 2.

The ablation results demonstrate the contributions of each component. Removing the up-weighting
strategy (Ours-NoUpweight) already yields notable improvements over diffu-GRPO (e.g., 41.0 vs.
33.2 at sequence length 128), indicating that the reward formulation alone provides a substantial
benefit. Computing rewards across all timestep intervals (Ours-Cover) achieves the strongest overall
performance (55.1, 59.4, 58.2), but requires roughly twice the computation time (6.23 sec/it). Sam-
pling t2 at random (Ours-Random) achieves similarly strong accuracy (55.4, 54.7, 59.8), though it is
still slower than our approach (4.76 sec/it), as it requires an additional forward pass and cannot reuse
the final completion for filtering. Our full method (Ours) achieves performance close to Ours-Cover

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

128 256 512
Sequence Length

0

10

20

30

40

50

G
PT

 A
lig

nm
en

t R
at

io

56.8 56.3 55.7
51.2 50.0 48.6

41.6 40.9 40.3

COUNTDOWN

128 256 512
Sequence Length

0

10

20

30

40

G
PT

 A
lig

nm
en

t R
at

io

46.3 45.9 45.4

38.4
36.5 36.2

34.1 33.7 33.5

GSM8K

Ours diffu-GRPO LLaDA

Figure 6: Model reasoning–outcome alignment ratio.

2 4 6 8
Number of Samples (N)

30

40

50

60

Ac
cu

ra
cy

COUNTDOWN

Sequence Length
128
256
512

Figure 7: Ablation study.

1000 2000 3000 4000 5000 6000
Gradient Update Steps

0.030

0.035

0.040

0.045

St
ep

-A
wa

re
 R

ew
ar

d

COUNTDOWN

1000 2000 3000 4000 5000 6000
Gradient Update Steps

0.026

0.028

0.030

0.032

0.034

0.036

St
ep

-A
wa

re
 R

ew
ar

d
SUDOKU

0 2000 4000 6000 8000
Gradient Update Steps

0.02

0.03

0.04

St
ep

-A
wa

re
 R

ew
ar

d

GSM8K

2000 4000 6000 8000
Gradient Update Steps

0.016

0.018

0.020

0.022

0.024

0.026

St
ep

-A
wa

re
 R

ew
ar

d

MATH

Figure 8: The training curve of our proposed step-aware reward.

0 2000 4000 6000
Gradient Update Steps

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

COUNTDOWN
diffu-GRPO
Ours

0 2000 4000 6000
Gradient Update Steps

0.05

0.10

0.15

0.20

Re
wa

rd

SUDOKU

diffu-GRPO
Ours

0 2000 4000 6000 8000
Gradient Update Steps

0.0

0.5

1.0

1.5

2.0

Re
wa

rd
GSM8K

diffu-GRPO
Ours

0 2000 4000 6000 8000
Gradient Update Steps

1.0

1.2

1.4

1.6

Re
wa

rd

MATH
diffu-GRPO
Ours

Figure 9: Reward curves during GRPO training. For fair comparison, we exclude our step-aware
reward. The step-aware reward emphasizes responses that contain both the correct answer and
meaningful reasoning, which in turn enhances the accuracy reward.

and Ours-Random (51.6, 52.0, 56.3), while maintaining a training speed comparable to diffu-GRPO
(3.42 sec/it vs. 3.19 sec/it). This indicates that our design provides an efficient approximation of
the full reward with minimal computational overhead. For completeness, we also report the runtime
of diffu-GRPO+PRM (7.58 sec/it), which is substantially slower due to the additional memory and
computation required by the pretrained PRM model.

Our reward enables a more sparse and stable reasoning hierarchy. Our theoretical analysis sug-
gests that enforcing suitable sparsity constraints should lead the model to learn a more structured
and well-organized reasoning hierarchy. To empirically verify this prediction, we examine the causal
structure induced by the learned models. At each prediction step, we estimate the causal links be-
tween hierarchy levels using token prediction probabilities. For example, given a partially decoded
sequence such as “I am [mask]”, we count how many vocabulary tokens have prediction probability
greater than a small threshold (e.g., 0.01), treating each such token as an active causal link. We then
compute the average and standard deviation of the number of causal links across timesteps.

As shown in Table 3, our approach consistently produces fewer causal links than diffu-GRPO, in-
dicating a sparser learned hierarchy. For instance, on COUNTDOWN, the number of causal links
decreases from 4.37 to 3.80 (a 13.1% reduction), and on SUDOKU it decreases from 4.31 to 3.90 (a
9.5% reduction). Likewise, our model shows smaller standard deviations—e.g., from 2.41 to 2.04
on COUNTDOWN—demonstrating that the changes across hierarchy levels are smoother and more
stable. Similar trends hold across GSM8K and MATH. These empirical findings align with our
theoretical motivation and confirm that our reward encourages a more structured reasoning process.

Superior benchmark performance. Table 1 reports results on benchmarks: GSM8K, MATH,
COUNTDOWN, and SUDOKU. Our approach outperforms baselines across most datasets and even
surpasses those fine-tuned with additional reasoning dataset s1K (Muennighoff et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

The proposed reward is effectively learned and facilitates training. We visualize the training re-
wards of diffu-GRPO (Zhao et al., 2025) and our model in Fig. 9. Our method consistently achieves
higher total rewards—which combine both accuracy and format rewards—explaining the substantial
performance gains observed on these datasets. For MATH, however, the training rewards of both
methods remain similar. A similar phenomenon was also reported in (Zhao et al., 2025), where the
diffu-GRPO model after SFT on s1k dataset (Muennighoff et al., 2025) attained rewards similar to
those without SFT. We hypothesize that the MATH500 problems may be too challenging for the
8B base model and may be addressed with a larger dLLM. We further present the reward training
curves in Fig. 8. The upward trend indicates that the model learns to favor responses yielding correct
answers while adhering to reasoning processes that support the final outcome.

Our model demonstrates strong generalization ability. To thoroughly examine the proposed
framework, we further evaluate our models on two unseen datasets: SVAMP (Patel et al., 2021)
and ARC (Clark et al., 2018). The SVAMP dataset consists of numerous mathematical reasoning
problems, while the ARC dataset focuses on commonsense reasoning tasks (e.g., “When oxygen
combines with hydrogen, which substance is formed?”), where the model must select the correct
answer from multiple choices. Notably, ARC is fundamentally different from our training datasets
(e.g., GSM8K). Our model noticeably improves performance on both SVAMP and ARC.

Our method enables further acceleration through higher intermediate accuracy. Accelerating
MDLLMs has been an active area of research (Li et al., 2025; Hong et al., 2025; He et al., 2025).
Many approaches rely on the quality of intermediate responses: if these responses are accurate and
contribute meaningfully to the final answer, generation can be accelerated. For instance, Prophet (Li
et al., 2025) decides whether to decode all remaining tokens in a single step. Motivated by this,
we analyze the accuracy of intermediate responses produced by our method. Specifically, during
diffusion denoising, at each step, we additionally generate an answer by unmasking all remaining
tokens at once. This gives us intermediate answers at every step, in addition to the final output
obtained from fully decoding the masked sequence. We present results in Table.5. Across both
datasets, our method achieves higher intermediate accuracy, suggesting that it may offer advantages
over diffu-GRPO (Zhao et al., 2025) when combined with MdLLM acceleration techniques.

Effect of the number of samples on the reward. Our step-aware reward function is based on an
averaged estimation of the accuracy of generated responses. To assess its reliability, we perform an
ablation study by varying the number of samples, N ∈ {1, 3, 6, 9}. As illustrated in Fig. 7, when
N = 1, the estimation becomes noisy and leads to suboptimal performance. In contrast, when
N ≥ 3, we observe substantial improvements over both baseline methods, LLaDA (Nie et al., 2025)
and diffu-GRPO (Zhao et al., 2025), across sequence lengths of 128, 256, and 512. These results
highlight the robustness of our proposed reward under different sampling configurations.

5 CONCLUSION AND LIMITATIONS

We address the challenge of training diffusion language models for complex reasoning, identifying
the lack of process supervision as a key limitation that leads to unstructured refinement. To over-
come this without incurring the high costs of external verifiers or human annotation, we introduce
SAPO, an RL framework that derives automatic process rewards from the diffusion model’s inherent
iterative structure. Supported by the theoretical insight of progressive complexity reduction, SAPO
incentivizes the model to distribute problem difficulty evenly across the denoising trajectory, fos-
tering structured and robust reasoning. Our empirical results demonstrate that SAPO significantly
improves performance on challenging reasoning benchmarks and enhances the coherence of the
generation process.

Limitation. Our method relies on the mean-field assumption used in diffu-GRPO (Zhao et al., 2025)
to estimate the log-likelihood of generated responses, which inherently neglects token-level depen-
dencies. Unfortunately, this assumption is difficult to remove because, unlike ARM-based models,
dLLM does not provide a convenient factorization that would allow us to compute likelihoods ex-
actly. For efficiency reasons, we therefore must adopt additional approximations. Addressing this
limitation is an important direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration. arXiv preprint arXiv:2506.20639, 2025.

Haoyu He, Katrin Renz, Yong Cao, and Andreas Geiger. Mdpo: Overcoming the training-inference
divide of masked diffusion language models. arXiv preprint arXiv:2508.13148, 2025.

Feng Hong, Geng Yu, Yushi Ye, Haicheng Huang, Huangjie Zheng, Ya Zhang, Yanfeng Wang, and
Jiangchao Yao. Wide-in, narrow-out: Revokable decoding for efficient and effective dllms. arXiv
preprint arXiv:2507.18578, 2025.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica, 2016.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859–868. PMLR, 2019.

Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor
Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 11455–11472. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/kong22a.html.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
Unlocking long context capabilities in diffusion llms. arXiv preprint arXiv:2506.14429, 2025a.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025b.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

11

https://proceedings.mlr.press/v162/kong22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He,
and Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv
preprint arXiv:2508.02558, 2025.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy opti-
mization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025a.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
multimodal reasoning. arXiv preprint arXiv:2503.10291, 2025b.

Wen Wang, Bozhen Fang, Chenchen Jing, Yongliang Shen, Yangyi Shen, Qiuyu Wang, Hao Ouyang,
Hao Chen, and Chunhua Shen. Time is a feature: Exploiting temporal dynamics in diffusion
language models. arXiv preprint arXiv:2508.09138, 2025c.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning
in mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint
arXiv:2412.01981, 2024.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735–64772, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong Lin, Rui Pan, Hanze Dong, Dylan Zhang,
Pavlo Molchanov, and Tong Zhang. Entropy-regularized process reward model. arXiv preprint
arXiv:2412.11006, 2024b.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
beyond. arXiv preprint arXiv:2206.07751, 2022.

Yujia Zheng, Shaoan Xie, and Kun Zhang. Nonparametric identification of latent concepts. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=cW9Ttnm1aC.

13

https://openreview.net/forum?id=cW9Ttnm1aC
https://openreview.net/forum?id=cW9Ttnm1aC

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
A LLM USAGES.

Large Language Models (LLMs) were used solely for polishing the writing and improving the clar-
ity of presentation. All ideas, analyses, results, and conclusions are original contributions of the
authors.

B THEORETICAL ANALYSIS

In this section, we provide a theoretical foundation for our work. The central insight is that if the
underlying hierarchical structure of reasoning can be learned from data, then there is a principled
basis for designing algorithms that explicitly seek this structure. We establish this by showing that
the latent concepts at each level of our proposed hierarchy are identifiable up to benign ambiguities.

B.1 IDENTIFIABILITY OF LATENT CONCEPTS FROM OBSERVATIONS

Consider any level l in the hierarchy. The concepts Sl+1 at the next level are sampled based on Sl

via a generating function Sl+1 = fSl+1
(Sl, ϵl), where ϵl denotes the exogenous variables injected

into level l + 1, independent of Sl and all variables at higher levels. The final response R can be
expressed as Sl and the collection of exogenous variables El := (ϵm)Lm=l via an invertible function
R = ql(Sl,El).

The following lemma shows how the hierarchically-dependent latent concepts Sl+1 can be disen-
tangled from the independent exogenous variables El+1 for any 0 ≤ l < L. The proof is inspired
by previous work (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Kong et al., 2022).
Lemma B.1 (Single-level Subspace Identifiability). Assume the following data-generating process
at a fixed, arbitrary 0 ≤ l < L:

Sl+1 ∼ P [Sl+1|Sl] , El+1 ∼ P [El+1] , R := ql+1(Sl+1,El+1). (5)
We have the following conditions.

i Informativeness: The function ql+1(·) is a diffeomorphism.

ii Smooth Density: The probability density function p(Sl+1,El+1|Sl) is smooth.

iii Sufficient Variability: At any value Sl+1, there exist n(Sl+1)+1 distinct values of Sl, denoted
as {S(n)

l }n(Sl+1)
n=0 , such that the vectors w(Sl+1,S

n
l) − w(Sl+1,S

0
l) are linearly independent

where w(Sl+1,Sl) =
(

∂ log p(Sl+1|Sl)
∂Sl+1,1

, . . . , ∂ log p(Sl+1|Sl)
∂Sl+1,n(Sl+1)

.
)

If a model θ satisfies i,ii, and iii, another model θ̂ satisfies i,ii, and they generate identical distri-
butions P [R|Sl] = P̂[R|Sl], then the latent concepts Sl+1 are identifiable up to an invertible map,
disentangled from El+1: there exists an invertible mapping Sl+1 7→ Ŝl+1 where Sl+1 and Ŝl+1 are
generated in model θ and θ̂ respectively.

Proof. Since we have matched distributions, it follows that:
p(R|Sl) = p̂(R|Sl). (6)

As the generating function ql+1 has a smooth inverse (i), we can derive:

p(ql+1(Sl+1,El+1)|Sl) = p(q̂l+1(Ŝl+1, Êl+1)|Sl) =⇒

p(Sl+1,El+1|Sl)
∣∣∣Jq−1

l+1

∣∣∣ = p̂(q−1
l+1 ◦ q̂l+1(Ŝl+1, Êl+1)|Sl)

∣∣∣Jq−1
l+1

∣∣∣ .
Notice that the Jacobian determinant

∣∣∣Jq−1
l+1

∣∣∣ > 0 because of ql+1(·)’s invertibility and let h :=

q−1
l+1 ◦ q̂l+1 : (Ŝl+1, Êl+1) 7→ (Sl+1,El+1) which is smooth and has a smooth inverse thanks to

those properties of ql+1 and q̂l+1. It follows that

p(Sl+1,El+1|Sl) = p̂(h(Ŝl+1, Êl+1)|Sl) =⇒
p(Sl+1,El+1|Sl) = p̂(Ŝl+1, Êl+1|Sl) |Jh−1 | .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The independence relation in the generating process implies that

log p(Sl+1|Sl) +
∑

i∈[n(El+1)]

log p(El+1,i) = log p̂(Ŝl+1|Sl) +
∑

i∈[n(Êl+1)]

log p̂(Êl+1,i) + log |Jh−1 | .

(7)

For any realization S0
l , we subtract (7) at any Sl ̸= S0

l with that at S0
l :

log p(Sl+1|Sl)− log p(Sl+1|S0
l) = log p̂(Ŝl+1|Sl)− log p̂(Ŝl+1|S0

l). (8)

Taking derivative w.r.t. Êl+1,j for j ∈ [n(Êl+1)] yields:∑
i∈[n(Sl+1)]

∂

∂Sl+1,i
(log p(Sl+1|Sl)− log p(Sl+1|S0

l)) ·
∂Sl+1,i

∂Êl+1,j

= 0. (9)

The left-hand side zeros out because Ŝl+1 is not a function of Êl+1.

Condition iii ensures the existence of at least n(Sl+1) such equations with S1
l , . . . ,S

n(Sl+1)
l that are

linearly independent, constituting a full-rank linear system. Since the choice of j ∈ [n(El+1)] is
arbitrary. It follows that

∂Sl+1,i

∂Êl+1,j

= 0,∀i ∈ [n(Sl+1)], j ∈ [n(El+1)]. (10)

Therefore, the Jacobian matrix Jh is of the following structure:

Jh =

∂El+1

∂Êl+1

∂El+1

∂Ŝl+1

∂Sl+1

∂Êl+1

∂Sl+1

∂Ŝl+1
.

 (11)

(10) suggests that the block ∂Sl+1

∂Êl+1
= 0. Since Jh is full-rank, we can deduce that ∂Sl+1

∂Ŝl+1
must have

full row-rank and n(Sl+1) ≤ n(Ŝl+1). Assuming the dimensions of the latent spaces are equal,
n(Sl+1) = n(Ŝl+1). Moreover, since Jh is full-rank and the block ∂Sl+1

∂Êl+1
is zero, we can derive

that the corresponding block ∂Ŝl+1

∂El+1
in its inverse matrix Jh−1 is also zero. Therefore, there exists an

invertible map Sl+1 7→ Ŝl+1, which concludes the proof.

With Lemma B.1 in hand, we can prove the following lemma that refines subspace invertible map-
pings Sl+1 7→ Ŝl+1 into component-wise invertible mappings Sl+1,i 7→ Ŝl+1,̂i. That is, one can
identify single dimensions on the level l.

To formalize our theoretical results, we introduce the following notation. For a matrix M , we denote
its i-th row and j-th column as Mi,· and M·,j respectively. We use · to indicate all the indices in
that dimension. Recall the definition Sl+1 := fl+1(Sl, ϵl) and R := ql+1(Sl+1,El+1). We denote
DSl

fSl+1
as the partial derivative of the function fSl+1

with respect to the higher-level variables Sl.
Let T be an arbitrary, fixed matrix with the same support as the matrix-valued function T(·) in the
relationship between two models’ Jacobians: DSl

f̂Sl+1
= TDSl

fSl+1
. Given a subset of indices

S ⊆ {1, . . . , n}, we define the subspace Rn
S as {s ∈ Rn | si = 0 if i /∈ S}. The support of the

generative process for level l + 1 is defined as Dl := supp(DSl
fSl+1

). The dependency structure
is captured by a binary matrix Ml, where Ml,ij = 1 if and only if (i, j) ∈ Dl. Let Ak be the set of
indices for variables in Sl+1 that depend on the higher-level variable Sl,k. Let d(Sl) represent the
dimensionality of Sl. The following conditions follow prior work Zheng et al. (2025; 2022).
Assumption B.2 (Non-degenerative Subspace Zheng et al. (2022)). Suppose two alternative models
θ and θ̂, with an ℓ0 regularization on DSl

f̂Sl+1
such that |D̂l| ≤ |Dl|, there exists a set of points

{(Sl, θ)
(ℓ)}|Dl,·,i|

ℓ=1 for each Sl+1,i, such that:

1. The vectors {DSl
fSl+1

((Sl, θ)
(ℓ)))·,i}

|Dl,·,i|
ℓ=1 are linearly independent.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2. The transformed vectors lie in a subspace:
[
TDSl

fSl+1
((Sl, θ)

(ℓ))
]
·,i ∈ Rn(Sl+1)

D̂l,·,i
.

We adapt a theoretical result from Zheng et al. (2025) as the following lemma.

Lemma B.3 (Pair-wise Identification (Zheng et al., 2025)). Let θ :=
(
fSl+1

, qSl+1

)
and θ̂ :(

f̂Sl+1
, q̂Sl+1

)
be two alternative models. Suppose θ satisfies Condition B.1-i,ii, and Condition B.2,

and θ̂ satisfies Condition B.1-i,ii, and an ℓ0 constraint min
∥∥∥suppDŜl

f̂Sl+1

∥∥∥
0
. If θ and θ̂ are obser-

vationally equivalent, i.e., P [R|Sl] = P̂[R|Sl] for all Sl. Then, the Jacobian of the transformation
between the latent spaces satisfies:

∂Ŝl+1,π(Ai\Aj)

∂Sl+1,Aj

= 0 and
∂Ŝl+1,π(Aj\Ai)

∂Sl+1,Ai

= 0, (12)

where π is a permutation of the variable indices.
Assumption B.4 (Structural Diversity (Zheng et al., 2025)). For any index i of the variable Sl+1,
there exists a nonempty index set J and a specific index j ∈ J for Sl such that i is the unique index
in Aj that satisfies {i} = Aj \ ∪k∈J\{j}Ak. Moreover, the union ∪k∈JAk is equal to the entire
index space [d(Sl)].

Lemma B.5 (Single-level Component-wise Identifiability). Let θ :=
(
fSl+1

, qSl+1

)
and θ̂ :(

f̂Sl+1
, q̂Sl+1

)
be two alternative models. Suppose θ satisfies Condition B.1-i,ii,iii and Con-

dition B.4, and θ̂ satisfies Condition B.1-i,ii,iii, and a constraint on the support cardinality
min |DŜl

f̂Sl+1
|. If θ and θ̂ are observationally equivalent, i.e., P [R|Sl] = P̂[R|Sl] for all Sl,

then the variables Sl+1 and Ŝl+1 are identifiable up to permutations and invertible transformations.
Specifically, for any index i, there exists an invertible mapping Sl+1,i 7→ Ŝl+1,π(i) for a permutation
π.

Proof. Notice that we have assumed all conditions for Lemma B.1 and Lemma B.3.

For any variable index i on the level l + 1, invoking Lemma B.1 yields that

∂Ŝl+1,π(i)

∂El+1
= 0. (13)

Assumption B.4 suggests the existence of an index j and an index set J (j ∈ J) for the variable Sl,
such that the intersection such that i is the only index in Aj that is unique to Aj (relative to other
index sets {Ak}k∈J,k ̸=j). Lemma B.3 implies that

∂Ŝl+1,π(i)

∂Sl+1,∪k∈JAk\{i}
= 0. (14)

Moreover, since ∪k∈JAk = [d(Sl+1)] (Assumption B.4), we can deduce that

∂Ŝl+1,π(i)

∂Sl+1,[d(Sl+1)]\{i}
= 0. (15)

Combining (13) and (15) yields

∂Ŝl+1,π(i)

∂Sl+1,[d(Sl+1)]∪[d(El+1)]\{i}
= 0. (16)

Recall that the mapping (Sl+1,El+1) 7→ (Ŝl+1, Êl+1) is invertible. We can deduce from (16) that
the mapping Sl+1,i 7→ Ŝl+1,π(i) is invertible. Since the choice of i ∈ [d(Sl+1)] is arbitrary, we have
arrived at the desired conclusion.

Now, we are ready to present the identifiability for the entire hierarchical model. For ease of expo-
sition, we consider the question variables Q as the top-level variable S1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem B.6 (Identifiability of the Reasoning Hierarchy). Let θ :=
(
fSl+1

, qSl+1

)
l∈[L]

and θ̂ :(
f̂Sl+1

, q̂Sl+1

)
l∈[L]

be two alternative models. Suppose every two adjacent levels Sl and Sl+1 from

θ satisfy Condition B.1-i,ii,iii and Condition B.4, and every two adjacent levels Ŝl and Ŝl+1 from θ̂

satisfy Condition B.1-i,ii,iii, and a constraint on the support cardinality min |DŜl
f̂Sl+1

|. If θ and θ̂

are observationally equivalent, i.e., P [R|S1] = P̂[R|S1], then the variables Sl and Ŝl (l > 1) are
identifiable up to permutations and invertible transformations. Specifically, for any index l > 1 and
i ∈ d(Sl), there exists an invertible mapping Sl,i 7→ Ŝl,πl(i) for a permutation πl.

Proof. Our proof is inductive. Theorem B.5 shows that if the variables at level l are identifiable, then
those at the next level, l + 1, are also identifiable. Since the top-level S1 is given, i.e., the question
Q, we can derive that all the variables in the hierarchical model are identifiable up to permutation
and invertible transformations. That is, for any index l > 1 and i ∈ d(Sl), there exists an invertible
mapping Sl,i 7→ Ŝl,πl(i) for a level-specific permutation πl.

C IMPLEMENTATION

We build our model based on the code repository by diffu-GRPO (Zhao et al., 2025). We apply
GRPO to LLaDA-8B-Instruct (Nie et al., 2025). Following diffu-GRPO, we generate 6 rollouts per
problem with a temperature of 0.9 and perform 12 update iterations per step (for Sudoku, we follow
diffu-GRPO and use a temperature of 0.3 with 8 iterations). The model is trained with LoRA of
rank 128 in 4-bit precision and evaluated in float16 precision. The learning rate is set to 3 × 10−6

with 600 warm-up steps. During evaluation, we use zero-shot prompting and greedy decoding, with
generation lengths of 128, 256, and 512 tokens, consistent with diffu-GRPO.

In order to compute the step-aware reward, we randomly select a timestep during the generation
of rollouts for optimization. At this point, we take the intermediate generations consisting only of
the text tokens that have been produced so far. We then concatenate 64 additional mask tokens
to this partial sequence and feed the extended input back into the model. The model continues the
process by performing iterative denoising based on this new input. Empirically, we find that using 64
mask tokens provides an effective trade-off between efficiency and performance on the benchmark
datasets. After obtaining the outputs, we first compute the accuracy of the original rollouts, which
reflects the correctness of the answers generated from the question alone. Next, we compute the
accuracy of the newly generated answers obtained from the intermediate generations. Finally, we
define the step-aware reward as the difference between these two accuracies, which quantifies the
contribution of the intermediate generations to the final outcome.

D ADDITIONAL EXAMPLES

Here are additional responses comparisons for COUNTDOWN dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Problem:Using only the provided numbers [19,3,5], create an arithmetic expression
evaluates to exactly the target number 52

To reach the target number using the given numbers,
we need to consider the operations of addition,
subtraction, multiplication, and division. We can start
by using the largest number (19) and the smallest
number (3) to form a larger number. Then, we can use
the remaining number (5) to adjust the result. The, we
can use the remaining number to adjust the result.
Finally, we can use the remaining number to adjust the
result.
</reasoning>
<answer>
\boxed{19 * 3 - 5 - 3 - 3}
</answer><|eot_id|><|endoftext|>

To reach the target number using the given
numbers, we need to consider the operations of
addition, subtraction, multiplication, and
division. We can start by trying to use the
numbers in a way that sums up to the target
number. However, since the target number is
larger than the sum of the given numbers, we
need to use multiplication to reach the target..
We try multiplying the given numbers in
different combinations. We find that multiplying
19 by 3 gives us exactly the 52.
</reasoning>
<answer>
\boxed{19 * 3}
</answer><|eot_id|><|endoftext|>

To create an arithmetic expression that
evaluates to exactly target number 52 using
the numbers 19, 3, and 5, we need to consider
the combinations of the operations +, -, *,
and /. Let's try a few combinations:

1. 19 * 3 - 5
2. 19 - 5 * 3

From the above, we can that 19 * 3 - 5
works..
</reasoning>
<answer>
\boxed{19 * 3 - 5}
</answer><|eot_id|><|endoftext|>

LLaDA diffu-GRPO Ours
Answer:
Reasoning:

Answer:
Reasoning:

Answer:
Reasoning:

Problem:Using only the provided numbers [37,1,73], create an arithmetic expression
evaluates to exactly the target number 37

To get the target number 37 using the numbers 37, 1,
and 73, we need to find a combination of operations
that, when applied to these numbers, result in 37. We
can start by considering the simplest operations and
see if we can reach the target.
</reasoning>
<answer>
\boxed{73 - 36}
</answer><|eot_id|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|>

To get the target number 37 using the numbers
37, 1, and 73, we need to find a combination of
operations that, when applied to these numbers,
result in 37. We can start by considering the
simplest operations and see if we can reach the
target.
</reasoning>
<answer>
\boxed{73 - 37}
</answer><|eot_id|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>

To create an arithmetic expression that
evaluates to exactly the target number 37
using the numbers 37, 1, and 73, we need to
consider the operations +, -, *, and /. Let's
try different combinations:

1. 73 - 37 + 1
2. 73 + 1 - 37

Both of these expressions evaluate to the
target number 37. We can choose either one.
</reasoning>
<answer>
\boxed{73 - 37 + 1}
</answer><|eot_id|><|endoftext|>

LLaDA diffu-GRPO Ours
Answer:
Reasoning:

Answer:
Reasoning:

Answer:
Reasoning:

Figure 10: Comparison of generated responses across models. We observe that LLaDA produces
meaningless reasoning steps, while diffu-GRPO generates incorrect reasoning. In contrast, our
model correctly answers the question.

18

	Introduction
	Related Work
	Step-Aware Policy Optimization for Structured Reasoning
	Preliminary: Group Relative Policy Optimization (GRPO)
	Step-Aware structured refinement for MdLLMs
	Theoretical Understanding: Complexity Distribution

	Experiments
	Setup
	Results

	Conclusion and Limitations
	LLM usages.
	Theoretical Analysis
	Identifiability of Latent Concepts from Observations

	Implementation
	Additional Examples

