
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TACLER: TAILORED CURRICULUM REINFORCEMENT
LEARNING FOR EFFICIENT REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have recently demonstrated remarkable perfor-
mance on complex reasoning tasks, especially when equipped with long chain-
of-thought (CoT) reasoning. However, eliciting long CoT reasoning typically re-
quires large-scale reinforcement learning (RL) training, while often leading to
overthinking with redundant reasoning steps. To improve learning and reasoning
efficiency, while preserving or even enhancing performance, we propose TACLer,
a tailored curriculum reinforcement learning framework that gradually increases
the complexity of the data based on the model’s proficiency in multi-stage RL
training. Our framework features two core components: (i) tailored curriculum
learning that determines what knowledge the model lacks and needs to learn in
progressive stages; (ii) a hybrid Thinking/NoThinking reasoning paradigm that
balances accuracy and efficiency by enabling or disabling the Thinking mode. Our
experiments show that TACLer yields a twofold advantage in learning and rea-
soning: (i) it reduces computing effort by cutting training compute by over 50%
compared to long thinking models and by reducing inference token usage by over
42% relative to the base model; and (ii) it improves accuracy by over 9% on the
base model, consistently outperforming state-of-the-art Nothinking and Thinking
baselines across four math datasets with complex problems.1

1 INTRODUCTION

Many recent developments in Large Language Models (LLMs) have focused on improving their
ability to solve problems involving complex reasoning, which has long been considered one of
the most challenging tasks (Wei et al., 2022; Wang et al., 2023; Zhou et al., 2023; Yue et al., 2024).
Particularly, DeepSeek-R1 (Guo et al., 2025) and OpenAI’s o1 (OpenAI, 2025) show that long chain-
of-thought (CoT, Wei et al., 2022) sequences can be used to boost reasoning capabilities through
large-scale reinforcement learning (RL), playing a crucial role in solving complex mathematical
problems. The long CoT responses often contain a thinking process with reflection, backtracking,
and self-validation, which helps to form the solution and arrive at the final answer. This test-time
scaling paradigm (Wu et al., 2024; Muennighoff et al., 2025), enhances reasoning abilities at the
cost of significantly increased token usage. Consequently, this introduces two major bottlenecks: (i)
training models with reinforcement learning over large contexts demands substantial computational
resources, e.g., a small model with 1.5 billion parameters requires 70,000 A100 GPU hours (Luo
et al., 2025b); and (ii) so-called “overthinking” can occur during response generation, leading to
redundant reasoning steps and an even heavier computational cost (Chen et al., 2025b; Luo et al.,
2025a; Arora & Zanette, 2025).

To improve training efficiency, recent studies have proposed approaches such as the iterative length-
ening scheme (Luo et al., 2025b) and curriculum learning (Song et al., 2025). Regarding over-
thinking, recent works explore efficient reasoning by reducing token usage in the thinking process,
applying techniques such as such as length-based rewards (Arora & Zanette, 2025; Shen et al.,
2025), thinking pruning (Luo et al., 2025a), and training models with adaptive thinking (Zhang
et al., 2025; Tu et al., 2025). Nevertheless, these approaches often entail substantial additional train-
ing costs while only achieving limited reductions in response length, or may even degrade overall
performance. Furthermore, models that rely on adaptive reasoning strategies tend to constrain users’

1Code and model will be made available upon publication.
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options since in some scenarios users might prefer to access long thinking traces even for relatively
simple tasks, for purposes such as interpretability, verification, and education. We argue that a more
effective paradigm should enable the coexistence of Thinking and Nothinking modes within a model,
balancing computational efficiency and model performance while providing flexible user control.

To this end, we propose TACLer, a tailored curriculum reinforcement learning framework, aimed
at improving both learning and reasoning efficiency. First, unlike conventional curriculum learning
that treats difficulty as a standardised concept, TACLer adapts the learning process to the model’s
evolving proficiency. Specifically, we gradually increase the complexity of the data based on the
model’s pass rate, enabling efficient learning of challenging tasks that are difficult to learn from
scratch. Second, we adopt a hybrid Thinking/NoThinking reasoning paradigm that balances accuracy
and efficiency through our curriculum learning paradigm. Our approach allows switching between
concise reasoning for higher efficiency and long thinking reasoning for improved accuracy, thus
reducing unnecessary computation at the user’s discretion.

We demonstrate that TACLer reduces the required training compute by over 50% compared to
other long thinking models such as DeepScaleR-1.5B-Preview (Luo et al., 2025b). Particularly,
our extensive experimental results on four mathematical reasoning benchmarks (MATH 500, AMC,
AIME 2024 and AIME 2025) show that TACLer achieves the best performance compared to various
Nothinking and Thinking baselines, while significantly reducing the average number of token usage
by over 42%, thereby effectively mitigating the overthinking problem.

In summary, the key contributions of our paper are as follows: (1) we introduce tailored curricu-
lum learning, which determines what knowledge the model specifically lacks and needs to learn in
progressive stages; (2) we incorporate both Thinking and NoThinking modes, showing that this can
effectively balance reasoning accuracy and efficiency; (3) we propose TACLer, a novel RL-based
framework that enables language models to learn more efficiently through tailored curriculum learn-
ing and to reason effectively via hybrid reasoning modes; and (4) we report extensive experiments
and analysis to validate the efficiency of TACLer on both learning and reasoning.

2 PRELIMINARIES: LEARNING AND REASONING EFFICIENCY
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Figure 1: Response clipping ratio in the first
training stage of DeepScaleR-1.5B-Preview.

The computational burden of training language mod-
els is often enormous, especially for tasks involv-
ing long thinking reasoning that require large con-
text windows. For instance, Luo et al. (2025b) in-
dicates that replicating DeepSeek-R1 experiments
with ≥32K context and ∼8000 training steps would
take at least 70,000 A100 GPU hours, even for a
small model with 1.5B parameters. To mitigate this
problem, Luo et al. (2025b) introduce an iterative
lengthening scheme, which progressively increases
the context length from 8K to 24K, thereby guid-
ing the model to utilise the context more efficiently.
However, as shown in Figure 1, more than 40% of
the responses generated in the first training stage are
still truncated, revealing a substantial inefficiency in
the training process. Although Song et al. (2025)
propose a curriculum learning framework that grad-
ually increases the context length based on input
length with the aim of facilitating progressive learn-
ing from easy to hard, almost 35% of responses re-
main truncated in the first stage. The primary reason is that this is an arbitrary method for curriculum
learning that does not take into account the model’s mastery of specific problems.

Regarding reasoning efficiency, Figure 2 presents the comparison of DeepSeek-R1 and DeepScaleR
in the NoThinking mode (see Sec. 3.2 for details), where the latter is trained based on the former
to enhance the long CoT reasoning capability in the Thinking mode. Interestingly, DeepScaleR in
the NoThinking mode exhibits consistent performance gains across questions of varying difficulty,
accompanied by shorter responses. This shows that Thinking and NoThinking modes can coexist

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026
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Figure 2: Comparison of DeepSeek-R1-Distill-Qwen-1.5B and DeepScaleR-1.5B-Preview using
NoThinking mode across different difficulty levels of MATH500 dataset.

ThinkingResponse
Thinking: Okay, so I need to find the sum of all integer bases \( b > 9 \) such 
that \( 17_b \) divides \( 97_b \). Hmm, let me try to figure this out step by step.
[…] (omit 4501 tokens) **Final Answer**\nThe sum of all integer bases \\( b > 
9 \\) is \\boxed{70}.

Solution: To find the sum of all integer bases […] (omit 402 tokens) Therefore, 
the final answer is:\n\\[\n\\boxed{70}\n\\.

Find the sum of all integer bases b>9 for which 17b is a divisor of 97b.

NoThinkingResponse Hard

LLM

Medium

Easy

Question

RL Training

Curriculum 
Schedule

Performance 
Evaluation

Thinking: Okay, I think I can solve it directly.

Solution: Alright, so the problem is asking […] (omit 2890 tokens) Therefore, 
the sum is \\boxed{70}.

Figure 3: Overview of TACLer, our tailored curriculum reinforcement learning framework.

in the model and can be enhanced through RL training. Based on the above observation, a natural
question arises: Can LLMs learn efficiently through a better curriculum learning strategy while
leveraging a hybrid mode for efficient reasoning? To answer this question, we introduce TACLer,
a novel RL-based framework that targets math reasoning tasks, which we detail in the next section.

3 METHODOLOGY

Figure 3 gives an overview of TACLer and its three components: (1) performance evaluation and
curriculum schedule; (2) hybrid reasoning mode; and (3) RL training. Measuring performance is
needed to create the curriculum schedule, with the goal of identifying the model’s knowledge gap
and enabling efficient learning across progressive RL stages. The hybrid reasoning mode, consist-
ing of Thinking and NoThinking, achieves more efficient reasoning by balancing performance and
computational cost during inference.

3.1 TAILORED CURRICULUM LEARNING

As shown in Section 2, the imbalanced data distribution poses a significant challenge: in the early
training stages, a large portion of samples are excessively difficult. The resulting truncation not
only leads to wasted computation but also hinders effective learning, thus substantially reducing
training efficiency. To address this issue, we employ curriculum learning (Bengio et al., 2009),
which gradually increases the complexity of the data samples throughout the learning process.

Our method leverages the notion of training data difficulty, where difficulty is defined by the model’s
ability to solve the corresponding problems. To obtain this assessment, we perform inference for all
training data with greedy decoding and a context size of 8k, and categorise instances based on the
responses and answers: (1) instances with the correct final answer; (2) instances with a complete
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solution but an incorrect final answer; and (3) instances where the model fails to generate a complete
solution. Based on these results, we can quantify problem-specific difficulty in terms of the model’s
proficiency. In turn, this enables us to organise training samples according to a tailored curriculum
learning strategy, thereby allowing each model to tackle problems progressively from those it finds
easier to solve to the harder ones.

During training, we merge samples from the first and second groups in the above inference results,
ensuring that the training data is neither dominated by overly difficult nor overly simple problems, to
implement a combined review and learning paradigm. This strategy enables the model to reinforce
previously acquired knowledge while learning new skills, thus mitigating forgetting and enhanc-
ing overall learning efficiency. This entire process—inference, difficulty categorisation, curriculum
learning—is repeated twice in our framework. In the third stage, we train on the full dataset using
the model updated through the first two iterations to consolidate the learning results.

3.2 HYBRID REASONING MODE

Based on our preliminary findings in Section 2, we use a hybrid reasoning mode, including Think-
ing and NoThinking. Generally, many existing reasoning models, such as DeepSeek-R1, adopt
the response structure that consists of a long thinking process marked by <thinking> and
</thinking>, followed by the final solution. Our hybrid reasoning mode is defined as follows.

Thinking This refers to the default structure for querying language models, in which the model
is prompted to generate the detailed thinking process within given special markers. Based on this,
the model then derives a solution and generates a final answer presented as its final prediction. This
approach encourages the model to reflect, backtrack, and self-verify during the reasoning process.

NoThinking This is a concise response structure that includes the final solution and answer with-
out the detailed thinking process within special markers. Instead of using the prompt “Okay, I
think I have finished thinking” to induce the model to state that it has completed its
reasoning (Ma et al., 2025), we explicitly prompt the model to solve the problem without thinking:
<thinking> Okay, I think I can solve it directly. </thinking>.

We hypothesise that the two modes can be mutually beneficial: while the Thinking mode improves
performance on complex problems through explicit thinking, the NoThinking mode promotes con-
ciseness by reducing verbosity. Specifically, a model trained solely in the NoThinking mode may
compensate for missing explicit thinking by expanding its reasoning steps, reducing the risk of pro-
ducing incorrect answers. In other words, NoThinking does not simply mean “short” (see Sec. 4.3.)
In contrast, when trained jointly with the Thinking mode, the model can leverage a compression
effect, where improved reasoning ability is distilled into shorter responses. This integration has the
potential to yield concise responses without sacrificing accuracy, or may even improve it.

3.3 TRAINING WITH GRPO

To train our model efficiently, we adopt the Group Relative Policy Optimisation (GRPO, Shao et al.,
2024) along with several improvements recently proposed by the research community. For each
problem q, the algorithm samples a group of responses {o1, o2, ..., oG} from the old policy πold, and
updates the policy πθ by maximising the following objective:

JGRPO(θ) =Eq∼D,{oi}G
i=1∼πθold (·|q)

(1)

1

G

G∑
i=1

min

(
πθ(oi | q)
πθold(oi | q)

Ai, clip
( πθ(oi | q)
πθold(oi | q)

, 1− ϵlow, 1 + ϵhigh

)
Ai

)
where ϵlow and ϵhigh are hyperparameters for the clipping range of the importance sampling ratio. Ai

is the advantage, caculated by the rewards {r1, r2, ..., rG} of responses in the same group:

Ai =
ri − mean({ri}Gi=1)

std({ri}Gi=1)
(2)

Following prior work (Guo et al., 2025), we employ the rule-based reward method, assigning a
binary score of 1 for correct final answers and 0 for incorrect ones. We incorporate several enhance-
ments from recent research into the original GRPO algorithm, including (1) removing the KL loss
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to effectively unlock the full potential of the policy model without affecting training stability (Hu
et al., 2025b); and (2) increasing the upper clip bounds ϵhigh in Eq. 1 while fixing the lower clip
bounds ϵlow to mitigate the entropy convergence problem and encourage the policy to explore diverse
solutions (Yu et al., 2025).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model and Dataset We select DeepSeek-R1-Distill-Qwen1.5B (R1-Qwen, Guo et al., 2025) as
our backbone, given its proven strong performance on mathematical reasoning tasks. We use
DeepScaleR-Dataset (Luo et al., 2025b) as our training data, which contains around 40k math prob-
lems from various math competitions, including AIME 1983-2023, AMC, Omni-Math (Gao et al.,
2025), and STILL (Min et al., 2024). The evaluation is performed on four challenging math bench-
marks: MATH500 (Lightman et al., 2024), AMC, AIME 2024, and AIME 2025, which are widely
adopted for assessing the models’ reasoning abilities (Guo et al., 2025; OpenAI, 2025).2

Baselines We compare TACLer with several 1.5B baselines trained for long CoT reasoning: (1)
STILL-3 (Chen et al., 2025c), (2) DeepScaleR (Luo et al., 2025b), and (3) FastCuRL (Song et al.,
2025). We also compare TACLer with state-of-the-art 1.5B baselines on efficient math reasoning:
(1) OverThink (Chen et al., 2025b), (2) DAST (Shen et al., 2025), (3) O1-Pruner (Luo et al.,
2025a), (4) TLMRE, (5) ModelMerging (Wu et al., 2025), (6) AdaptThink (Zhang et al., 2025),
and (7) AutoThink (Tu et al., 2025). All models use the DeepScaleR dataset, where methods (1)-(5)
are reproduced by Zhang et al. (2025), thereby providing a fair comparison.3

4.2 MAIN RESULTS

Reasoning Accuracy and Efficiency in Thinking Mode Table 1 compares TACLer with several
long thinking models using Thinking mode. Across four datasets, TACLer achieves the highest ac-
curacy on three of them, and performs slightly lower than DeepScaleR but higher than other models
on AIME 2025. Overall, it achieves the highest average accuracy, with an average +11.2% improve-
ment over the base model R1-Qwen. In addition, TACLer reduces reasoning length by 42.7%,
substantially outperforming all baselines (e.g., -34.1% for DeepScaleR and -20.2% for FastCuRL).
These results highlight that TACLer provides a more effective balance between reasoning accuracy
and response length than existing methods in the Thinking mode.

MATH500 AIME 2024 AMC AIME 2025 Average

ACC Length ↓ ACC Length ↓ ACC Length ↓ ACC Length ↓ ∆ACC ∆Length ↓
R1-QwenThinking 81.2 4856 27.7 12306 60.8 8754 21.5 12182 - -
STILL-3 83.6 3797 30.4 10605 66.3 7091 24.4 10415 +3.4 -17.3%
DeepScaleR 87.8 3030 40.4 8565 73.8 5616 31.3 8239 +10.5 -34.1%
FastCuRL 87.8 3894 39.8 10091 73.9 6756 27.9 9723 +9.6 -20.2%
TACLerThinking 88.4 3010 42.1 6868 74.6 4871 30.8 6807 +11.2 -42.7%

Table 1: Comparison of model performance (accuracy and response length) in the long thinking
mode across four mathematical reasoning datasets. Note that bold numbers indicate the best result
for each dataset among different models.

Reasoning Accuracy and Efficiency in Efficient Mode Table 2 presents the comparison of
TACLer with recent efficient reasoning approaches. The first observation is that TACLer con-
sistently achieves the best overall performance, with the only exception being response length on
the MATH500 dataset. Specifically, building upon R1-Qwen model, TACLer boosts the accuracy
by over 9%, while simultaneously reducing the average token usage by around half (49.3% and
51.9%). In comparison, efficient reasoning baselines such as AutoThink improve efficiency by re-
ducing token usage, but offer smaller accuracy gains; ModelMerging even suffers from substantial

2See the Appendix A.1 for more details on training and evaluation.
3See the Appendix A.2 for more details on baselines.
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MATH500 AIME 2024 Average

ACC Length ↓ ACC Length ↓ ∆ACC ∆Length ↓
R1-QwenThinking 81.2 4856 27.7 12306 - -
R1-QwenNoThinking 67.8 1069 14.8 4689 -13.2 -69.9%
OverThink 81.2 4131 28.3 11269 +0.3 -11.7%
DAST 83.0 2428 26.9 7745 +0.5 -43.5%
O1-Pruner 82.2 3212 28.9 10361 +1.1 -24.8%
TLMRE 85.0 3007 29.2 8982 +2.6 -32.5%
ModelMerging 63.0 2723 18.1 10337 -13.9 -30.0%
AdaptThink 86.0 2511 34.8 9279 +5.9 -36.4%
AutoThink 83.8 2128 31.7 8167 +3.3 -44.9%
TACLerNoThinking 88.2 2532 39.6 6056 +9.5 -49.3%

AMC AIME 2025 Average

ACC Length ↓ ACC Length ↓ ∆ACC ∆Length ↓
R1-QwenThinking 60.8 8754 21.5 12182 - -
R1-QwenNoThinking 48.6 2264 13.3 4062 -10.2 -70.4%
AdaptThink 67.4 5489 25.6 9117 +5.4 -31.2%
AutoThink 66.7 4596 23.8 7647 +4.1 -42.4%
TACLerNoThinking 72.7 4312 27.9 5710 +9.2 -51.9%

Table 2: Comparison of model performance (accuracy and response length) in the efficient thinking
mode across four mathematical reasoning benchmarks. For MATH500 and AIME 2024, results for
all baselines except AutoThink are taken from Zhang et al. (2025). Bold numbers indicate the best
result for each dataset among the different models.

performance degradation. On average, across the four datasets, TACLer achieves higher reasoning
accuracy and generates shorter responses.

4.3 ANALYSIS AND DISCUSSION

Hybrid Mode Yields Concise Reasoning We compare TACLer with the pure NoThinking model
trained in the first stage, as shown in Table 3. TACLer with the hybrid reasoning mode achieves
the highest accuracy in the Thinking mode, while generating the shortest responses in the NoThink-
ing mode. In contrast, Pure-NoThinking achieves higher accuracy than TACLer in the NoThinking
mode but produces substantially longer responses, failing to support concise reasoning. These re-
sults show that the hybrid reasoning mode allows the model to benefit from both strategies, making
reasoning under NoThinking more concise with no heavy loss in performance.

MATH500 AIME 2024 AMC AIME 2025 Average

ACC Length ↓ ACC Length ↓ ACC Length ↓ ACC Length ↓ ∆ACC ∆Length ↓
R1-QwenThinking 81.2 4856 27.7 12306 60.8 8754 21.5 12182 - -
Pure-NoThinking 84.0 2325 32.1 8380 65.1 5223 24.8 8220 +3.7 -39.2%
TACLerNoThinking 82.0 1472 25.6 5882 62.1 3479 22.5 5455 +0.3 -59.3%
TACLerThinking 84.8 3287 30.0 9168 68.2 5875 25.2 8873 +4.3 -29.5%

Table 3: Comparison of models trained with hybrid reasoning (NoThinking + Thinking) versus pure
NoThinking training after 280 steps of first-stage training. Bold numbers indicate the best result for
each dataset among different models.

Curriculum Learning for More Efficient and Accurate Reasoning We compare TACLer with
Direct-Train, a model which is trained directly using all of the data at once rather than staggered
based on difficulty, with all other settings staying the same (Table 4). While Direct-Train tends
to generate shorter responses than TACLer under the NoThinking mode, the trend is reversed in
Thinking mode, with TACLer producing more concise outputs compared to Direct-Train. More-
over, TACLer consistently achieves a better performance across both modes, showing an effective
balance between conciseness and accuracy.
TACLer’s Performance at Different Stages Figure 4 shows reasoning accuracy and response
length of TACLer at different training stages on two difficulty levels of MATH500 (the original
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MATH500 AIME 2024 AMC AIME 2025 Average

ACC Length ↓ ACC Length ↓ ACC Length ↓ ACC Length ↓ ∆ACC ∆Length ↓
R1-QwenThinking 81.2 4856 27.7 12306 60.8 8754 21.5 12182 - -
NoThinking Mode
Direct-Train 87.8 2217 38.1 5974 72.1 4093 26.9 5550 +8.4 -53.4%
TACLer 88.2 2532 39.6 6056 72.7 4312 27.9 5710 +9.3 -50.6%
Thinking Mode
Direct-Train 88.0 2962 37.5 7085 73.0 4920 27.5 6736 +8.7 -42.5%
TACLer 88.4 3010 42.1 6868 74.6 4871 30.8 6807 +11.2 -42.7%

Table 4: Comparison of curriculum learning and direct training (training from the beginning with
all data at once). Bold numbers indicate the best result for each dataset among different models.

5 levels are merged into levels 1–3 and levels 4–5). For reasoning accuracy, we observe a consis-
tent upward trend across the three training stages (see Sec. 3.1.) The largest improvement occurs
in the first stage, with higher gains in the NoThinking mode. Subsequently, the performance on
easier problems (levels 1-3) plateaus, whereas the accuracy on harder ones (levels 4-5) continues
to improve. Notably, in the third stage TACLer in Thinking mode obtains higher scores on easier
problems. We hypothesise that some questions categorised as “easy” by humans may actually be
more challenging for the model, and can be successfully solved after the model’s capabilities are
substantially enhanced through curriculum learning (see examples in Appendix A.3.) When look-
ing at response length, TACLer shows a different trend for Nothinking and Thinking modes: in
the former the length of responses gradually increases with training, while in the latter it gradually
decreases.

ThinkingModeNoThinkingMode

(a) Reasoning accuracy.

ThinkingModeNoThinkingMode

(b) Response length.

Figure 4: Comparison of different training stages on different difficulty levels of MATH500 dataset.
Note that state 0 represents the base model.

Stage Context Batch Size Step Rollout
DeepScaleR-1.5B-Preview
Stage 1 8K 128 1040 8
Stage 2 16K 128 500 16
Stage 3 24K 128 210 16

FastCuRL-1.5B-Preview
Stage 1 8K 128 160 8
Stage 2 16K 64 590 8
Stage 3 24K 64 230 8
Stage 4 16K 64 580 16

TACLer
Stage 1 8K 128 280 8
Stage 2 8K 128 350 8
Stage 3 8K 128 1250 8

Table 5: Training configuration comparison.

Computation Cost and Learning Efficiency
Table 5 summarises the training configurations
for different long thinking models to compare
their computational requirements. Specifically,
DeepScaleR uses progressively increasing con-
text lengths from 8K to 24K and rollout num-
bers from 8 to 24 in three training stages, while
FastCuRL employs a similar strategy with an
additional stage. In our settings, TACLer
maintains a consistent context length of 8K and
rollout of 8 across all three stages. Regarding
computational cost, Luo et al. (2025b) indicate
that doubling the context window size increases
training computation by at least 2 times. At the
same time, in our experiments we find that dou-
bling the number of rollouts will roughly in-
crease the computation by about 1 time, indi-
cating that TACLer reduces the required train-
ing compute by over 50% compared to the baseline models. To validate learning efficiency, in
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(a) Response length.
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(b) Response clip ratio.
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(c) Response reward.

Figure 5: Comparison of TACLer, Direct-Train, and DeepScaleR-1.5B-Preview in terms of re-
sponse clip ratio, length, and reward at the first training stage.

Figure 5 we present the response length, clip ratio, and reward for TACLer and Direct-Train in the
first training stage (280 steps), and compare them with DeepScaleR-1.5B-Preview. Compared to
the other two models, TACLer generates the shortest responses, indicating faster and more efficient
reasoning. This results in a lower response clipping rate, leading to more efficient training. Fur-
thermore, TACLer has a higher reward during training. These observations highlight TACLer’s
efficient learning abilities.

G1 (%) G2 (%) G3 (%) Total (#)
Stage 1 78.1 21.9 0 18110
Stage 2 51.1 14.3 34.6 27692
Stage 3 35.1 9.8 55.1 40315

Table 6: Data complexity statistics for three
training stages, as assessed by R1-Qwen (G1:
instances with correct answers; G2: instances
with complete responses but incorrect answers;
G3: instances with incomplete responses, see Sec-
tion 3.1.)

Dataset Complexity for Curriculum Learn-
ing The model resulting after each training
stage is used to curate the difficulty-based
dataset to be used in the next stage(s) of tailored
curriculum learning. Table 6 summarises the
data composition across the three iterative train-
ing stages, each consisting of three sets of data
of varying difficulty, based on the results of the
model R1-Qwen. As training progresses, the
proportion of challenging data increases from
0% in the first stage to 34.6% in the second
stage and 55.1% in the third stage, while the
proportion of easier data decreases accordingly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

5000

10000 Incorrect
Correct

(a) Average length of responses to each question under NoThinking mode.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

5000

10000 Incorrect
Correct

(b) Average length of responses to each question under Thinking mode.

Figure 6: Comparison of average response length between correct and incorrect answers. For each
problem, we generate 16 responses and compute the average length separately for correct and incor-
rect responses; when all responses are of one type (correct or incorrect), the average length for the
opposite type is set to 0.

Contrasting Response Lengths in Correct and Incorrect Reasoning Figure 6 presents the av-
erage response length for correct and incorrect answers at the problem level in the NoThinking and
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Thinking modes. Regarding answer correctness, we find that in both reasoning modes, correct re-
sponses are shorter than incorrect ones, as the latter often contain more verbose or repetitive content,
an observation consistent with previous work (Song et al., 2025). When comparing the responses
between the two reasoning modes, correct answers in the Nothinking mode tend to have shorter
responses than those in the Thinking mode, whereas incorrect answers show no clear length trend
between the two modes.

5 RELATED WORK

Curriculum Learning There are two main paradigms of curriculum learning: data-level and
model-level (Soviany et al., 2022). Data-level curriculum learning is a method that gradually in-
creases the complexity of the data samples used during the training process (Bengio et al., 2009).
This aims to formalise the easy-to-hard learning strategies, thereby mimicking the way humans
learn. On the other hand, the model-level method consists in gradually increasing the modelling ca-
pacity of the neural model by adding or activating more neural units as the training progresses (Kar-
ras et al., 2018; Morerio et al., 2017). In this work, we propose a data-level approach that explicitly
incorporates the model’s evolving proficiency into the training process. By doing so, we design a tai-
lored curriculum learning framework that can gradually adapt to training data of varying difficulty,
thereby facilitating more efficient and effective training of reasoning models.

RL Training for LLMs Reinforcement learning has been widely adopted to train LLMs to en-
hance their abilities to address complex reasoning tasks. Recent works such as OpenAI o1 (OpenAI,
2025) and DeepSeek R1 (Guo et al., 2025) show that large-scale RL training can effectively elicit
chain-of-thought (CoT) reasoning, resulting in substantial gains on challenging mathematical rea-
soning and coding benchmarks. Building on these successes, the community has proposed a series of
increasingly sophisticated RL algorithms based on DPO (Rafailov et al., 2023), such as GRPO (Shao
et al., 2024), DAPO (Yu et al., 2025), CPPO (Lin et al., 2025), and REINFORCE++ (Hu et al.,
2025a). We use the GRPO algorithm together with several recent enhancements.

Math Reasoning in LLMs Language models have shown impressive abilities in addressing com-
plex reasoning tasks, thanks to CoT-based strategies which include explicit step-by-step reason-
ing (Wei et al., 2022). Building upon this foundation, a growing body of research has sought to
enhance reasoning performance from various perspectives, such as reasoning consistency (Wang
et al., 2023; Zhou et al., 2024; Lai et al., 2025) and multilingual reasoning (Shi et al., 2023; Lai
& Nissim, 2024; Chai et al., 2025). Recently, large reasoning models (LRMs), such as OpenAI o1
and DeepSeek R1, have sparked a surge of research on long CoT reasoning, which has significantly
improved the mathematical reasoning capabilities of models. Long CoT reasoning involves a de-
tailed iterative exploration and reflection process that is performed within a given problem space
by test-time scaling (Chen et al., 2025a). However, recent works have shown that long CoT of-
ten induces “overthinking”, leading to overly verbose reasoning and thus substantial computational
overhead (Sui et al., 2025). To address this problem, a line of work has emerged on efficient rea-
soning strategies, such as adaptive thinking (Zhang et al., 2025; Tu et al., 2025), length-based re-
wards (Arora & Zanette, 2025; Shen et al., 2025), and disabling the thinking process (Ma et al.,
2025). In this work, we propose an efficient reasoning framework based on tailored curriculum
reinforcement learning, showing that the coexistence of Thinking and NoThinking modes can be
mutually beneficial.

6 CONCLUSION

We have introduced TACLer, a novel tailored curriculum reinforcement learning framework for
efficient reasoning. Leveraging staggered training based on progressive data complexity, TACLer
enables the language model to learn more efficiently and also effectively. Moreover, by adopting a
hybrid Thinking/NoThinking reasoning mode, TACLer shows an effective balance of accuracy and
efficiency. Our experiments on the math reasoning task with four benchmarks show that TACLer
reduces training compute by over 50% and inference token usage by over 42% while improving
accuracy by over 9%. A future direction is to further extend our framework to other reasoning tasks
or even to general-purpose scenarios. A clear limitation of our method, however, is the additional
compute required during inference at each iteration, though the overhead remains relatively small.
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7 REPRODUCIBILITY STATEMENT

Information about the base model and dataset including training and evaluation sets, can be found
in Section 4.1. We also provide the experimental setup in Appendix A.1, containing details on
model training and evaluation, such as hyperparameters, hardware, and libraries used. The code and
model will be released after publication to ensure reproducibility and support future research and
applications.
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A APPENDIX

A.1 TRAINING AND EVALUATION SETTING

We train TACLer based on VeRL (Sheng et al., 2025) and perform inference using vLLM (Kwon
et al., 2023). Across three training stages, we set the context length to 8K, the batch size to 128, and
the learning rate to 1e-6. The hyperparameters ϵlow and ϵhigh are set to 0.2 and 0.28, respectively.
TACLer is trained on 4 NVIDIA H100 GPUs (94 GB memory each) for approximately 96 hours.
We report both the average reasoning accuracy and the response length based on the number of
tokens in our evaluation. Following previous work (Zhang et al., 2025) we adopt the sampling
method with a context size of 16K, a temperature of 0.6 and a top-p value of 0.95 to generate the
response for each question. We sample 16 responses for each question in AIME 2024 and AIME
2025, and report the average results due to their limited dataset size.

A.2 BASELINES

We compare TACLer with state-of-the-art 1.5B baselines on efficient math reasoning.

• OverThink (Chen et al., 2025b): a SimPO (Meng et al., 2024) based method, taking the longest
response as the negative example and the first two correct reasoning as the positive ones.

• DAST (Shen et al., 2025): a SimPO-based method, where preference data is ranked by pre-
sampled responses using a length-based reward function.

• O1-Pruner (Luo et al., 2025a): it builds a baseline via pre-sampling and guides the model to
generate more concise reasoning under accuracy constraints.

• TLMRE (Arora & Zanette, 2025): a method that incorporates a length-based penalty in on-policy
RL training.

• ModelMerging (Wu et al., 2025): it takes a weighted average of the weights of the reasoning
model and the non-reaosning model.

• AdaptThink (Zhang et al., 2025): a method trained with a constrained objective to encourage the
model to reason in the NoThinking way.

• AutoThink (Tu et al., 2025): an RL-based approach optimizes models to invoke long inferences
only when necessary.

All above methods use DeepScaleR dataset, where methods (1)-(5) are reproduced by Zhang et al.
(2025), thereby having a fair comparison. We also compare our method with several 1.5B baselines
trained for long CoT reasoning in the Thinking mode.

• STILL-3 (Chen et al., 2025c): a method to enhance the model’s slow thinking through RL train-
ing.

• DeepScaleR (Luo et al., 2025b): an iterative training method that iteratively increases the context
length from 8K to 24K, allowing the model to improve the quality of long CoT.

• FastCuRL (Song et al., 2025): a curriculum RL framework with progressively extended context,
in which the training data complexity is categorised based on input length.

A.3 CASE STUDY

Figure 7 presents a level-2 problem from the MATH500 dataset, which is considered relatively easy
by humans but proves more challenging for language models. The response generated by R1-Qwen
under the Thinking mode produces an incorrect answer, while TACLer answers correctly. Figures 8
and 9 present a math problem at difficulty level 3, comparing outputs of the base model R1-Qwen
and our model TACLer under two reasoning modes: Thinking and NoThinking. For R1-Qwen, the
output under the NoThinking mode is short but the final answer is incorrect, while the final answer
in the Thinking mode is correct but the output is too long. In contrast, TACLer produces shorter
outputs with correct final answers in both modes, with the output under the NoThinking mode being
about half the length of that under the Thinking mode. These cases highlight the differences in
reasoning performance between the two models.
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Question (MATH500): Evaluate\n\\[\\sin (\\arcsin 0.4 + \\arcsin 0.5) \\cdot \\sin (\\arcsin 0.5 - \\arcsin
0.4).\\] 
Difficulty Level: 2
Answer: \\frac{9}{100}

DeepSeek-R1-Distill-Qwen-1.5B (Thinking Mode):
<think>\n Okay, so I have this problem here: I need to evaluate the expression \\(\\sin (\\arcsin 0.4 + \\arcsin
0.5) \\cdot \\sin (\\arcsin 0.5 - \\arcsin 0.4)\\). Hmm, that looks a bit complicated, but maybe I can break it
down step by step.\n\nFirst, I remember that there are some trigonometric identities that might help simplify
this. I recall the sine addition and subtraction formulas. Let me write them down:\n\n1. \\(\\sin(A + B) = \\sin
A \\cos B + \\cos A \\sin B\\)\n2. \\(\\sin(A - B) = \\sin A \\cos B - \\cos A \\sin B\\)\n\n So, if I let \\(A =
\\arcsin 0.4\\) and \\(B = \\arcsin 0.5\\), then the expression becomes \\(\\sin(A + B) \\cdot \\sin(A - B)\\). That
seems manageable.\n\nLet me compute each part separately. Let me denote \\(A = \\arcsin 0.4\\), which
means that \\(\\sin A = 0.4\\). Similarly, \\(B = \\arcsin 0.5\\), so \\(\\sin B = 0.5\\). Since both arcsin functions
are in the range \\([- \\pi/2, \\pi/2]\\), both A and B are in the first quadrant, so their cosines will be
positive.\n\n […] (omit 7105 tokens) \n\n**Final Answer**\n\\boxed{-\\dfrac{9}{100}}\n</think>\n\nTo
evaluate the expression \\(\\sin (\\arcsin 0.4 + \\arcsin 0.5) \\cdot \\sin (\\arcsin 0.5 - \\arcsin 0.4)\\), we start
by letting \\(A = \\arcsin 0.4\\) and \\(B = \\arcsin 0.5\\). This transforms the expression into \\(\\sin(A + B)
\\cdot \\sin(A - B)\\).\n\nUsing the sine addition and subtraction formulas:\n\\[\n\\sin(A + B) = \\sin A \\cos B
+ \\cos A \\sin B\n\\]\n\\[\n\\sin(A - B) = \\sin A \\cos B - \\cos A \\sin B\n\\]\n\nWe know:\n- \\(\\sin A =
0.4\\)\n- \\(\\sin B = 0.5\\)\n- \\(\\cos A = \\sqrt{1 - (0.4)^2} = \\sqrt{0.84}\\)\n- \\(\\cos B = \\sqrt{1 - (0.5)^2}
= \\sqrt{0.75}\\)\n\nUsing the identity for the product of sines:\n\\[\n\\sin(A + B) \\cdot \\sin(A - B) = \\sin^2
A \\cos^2 B - \\cos^2 A \\sin^2 B\n\\]\n\nSubstituting the known values:\n\\[\n\\sin^2 A = (0.4)^2 =
0.16\n\\]\n\\[\n\\cos^2 B = (\\sqrt{0.75})^2 = 0.75\n\\]\n\\[\n\\cos^2 A = (\\sqrt{0.84})^2 =
0.84\n\\]\n\\[\n\\sin^2 B = (0.5)^2 = 0.25\n\\]\n\nCalculating each term:\n\\[\n\\sin^2 A \\cos^2 B = 0.16
\\times 0.75 = 0.12\n\\]\n\\[\n\\cos^2 A \\sin^2 B = 0.84 \\times 0.25 = 0.21\n\\]\n\nSubtracting these
results:\n\\[\n0.12 - 0.21 = -0.09\n\\]\n\nThus, the value of the expression is:\n\\[\n\\boxed{-
\\dfrac{9}{100}}\n\\] (8508 tokens in total)

TACLer-1.5B (Thinking Mode):
<think>\n Okay, so I have this trigonometric expression to evaluate: \\[\\sin (\\arcsin 0.4 + \\arcsin 0.5) \\cdot
\\sin (\\arcsin 0.5 - \\arcsin 0.4).\\] Hmm, that looks a bit complicated at first glance, but maybe I can break it
down step by step.\n\nFirst, I remember that there are some trigonometric identities that relate sine and
arcsine functions. Specifically, the sine of a sum and difference of two angles. Maybe I can use those
identities here.\n\nLet me recall the sine addition and subtraction formulas:\n\n1. \\(\\sin(A + B) = \\sin A
\\cos B + \\cos A \\sin B\\)\n2. \\(\\sin(A - B) = \\sin A \\cos B - \\cos A \\sin B\\)\n\nSo, the expression is the
product of two sine terms:\n\n\\[\n[\\sin(\\arcsin 0.4 + \\arcsin 0.5)] \\cdot [\\sin(\\arcsin 0.5 - \\arcsin
0.4)]\n\\]\n\n Maybe I can compute each sine term separately and then multiply them together.\n\nLet me
denote:\n\nLet \\( \\alpha = \\arcsin 0.4 \\) and \\( \\beta = \\arcsin 0.5 \\).\n\nSo, the expression
becomes:\n\n\\[\n\\sin(\\alpha + \\beta) \\cdot \\sin(\\beta - \\alpha)\n\\]\n\nHmm, interesting. Now, I can use
the sine addition and subtraction formulas on each sine term.\n\nFirst, let‘s compute \\( \\sin(\\alpha + \\beta)
\\):\n\nUsing the addition formula:\n\n\\[\n\\sin(\\alpha + \\beta) = \\sin \\alpha \\cos \\beta + \\cos \\alpha \\sin
\\beta\n\\]\n\nSimilarly, \\( \\sin(\\beta - \\alpha) \\) can be expanded using the subtraction
formula:\n\n\\[\n\\sin(\\beta - \\alpha) = \\sin \\beta \\cos \\alpha - \\cos \\beta \\sin \\alpha\n\\]\n\nSo, the
original expression becomes:\n\n\\[\n[\\sin \\alpha \\cos \\beta + \\cos \\alpha \\sin \\beta] \\cdot [\\sin \\beta
\\cos \\alpha - \\cos \\beta \\sin \\alpha]\n\\]\n\nLet me write that down:\n\n\\[\n(\\sin \\alpha \\cos \\beta +
\\cos \\alpha \\sin \\beta)(\\sin \\beta \\cos \\alpha - \\cos \\beta \\sin \\alpha)\n\\]\n\n […] (omit 2353 tokens) I
didn‘t need to compute all those square roots and stuff. Just applying the identity.\n\nTherefore, the answer is
9/100.\n\n **Final Answer**\n\\boxed{\\dfrac{9}{100}}\n</think>\n\nTo evaluate the expression \\(\\sin
(\\arcsin 0.4 + \\arcsin 0.5) \\cdot \\sin (\\arcsin 0.5 - \\arcsin 0.4)\\), we can use trigonometric identities and
properties of inverse sine functions.\n\nFirst, let \\(\\alpha = \\arcsin 0.4\\) and \\(\\beta = \\arcsin 0.5\\). The
expression becomes:\n\\[\n\\sin(\\alpha + \\beta) \\cdot \\sin(\\beta - \\alpha)\n\\]\n\nUsing the identity for the
product of sines, we recognize that:\n\\[\n\\sin(\\alpha + \\beta) \\cdot \\sin(\\beta - \\alpha) = \\sin^2(\\beta) -
\\sin^2(\\alpha)\n\\]\n\nSince \\(\\alpha = \\arcsin 0.4\\) and \\(\\beta = \\arcsin 0.5\\), we
have:\n\\[\n\\sin(\\alpha) = 0.4 \\quad \\text{and} \\quad \\sin(\\beta) = 0.5\n\\]\n\nThus, we can
compute:\n\\[\n\\sin^2(\\beta) - \\sin^2(\\alpha) = (0.5)^2 - (0.4)^2 = 0.25 - 0.16 = 0.09 =
\\frac{9}{100}\n\\]\n\nTherefore, the final answer is:\n\\[\n\\boxed{\\dfrac{9}{100}}\n\\] (3395 tokens in
total

×

√

Figure 7: Example of a MATH500 problem at difficulty level 2 and the responses generated by R1-
Qwen and TACLer under the Thinking mode.
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Question (MATH500): How many positive two-digit integers are factors of both 100 and 150?
Difficulty Level: 3
Answer: 3

DeepSeek-R1-Distill-Qwen-1.5B (NoThinking Mode):
<think>\nOkay, I think I can solve it directly.</think>\n\n**Problem:** \nHow many positive two-digit
integers are factors of both 100 and 150?\n\n**Solution:**\n\nTo find the positive two-digit integers that are
factors of both 100 and 150, we'll follow these steps:\n\n1. **Find the Greatest Common Factor (GCF) of
100 and 150.** \n - **Prime Factorization of 100:** \n \\(100 = 2^2 \\times 5^2\\)\n - **Prime
Factorization of 150:** \n \\(150 = 2 \\times 3 \\times 5^2\\)\n - **Identify Common Factors:** \n
The common prime factors are \\(2\\) and \\(5^2\\). \n So, \\(GCF = 2 \\times 5^2 = 50\\).\n\n2.
**Determine the Two-Digit Factors of 50.** \n - **List the Factors of 50:** \n 1, 2, 5, 10, 25, 50 \n -
**Filter for Two-Digit Integers:** \n From the list, the two-digit factors are 10 and 25.\n\n3. **Count the
Two-Digit Factors:** \n There are **2** positive two-digit integers (10 and 25) that are factors of both
100 and 150.\n\n**Final Answer:** \n\\boxed{2}. (372 tokens)

DeepSeek-R1-Distill-Qwen-1.5B (Thinking Mode):
<think>\nAlright, so I need to figure out how many positive two-digit integers are factors of both 100 and
150. Hmm, okay. Let me break this down step by step. \n\nFirst, I remember that if a number is a factor of
both 100 and 150, it must be a common factor of these two numbers. So, I need to find all the common
factors of 100 and 150 that are two-digit numbers. That makes sense.\n\nMaybe I should start by finding the
factors of each number individually and then see where they overlap. That sounds like a plan. Let me start
with 100. \n\nThe factors of 100 are all the numbers that can divide 100 without leaving a remainder. Let me
list them out. Starting from 1:\n\n1, 2, 4, 5, 10, 20, 25, 50, 100. \n\nWait, let me check that. 1 times 100 is
100, so that‘s a factor. 2 times 50 is 100, so 2 and 50 are factors. Then 4 times 25 is 100, so 4 and 25. 5 times
20 is 100, so 5 and 20. Then 10 times 10 is 100, so 10 and 10. So yeah, those are all the factors of 100.
\n\nNow, let me do the same for 150. The factors of 150 are a bit more, I think. Let me see:\n\n1, 2, 3, 5, 6,
10, 15, 25, 30, 50, 75, 150. \n\nLet me verify. 1 times 150 is 150, 2 times 75 is 150, 3 times 50 is 150, 5
times 30 is 150, 6 times 25 is 150, 10 times 15 is 150. Then 15 times 10 is 150, 25 times 6 is 150, 30 times 5
is 150, 50 times 3 is 150, 75 times 2 is 150, and 150 times 1 is 150. So, that seems comprehensive.\n\nNow, I
need to find the common factors of both 100 and 150. So, looking at the factors of 100: 1, 2, 4, 5, 10, 20, 25,
50, 100. And factors of 150: 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150.\n\nComparing these two lists, the
common factors are the numbers that appear in both. So, let’s see:\n\n1 is common, 2 is common, 5 is
common, 10 is common, 25 is common, 50 is common. Wait, what about 150? It‘s only in the factors of 150,
not in 100. Similarly, 75 is only in 150, not in 100. So, the common factors are 1, 2, 5, 10, 25, 50. \n\nBut
hold on, the question is asking for positive two-digit integers. So, two-digit numbers are from 10 to 99
inclusive. Looking at the common factors, we have 10, 25, and 50. \n\nWait, let me double-check that. 1 is a
single-digit number, so it doesn’t count. 2 is also single-digit. 5 is single-digit, 10 is two-digit, 25 is two-digit,
50 is two-digit. So, the common two-digit factors are 10, 25, and 50.\n\nIs that all? Let me make sure I didn‘t
miss any. Looking back at the factors of 100: 1, 2, 4, 5, 10, 20, 25, 50, 100. And factors of 150: 1, 2, 3, 5, 6,
10, 15, 25, 30, 50, 75, 150. \n\nSo, the common factors are indeed 1, 2, 5, 10, 25, 50. So, within these, the
two-digit numbers are 10, 25, and 50. \n\nBut wait a second, 50 is a two-digit number, yes, but 100 is three-
digit, so it’s excluded. So, 10, 25, 50 are the common two-digit factors.\n\nIs there any chance I missed any
other common factors? Let me think. 100 is 2^2 * 5^2, and 150 is 2 * 3 * 5^2. So, the greatest common
divisor (GCD) of 100 and 150 would be the product of the lowest powers of the common prime factors. So,
GCD is 2̂ 1 * 5^2 = 2 * 25 = 50. So, the GCD is 50. That means the common factors are all the factors of
50.\n\nWait, hold on, factors of 50. Let me list the factors of 50: 1, 2, 5, 10, 25, 50. So, yeah, that‘s
consistent with what I found earlier. So, the common factors are exactly the factors of 50. So, the two-digit
ones are 10, 25, 50.\n\nTherefore, the positive two-digit integers that are factors of both 100 and 150 are 10,
25, and 50. So, that’s three numbers. […] (omit 1346 tokens) \n\nI think that‘s solid. I don’t see any
mistakes in the reasoning. So, I‘m confident that the answer is 3.\n\n**Final Answer**\nThe number of
positive two-digit integers that are factors of both 100 and 150 is \\boxed{3}.\n</think>\n\nTo determine
how many positive two-digit integers are factors of both 100 and 150, we start by finding the factors of each
number.\n\nThe factors of 100 are: 1, 2, 4, 5, 10, 20, 25, 50, 100.\n\nThe factors of 150 are: 1, 2, 3, 5, 6, 10,
15, 25, 30, 50, 75, 150.\n\nNext, we identify the common factors of both sets. These common factors are: 1,
2, 5, 10, 25, 50.\n\nWe are specifically interested in the two-digit integers among these common factors. The
two-digit numbers are 10, 25, and 50.\n\nThus, the number of positive two-digit integers that are factors of
both 100 and 150 is \\(\\boxed{3}\\). (3114 tokens in total)

×

√

Figure 8: Example of a MATH500 problem and the responses generated by R1-Qwen under two
reasoning modes.
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Question (MATH500): How many positive two-digit integers are factors of both 100 and 150?
Difficulty Level: 3
Answer: 3

TACLer-1.5B (NoThinking Mode):
<think>\nOkay, I think I can solve it directly.</think>\n\n Alright, so I need to find how many positive two-
digit integers are factors of both 100 and 150. Hmm, that sounds like I need to find the common factors of
100 and 150 that are two-digit numbers. Let me break this down step by step.\n\nFirst, maybe I should find
all the factors of 100 and all the factors of 150, and then see which ones they have in common, and among
those, how many are two-digit numbers. Alternatively, maybe it‘s easier to find the greatest common factor
(GCF) of 100 and 150 first and then find all two-digit factors of that GCF.\n\nWait, that might be a good
approach. Let me try that.\n\nSo, first, let me find the GCF of 100 and 150.\n\nTo find the GCF, I can use the
prime factorization method.\n\nLet’s factorize 100:\n100 can be broken down into prime factors:\n100 = 2^2
* 5^2\n\nNow, factorize 150:\n150 = 2 * 3 * 5̂ 2\n\nSo, the GCF is the product of the lowest powers of the
common primes. […] (omit 660 tokens) \n\nFactors of 150: 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75,
150.\n\nCommon factors: 1, 2, 5, 10, 25, 50.\n\nSo, the common two-digit factors are 10, 25, 50.\n\nHence,
there are 3 such numbers.\n\nTherefore, the answer is 3.\n\nWait, just to make sure I didn‘t miss any, let me
list the two-digit numbers that are factors of both 100 and 150.\n\nFrom the list of common factors: 10, 25,
50.\n\nYep, those are the only two-digit numbers.\n\nSo, the number of positive two-digit integers that are
factors of both 100 and 150 is 3.\n\n**Final Answer**\nThe number of positive two-digit integers that are
factors of both 100 and 150 is \\boxed{3}. (1203 tokens in total)

TACLer-1.5B (Thinking Mode):
<think>\nOkay, so I have this problem: \“How many positive two-digit integers are factors of both 100 and
150?\” Hmm, let me try to figure this out step by step. I remember that when we‘re looking for common
factors of two numbers, we can use the concept of the greatest common divisor (GCD). The GCD of two
numbers is the largest number that divides both of them without leaving a remainder. But here, we’re not just
looking for the GCD, but specifically the two-digit factors of that GCD. Wait, maybe I need to clarify
that.\n\nFirst, let me find the factors of 100 and 150 separately and then see what they have in common. But
that might take too long because 100 and 150 are not too large, but it‘s better to use the GCD method.\n\nSo,
let’s find the GCD of 100 and 150. To do that, I can use the prime factorization method. Let me break down
both numbers into their prime factors.\n\nStarting with 100: 100 divided by 2 is 50, divided by 2 again is 25,
which is 5 squared. So, 100 is 2^2 * 5^2.\n\nNow for 150: 150 divided by 2 is 75, then 75 divided by 3 is 25,
which is 5 squared. So, 150 is 2 * 3 * 5^2.\n\nTo find the GCD, I take the lowest power of all common prime
factors. The common primes here are 2 and 5. The lowest power of 2 is 2^1 and the lowest power of 5 is 5^2.
So, GCD = 2̂ 1 * 5̂ 2 = 2 * 25 = 50.\n\nSo, the greatest common divisor of 100 and 150 is 50. That means
the largest number that divides both 100 and 150 is 50. But the question is asking for two-digit integers that
are factors of both. So, we need to find all two-digit numbers that are factors of 50.\n\nWait, hold on. If the
GCD is 50, then the factors of both 100 and 150 are exactly the factors of 50. So, now I need to list all the
two-digit factors of 50.\n\nWhat are the factors of 50? Let me list them: 1, 2, 5, 10, 25, 50. So, these are the
factors of 50. Now, among these, the two-digit numbers are 10, 25, and 50. But wait, 10, 25, and 50. But 50
is a two-digit number? Wait, 50 is a two-digit number, yes.\n\nWait, but hold on. The question is asking for
positive two-digit integers that are factors of both 100 and 150. So, if 50 is a factor of both, then 50 is a two-
digit number that satisfies the condition. Similarly, 10 and 25 are two-digit numbers.\n\nSo, let me list them:
10, 25, 50. Are these all the two-digit factors of 50? Let‘s see: 10 is 10, 25 is 25, 50 is 50. Are there any other
two-digit numbers that are factors of 50? Let me check.\n\n50 divided by 5 is 10, which is two-digit. 50
divided by 10 is 5, which is single-digit. 50 divided by 25 is 2, which is single-digit. 50 divided by 50 is 1,
which is single-digit. So, the only two-digit factors are 10, 25, and 50. So that’s three numbers. […] (omit
945 tokens) \n\nYes.\n\nSo, all three numbers are valid.\n\nTherefore, the number of positive two-digit
integers that are factors of both 100 and 150 is 3.\n\n**Final Answer**\nThe number of positive two-digit
integers that are factors of both 100 and 150 is \\boxed{3}.\n</think>\n\nTo determine how many positive
two-digit integers are factors of both 100 and 150, we start by finding the greatest common divisor (GCD) of
100 and 150 using their prime factorizations.\n\nThe prime factorization of 100 is:\n\\[ 100 = 2^2 \\times 5^2
\\]\n\nThe prime factorization of 150 is:\n\\[ 150 = 2 \\times 3 \\times 5^2 \\]\n\nThe GCD is found by taking
the lowest power of all common prime factors:\n\\[ \\text{GCD} = 2^1 \\times 5^2 = 2 \\times 25 = 50
\\]\n\nNext, we list the factors of 50, which are:\n\\[ 1, 2, 5, 10, 25, 50 \\]\n\nWe are interested in the two-
digit factors of 50. These are:\n\\[ 10, 25, 50 \\]\n\nThus, the number of positive two-digit integers that are
factors of both 100 and 150 is:\n\\[\n\\boxed{3}\n\\]. (2227 tokens in total)

√

√

Figure 9: Example of a MATH500 problem and the responses generated by our model TACLer
under two reasoning modes.
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