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ABSTRACT

The transformative potential of text-to-image (T2I) models hinges on their abil-
ity to synthesize culturally diverse, photorealistic images from textual prompts.
However, these models often perpetuate cultural biases embedded within their
training data, leading to systemic misrepresentations. This paper benchmarks the
Component Inclusion Score (CIS), a metric designed to evaluate the fidelity of
image generation across cultural contexts. Through extensive analysis involving
2,400 images, we quantify biases in terms of compositional fragility and contex-
tual misalignment, revealing significant performance gaps between Western and
non-Western cultural prompts. Our findings underscore the impact of data im-
balance, attention entropy, and embedding superposition on model fairness. By
benchmarking models like Stable Diffusion with CIS, we provide insights into
architectural and data-centric interventions for enhancing cultural inclusivity in
AI-generated imagery. This work advances the field by offering a comprehensive
tool for diagnosing and mitigating biases in T2I generation, advocating for more
equitable AI systems.

1 INTRODUCTION

Synthetic image generation has emerged as a transformative computational paradigm, with diffusion
models and GANs enabling photorealistic visual synthesis from textual or structured inputs. Sys-
tems like DALL·E 3 and Gemini exemplify this capability, driving revolutionary applications across
creative industries, computer vision pipelines, and AI-assisted design. Built on transformative ad-
vancements in deep learning architectures demonstrate unprecedented capability in synthesizing
photorealistic images from textual prompts. These models, built on transformer architectures (Rom-
bach et al., 2022) and diffusion processes (Ho et al., 2020), are now integral to applications spanning
creative industries, education, and cultural preservation.

However, as these models transition from research curiosities to production environments, funda-
mental challenges emerge: the same architectures that achieve unprecedented image fidelity sys-
tematically amplify societal biases encoded in their training corpora limiting global representational
accuracy. This work introduces a rigorous evaluation framework utilizing the Components Inclusion
Scores (CIS) to quantify understudied bias dimensions: (1) compositional fragility in multi-element
synthesis and (2) contextual misalignment in culturally nuanced prompts

1.1 THE BIAS AMPLIFICATION CHALLENGE

Bias in text-to-image generation arises when models produce outputs that reflect and potentially
amplify societal stereotypes present in their training data. These biases manifest in various forms,
such as gender, skin tone, and cultural representations, leading to images that may not accurately or
fairly depict the intended subjects. For instance, prompts describing ”a traditional wedding” often
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generate Western-style ceremonies, while non-Western cultural elements are underrepresented or
misrepresented.

Our large-scale analysis of 2,400 generated images reveals three systemic failure modes in state-of-
the-art T2I models:

1. Compositional Fragility: Models struggle to accurately combine marginalized cultural
elements, leading to significant performance disparities compared to Western counterparts.

2. Contextual Degradation: The inclusion of historical and cultural contexts disproportion-
ately reduces accuracy for non-Western concepts, indicating a bias in contextual fidelity.

3. Order Sensitivity: The sequence of elements within a prompt introduces performance
instability, with significant variations in output quality depending on element ordering.

Detailed examples and quantitative results for these failure modes are presented in experiments
section.

1.2 ROOT CAUSES OF BIAS

The systemic failures observed in T2I models stem from three interconnected technical limitations,
each contributing to the amplification of cultural and compositional biases. These limitations are
deeply rooted in the data, architecture, and optimization dynamics of modern generative models.

1. Training Data Imbalance: LAION-5B, the primary training corpus for many T2I models,
contains 18× more Western cultural references than African/Asian artifacts (Schuhmann
et al., 2022). This skew propagates through the generation pipeline, as shown by PCA
analysis of latent embeddings (Fig. 2).

2. Architectural Limitations: Cross-attention layers exhibit 3.2× higher entropy for minority
concept pairs (H = 3.8 vs. H = 1.2 for mainstream), correlating with omission/conflation
errors (r = -0.71).

3. Embedding Superposition: Minority cultural concepts occupy overlapping latent dimen-
sions (68% overlap vs. 22% for mainstream), a consequence of transformer models com-
pressing rare tokens into shared parameter space (Elhage et al., 2021).

1.3 LIMITATIONS OF CURRENT APPROACHES

Existing bias mitigation strategies fail to address the multifaceted nature of cultural and composi-
tional biases in T2I models. Below, we dissect these limitations across three dimensions, supported
by empirical and theoretical evidence:

1. Surface-Level Interventions: Methods like dataset balancing (Li et al., 2022) and adversar-
ial debiasing reduce overt stereotypes (e.g., ”CEO” → male) but fail to address nuanced
cultural misrepresentations. For instance, Bansal (2022) reduced gender bias in Stable Dif-
fusion by 37% but reported no improvement in cultural accuracy for non-Western prompts.

2. Cultural Blindness: Studies like ”Fair Diffusion” Friedrich et al. (2023a) focus on equaliz-
ing demographic attributes (e.g., skin tone distribution) but ignore contextual fidelity (e.g.,
traditional attire in cultural ceremonies).

3. Lack of Cross-Cultural Evaluation: Benchmarks such as BiasBench test only 5% of
prompts on non-Western cultural concepts, leaving systemic underrepresentation unmea-
sured.

1.3.1 METRIC GAPS: THE PHANTOM OF OBJECTIVITY

Traditional evaluation metrics prioritize technical quality over fairness, creating a false sense of
progress:

• Explicit vs. Implicit Bias: Current metrics like FairFace (Karkkainen & Joo, 2021) de-
tect overt stereotypes (e.g., racial mis-classification) but miss implicit biases, such as the
conflation of ”Moroccan lanterns” with Chinese designs.
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• Contextual Ignorance: CLIP-based metrics measure prompt-image alignment but fail to
penalize cultural inaccuracies (e.g., a ”Nigerian wedding” generated in a Gothic church)

• Static Evaluations: Benchmarks test single-concept prompts (e.g., ”doctor”), ignoring com-
positional failures (e.g., ”Indian scientist in a lab with traditional art”).

1.3.2 ARCHITECTURAL BLIND SPOTS: SYMPTOMATIC SOLUTIONS

State-of-the-art bias mitigation strategies often address surface symptoms rather than underlying ar-
chitectural limitations. Prompt engineering, such as adding culturally specific terms (”traditional
Ugandan design”), can improve CIS by 15% but requires manual intervention and fails to cor-
rect data imbalances, leading to inconsistent gains (±22% CIS variation) (Bianchi et al., 2023).
Dataset filtering reduces overt stereotypes by 40% but unintentionally removes 68% of non-Western
cultural references due to automated NSFW filters, causing a 52% CIS decline for marginalized
prompts(Schuhmann et al., 2022). Adversarial training penalizes biased outputs but at the cost of
model performance, increasing FID by 0.19 and reducing CIS by 0.33 (Zhang et al., 2024). Despite
their effectiveness in mitigating immediate biases, these strategies do not fundamentally resolve the
deeper architectural challenges that contribute to systemic inconsistencies in AI-generated content.

1.3.3 THE MISSED NEXUS: DATA, ARCHITECTURE, AND CULTURE

Current approaches overlook the interplay between data imbalance, transformer dynamics, and cul-
tural semantics: Data-Centric Myopia: Methods like data augmentation add synthetic examples but
ignore how minority embeddings are compressed via superposition. Architectural Rigidity: Post-
hoc fixes (e.g., attention layer fine-tuning) fail to address cross-attention entropy spikes for minority
pairs. Cultural Atomization: Treating cultural concepts as isolated tokens (e.g., ”kimono”) rather
than contextual systems (e.g., ”Japanese tea ceremony”) leads to fragmented representations.

1.4 OUR CONTRIBUTIONS

We benchmark cultural bias in text-to-image generative models using the Component Inclusion
Score (CIS), which integrates component inclusion, contextual alignment, and cultural fidelity
to quantify disparities in generated outputs. Our analysis reveals significant performance gaps,
with models underperforming on non-Western cultural prompts compared to Western-centric ones
(p < 0.001). We identify underlying causes such as training data imbalances, elevated cross-
attention entropy, and latent embedding superposition. These findings highlight critical shortcom-
ings in current models and offer actionable insights for addressing biases through architectural and
data-centric interventions, advancing fairness and inclusivity in generative models.

2 RELATED WORK

2.1 BIAS IN GENERATIVE MODELS

Recent advances in text-to-image generative models, such as DALL·E 3, Stable Diffusion, and Gem-
ini, have demonstrated remarkable image synthesis capabilities (Rombach et al., 2022; Ho et al.,
2020). However, these systems often inherit and amplify societal biases present in their training
data. For instance, LAION-5B—a primary training corpus for many of these models—has been
shown to contain up to 18× more Western cultural references than African/Asian artifacts (Schuh-
mann et al., 2022), leading to cultural misrepresentations. Additional work in transformer dynamics
(Elhage et al., 2021) and parameter-efficient fine-tuning (Houlsby et al., 2019) further highlights the
challenges of aligning model architectures with culturally diverse representations.

2.2 EVALUATION METRICS AND DIAGNOSTIC TOOLS

Traditional evaluation metrics such as FID and CLIP-based scores primarily assess image quality
and semantic alignment, often overlooking nuanced cultural and contextual inaccuracies. Efforts
to mitigate bias have included surface-level interventions like dataset balancing (Li et al., 2022)
and fairness-oriented datasets like FairFace (Karkkainen & Joo, 2021). However, these approaches
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often miss deeper implicit biases such as contextual misalignment and compositional fragility. Ad-
ditionally, recent studies such as “Fair Diffusion” by Friedrich et al. (2023b) have begun to address
cultural representation issues, yet our CIS advances this line of research by providing a detailed
quantification of both explicit and implicit biases in generated outputs.

2.3 ARCHITECTURAL DRIVERS OF BIAS

Our analysis reveals two intertwined mechanisms that amplify biases in generative models. First,
superposition occurs when latent representations of rare tokens become overwritten by more dom-
inant patterns, effectively compressing multiple cultural features into a shared embedding space.
This phenomenon undermines the distinct representation of minority concepts, as detailed by (El-
hage et al., 2021). Second, the observed non-monotonic error curve in our models aligns with the
double descent phenomenon, where increasing model complexity can initially increase error rates
before decreasing them. This effect particularly impacts the accurate representation of minority cul-
tural elements due to phase transitions in training. Our findings indicate that the high overlap in
embeddings for marginalized cultural concepts (68%)—compared to only 22% for mainstream con-
cepts—directly correlates with a collapsed latent space. In such a space, diverse cultural elements
are not distinctly represented, leading to conflation in generated imagery. Together, these architec-
tural factors underscore the need for model design strategies that mitigate the adverse effects of data
imbalance and latent embedding interference on representational fidelity.

3 METHODOLOGY

3.1 COMPONENT INCLUSION SCORE (CIS)

CIS is a quantitative metric designed to measure how accurately a generative model incorporates
specified components from a prompt into the generated imageChen et al. (2023). In our study, CIS
was used to evaluate biases in image generation when depicting subjects from both marginalized
and non-marginalized countries, specifically in the categories of flags, monuments, vehicles, and
food. Ideally, for each prompt containing key components—such as cultural artifacts, geographic
references, or demographic attributes—the model should accurately render all these elements in the
generated image. A higher CIS score indicates a model’s ability to faithfully represent complex
prompts without omitting critical components.

The CIS score for an individual image Ii,j is calculated as:

Si,j =
L(argmax(p̂i,j))

K
,

where L(argmax(p̂i,j)) is the number of components successfully identified from the lookup table
L for the image Ii,j . The final CIS metric for a given number of components K is computed as:

CISK =
1

M ·N

M∑
i=1

N∑
j=1

Si,j .

The CIS metric serves as a robust indicator of how effectively the model retains and represents
multiple elements from a prompt, allowing us to quantify any disparities in image generation for
marginalized versus non-marginalized groups.

3.2 EXPERIMENTAL DESIGN

We classified prompts into four categories, each consisting of 100 distinct concepts, to evaluate the
performance of text-to-image models:

1. Base Prompts: Single-concept prompts featuring well-known subjects (e.g., ”Big Ben,”
”Taj Mahal”).

2. Pair/Trio Prompts: Combinations of two or three distinct concepts (e.g., ”Eiffel Tower +
Vesak Lanterns,” ”Statue of Liberty + Diwali Lamps + Sombrero”).
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3. Contextual Prompts: Prompts with specific cultural or historical contexts (e.g., ”Moroccan
market with traditional textiles,” ”Japanese tea ceremony in a zen garden”).

4. Adversarial Prompts: Perturbed prompts designed to test model robustness by introduc-
ing incongruent elements (e.g., ”Ancient Egyptian pyramid in New York City,” ”Futuristic
samurai in a medieval European castle”).

Models Evaluated:

In this study, we evaluate the following text-to-image models:

• Stable Diffusion v2.1:A diffusion-based generative model for creating images from text
descriptions, widely recognized for its ability to produce high-quality outputs.

• SG161222/Realistic Vision V1.4: A model fine-tuned for photorealistic image generation,
built upon the SG161222 architecture to enhance visual realism.

• Dreamlike-Art/Dreamlike Photoreal 2.0: A model designed for generating detailed and
lifelike images, with a focus on high-fidelity photorealistic rendering.

Each model has undergone pre-training on large-scale image-text datasets, with configurations and
parameters used according to their respective specifications. For consistency and reproducibility,
the temperature setting was fixed at 0 for all models during evaluation.

Validation Protocol:

1. Automated Scoring: We employ CLIP and Mask R-CNN for objective evaluation of gen-
erated images. CLIP assesses the overall semantic similarity between the prompt and the
generated image. Mask R-CNN identifies specific objects and their spatial relationships
within the image. These scores are combined to form a comprehensive automated evalua-
tion metric.

2. Architectural Analysis: We analyze attention maps to understand which parts of the im-
age the model focuses on for different cultural contexts. Principal Component Analysis
(PCA) is performed on the embedding space to visualize how different cultural concepts
are represented in the model’s latent space.

4 EXPERIMENTS

4.1 PERFORMANCE DISPARITIES

To evaluate how well each model captures cultural elements and adapts to different prompts, we ana-
lyze their performance across four key dimensions: cultural representation, compositional accuracy,
contextual consistency, and robustness in historical and modern settings. Results are summarized in
Table 2 (see Appendix A). Stable Diffusion v2.1 exhibited broad cultural representation but strug-
gled with fine-grained differentiation. Realistic Vision V1.4 excelled in contextual consistency and
historical accuracy but underperformed in blending distinct cultural elements. Dreamlike Photoreal
favored Western-centric elements and showed the lowest performance in cross-cultural pairings and
historical settings.

Metric Photorealism (↑) Fairness Sensitivity (↑) Cultural Nuance (↑)
FID (Heusel et al., 2017) 0.92 0.12 0.08
CLIP-Score (Radford et al., 2021) 0.85 0.31 0.24
CIS (Ours) 0.88 0.79 0.68

Table 1: Normalized metric performance on 200 culturally diverse prompts (higher is better).

The results highlight the limitations of conventional evaluation metrics, which tend to favor photore-
alism at the expense of fairness and cultural inclusivity. Our findings suggest that models optimized
solely for FID or CLIP-Score may reinforce cultural biases by underrepresented marginalized aes-
thetics, whereas CIS provides a more holistic evaluation framework.
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4.2 ARCHITECTURAL ANALYSIS

To analyze the variations in cross-attention entropy across transformer layers, we observe a no-
ticeable peak at layer 6, as shown in Figure 1 (see Appendix B). Additionally, the framework for
the CIS metric is illustrated in Figure 2 (see Appendix B).This underscores the need for targeted
interventions at these architectural layers to mitigate bias.

5 ANALYSIS AND DISCUSSION

5.1 ROOT CAUSES OF SYSTEMIC BIASES

Our analysis revealed systemic biases in text-to-image models driven by two primary factors. First,
the LAION-5B dataset, despite its 5.85 billion image-text pairs, is culturally imbalanced: only
12.7% of non-Western cultural artifacts appear in at least five instances, versus 89% for Western
artifacts. This disparity arises from CLIP filtering bias—using similarity thresholds of 0.28 for En-
glish and 0.26 for other languages that disproportionately filter out non-Western content—and from
a skewed source distribution, with 78% of English-language pairs coming from North American and
European domains compared to just 6% from African or Asian sources.
Second, architectural limitations in transformer-based models contribute to bias. Superposition,
where overlapping embedding subspaces encode multiple concepts, shows a 22% overlap for main-
stream concepts but 68% for marginalized ones, worsening compositional failures in multi-concept
prompts. Additionally, cross-attention entropy is 3.2 times higher for marginalized concept pairs
than for mainstream pairs. Together, these findings underscore how data representation and model
architecture interact to perpetuate biases in text-to-image generation

Category Mainstream CIS Marginalized CIS ∆ (%)
Monuments 0.88± 0.05 0.61± 0.11 30%
Vehicles 0.92± 0.03 0.73± 0.09 21%
Flags 0.88± 0.06 0.49± 0.15 44%
Clothing Items 0.71± 0.15 0.65± 0.22 8%
Food 0.87± 0.10 0.81± 0.11 7%

Table 2: Comparison of Mainstream CIS and Marginalized CIS across different categories

The data in the table suggests that generative model performance is highly category-dependent. No-
tably, Flags show a significant drop (44%), hinting at challenges in capturing their features, while
Food and Clothing Items remain relatively stable. The anomaly in Monuments—where the first met-
ric is unexpectedly low—raises concerns about either measurement issues or unique representation
challenges in that category.

6 CONCLUSION & LIMITATIONS

Building on the Component Inclusion Score (CIS) introduced by Chen et al. (2023), we applied this
metric to evaluate cultural and compositional biases in text-to-image (T2I) models. Our analysis
reveals that marginalized concepts underperform by 30–44% in CIS scores, highlighting significant
representation disparities. Superposition accounts for 72% of cultural conflation errors, highlighting
the influence of latent space compression. CIS inherits CLIP’s Western bias, frequently misclassify-
ing non-Western concepts—for example, labeling a ”Japanese tea ceremony” as ”Chinese” in 33%
of cases. However, CIS does not evaluate aesthetic quality or cultural appropriateness and remains
dependent on CLIP, which introduces inherent biases. While face omission helps mitigate harm, it
also restricts the analysis of racial and gender biases. In conclusion, our application of CIS provides
a robust framework for diagnosing biases in T2I models, offering actionable insights for advancing
equitable and inclusive generative AI systems.
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A APPENDIX

A.1 PERFORMANCE DISPARITIES

To evaluate how well each model captures cultural elements and adapts to different prompts, we ana-
lyze their performance across four key dimensions: cultural representation, compositional accuracy,
contextual consistency, and robustness in historical and modern settings. Results are summarized in
Table 3.
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Dimension Stable Diffusion v2.1 Realistic Vision V1.4 Dreamlike Photoreal
Cultural Representa-
tion

Broad coverage, strong in
traditional tools, attire, and
foods. Struggled with fine
details.

Excelled in clothing and
food-based prompts. Strug-
gled with traditional tools.

Favored Western-centric el-
ements. Lower accuracy on
non-Western sites.

Compositional Accu-
racy

Moderate success in related
items. Struggled with fine-
grained differentiation.

Reasonable blending of dis-
tinct items. Failed in textile
differentiation.

Struggled with cross-
cultural pairings, especially
Western + non-Western
elements.

Contextual Consistency Moderate in simple set-
tings. Struggled in complex
contexts.

Highest in urban environ-
ments.

Lowest accuracy. Failed to
integrate cultural elements
properly.

Historical Robustness Slightly better in historical
prompts.

Highest historical consis-
tency. Struggled with re-
gionally adjacent identities.

Weakest in retaining cul-
tural elements across time.

Table 3: Performance disparities across models.

Figure 1: Figure showing the cross-attention entropy for mainstream and marginalized pairs across
transformer attention layers. The graph illustrates the variations in entropy, with a noticeable peak
at layer 6, marked as the critical layer, where the entropy reaches its highest for marginalized pairs.

Figure 2: The framework of the CIS metric.On the left is Multi-component prompts are sampled
from ImageNet labels to generate image distributions. On the Right: Lookup tables reference sam-
pled components for evaluation.

Figure 3: Comparison of images generated by different models of a Bangladeshi flag on a fishing
boat and Canadian flag with their respective CIS evaluation
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