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Abstract

We describe a fast computation method for leave-one-out cross-validation (LOOCV) for
k-nearest neighbours (k-NN) regression. We show that, under a tie-breaking condition for
nearest neighbours, the LOOCV estimate of the mean square error for k-NN regression is
identical to the mean square error of (k + 1)-NN regression evaluated on the training data,
multiplied by the scaling factor (k + 1)2/k2. Therefore, to compute the LOOCV score, one
only needs to fit (k + 1)-NN regression only once, and does not need to repeat training-
validation of k-NN regression for the number of training data. Numerical experiments
confirm the validity of the fast computation method.

1 Introduction

k-Nearest Neighbours (k-NN) regression (Stone, 1977) is a classic nonparametric regression method that
often performs surprisingly well in practice despite its simplicity (Chen et al., 2018) and thus has been
actively studied both theoretically and methdologically (e.g, Györfi et al., 2002; Kpotufe, 2011; Jiang, 2019;
Azadkia, 2019; Madrid Padilla et al., 2020; Kpotufe and Martinet, 2021; Lalande and Doya, 2023; Ignatiadis
et al., 2023; Matabuena et al., 2024). It has a wide range of applications such as missing-value imputation
(Troyanskaya et al., 2001), conditional independence testing (Runge, 2018), outlier detection (Breunig et al.,
2000), approximate Bayesian computation (Biau et al., 2015), and function-valued regression (Lian, 2011),
to just name a few.

For any test input, k-NN regression obtains its k-nearest training inputs and averages the corresponding k
training outputs to predict the test output. Thus, the number k of nearest neighbours (and the distance
function on the input space) is a key hyperparameter of k-NN regression and must be selected carefully.
Indeed, theoretically, it is known that k should increase as the training data size n increases for k-NN
regression to converge to the true function (e.g., Györfi et al., 2002, Theorem 6.2). Hence, one should not
use a prespecified value for k (e.g., k = 5) and must select k depending on the training data.

A standard way for selecting the hyperparameters of a learning method is cross-validation (e.g., Hastie
et al., 2009, Section 7.10). However, cross-validation can be costly when the training data size is large. In
particular, leave-one-out cross-validation (LOOCV) (Stone, 1974) can be computationally intensive since, if
naively applied, it requires training the learning method on a training dataset of size n − 1 and repeating it
n times. This issue also applies to the use of LOOCV for k-NN regression. On the other hand, theoretically,
LOOCV is known to be better than cross-validation of a smaller number of split-folds as an estimator of
the generalization error (e.g., Arlot and Celisse, 2010, Section 6.2). Azadkia (2019) theoretically analyses
LOOCV for k-NN regression in selecting k and discusses its optimality.

This paper describes a fast method for computing LOOCV for k-NN regression. Specifically, we show that,
under a tie-breaking assumption for nearest neighbours, the LOOCV estimate of the mean-squared error is
identical to the mean square error of (k + 1)-NN regression evaluated on the training data, multiplied by the
scaling factor (k + 1)2/k2 (Corollary 1 in Section 3). Therefore, to perform LOOCV, one only needs to fit
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(k + 1)-NN regression only once and does not need to repeat the k-NN fit n times. To our knowledge, this
method has not been reported in the literature.

This paper is organised as follows. We describe k-NN regression and LOOCV in Section 2. We present the
fast computation method in Section 3, empirically confirm its validity in Section 4, discuss the tie-breaking
condition in Section 5, and conclude in Section 6.

2 k-NN Regression and LOOCV

Suppose we are given n input-output pairs as training data:

Dn := {(x1, y1), . . . , (xn, yn)} ⊂ X × Y, (1)

where X and Y are the input and output spaces. Specifically, X is a metric space with a distance metric
dX : X × X 7→ [0, ∞) (e.g., X = RD is a D-dimensional space and dX (x, x′) = ∥x − x′∥ is the Euclidean
distance). The output space Y can be discrete (e.g., Y = {0, 1} in the case of binary classification) or
continuous (e.g., Y = R for the case of real-valued regression, or Y = RM for vector-valued regression with
M outputs). Below, we use the following notation for the set of training inputs:

Xn := {x1, . . . , xn}. (2)

Assuming that there is an unknown function f : X → Y such that

yi = f(xi) + εi, i = 1, . . . , n,

where ε1, . . . , εn ∈ Y are independent zero-mean noise random variables, the task is to estimate the function
f based on the training dataset Dn. k-NN regression is a simple, nonparametric method for this purpose,
which often performs surprisingly well in practice and has solid theoretical foundations (e.g, Györfi et al.,
2002; Kpotufe, 2011; Chen et al., 2018).

2.1 k-NN Regression

Let k ∈ N be fixed. For an arbitrary test input x∗ ∈ X , k-NN regression predicts its output by first searching
for the k-nearest neighbours of x∗ from Xn and then computing the average of the corresponding k training
outputs. To be more precise, define the set of indices for k nearest neighbours as

NN(x∗, k, Xn) := { i1, . . . , ik ∈ {1, . . . , n} |
dX (x∗, xi1) ≤ · · · ≤ dX (x∗, xik

) ≤ dX (x∗, xj) for all j ∈ {1, . . . , n}\{i1, . . . , ik} }. (3)

Then, the k-NN prediction for x∗ is defined as

f̂k,Dn
(x∗) := 1

k

∑
i∈NN(x∗, k, Xn)

yi.

In the following, we make the following tie-breaking assumption, which makes NN(xℓ, k, Xn) uniquely
specified for ℓ = 1, . . . , n (i.e., the inequalities ‘≤’ in (3) with x∗ = xℓ become ‘<’).

Assumption 1 (Tie-breaking). For all i, j = 1, . . . , n with i ̸= j, we have xi ̸= xj and dX (xℓ, xi) ̸=
dX (xℓ, xj) for all ℓ = 1, . . . , n.

This tie-breaking condition is usually satisfied if x1, . . . , xn are multivariate and sampled from a continuous
distribution. Section 5 provides a further discussion.
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2.2 Leave-One-Out Cross-Validation (LOOCV)

LOOCV for k-NN regression is defined as follows. Consider the case Y = RM with M ∈ N (M = 1 is the
case of standard real-valued regression). For each ℓ = 1, . . . , n, consider the training dataset (1) with the
ℓ-th pair (xℓ, yℓ) removed:

Dn\{(xℓ, yℓ)} = {(x1, y1), . . . , (xℓ−1, yℓ−1), (xℓ+1, yℓ+1), . . . , (xn, yn)} .

Then, the k-NN prediction for any x∗ based on Dn\{(xℓ, yℓ)} is

f̂k,Dn\{(xℓ,yℓ)}(x∗) = 1
k

∑
i∈NN(x∗, k, Xn\{xℓ})

yi.

Then, the LOOCV score for k-NN regression can be defined as

LOOCV(k, Dn) := 1
n

n∑
ℓ=1

∥∥∥f̂k,Dn\{(xℓ,yℓ)}(xℓ) − yℓ

∥∥∥2
. (4)

That is, for each ℓ = 1, . . . , n, the held-out pair (xℓ, yℓ) is used as validation data for the k-NN regression
fitted on the training data Dn\{(xℓ, yℓ)} of size n − 1. Calculating the LOOCV score for a large n is
computationally expensive since one needs to fit k-NN regression n times if naively implemented. Next, we
will show how this computation can be done efficiently by fitting (k + 1)-NN regression only once.

3 Fast Computation of LOOCV for k-NN Regression

To compute the LOOCV score (4), we need to compute, for each ℓ = 1, . . . , n,

f̂k,Dn\{(xℓ,yℓ)}(xℓ) = 1
k

∑
i∈NN(xℓ, k, Xn\{xℓ})

yi. (5)

To this end, we need to obtain NN(xℓ, k, Xn\{xℓ}), the indices for the k nearest neighbours of xℓ in
Xn\{xℓ}.

The key insight is the following simple fact: The union of {xℓ} and the k nearest neighbours of xℓ in Xn\{xℓ}
is identical to the k + 1 nearest neighbours of xℓ in Xn. That is, under Assumption 1, we have

NN(xℓ, k, Xn\{xℓ}) ∪ {xℓ} = NN(xℓ, k + 1, Xn). (6)

See Figure 1 for an illustration of the case k = 3. The reasoning is as follows. The first nearest neighbour of
xℓ in Xn is, of course, xℓ ∈ Xn. The second nearest neighbour of xℓ in Xn is the first nearest neighbour of
xℓ in Xn\{xℓ}. Generally, for 1 ≤ m ≤ k, the (m + 1)-th nearest neighbour of xℓ in Xℓ is the m-th nearest
neighbour of xℓ in Xn\{xℓ}. Therefore, the identity (6) holds.

Using (6), we can rewrite (5) in terms of (k + 1)-NN regression, as summarized as follows.
Lemma 1. Under Assumption 1, we have, for all k ∈ N and ℓ = 1, . . . , n,

f̂k,Dn\{(xℓ,yℓ)}(xℓ) = k + 1
k

f̂k+1,Dn
(xℓ) − 1

k
yℓ

Proof. Using (6), we have

f̂k,Dn\{(xℓ,yℓ)}(xℓ) = 1
k

∑
i∈NN(xℓ, k, Xn\{xℓ})

yi = 1
k

 ∑
i∈NN(xℓ, k+1, Xn)

yi − yℓ


= k + 1

k

1
k + 1

∑
i∈NN(xℓ, k+1, Xn)

yi − 1
k

yℓ

= k + 1
k

f̂k+1,Dn
(xℓ) − 1

k
yℓ.
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Figure 1: Illustration of k = 3 nearest neighbours of xℓ. The blue point represents xℓ, the three red points
are the k = 3 nearest neighbours of xℓ in Xn\{xℓ}, the black points are other points in Xn\{xℓ}, and the
red circle is the sphere of radius equal to the distance between xℓ and its third nearest neighbour in Xn\{xℓ}
(the red point on the circle).

Lemma 1 shows that the leave-one-out k-NN prediction f̂k,Dn\{(xℓ,yℓ)}(xℓ) on the held-out input xℓ can be
written as k+1

k f̂k+1,Dn
(xℓ) − 1

k yℓ, which does not involve the hold-out operation of removing (xℓ, yℓ) from
Dn; it just requires fitting the (k + 1)-NN regression f̂k+1,Dn

on Dn, evaluate it on xℓ, scale it by (k + 1)/k
and subtract it by yℓ/k.

Thus, to compute the LOOCV score (4), one needs to fit the (k + 1)-NN regression only once on the dataset
Dn. The resulting computationally efficient formula for the LOOCV score is given below.
Corollary 1. Under Assumption 1, for the LOOCV score in (4), we have

LOOCV(k, Dn) =
(

k + 1
k

)2 1
n

n∑
ℓ=1

∥∥∥f̂k+1,Dn
(xℓ) − yℓ

∥∥∥2
. (7)

Proof. Using Lemma 1, we have

LOOCV(k, Dn) = 1
n

n∑
ℓ=1

∥∥∥f̂k,Dn\{(xℓ,yℓ)}(xℓ) − yℓ

∥∥∥2

= 1
n

n∑
ℓ=1

∥∥∥∥k + 1
k

f̂k+1,Dn
(xℓ) − 1

k
yℓ − yℓ

∥∥∥∥2
=

(
k + 1

k

)2 1
n

n∑
ℓ=1

∥∥∥f̂k+1,Dn
(xℓ) − yℓ

∥∥∥2
.

The expression 7 shows that the LOOCV score (4) for k-NN regression is simply the residual sum of squares
(or mean-square error) of the (k + 1)-NN regression fitted and evaluated on Dn, multiplied by the scaling
factor

(
k+1

k

)2. This scaling factor becomes large when k is small, penalising overfitting and preventing too
small k from being chosen by LOOCV.

4 Experiments

We empirically check the validity of the formula (7) for efficient LOOCV computation.1 We consider a
real-valued regression problem where X = Rd and Y = R, using two real datasets from scikit-learn:
“Diabetes” and “Wine”. We standardized each input feature to have mean zero and unit variance.

1The code for reproducing the experiments is available on https://github.com/motonobuk/LOOCV-kNN
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Figure 2: Experimental results on the Diabetes dataset. The left figure shows the LOOCV scores (4)
computed in the brute-force manner (“LOOCV-Brute”) and by using the derived formula (7) for different
values of k. The right figure shows the computation times of either approach for different data sizes n for
fixed k = 5.

We compare two approaches: one is the brute-force computation of the LOOCV score (4) (“LOOCV-Brute”),
and the other is the efficient computation based on the derived formula (7) (“LOOCV-Efficient”). We use
the implementation of scikit-learn2 with ‘kd_tree’ for computing nearest neighbours.

Figure 2 (Diabetes) and Figure 3 (Wine) show the respective results. On the left of each figure, we show the
LOOCV scores computed by the two methods for different values of k, the number of nearest neighbours.
They exactly coincide; we also have checked this numerically. This result verifies the correctness of the
formula (7). On the right, we show the computation times3 required for either method for different training
data sizes n for fixed k = 5. While LOOCV-Brute’s computation time increases linearly with the sample
size n, LOOCV-Efficient’s computation time remains almost unchanged and is negligible compared with
LOOCV-Brute’s computation time. This shows the effectiveness of the formula (7) for the fast computation
of the LOOCV score.

5 Discussion on the Tie-breaking Condition

Lastly, as a caveat, we consider the case where the tie-break condition in Assumption 1 is not satisfied.
We use the same Diabetes and Wine datasets as in Section 4, but only employ one input feature in each
dataset: “BMI” for the Diabetes and “malic-acid” for the Wine. Since each feature has many duplicates,
there are many i ̸= j with xi = xj , thus violating the tie-breaking condition. Figure 4 shows the results
corresponding to the left figures of Figures 2 and 3. LOOCV-Efficient is no longer exact and overestimates
the LOOCV-Brute when k is small.

This phenomenon can be understood by considering the case where k = 1. Suppose there is ℓ ∈ {1, . . . , n}
such that xℓ = xi = xj for some i ̸= j ̸= ℓ. In this case, the first nearest neighbour of xℓ in Xn = {x1, . . . , xn}
is xℓ, xi and xj , since dX (xℓ, xℓ) = dX (xℓ, xi) = dX (xℓ, xj) = 0. Therefore, depending on the tie-breaking
rule of the nearest neighbour search algorithm, xi and xj may be selected as the first k + 1 = 2 nearest
neighbours of xℓ in Xn; in this case the identity in (6) does not hold.

2https://scikit-learn.org/stable/modules/generated/sklearn.neighbours.KneighboursRegressor.html
3CPU: 1.1 GHz Quad-Core Intel Core i5. Memory: 8 GB 3733 MHz LPDDR4X.
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Figure 3: Experimental results on the Wine dataset. The left figure shows the LOOCV scores (4) computed
in the brute-force manner (“LOOCV-Brute”) and by using the derived formula (7) for different values of k.
The right figure shows the computation times of either approach for different data sizes n for fixed k = 5.

However, as shown in Figure 4, LOOCV-Efficient overestimates LOOCV-Brute only for small k, where the
LOOCV scores are large. Therefore, this issue would not severely affect the best k that minimizes the LOOCV
score. Indeed, for the Diabetes data, the best k selected by LOOCV-Efficient is k = 17 and identical to
LOOCV-Brute. For the Wine data, the best k of LOOCV-Efficient is k = 17, while that of LOOCV-Brute
is k = 21, which are similar and would not significantly change the prediction performance.

The above example suggests that Assumption 1 is essential for the formula (7) to be exact. In practice,
one could check whether Assumption 1 is satisfied by, e.g., checking whether there are no duplicates in the
inputs x1, . . . , xn beforehand; if they exist, one could resolve the duplicates by, e.g., taking the average of
the outputs of duplicated samples. However, as demonstrated in the results in Figures 2 and 3 for the full
Diabetes dataset, Assumption 1 would be satisfied for many practical situations where the input features
are multivariate and continuous.

6 Conclusions

We showed that LOOCV for k-NN can be computed quickly by fitting (k + 1)-NN regression only once,
evaluating the mean-square error on the training data and multiplying it by the scaling factor (k + 1)2/k2.
By applying this technique, many applications of k-NN regression can be accelerated. It also opens up the
possibility of using LOOCV for optimising not only k but also the distance function dX ; this would be one
important future direction.
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