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Figure 1: Teaser: DiffTrack reveals how video Diffusion Transformers (DiTs) establish temporal correspon-
dences during video generation. Given a prompt and starting points, DiffTrack tracks how individual points
align across subsequent frames via cross-frame attention in video DiTs (second row). This enables the extraction
of coherent motion trajectories (third row) from both generated and real-world videos in a zero-shot manner.

Abstract

Recent advancements in video diffusion models based on Diffusion Transformers
(DiTs) have achieved remarkable success in generating temporally coherent videos.
Yet, a fundamental question persists: how do these models internally establish and
represent temporal correspondences across frames? We introduce DiffTrack, the
first quantitative analysis framework designed to answer this question. DiffTrack
constructs a dataset of prompt-generated video with pseudo ground-truth tracking
annotations and proposes novel evaluation metrics to systematically analyze how
each component within the full 3D attention mechanism of DiTs (e.g., representa-
tions, layers, and timesteps) contributes to establishing temporal correspondences.
Our analysis reveals that query-key similarities in specific, but not all, layers play
a critical role in temporal matching, and that this matching becomes increasingly
prominent during the denoising process. We demonstrate practical applications
of DiffTrack in zero-shot point tracking, where it achieves state-of-the-art perfor-
mance compared to existing vision foundation and self-supervised video models.
Further, we extend our findings to motion-enhanced video generation with a novel
guidance method that improves temporal consistency of generated videos without
additional training. We believe our work offers crucial insights into the inner
workings of video DiTs and establishes a foundation for further research and
applications leveraging their temporal understanding.
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1 Introduction

Recent video diffusion models [25} 28},149.150, 154, 163169, 184, 88|, powered by Diffusion Transformers
(DiTs) [21}161]], have achieved remarkable progress in generating realistic videos with high photo-
metric fidelity, temporal coherence, and complex motion. DiTs utilize full 3D attention to process
all frames and text in a single sequence, enabling the effective propagation of spatial and temporal
information, thus improving temporal coherence in generated videos. Their strong temporal priors
have also led to various downstream tasks, such as video depth estimation [87], pose estimation [9],
and 3D/4D reconstruction [23} 153\ 74} 180].

Despite the success of these models, a fundamental question remains unanswered: How do video DiTs
establish temporal correspondences between frames during generation, and how can we explicitly
extract them? While existing works [31} 42} 56| 157, [75], |86] explore internal representations in
U-Net-based image diffusion models, they mainly focus on two-frame correspondences.

In this paper, we introduce DiffTrack, the first in-depth quantitative analysis framework designed
to pinpoint temporal matching within the video DiT architecture. DiffTrack provides insights into
how and where video DiTs establish temporal correspondences during video generation, enabling the
direct extraction of motion information from generated videos (cf. Fig.[I). Notably, our framework is
adaptable to any DiT-based video generative models.

Our analysis investigates 3D attention, a core component of video DiTs, to determine which repre-
sentations (e.g. query-key similarities vs. intermediate features), layers, and denoising timesteps are
most critical for establishing temporal correspondence among frames.

To systematically analyze their intricate interplays during video generation, we construct a dataset of
prompt-generated video using a video backbone under analysis and obtain pseudo ground-truth motion
tracks from an off-the-shelf tracking method [44]. We then propose novel evaluation metrics that
jointly assess temporal matching accuracy and confidence. Given the dataset, we extract descriptors at
desired layers and timesteps, estimate temporal correspondence, and evaluate these correspondences
using our proposed metrics.

Through the analysis, we uncover several key findings. 1) Query-key matching in 3D attention blocks
provides clear temporal matching information. 2) A few specific layers play a dominant role in
establishing temporal matching. 3) Temporal matching strengthens throughout the denoising process.

We further demonstrate the practical value of our analysis through experiments in zero-shot point
tracking. By using the most significant feature descriptors for temporal matching, extracted at
the optimal layer and timestep identified by DiffTrack, our approach achieves state-of-the-art re-
sults compared to existing vision foundation models [10} 18}, 60, |68 [75] and self-supervised video
models [3 16} 140,152} 165, |83], demonstrating the effectiveness of our framework.

Additionally, we extend our analysis to motion-enhanced video generation with a novel guidance
technique, Cross-Attention Guidance (CAG). CAG works by perturbing cross-frame attention maps
in the most dominant layers identified by DiffTrack, and guides the model away from degraded
samples during sampling. Notably, CAG achieves significant gains in both human evaluations and
automatic metrics, without requiring additional training, auxiliary networks, or supervision.

In summary, our contributions are:

* We identify the importance of understanding temporal correspondence in video DiTs and
introduce DiffTrack, a novel framework that quantitatively analyzes and identifies temporal
matching information within DiTs during video generation.

* We provide a detailed analysis of the open-source video DiT models including
CogVideoX [84], HunyuanVideo [49], and CogVideoX-I12V [84]], revealing key insights into
their internal mechanisms.

* We demonstrate the effectiveness of DiffTrack in zero-shot point tracking, achieving state-
of-the-art performance among existing vision foundation and self-supervised video models.

* We present motion-enhanced video generation with CAG, a novel guidance method that im-
proves the motion consistency of generated videos without auxiliary models or supervision.



2 Preliminaries

2.1 Video Diffusion Models

Video diffusion models [25} 28] 149,150} 154, 163} 169, 184, |88]] generate videos from input text prompts
through iterative denoising. To enhance efficiency, latent video diffusion models [30]] perform this
denoising in a latent space, typically using 3D Variational Autoencoders (VAE) [84] for spatial and
temporal compression. A 3D VAE encodes a video X € ROFTF)IXHxWX3 with its frame count
(14 F), height (H), width (W), into a compressed latent representation. This latent is then patchified
and unfolded into a sequence z;iqeo Of length (14 f)hw, where f, h, and w are derived from spatial
compression ratio p (i.e., h=H /p and w=W/p) and a temporal compression ratio g (i.e., f=F/q)
with often skipping the first frame [84]. To incorporate text input, a text encoder [[67] embeds the
prompt into the text embedding z..t With sequence length S. Then the concatenated embeddings
(Zvideo and Ztext), of length (1 + f)hw + S, guide the denoising process, enabling text-aligned video
generation. Given a predetermined noise schedule, forward process progressively adds Gaussian
NOise t0 Zyideo,: for timestep ¢, producing noisier latents Zyiqeo,++1. In the denoising process, a neural
network €g(Zvideo, ¢, Ztext, t) predicts and removes the noise to obtain Zyideo,t—1, aligning with the
text prompt. After T' denoising steps, the fully denoised latent zigeo,0 is decoded by the 3D VAE to
generate the final video X'.

2.2 Video Diffusion Transformers

Following the success of Sora [54]], DiT [21}61] has become a standard architecture for video gener-
ative models [25} 128} 149, 150, [84]. DiT employs multiple layers of full 3D attention, enabling direct
interaction between visual and textual information through attention and feed-forward processing.

At each timestep ¢, the concatenated sequences of Zyigeo + and Ziext are augmented with 3D positional

embeddings, e.g., RoPE [73] or sinusoidal embeddings [79]]. Then, at each layer [, full 3D attention

transforms the sequences into queries Q; ;, keys K ;, and values V., all lying in R((1+/)hw+3)xd
with the channel dimension d. The resulting output of full 3D attention is computed as:

Attn(Qe 1, Ki i, Vi) = Ay Vyy @)

with Ay = Softmax(Q, K} ,/Vd). )

To understand how the video latent z;qe,,; and text embedding zcy interact in full 3D attention, the
notations of query Q. ; and key K, ; can be rewritten at the token sequence level:

1 1+ text
Qu = Concat(Q} ..., Qpr”, Qi) 3)
1 1+ text
K, = Concat(K} ..., K, 7/ Ki5). @
Here, Q! ; and K¢, are projections from the i-th frame oSelf-Frame Attention = Self-Text Attention
latent, with 7 € {1, . lJrf}, and Q;el)(t and nglxt are DCrosls»Framg Attent;on DText—FranleJr?tten:lortw
) s s ex
from the text embeddings. Concat(-) concatenates these Ko Ky K o Ko Koo
across the token sequences. M
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Fig. [illustrates full 3D attention in video DiTs. It can be | o
categorized into four key interactions: 1) self-frame atten- Q|| 21 | A2, |23 . p2iejprtext
. ; . i, ] o) B L, B g )l
tion A!,, 2) cross-frame attention A!7, 3) text-frame at- ||| ‘ K
tention A5 or Ay;™, and 4) self-text attention A5, Q3| AXL A3 | A3, | o AN adtex
where ¢, € [1, 1+ f] with i # j. Self-frame attention at- U
tends to its own frame, focusing on nearby spatial patches :
at the pixel location. Text-frame attention injects semantic o
information from text embeddings into the frame latents. q1+7]([y145:1 g14£.2 gL4£3 | ALEF fyiarien
Self-text attention refines the textual context itself. o || o i i o
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ticular interest to our study. Its ability to allow every pixel -
in one frame to interact with any pixel in another frame is  Figure 2: Illustration of full 3D attention in
what explicitly enables the model to build and understand video DiTs, where video frame latents and
temporal relationships across the video sequence. text embeddings interact.
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Prompt : “A curious sea turtle, its shell dappled with Prompt : “A breathtaking aerial view captures the
hues of emerald and bronze, drifts gracefully through light of dawn as it spills over mountain peaks, casting
the clear blue waters of a vibrant coral reef. Sunlight long shadows across the rugged terrain. The drone
filters through the gentle waves, ...” glides smoothly, revealing a tapestry of colors...”

(a) Object Dataset (b) Scene Dataset

Figure 3: Our curated evaluation dataset includes: (a) an object dataset for dynamic object-centric videos and
(b) a scene dataset for static scenes with camera motion. Each dataset comprises 50 prompt-generated video

pairs per video generative model (e.g. CogVideoX-2B [84]). In the benchmark, we predefine starting points in
the first frame and obtain pseudo ground-truth trajectories using an off-the-shelf tracking method [44].

3 DiffTrack

We introduce DiffTrack, a framework to quantify how video DiTs capture temporal correspondence
during video generation. This is crucial yet nontrivial due to the inherent complexity of video
DiTs, which involve multiple layers, denoising timesteps, and full 3D attention. To systematically
analyze them, DiffTrack provides an evaluation dataset and novel metrics for assessing the accuracy,
confidence, and influence of temporal matching. While we present an in-depth analysis of the
open-source video DiT model, CogVideoX-2B [84], our framework is broadly applicable to other
DiT architectures, as demonstrated by our analyses of CogVideoX-5B [84], HunyuanVideo [49] and
CogVideoX-5B-12V [84] in Sec.[B]

3.1 Evaluation Dataset

To accurately investigate temporal correspondence during video generation, it’s crucial to simulate
the generation process faithfully. Reconstructing real-world videos often introduces challenges such
as inversion errors [71] due to imprecise prompts and distribution shifts from training data. To
circumvent this, we curate specialized evaluation prompts and generate corresponding video datasets
using the specific backbone under analysis. This approach allows perfect video reconstruction during
evaluation, as we use paired prompts with fixed seeds. For an analysis using real-world videos from
DAVIS [64], please refer to Sec. [E]

To analyze videos with object and camera motion, we curate two distinct datasets: (1) an object
dataset for dynamic object-centric videos and (2) a scene dataset for static scenes with camera motion.
Each dataset includes 50 text prompts with corresponding 50 videos (e.g. 480720 resolution, 49
frames, generated by CogVideoX-2B [84]]).

To assess temporal matching, the datasets also include pseudo ground truth track annotations. We
predefine a set of starting points p! € R *2 (in latent resolution) in the first frame of each video,
where N is the number of points. For the object dataset, we use SAM [48]] to segment foreground
objects and sample grid points with a spacing of 1/20 of the video’s spatial resolution. For the scene
dataset, we sample a 10 x 10 regular grid of points across the entire frame. Fig. [3]shows examples
of each dataset; further details are provided in Sec.[A] Since ground-truth tracks are unavailable for
generated videos, we use an off-the-shelf tracking method, CoTracker [44], to obtain pseudo ground
truth T € R¥*N*2 (in original resolution).

3.2 Temporal Correspondence Estimation within Video DiTs

To evaluate matching accuracy, we first extract temporal correspondences across video frames using
feature descriptors from a video model. We independently establish pairwise correspondences
between the first frame and each subsequent frame.

We first construct a matching cost between the descriptors from the first latent and each j-th latent,
with j € {2,...,1+f}, at each timestep ¢ and layer I:

C;/ = softmax(D} (D] ,)"/Vd), )



where D}, and Df , are the feature descriptors corresponding to the first frame latent and the j-th

latent, and d is the channel dimension of both D; ; and D{ ;- Softmax(-) is applied over the keys for

each pixel in the query. Descriptors Dy ; are internal representation candidates from video DiTs, such
as intermediate features after attention blocks or query-key matrices within attention blocks.

Matched correspondence points pf’ L € RN *2 at the j-th frame latent, timestep ¢, and layer I, with
the number of points NV, are obtained through Argmax, which identifies the spatial location x of the
highest value in Ci 7/ within the spatial domain of the j-th latent €.

p{,l = Argmax Czlj (pl, X). (6)
xXEN

Motion tracks along video frames are obtained by concatenating (Concat) the starting point p' with
the estimated matches p{7 ; across the video latent space. These tracks, in the latent spatial coordinates,
are then spatio-temporally upscaled to the original RGB coordinates through linear interpolation
(Interp), yielding T;; € RF*xNx2:

T;; = Interp(Concat(p’, pf\yl, . ,pzjf)). @)

3.3 [Evaluation Metrics

Given the estimated matched points, we propose three complementary metrics for evaluating temporal
matching in video generation: matching accuracy, confidence score, and attention score. Specifically,
matching accuracy measures the precision of estimated tracks across frames. The confidence score
quantifies the certainty with which the starting point attends to its estimated match. The attention
score reflects the relative strength of cross-frame attention during generation, compared to self-frame
and text-frame attention.

Matching Accuracy. We evaluate point accuracy using the percentage of correct keypoints (PCK)

with a predefined error threshold between the estimated track T'; ; and visible points in the ground
truth T. The matching accuracy averages PCK over all visible points across cross-latents and videos.

Confidence Score. We use the maximum attention values between the first and j-th frame latent
A;lj (cf. Sec. i to measure how confidently the starting points p' attend to their predicted matched
points, formulated as:

M, = tax A, (p', %), @®)

which quantifies the attention of p! to the estimated point in the j-th latent at timestep ¢ and layer /.
Max takes the maximum attention value over all spatial locations x € €). The confidence score is the
average of these maximum values across all cross-latents with j € {2, ..., 1+ f}, all visible points
in ground truth, and videos.

Attention Score. We use the sum of cross-attention values across all cross-frame latents. This
allows us to assess the influence of cross-frame interactions during video generation, in comparison
to other types of attention, such as text-frame or self-frame attention. This is formulated as:

Sti=>_ > Aj(P,x), ©)

JEF xeN

which quantifies the sum of attention from p' across cross-frames at timestep ¢ and layer /, over all
spatial locations x € € and all cross-frame indices j € F, where F = [2, 1+ f]. The attention score
is the average of these summation values across all visible points in the ground truth and all videos.

Three metrics must be considered together (as detailed in Sec. @, as none alone is sufficient to
ensure temporal matching. For instance, even with high matching accuracy across frames, it may not
influence the generation process when attention scores from others (e.g., self-frame or text-frame) are
higher. In another case, high confidence indicates the certainty of the matching score but does not
ensure the correctness of the match. We thus compute the harmonic mean of the normalized matching
accuracy, confidence score, and attention score to identify instances where all three metrics are high.
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(a) Representation Selection (b) Layer-wise Analysis (c) Noise-level Analysis

Figure 4: Analysis of temporal matching in CogVideoX-2B [84]. (a) Query-key matching outperforms
intermediate feature matching, highlighting the effectiveness of cross-frame interactions in 3D attention. (b) The
harmonic mean of query-key matching shows that temporal matching is primarily driven by a few specific layers.

(c) Temporal matching improves progressively during the denoising but slightly degrades near the final steps.

3.4 Analysis

With DiffTrack, we systematically analyze CogVideoX-2B [84] in the context of temporal correspon-
dence. For all analyses, we use full 3D attention in the model, which consists of 30 layers with 50
denoising timesteps.

Our analysis considers the following three perspectives. Representation selection compares intermedi-
ate features and query-key representations. Layer-wise analysis explores how well temporal matching
is encoded at different depths within the attention blocks. Noise-level analysis examines how temporal
relationships evolve throughout the denoising process. Further in-depth analysis is provided in Sec.
Additional analyses of CogVideoX-5B [84], HunyuanVideo [49] and CogVideoX-5B-12V [84]] are
provided in Sec.[B]

Representation Selection.  Fig.[d(a) compares the accuracy of intermediate feature matching, where
features are extracted after each attention layer, and query-key matching, where queries and keys
are obtained within each attention layer. Our results indicate that query-key matching consistently
outperforms intermediate feature matching. This finding aligns with prior works [3, 571, in which
query-key matching captures geometric relationships for correspondence, while values contain visual
appearance, potentially diluting geometric cues for accurate matching.

Layer-wise Analysis. Fig. (b) presents the harmonic mean of query-key matching across all
timesteps and layers to identify which feature descriptors at which layer and timestep play a predomi-
nant role in temporal matching. We observe that the top-20 scores (red) originate from the same layer,
indicating that a specific layer predominantly governs temporal correspondence. This behavior is
further observed in the top-50 scores (green): a limited set of layers drives temporal matching.

Noise-level Analysis. Fig. ffc) presents the har- 10 : 10
monic mean of query-key matching across timesteps i Prme

in the selected layers from Fig. Ekb), which are iden-
tified as leading layers for temporal matching. Tem-
poral matching improves during the denoising pro-
cess but slightly degrades toward the end. This is
because earlier timesteps (1) contain noisier latents,
which hinder precise temporal matching, and (2) rely
heavily on text embeddings and self-frame attention
to establish the overall video semantics and layout.
Toward the final timesteps, (3) self- and text-frame at-
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attention on attention score.

tention slightly increase again to refine the remaining
appearance details, once the motion in the synthesized video has been established.

This observation is supported by Fig.[5] which shows the attention scores for text-frame, self-frame,
and cross-frame attention along timesteps. After the early denoising steps, text-frame and self-frame
attention remain low, reducing the influence of textual guidance. Meanwhile, cross-frame attention
remains the most influential, enhancing cross-frame coherence, with a slight drop near the end of the
timesteps.

Additional Analysis on Metrics. We further emphasize the importance of jointly considering
three metrics, matching accuracy, confidence score, and attention score. Fig.[6fa) presents the top-20
timesteps and layers where the confidence score is high, but matching accuracy is low. We find that
specific layers exhibit this discrepancy as they are overwhelmed by positional information induced
by positional embeddings at each timestep. In Fig. [f[c), PCA visualization of queries and keys
in these layers reveals a dominance of positional cues, while Fig. [f|b) shows that in these layers,
matching cost visualizations indicate that points in the first frame tend to match exactly with their
initial locations in other frames. This suggests that these points are not correctly matched to their
actual counterparts but instead strongly attend to the same spatial location across frames, reflecting
the impact of positional bias.

Additionally, Fig. [/(a) presents the top-20 timesteps and layers where matching accuracy and
confidence scores are high, but attention scores are low. We observe that this property is exhibited in
certain layers. As shown in Fig.[5] this occurs because text-frame attention remains highly active
in these layers, maintaining a value around 0.5, unlike in other layers where text-frame attention
drops below 0.2 (cf: Fig.[3). This reduces the attention scores, which in turn limits the influence of
cross-frame interactions during the generation process.

4 DiffTrack for Zero-Shot Point Tracking

DiffTrack enables the joint extraction of motion trajectories and video generation, selecting the
optimal layer and timestep based on matching accuracy. We demonstrate this in zero-shot point
tracking [5]] on real videos, without training specialized architectures [19] or fine-tuning video
diffusion models [41]]. To achieve this, we use the inverted noise of real videos obtained through
DDIM inversion at the selected timestep and extract features from the chosen layer. Notably, the
inversion error is negligible, as we use the final timestep ¢ = 1 based on our analysis of matching
accuracy in Fig.[[a). However, this still faces challenges such as temporal context loss from 3D VAE
compression and handling of long-term video sequences. We address these challenges below. The
overall architecture and its details are provided in Sec. [C}

Temporal Compression in 3D VAE. As discussed in Sec. 2.1} the 3D VAE temporally compresses
video frames into a single-frame latent with a compression ratio g. While linear interpolation can
recover motion trajectories from the latent to the RGB video space, it often fails to capture per-frame
motion details, limiting accuracy. To mitigate this, we set g=1 to establish a direct one-to-one
mapping between each video frame and its latent, thereby avoiding temporal compression and
enabling precise tracking. In Sec. [El we demonstrate that the one-to-one mapped latents can still
reconstruct the original videos using the 3D VAE decoder.

Long-term Video Sequences. The fixed temporal resolution of pre-trained video models (e.g. 49
frames in CogVideoX-2B [84]]) limits their ability to model long-term contexts. Naively splitting
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Figure 8: Qualitative comparison. CogVideoX-2B [84] combined with DiffTrack produces smoother and more
accurate trajectories than DINOv2 and VFS [83], which struggle with temporal dynamics and often yield
inconsistent tracks.

Backbone Kinetics DAVIS )

<8 <ot <8P <8P <t <o, | <00 <8t <8P <8P <t <o,
DINO (ViT-B/16) 2.8 109 339 582 748 36.1 29 10.7 343 598 770 37.3
DINOv2-Reg (ViT-B/14) [18] 2.8 10.8  32.8 60.6 78.7 37.1 3.0 11.7 365 675 84.1 40.6
DINOv2 (ViT-B/14) 3.0 114 346 63.0 803 384 3.1 12.1 387 70.7 858 42.1
DIFT (SD1.5) [75] 3.7 146 446 69.0 775 41.9 35 13.0 393 63.1 722 38.2
DIFT (SD2.1) [75] 3.7 149 454 709 79.6 429 3.6 133 40.1 658 757 39.7
SMTC (ViT-S/16) [65] 4.1 155 342 544 721 36.1 2.6 121 294 525 73.0 339
CRW (ResNet-18) [40] 5.2 194 427 629 743 40.9 3.1 139 347 571 705 359
Spa-then-Temp (ResNet-50) [52] 53 194 416 589 69.7 39.0 32 13.8 331 534 675 342
VFS (ResNet-50) 54 201 446 654 766 424 35 152 372 608 752 38.4
SVD 43 160 379 563 698 36.6 36 146 341 557 714 359
ZeroCo (CroCo) [3] 145 229 359 604 797 426 4.6 8.8 195 449 656 287
DiffTrack (HunyuanVideo [49]) | 59 220 49.1 704 803 455 | 44 182 448 70.1 828 44.1
DiffTrack (CogVideoX-2B [84)) | 62 233 512 712 799 463 | 48 194 492 736 843 463
DiffTrack (CogVideoX-5B [84]) | 6.8 259 554 749 827 492 52 205 507 739 843 469

Table 1: Quantitative comparison on the TAP-Vid datasets [19]. Video DiTs combined with
DiftTrack outperform all vision foundation models trained on single images and self-supervised models trained
on two-view images or videos for zero-shot tracking.

and processing video chunks separately disrupts direct temporal correspondence with the global first
frame. To address this, we construct each chunk to include the global first frame, maintaining a direct
temporal connection while interleaving subsequent frames to minimize large motion changes.

4.1 Experimental Settings

Implementation details and ablation studies are provided in Sec. and Sec. [FI] We evaluate
zero-shot tracking on two real-video datasets with precisely annotated tracks: TAP-Vid-DAVIS [19]
and TAP-Vid-Kinetics [19]], following [46]]. We measure the position accuracy of estimated tracks
as the percentage of predicted points within thresholds from visible ground-truth points. We adopt
five threshold levels [16] 46]: 6°,81,62,0%, 6%, corresponding to pixel distances of 1, 2, 4, 8,
and 16, respectively, and report the average accuracy across all thresholds as d;,,. Starting points are
sampled from the first frame as in [3]].



CogVideoX-5B Cross-Attention Guidance on CogVideoX-5B

Prompt: “A determined individual, ... ascends a thick, rugged rope hanging from a towering rock face. ...”

Figure 10: Qualitative comparison with baseline and CAG. CAG enhances temporal matching and
corrects motion inconsistencies in the synthesized videos.

4.2 Experimental Results

We compare our method with existing vision foundation models trained on single images [10}
[60,, 68, [75]] and self-supervised models trained on two-view images [3] or videos [6} 40 [52} 63 [83].
As shown in Tab. [T} our approach achieves superior performance on both the Kinetics and DAVIS
datasets, ultimately obtaining the highest average accuracy in d,,,. The results highlight our in-depth
analysis of temporal matching within the full 3D attention mechanism of video DiTs.

Fig. [8] shows predicted motion trajectories on the DAVIS dataset, alongside qualitative comparisons
between our method and prior approaches [60} [83]. Unlike previous methods, which struggle with
temporal dynamics and often yield inconsistent tracks, DiffTrack on CogVideoX-2B [84] produces
smoother and more accurate trajectories. Additional qualitative and quantitative results are provided
in Sec.[Gland Sec.[Hl

5 DiffTrack for Motion-Enhanced Video Generation

We extend our findings to generate motion-
enhanced videos by improving temporal corre-
spondence within full 3D attention. As illus-
trated in Fig. 0] we propose Cross-Attention
Guidance (CAG), a novel diffusion guidance
technique applied at specific layers identified
in Fig. f{b), steering video generation to-
ward motion-enhanced samples. Unlike prior
works [[11}, [41]] that require large-scale video-
trajectory training pairs, CAG requires no addi-
tional training, external conditions, or auxiliary
modules, and operates entirely within the exist-
ing diffusion framework. Zeroing Out

. . Cross-Frame Attention
Insplred by PAC.} [2], CAG simulates degraded Figure 9: Overall architecture of CAG.
motion by zeroing out selected cross-frame at-
tention maps (e.g. | = 13,17, 21 in CogVideoX-2B, based on the harmonic mean in Fig. b)), then
guides the diffusion model away from these degraded samples, promoting temporally coherent video
generation. This can be formulated as:

Ef) (Zvideo,ta Ztext, t) =€ (Zvideo,ta Ztext, t) +s- (69 (Zvideo,ta Ztext, t) - é@ (zvideo,ty Ztext, t)) ) (10)

where €g(+) is the standard noise prediction at timestep ¢, conditioned on the text. €(-) denotes the
noise prediction from a perturbed forward pass, where cross-frame attention maps A}’ in selected

layers are zeroed out to simulate motion degradation, producing At’l. s is the guidance scale, and the
final guided prediction €y (-) steers the model to denoise away from motion-degraded samples.



5.1 Experimental Settings

Further implementation and evaluation details are provided in Sec. and ablation studies are
included in Sec.[F.2] We evaluate CAG against its baselines, CogVideoX-2B and CogVideoX-5B,
using both automatic metrics and human evaluation.

For automatic metrics, we report temporal quality metrics: Subject Consistency, Background Consis-
tency, and Dynamic Degree from Vbench [38]]. Subject Consistency and Background Consistency
measure the temporal coherence of subject and background appearance, respectively. While static
scenes can achieve high scores on these metrics, we additionally calculate Dynamic Degree to quan-
tify motion dynamics. We also report a frame-wise quality metric from Vbench, Imaging Quality,
which detects frame-wise distortions.

For human evaluation, we follow the Two-Alternative Forced Choice (2AFC) protocol [6, [11} 168]],
where each rater compares a video from the baseline with a video from our method (baseline + CAG),
and selects one based on overall video quality, motion, and text-video alignment. We collect 750
responses from a total of 25 participants for each baseline.

5.2 Experimental Results

Auto. Metrics
Subject Background Dynamic Imaging
Consistency ~ Consistency ~ Degree Quality

Human Eval
Video  Motion Text
Quality  Fidelity Faithfulness

tions. CAG achieves higher scores CogVideoX-2B 1285 1499 18.56 ‘ 0.9276 0.9490 07917 0.5657

In Tab. 2] CAG outperforms the

. Method
baseline across all human evalua-

; : - CogVideoX-2B + CAG | 87.16  85.01 81.44 0.9313 09564 08235  0.6054
in Subject Consistency, Back- CogVideoX-5B 39.10 4091 30.00 09158 0.9590 06667  0.5531
CogVideoX-5B + CAG | 60.90  59.09 70.00 0.9283 09644 06863  0.6051

ground Consistency, Dynamic De-
gree, and Imaging Quality on Table2: Quantitative results of CAG. Human evaluation reports the
VBench, indicating that our guid- Ppercentage of votes.

ance improves motion dynamics while enhancing motion consistency and overall video fidelity.

In Fig. the baseline often fails to generate consistent and natural motion, resulting in physically
implausible motion (e.g. drinking beer in the first row) or blurry and disjointed appearances (e.g.
a blurred and fragmented human body in the second row). In contrast, CAG effectively corrects
these artifacts by enhancing temporal matching and motion consistency, ensuring that corresponding
physical points remain coherent across frames. More qualitative results are provided in Sec. |G|

We further compare CAG with Spatiotempo- Auto. Metrics
: : : : Method Subject Background Dynamic  Imaging
ral Sklp GU'ldan.CG (STG) [39]’ V'Vl:llCh alSO. al.mS Consistency  Consistency ~ Degree  Quality
to enhance motion without additional training. ~cogvidzeox2n 09276 09490 07917 0.5657
ioi i CogVideoX-2B +STG |  0.9263 09507 0.7777  0.6031
STG degrades the Orlglnal mOdel by SeleCthely CogVideoX-2B + CAG 0.9313 0.9564 0.8235 0.6054

skipping spatiotemporal layers (including self-
frame and text-frame attention) and then uses
the degraded model as guidance.

Table 3: Quantitative comparison between STG and
CAG.

As shown in Tab. 3] CAG outperforms STG across motion consistency, motion dynamics, and video
quality. While STG modifies both self-frame and text-frame attention and often distorts scene layout
or content, CAG only zeroes out cross-frame attention in dominant layers, enhancing motion while
preserving the original spatial structure and semantics. Moreover, STG does not analyze how temporal
correspondence emerges within video DiTs, thus requiring heuristic layer selection for each model,
whereas CAG leverages DiffTrack-based analysis to identify optimal layers for motion-enhanced
guidance.

6 Conclusion

We introduce DiffTrack, a framework for analyzing temporal correspondence in video DiTs, revealing
how these models establish temporal correspondences during video generation. Our analysis identifies
the crucial role of query-key similarities within specific layers of the full 3D attention mechanism
and shows that temporal matching strengthens during denoising. We demonstrate the practicality
of DiffTrack in zero-shot point tracking and motion-enhanced video generation, paving the way for
leveraging temporal understanding in downstream tasks and improving video generation quality.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction (Sec. (1)) clearly present the main claims, contri-
butions, and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The appendix includes the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results and assumptions are clearly stated in the main paper,
with detailed proofs presented in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides the necessary details, including architectural details,
experimental setups and evaluation protocols, in the main paper and the appendix. We will
make our code and evaluation dataset publicly available.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release the code to reproduce the main experimental results in public.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main paper Sec.d.1]and appendix provide detailed experimental setups,
including hyperparameters, dataset curation, and method implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: To ensure statistical reliability, we fixed the random seed for all experiments,
including all comparison methods, to maintain consistency and minimize random variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include the computer resources in the Appendix.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research strictly adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive and negative societal impacts of
the works in the appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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14.

Answer: [NA]

Justification: The proposed method does not involve data or models with high risk for misuse
as this is an analysis paper.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets used in this paper, including datasets and models, are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release our code and evaluation dataset in public.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper includes full instructions and relevant screenshots for human
evaluation in the appendix.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The study did not receive IRB approval as it was conducted in a setting where
such approval is not mandatory. However, potential risks were disclosed to participants
before the study began.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods and results presented in this paper do not involve the use of
large language models (LLMs) as essential components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Dataset Curation Details

In this section, we provide further details on the curation of our evaluation dataset. In Fig. [A.13)
and Fig.[A.T4] we present 50 prompts per dataset for analysis on CogVideoX-2B. Additionally, we
provide more dataset examples in Fig.[A.T5]

Curating Prompt-Video Pairs. To analyze motion trajectories in depth, we require high-quality
prompt-video pairs to ensure motion consistency and video fidelity, as suboptimal videos could
introduce noise into our analysis. To achieve this, we begin with collecting GPT-enhanced prompts
from VBench [38]], a benchmark designed for evaluating video generative models. For the object
dataset, we gather prompts from animal categories, while for the scene dataset, we collect prompts
from architecture and lifestyle categories. We further augment both datasets by generating additional
prompts using GPT-4o [1]], with VBench prompts as references, ultimately collecting 300 prompts
for both the object and scene datasets. We then synthesize videos from each prompt using video
generative models under analysis (e.g. CogVideoX-2B [84]). To simulate the generation process,
we curate a distinct evaluation dataset for each analyzed model (CogVideoX-2B [84], CogVideoX-
5B [84], HunyuanVideo [49]], and CogVideoX-2B-I2V [84]). For CogVideoX-2B [84], each video
has a resolution of 480 x 720 and consists of 49 frames. Human annotators carefully select the final
prompt-generated video pairs based on motion consistency and overall video fidelity, resulting in the
top-50 pairs for each dataset.

Generating Pseudo Ground-Truth. To evaluate temporal matching, our dataset includes pseudo
ground-truth trajectories, as no ground-truth trajectories exist for synthesized videos. We generate
these using the off-the-shelf point tracking method CoTracker [44]]. Specifically, we first define the
starting points of the trajectories in the first frame. For the object dataset, which focuses on object
dynamics, we segment the centered object using SAM [48] and sample grid points at 1/20 of the
video’s spatial resolution. For the scene dataset, where we aim to capture overall camera movement,
we uniformly sample a 10 x 10 grid across the entire frame. Using CoTracker, we obtain per-point
trajectories along with their visibility. For our analysis, we consider only points that CoTracker
estimates as visible.
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B DiffTrack on Other Video DiTs

DiffTrack is compatible with any off-the-shelf video DiT architecture. We extend our analysis
to additional DiT-based video models, including CogVideoX-5B [84], HunyuanVideo [49] and
CogVideoX-2B-12V [84].

DiffTrack on CogVideoX-5B. In Fig. we present an analysis of CogVideoX-5B using Diff-
Track. The model consists of 42 transformer layers, and we use 50 sampling timesteps for this study.
Our observations reveal that 1) query-key matching achieves higher matching accuracy compared to
intermediate feature matching (Fig.[A.T|a)), 2) a small number of layers dominate temporal matching
(Fig.[A.I](b)), and 3) temporal matching improves as noise levels decrease, with a slight drop at the
final stages of denoising (Fig.[A.T|c)). These findings are consistent with the analysis presented in
Sec.[3.4]for CogVideoX-2B.

DiffTrack on HunyuanVideo. Fig. presents additional analysis of HunyuanVideo using
DiffTrack. The model consists of 60 layers, and we use 30 sampling timesteps for this experiment.
We observe that: query-key matching outperforms intermediate feature matching (Fig.[A.2{a)), a few
specific layers play dominant roles in temporal correspondence (Fig.[A.2[b)), and temporal matching
improves as diffusion noise decreases (Fig.[A.2|c)).

DiffTrack on CogVideoX-5B-I2V. In Fig. we present further analysis of CogVideoX-
5B-I2V [84]. We observe that query—key matching outperforms intermediate feature matching
(Fig.[A3]a)), a small number of layers dominate temporal correspondence (Fig.[A.3|b)), and temporal
matching improves over diffusion timesteps (Fig.[A.3(c)).

In Tab.[A.T] we further evaluate CogVideoX-5B-

0 . . avg
12V on point tracking accuracy using the DAVIS  —5 B 36 341 714 359
dataset, and observe that it outperforms SVD, a  DiffTrack (CogVideoX-SB-I12V [B4]) | 3.9 382 690 368
U-Net-based model. HOWGVCI', CogVideoX-SB- DiffTrack (CogVideoX-5B [84]) 52 507 843 46.9
2v underperforms compared t(? its TZ_V COUn- Typle A.1: Quantitative comparison on the DAVIS
terpart, CogVideoX-5B. We attribute this to the  gataset [19].
image-to-video fine-tuning objective, which pri-
marily focuses on preserving the appearance of the first frame. This tends to produce more static
videos and weakens the temporal correspondence required for generating dynamic motion, as also
discussed in [17].
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Figure A.1: Analysis of temporal matching in CogVideoX-5B [84]. (a) Representation selection: Query-key
matching achieves higher accuracy than intermediate feature matching. (b) Layer-wise analysis: Temporal
correspondence is primarily governed by a limited set of layers. (c) Noise-level analysis: Temporal matching
improves as noise decreases but slightly degrades near the final steps.
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Figure A.2: Analysis of temporal matching in HunyuanVideo [49]. (a) Representation selection: Query-key
matching achieves higher accuracy than intermediate feature matching. (b) Layer-wise analysis: Temporal

correspondence is primarily governed by a limited set of layers. (c) Noise-level analysis: Temporal matching
improves as noise decreases.
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Figure A.3: Analysis of temporal matching in CogVideoX-5B-I12V [84]. (a) Representation selection: Query-
key matching achieves higher accuracy than intermediate feature matching. (b) Layer-wise analysis: Temporal

correspondence is primarily governed by a limited set of layers. (c) Noise-level analysis: Temporal matching
improves during denoising steps.
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C Zero-Shot Point Tracking Details

F rame 1 Frame 2 Frame 3 Frame 4 Frame 23 Frame 24 Frame 25
oy . gy = B " “!ll]l!v I A
o g 1 W “‘””' £ Tl“””' e I mmwu‘ ) IQ‘H LI 7

Frame 1 Frame 2 Frame 24 Frame 1 Frame 3 Frame 25
oy oy s LR R IV AL oy ™
MNE é T ik 1 , |ll|ma§ THIHMe ', I )¢ |1quI

o mmw b
g Jo

;VAE} ;VAE}&VAE}
] ] ]

Video Diffusion Transformer Video Diffusion Transformer
T 1] 1] T ] 1]
0l ® 02 ®” 024 ©@ ol =Y B3 ®w 0625 ©&
Qt,l K%,z Qt,l K%,l """ tl K?fl} Qt,l Kt,l Qt,l K?,l """ Qt,l K??
L A | | A |
11 ' J’, ll
¢ ¢t & . crs
P%,z l
Pi e pit Pii e il
ERLUEELImILT 0 i;:':””' f.ii:jg",nw
P%,z P?,l P?,l P?,‘lt pﬁ

Figure A.4: Overall architecture of DiffTrack for zero-shot point tracking. (a) Removing temporal compres-
sion improves point accuracy by avoiding interpolation. (b) A global first-frame is inserted into each chunk for
direct matching. (c) Interleaved chunk construction reduces the temporal gap to the first frame.

C.1 Architectural Details

Figure [A4]illustrates the overall architecture of DiffTrack for zero-shot point tracking on real videos.
In this example, a 25-frame video is divided into two chunks for visualization. We further provide a
component analysis of this architecture in Sec. [F1}

We find that temporal compression in the 3D VAE limits point accuracy due to the linear interpolation
used to reconstruct motion trajectories from latent space. To mitigate this, we set the temporal
compression ratio to ¢ = 1, establishing a one-to-one mapping between each video frame and its
latent (Fig. [A-4|(a)). This is achieved by passing each frame individually to the pre-trained VAE,
which compresses 1 + 4 f frames to 1 + f latents, where we set f = 0.

To enable direct temporal matching with the global first frame, we insert it into every chunk
(Fig.[A:4(b)). To reduce the temporal gap between the global first frame and other frames within
each chunk, we construct chunks using interleaved subsequent frames (Fig.[A.4|c)). Frames within
each chunk are sampled at uniform intervals, determined by dividing the total video length by f — 1.
Chunks slide with a stride of 1, and the matching costs for overlapping frames across chunks are
averaged.

In full 3D attention, each frame latent is projected into Q;l and Ki ;» where ¢ denotes the frame
index. With slight abuse of notation we represent the projections of the inserted global first-frame
latent in the second chunk as Qt ;, and Kt 1 For each chunk, we compute the matching cost
between the first-frame query and the key of the j-th frame (cf. Eq. (3)). To enhance performance,
following [3 13} [14], 33H37], we employ a bidirectional matching cost that additionally incorporates
the transposed inverse cost between the query of the j-th frame and the key of the first frame. This

results in Ci lj for the first chunk and Ci l’j for the second chunk. Next, we apply an argmax operation
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(cf. Eq. @) to obtain the matched correspondence points: the starting point p; ; and its match pi ,in

the j-th frame. By concatenating p{ ; across frames, we obtain the full motion trajectory.

C.2 Implementation Details

Zero-shot Point Tracking. For zero-shot tracking evaluation [5], we used the most significant
layer and timestep, identified by matching accuracy in Sec. and Sec.[Bl I = 17, t = 1 for
CogVideoX-2B, | = 16, t = 1 for for CogVideoX-5B, and [ = 16, t = 1 for HunyuanVideo. All
experiments were conducted on an A6000 GPU.

We evaluate zero-shot tracking on two real-video datasets with precisely annotated tracks: TAP-Vid-
DAVIS [19] and TAP-Vid-Kinetics [19]. DAVIS includes 30 videos with diverse object motions
and appearance variations, while Kinetics comprises 1,189 in-the-wild videos featuring rapid scene
transitions and motion blur.

Following prior work [1643}144]], we evaluate point accuracy at 256 x 256 resolution. For CogVideoX-
2B, we resize videos to 256 x 256 and then upsample to the training resolution of 480 x 720. The
resulting feature descriptors have a spatial resolution of 30 x 45, as the 3D VAE decompresses spatial
size to 1/16.

Human Evaluation. We also provide an example of human evaluation in Fig.

C.3 Comparison

We demonstrate the effectiveness of DiffTrack in zero-shot point tracking [5] by comparing it with a
diverse set of vision foundation models trained on single images and self-supervised models trained
on videos or two-view images. Below, we detail the models included in our comparison. For fair
evaluation, following [3]], we resize inputs to produce feature maps of size 30 x 45, except for
ZeroCo [3]].

Vision Foundation Models. We evaluate DiffTrack against vision foundation models, including
DINO, DINOv2, DINOv2-Reg, and DIFT (SD1.5, SD2.1).

DINO [10] is a self-supervised vision transformer that learns localized features of salient objects.
DINOV2 [60]] improves upon DINO by leveraging a larger dataset and optimized training. DINOv2-
Reg [18] introduces register tokens to further reduce attention artifacts. We use ViT-B/16 for DINO
and ViT-B/14 for both DINOv2 and DINOv2-Reg.

Stable Diffusion 1.5 (SD1.5) and 2.1 (SD2.1) [68]] are U-Net-based text-to-image diffusion mod-
els. Following DIFT [75]], we extract features from the third upsampling block to compute point
correspondence.

Self-Supervised Models. We further evaluate DiffTrack using self-supervised video models, in-
cluding SMTC, CRW, Spa-then-Temp, VFS, and SVD, as well as a self-supervised model trained
on two-view images, ZeroCo. All of these models are trained solely on videos or two-view images
without any labels.

SMTC [65]] proposes a self-supervised video model that improves semantic and temporal consistency
by training the architecture in a teacher-student manner. We use SMTC with ViT-S/16 for our
comparison.

Contrastive Random Walk (CRW) [40] trains ResNet-18 to learn temporally consistent feature
representations through cycle-consistency, maximizing the likelihood of returning to the initial points
when walking through palindromic video sequences.

Spa-then-Temp [52]] combines spatial and temporal self-supervised learning by first leveraging
contrastive learning for spatial features and then enhancing these features through hierarchical frame
reconstruction and local correlation distillation. We use Spa-then-Temp based on ResNet-50 for
comparison.

Video Frame-level Similarity (VES) [83] compares frame-level features from the same video as
positive pairs, while frames from different videos serve as negative pairs. We use VFS with ResNet-
50 for comparison.

Stable Video Diffusion (SVD) [6] is a U-Net-based text-to-video generative model extended from SD
2.1 by incorporating additional temporal layers. Following [41], we use features from the upsampler

A.6



layer of the third decoder block to calculate point accuracy. We empirically observe that query-key
matching achieves higher point accuracy than feature matching; therefore, we adopt query-key
matching in the third decoder block of SVD.

ZeroCo [3] demonstrates query-key matching in the cross-attention map within the self-supervised
cross-view completion model CroCo [3l], capturing geometric correspondence more effectively than
other correlation maps from the encoder or decoder. For comparison, we use an input size of 224 x 224
with a feature size of 14 x 14, as we empirically found that this trained resolution yields the best
point accuracy compared to other input resolutions with higher feature sizes.
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D Cross-Attention Guidance Details

Architectural Details. In Fig.[0] we present the overall architecture of Cross-Attention Guidance
(CAG). Inspired by PAG [2], which enhances image fidelity by transforming selected self-attention
maps in the diffusion U-Net into identity matrices, we extend this idea to the video DiT architecture.

In PAG, the identity matrices are created by multiplying a diagonal mask into the attention map
before the softmax operation—where diagonal elements are set to O and off-diagonal elements to
—oo. After softmax, this yields an identity matrix (diagonal values of 1, others 0), allowing values to
pass through unchanged.

A naive extension to video assigns —oo to cross-frame positions and 0 elsewhere before the softmax
operation. However, this undesirably suppresses the scale of self-frame and text-frame attention
values. To address this, we instead zero out only the cross-frame attention values after softmax in
A, producing modified attention maps At, ; that preserve all other interactions.

Implementation Details. For CAG, we used the top-3 dominant layers [ = 13,17,21 for
CogVideoX-2B and I = 15,17, 18 for CogVideoX-5B, as identified by harmonic mean in Sec.
and Fig.[A 1] Following [2]], we applied the guidance at all sampling timesteps.

Evaluation Details. We evaluate CAG against its baselines, CogVideoX-2B and CogVideoX-5B,
on VBench [38]]. We used the prompt suite provided by VBench for each evaluation dimension.

To assess temporal quality, we report three metrics: Subject Consistency, Background Consistency,
and Dynamic Degree. Subject Consistency measures whether the appearance of the main subject (e.g.
a person or an object) remains consistent across frames, computed using DINO feature similarity.
Background Consistency assesses the temporal coherence of background scenes, measured by CLIP
feature similarity across frames. While a completely static video can achieve high scores on the
aforementioned temporal quality metrics, it is essential to also evaluate the presence and magnitude
of motion. To this end, we calculate Dynamic Degree, which quantifies motion dynamics using
optical flow computed by RAFT [76].

To evaluate frame-wise quality, we report Imaging Quality, which detects frame-wise distortions
(e.g., blur, noise), computed using the MUSIQ [45]] image quality prediction model trained on the
SPAQ [22] dataset.
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E Additional Analysis

In this section, we present additional analysis of CogVideoX-2B [84] using our framework, DiffTrack.
To calculate point accuracy (PCK), we use a predefined error threshold 62 for all analyses presented
in the main paper and appendix.

Intermediate Feature Matching Query-Key Matching
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Figure A.5: Analysis of temporal matching in CogVideoX-2B with DAVIS [19] dataset. (a) Representa-
tion selection: Query-key matching achieves higher accuracy than intermediate feature matching. (b) Layer-wise
analysis: Temporal correspondence is primarily governed by a limited set of layers. (c) Noise-level analysis:
Temporal matching improves throughout the denoising process and slightly degrades near the end.

Analysis with Real Videos. In Fig. we analyze CogVideoX-2B using real videos from the
DAVIS dataset [19]. As discussed in Sec. reconstructing real videos often introduces inversion
errors due to challenges in finding accurate text prompts or discrepancies between real videos
and the training distribution.

To address this, instead of applying diffusion inversion, we add Gaussian noise to the frame latents at
each timestep ¢. Specifically, we truncate all DAVIS videos to 49 frames, excluding those shorter than
49 frames. At each timestep ¢, we add Gaussian noise corresponding to ¢ to the frame latent, pass it
through the diffusion transformer, and extract feature descriptors for analysis. Notably, this approach
is consistent with prior work [75}[86], which identifies two-frame correspondences in U-Net-based
image diffusion models.

The analysis with DAVIS in Fig.[A-3|shows a similar trend to that observed in Fig. @]using a curated
synthetic dataset. Specifically, query-key matching consistently outperforms intermediate feature
matching. Additionally, a few layers predominantly contribute to temporal matching, and these
dominant layers align with those identified in Fig. @} Temporal matching strengthens during the
denoising process, with slight drops near the end of the timesteps.

Frame 0 Frame 8 Frame 16 Frame 24 Frame 32 Frame 40 Frame 48

Figure A.6: Attention visualization comparison between intermediate feature matching and query-key
matching.

Query-Key Feature

Feature Matching vs. Query-Key Matching. Fig.[A.6|compares attention maps across timesteps,
derived from intermediate feature matching and query-key matching. We observe that query-key
matching successfully tracks physically matched points, whereas intermediate feature matching often
fails. This further supports the observation in Fig. d{a) that query-key matching yields better temporal
correspondence.

This finding is consistent with prior works [3l [57], which demonstrate that query-key similarities
include geometric cues crucial for accurate matching, whereas value warps the visual appearance
based on these similarities.
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PCA Visualization. Fig. visualizes the Principal
Component Analysis (PCA) of queries, keys, and values
across video frames. Queries and keys exhibit stronger
structural cues, with similar distributions for nearby pixels,
enabling more effective geometric matching. In contrast,
values contain high-frequency noisy appearance features,
potentially diluting structural cues for correspondence.

This analysis aligns with [3]57], which show that query-
key similarities capture structural information crucial for
accurate geometric matching, while values encode semantic
appearance information, further warped by the query-key
similarities.

Attention Visualization. Fig.[A.T7]presents cross-frame
attention maps between the first frame and subsequent
frames. In the top-ranked layers based on harmonic mean
scores (Fig.[A-T7|a)), the attention is sharp and accurately localized at the matched point. In contrast,
the bottom three layers with the lowest harmonic scores (Fig. Mb)) exhibit diffuse and scattered

attention patterns. This supports our analysis in Fig. f{b), which shows that only a few layers
contribute significantly to temporal matching.

Figure A.7: PCA visualization of queries,
keys and values.

Fig.[A.T8]illustrates how cross-frame attention evolves throughout the denoising process, revealing
that attention becomes progressively sharper at later timesteps. This observation supports our analysis
in Fig.[(c), which shows that temporal matching improves as denoising progresses.

Fig. [A19] displays the text-to-frame atten- Query-Query Matching Key-Key Matching ~ Query-Key Matching
tion maps for the query word “shark” across =z,
timesteps. As discussed in Fig. ] the atten- £%
tion evolves from coarse to fine as noise lev- if{‘(’,
els decrease, highlighting that text primarily de- € %
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Matching. Fig. [A-8] shows the matching ac-
curacy of query-query, key-key, and query-key
interactions on the object dataset. Query-key
matching achieves the highest accuracy, indicating that query-key interactions within full 3D attention
inherently learn temporal matching.

Figure A.8: Comparison of query-query, key-key, and
query-key matching.
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F Ablation Study

F.1 Zero-Shot Point Tracking

Component Analysis. Tab.[A.2]ab-

C t <& <8 <&t <6

lates the effects of temporal com- m | Omfonen | YT 26“9 £
: _ _ I Baseline . 1. . .

pr§ss19n and long term Sequer}ce han D) | (I)+ w/o temporal compression | 2.7 31.6 645 32.3

dling in zero-shot point tracking per- (1) | (1) + w/ first-frame insertion | 4.7  47.6 705  44.6

formance on DAVIS. We evaluate four (IV) | (III) + w/ interleaved frames 48 492 843 463

configurations: (I) the baseline, which . ] ]
employs temporal compression in the Table A.2_: Ablation study: anglyzmg the impact of temporal
3D VAE and sequential chunking; (II) compression and long-term handling.

the baseline without temporal compression (¢ = 1), ensuring a direct one-to-one mapping between
frames and frame latents; (III) an approach that inserts the first frame into every chunk, enabling
explicit interaction with the first frame in all chunks; and (IV) our final method, which further applies
interleaved frame construction to better handle long-term context. Compared to (I), (II) improves per-
formance by eliminating interpolation errors introduced by temporal compression. Compared to (II),
(IIT) shows a significant improvement, demonstrating the importance of direct temporal interaction
with the global first frame within each chunk. Additionally, (IV) further enhances performance by
interleaving frames within each chunk, effectively reducing the frame interval between the first and
other frames.

Impact of Feature Selection. Tab. [A-3|highlights the
effectiveness of feature selection by comparing matching
accuracy on the object dataset using three strategies: (I) () | 1 =17 te[l,50] | 1534
averaging matching costs over all timesteps at the most (1D 1ef0,29] t=1 16.69
dominant layer (I = 17), (I) averaging over all layersat ~ (II) | { =17 t=1 | 63.50
the most dominant timestep based on matching accuracy
(t = 1), and (III) using matching costs from the most Table A.3: Ablation study, analyzing the
dominant layer and timestep (! = 17, t = 1). Selecting mpact of feature selection.

optimal features significantly improves accuracy, emphasizing the value of our analysis and the
importance of feature selection for reliable temporal matching.

| Layer ()  Timestep (t) | < &°

Multi-Feature Fusion for Zero-Shot Point

. . Layer (1) Timestep () | < 6% <462 <o <52
Tracking. Prior works [31 42, 561 57, 75,86] " ey | e e
on .1ntermed.1ate (.11ffu510n features suggest that ;39708 -1 49 486 842 460
fusing multiple timesteps and layers improves | =17 t=1,2,3 49 493 850 466

semantic correspondence by leveraging the hi-
erarchical structure of diffusion representations. Table A.4: Ablation study, analyzing fusing features
Motivated by this, we investigate whether such ~2cross multiple timesteps and layers.

fusion also benefits temporal matching.

Tab. [A4] summarizes results on the DAVIS
dataset [64]. In contrast to prior findings in seman-
tic correspondence, we observe that fusing across
timesteps and layers has a negligible impact on ;?g‘ S8
point accuracy. This discrepancy arises because . )

temporal matching requires precise, pixel-level ge- 4t : .
ometric alignment to track the same physical point  (a) Query Visualization (I =17)  (b) Key Visualization (! = 17)
across frames, whereas semantic correspondence Frame 0 Frame24 Frame48  Frame O Frame 24 Frame 48
benefits from multi-scale contextual cues to match = “”"‘F"‘“’ -y !

similar regions. ¥ x
‘a . SRS

, . S T
In Fig.[A:9(a) and (b), query-key features from dif- oRd 5 4 iR
ferent timesteps exhibit high similarity, indicating M8 '&‘ a . 5
limited benefit from temporal fusion. In contrast, () Query Visualization (t=1)  (d) Key Visu
Fig.[A.9(c) and (d) show greater variation across  Figure A.9: PCA visualizations of query-key fea-
features from different layers, suggesting that the  tures across timesteps and layers.
tracking performance is primarily driven by a single
dominant layer and that layer fusion introduces noise rather than informative diversity.

Frame 0 Frame 24 Frame 48 Frame 0 Frame 24 Frame 48

PCA visualizations in Fig.[A-9] support this finding.
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!

alization (t = 1)
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(a) Reconstructed Frames by VAE Decoder (b) Attention Map Visualization

Figure A.10: Analysis of temporal compression. (a) Reconstructed frames from the VAE decoder using different
temporal compression ratios g. (b) Visualization of attention maps under different temporal compression ratios.

Temporal Compression. In Fig.[A.T0 we present decoded frames from the 3D VAE decoder and
corresponding attention visualizations for different temporal compression ratios ¢q. (a) For ¢ = 4,
the reconstructed frame is relatively blurred due to the limited expressivity of the compressed repre-
sentation, while ¢ = 1 allows each frame to be reconstructed almost perfectly without compression.
(b) The attention visualization for ¢ = 4 shows more diffuse attention, while ¢ = 1 exhibits sharper,
more focused attention. This supports our architectural design in Fig.[A4]a), which contributes to
improved point accuracy.

Starting Point # of Frames = # of Frames = 13

#Frames | <& <& <o&' <o,
2 4.4 439 771 41.7
5 4.5 463 822 443
8 4.7 479 83.8 45.5
11 4.8 485 843 46.1 .
13 48 492 843 463 5

Figure A.11: Ablation study on the Figure A.12: Attention map for different number of frames.
number of frames per chunk.

Number of Frames per Chunk. Fig. ablates matching accuracy on DAVIS using different
numbers of frames per chunk. We observe that as the number of frames increases, matching accuracy
consistently improves. This is further supported by Fig. [A12] which visualizes attention maps
across different chunk sizes, showing that longer chunks lead to sharper attention. This suggests
that multi-frame interaction enhances temporal correspondence, highlighting the role of cross-frame
attention over multiple frames within video DiTs, in contrast to image-based models [6, [86].

F.2 Motion-Enhanced Video Generation

Layer Selection. Tab.[A.5|compares the

Subject Background Dynamic Imaging

least tOp-3 and most tOp-3 dominant lay_ Method Consistency ~ Consistency ~ Degree  Quality
. _ CogVideoX-5B 0.9158 0.9590 0.6667 0.5531

ers for temporal matching (I = 30,31,32  cogvideox 3B + CAG (1 = 30.31,32) | 09147 09580 07059  0.5683
0.9283 0.9644 0.6863 0.6051

vs. | = 13,17,18) of CogVideoX-5B in  _CoeVideoX-5B+CAG (I = 1317, 15)
motion-enhanced video generation. We ob- Table A.5: Quantitative comparison of CAG applied at
serve that guiding with the most dominant ~different layers.

layers (I = 13, 17, 18) consistently improves all evaluation metrics compared to the baseline, whereas
guiding with the least dominant layers (I = 30, 31, 32) results in only marginal gains in Image Quality
and even lower performance in Subject Consistency and Background Consistency, under the same
guidance scale. These findings further support our analysis that specific layers play a critical role in
enhancing temporal consistency during generation.

Memory and Time Consumption.

Tab. [A.6] compares inference time and Meth.od : | Memory (GB) _ Time (5)

memory usage per denoising timestep gaseime (C((:’%‘(/;ldeox'ZB) 1227755 5 601(%8‘7)
: . : . aseline + . . 0

across three settings: the baseline, baseline Basoline + CFG + CAG 1284 1,59 (177%)

with Classifier-Free Guidance (CFG), and
baseline with CFG and Cross-Attention Table A.6: Memory and Time Consumption.
Guidance (CAG). While inference runtime increases due to the increase of the number of function
evaluations, CAG’s GPU memory footprint remains very similar to that of CFG since CAG simply
applies an attention mask to a few dominant layers.
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This stands in contrast to prior works [[L1, 41]], which introduce additional modules and require
training for motion enhancement. In comparison, our method is entirely training-free and operates
within the model itself via a novel guidance mechanism.
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Backbone ‘ <8 <t <8 <8 <t <o®

avg

DIFT (SD1.5) [73] 35 130 393 631 722 382
DIFT (SD2.1) [[75] 36 133 401 658 757 397
Diffusion Hyperfeatures (SD1.5) [35] 30 129 331 584 745 364
Diffusion Hyperfeatures (SD2.1) [55) 37 155 388 645 789 403
CleanDIFT (SD1.5) [72] 3.1 137 365 649 796 396
CleanDIFT (SD2.1) [72] 37 160 418 686 819 424
TLR (SD1.5 + DINOV2 (VIT-B/14)) [85] | 43 17.7 446 69.8 82.0s 43.7
DiffTrack (CogVideoX-2B [§4]) 48 194 492 73.6 843 463
DiffTrack (CogVideoX-5B [§4]) 52 205 507 739 843 469

Table A.7: Quantitative comparison on the DAVIS dataset [19].
G Additional Qualitative Results

Additional qualitative results for zero-shot point tracking and motion-enhanced video generation are

provided in Fig.[A.20]and Fig.[A.2T]
H Additional Quantitative Results

Additional quantitative results for zero-shot point tracking on the DAVIS dataset are provided in
Tab.

I Related Works

Video Diffusion Models. Early approaches [4} 16l [7, 12, 27, 147] 511,70} [82]] were primarily based
on U-Net [32,162,|68]], often achieved by inflating pre-trained image diffusion models [32, 162 |68]],
typically with separate spatial and temporal attention mechanisms. Although efficient, this separation
restricts direct frame-to-frame spatial and temporal interactions, leading to temporal inconsistency or
a lack of large motions in generated videos. Sora [54]] has demonstrated the effectiveness of Diffusion
Transformers (DiTs) [21] in increasing scalability and improving temporal coherence. Subsequent
works [25} 128} 150l 63| 169, 184! 188]], such as CogVideoX [84]], MovieGen [63], Mochil [25], and
LTX-Video [28]], have adopted the DiT architecture, achieving unprecedented performance. Unlike
U-Net-based methods, DiTs employ full 3D attention, enabling cross-frame information sharing
between frame latents as well as with text embeddings. This explicit cross-frame attention improves
temporal coherence [84]. Despite these advances, how video DiTs capture temporal correspondence
during video generation remains unexplored.

Representation Analysis in Video Diffusion Models. Recent works [41 [81] explore internal
representations in video diffusion models [6l 26, [27] for controlled video generation and improved
motion consistency but do not analyze temporal correspondence and are based on U-Nets [32} 162, 68]],
which are known to struggle with large motion. Another work [8]] explores attention control in video
DiT [84] for subject consistency in long video generation but focuses solely on text-to-video attention,
overlooking temporal matching between frames.

Exploring Correspondence in Diffusion Models. Numerous studies [31} 42} [56| 157, 59} [75]
86] have explored intermediate features from pre-trained image diffusion models [32, /62| [68] for
correspondence [[14} 158, [77) [78]. However, their analyses mainly focus on two-frame correspondence,
as image diffusion models are not designed for temporal correspondence in video sequences.

Temporal Correspondence. TAP-Vid [19]] formulates temporal correspondence in video sequences
as point tracking, aiming to estimate the motion of physical points across frames. PIPs [29] iteratively
refine estimated trajectories within temporal windows, while TAPIR [20] incorporates depthwise
convolutions and enhances initialization. CoTracker [44] jointly tracks near-dense trajectories using
spatial correlations. These methods often rely on training with synthetic datasets [19], as annotating
real-world data is highly challenging. To address this, a recent study [5] explored zero-shot tracking
with visual foundation models [[10} [18} 48,160l 66, |68]], showing promising results. However, these
analyses are limited to single-image models such as Stable Diffusion (SD) [68] and DINOv2 [60],
which process a single frame and thus lack temporal awareness.
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A vibrant honeybee, its wings shimmering in the sunlight, delicately lands on a blooming lavender flower, its tiny legs brushing against the soft ...
A vibrant forest scene unfolds as the camera gracefully moves through the lush canopy, revealing intricate bird nests nestled among the branches ...
A close-up view reveals a snail with a glistening, spiraled shell, slowly traversing a lush, dew-kissed leaf. The camera captures the intricate ...

A close-up view reveals a brown caterpillar with intricate patterns along its segmented body, slowly inching across a vibrant green leaf. ...

A majestic eagle perches on a sturdy tree branch, its sharp eyes scanning the vast landscape below. The bird's powerful talons grip the rough ...

A majestic wolf stands in a snowy forest, its thick fur a blend of grays and whites, glistening under the soft winter sunlight. The camera ...

A majestic white fox, with its pristine fur glistening under the soft glow of the moonlight, perches gracefully atop a rugged, moss-covered rock. ...
A meticulously crafted horse figurine stands majestically on a polished wooden surface, its glossy finish reflecting the ambient light. The camera ...
A close-up reveals a vibrant, shimmering fish caught in a woven net, its scales glistening with iridescent hues of silver and blue under the ...

A majestic lion stands regally on a vast expanse of golden wild grass, its mane flowing in the gentle breeze under the warm, golden glow ...

In a serene meadow bathed in the golden light of dawn, a graceful deer with a sleek, tawny coat grazes peacefully amidst a sea of ...

A majestic herd of elephants roams the vast savanna, their massive forms silhouetted against the golden hues of a setting sun. The leader, a wise ...
A detailed close-up captures a fly perched on a vibrant green leaf, its iridescent wings shimmering with hues of blue and green under the soft ...

A majestic cheetah reclines gracefully on a sun-dappled savannah, its sleek, spotted coat blending seamlessly with the golden grass. ...

A close-up shot captures a kangaroo in its natural habitat, its fur a rich blend of earthy browns and grays, as it gently scratches its ...

A majestic great blue heron stands gracefully at the edge of a tranquil lakeside, its long neck elegantly curved, and its striking blue-gray ...

A solitary seagull, with pristine white feathers and a hint of gray on its wings, gracefully strolls along the sandy shore, its slender legs ...

An American crocodile basks on a sunlit riverbank, its rough, scaly skin glistening under the warm sunlight, showcasing shades of olive and gray. ...
A curious wild rabbit with soft, brown fur and twitching whiskers sits alertly in a lush, green meadow, surrounded by vibrant wildflowers and tall ...
A majestic clouded leopard, with its distinctive dusky rosettes and elongated tail, gracefully perches on a sturdy tree branch high above the ...

An African penguin waddles gracefully across a sunlit beach, its distinctive black and white plumage contrasting against the golden sand. ...

A natterjack toad, with its distinctive olive-green skin adorned with warts and a striking yellow stripe down its back, rests on a sunlit rock. ...

In a vibrant animation, a majestic whale emerges, crafted entirely from disposable objects like plastic bottles, straws, and bags, each piece ...

A whimsical scene unfolds with intricately crafted paper cutouts, each element meticulously detailed. Two delicate hands, with visible paper ...

A vibrant pink plastic flamingo, perched on a lush green lawn, sways precariously as a gusty wind sweeps across the scene, causing its slender ...

A curious monkey sits atop a weathered stone, surrounded by lush greenery, its fur a mix of earthy browns and grays, blending seamlessly with the ...
In a dimly lit cave, a solitary bat hangs upside down from the rocky ceiling, its wings wrapped snugly around its small, furry body. ...

A sleek harbor seal glides gracefully through the crystal-clear waters near the rocky shoreline, its smooth, speckled gray coat shimmering under ...
A majestic great white shark glides gracefully through the crystal-clear ocean waters, its powerful body cutting effortlessly through the gentle ...

A majestic goat with a thick, shaggy coat and impressive curved horns stands proudly atop a rugged rock formation, its silhouette framed against a ...
A vibrant butterfly, with iridescent wings displaying a kaleidoscope of blues, purples, and oranges, delicately perches on a budding flower ina ...

A glossy, iridescent beetle slowly emerges from the golden sand, its shell glistening under the warm sunlight. The grains of sand cascade off its ...
A playful penguin chick, its fluffy gray feathers ruffled by the Antarctic breeze, waddles clumsily across the icy terrain. Each step sends tiny ...

A majestic bald eagle perches atop a jagged cliff, its talons gripping the weathered rock as the wind ruffles its pristine feathers. Its sharp ...

A curious meerkat, standing tall on its hind legs, peers across the sun-scorched sands of the African desert, its sleek fur dusted with fine ...

A majestic elk, its towering antlers crowned with strands of golden moss, stands poised at the edge of a sun-drenched meadow. Its dark eyes gleam ...
A curious red fox, its russet fur illuminated by the golden hues of dawn, stands poised on the edge of a frost-kissed meadow. Delicate puffs ...

A majestic moose, its massive antlers adorned with strands of autumn leaves, stands partially submerged in a tranquil forest pond. Ripples spread ...
A curious sea turtle, its shell dappled with hues of emerald and bronze, drifts gracefully through the clear blue waters of a vibrant coral reef. ...

A majestic gray wolf, its thick fur dusted with snow, stands atop a rugged cliff as the pale light of dawn breaks across the distant ...

A regal stag, its antlers crowned with frost-kissed leaves, stands poised atop a hill bathed in the golden hues of dawn. Its dark eyes gleam ...

A curious red fox, its russet coat vibrant against the snowy backdrop of a winter forest, peers out from behind a frost-covered pine tree. Its ...

A graceful swan, its snowy white feathers shimmering in the golden light of sunset, glides serenely across a glassy lake. Gentle ripples fan out ...

A majestic bison, its massive frame dusted with frost, stands resolutely amid the snow-covered plains of the American wilderness. Warm breath ...
A sleek manta ray, its wings spanning wide as it glides effortlessly through the azure depths of the ocean, moves with fluid grace. Sunlight ...

A vibrant green iguana, its textured scales shimmering in shades of emerald and jade, basks atop a sun-warmed rock beneath the canopy of a ...

A graceful swan surveys its surroundings in the serene lake, with shimmering wings reflecting the golden light of dawn. The scene is filled with ...
A proud stag stands motionless atop a snow-dusted hill, its antlers adorned with delicate strands of frost that glisten in the pale winter ...

A graceful white swan glides serenely across the glassy surface of a moonlit lake, its reflection shimmering with each ripple of the water. ...

A powerful wolf, its thick fur a blend of silver and charcoal, stands poised atop a rocky ledge overlooking a mist-shrouded forest. Its amber eyes ...

Figure A.13: Evaluation prompts for the object dataset. Our high-quality text prompts are curated from

existing benchmarks and generated by a large language model, followed by human annotation to ensure motion
consistency and video fidelity in the generated videos.
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A drone gracefully glides over the hauntingly silent, abandoned school building in Pripyat, Ukraine, capturing the eerie beauty of its decaying ...

A charming house front door, adorned with festive Christmas decorations, stands as the centerpiece of a cozy winter scene. The door, painted a ...

In the heart of an ancient temple, a sacred sculpture stands majestically, bathed in the soft glow of flickering candlelight. The intricate ...

A striking low-angle view captures the towering facade of a modern apartment building, its sleek glass windows reflecting the vibrant hues of the ...
A breathtaking panorama reveals an ancient Asian temple complex, nestled amidst lush green hills, with intricately carved stone pagodas and ornate ...
A breathtaking aerial view captures the iconic Stuttgart TV Tower, standing tall amidst a lush, verdant forest, its sleek, modern design ...

A breathtaking view unfolds as the camera pans upward, capturing the sky framed by towering skyscrapers. The buildings, with their sleek glass ...

A winding, unpaved road stretches through a lush, verdant landscape, flanked by towering trees with vibrant green leaves, casting dappled shadows ...
A sleek drone glides over a secluded house nestled amidst lush tropical vegetation, capturing the vibrant greens of towering palm trees and dense ...
In a dense, misty forest, towering trees surround several controlled slash piles, their flames flickering and crackling, casting a warm glow ...

In a misty, moonlit garden, a carved jack-o'-lantern with a mischievous grin sits prominently on a rustic wooden table, surrounded by an array of ...

In a tranquil meadow at dawn, the sun's golden rays pierce through a delicate spider web, intricately woven between two tall blades of grass. ...

In a serene winter forest, delicate snowflakes gently blanket the intricate branches of towering trees, creating a mesmerizing tapestry of white ...

A solitary palm tree stands tall and majestic, its slender trunk reaching skyward, crowned with a lush canopy of vibrant green fronds that sway ...

A breathtaking aerial view reveals a vast, snow-covered landscape, where enormous snow piles create a mesmerizing pattern across the terrain. The ...
A breathtaking aerial view captures the first light of dawn as it spills over majestic mountain peaks, casting long shadows across the rugged ...

A breathtaking panorama unfolds, revealing a majestic mountain range cascading into a tranquil sea, dotted with charming islets. These islets, ...

In the haunting remains of an abandoned house, vibrant green grass and resilient plants weave through cracked floorboards and crumbling walls, ...
An aerial view reveals a stunning Croatian bay, where turquoise waters gently lap against the rugged coastline, dotted with lush greenery and ...

From a breathtaking aerial perspective, the camera sweeps over a bustling cityscape, revealing a stunning array of skyscrapers piercing the sky. ...

A cozy bedroom bathed in soft morning light features a plush, king-sized bed with a tufted headboard, adorned with crisp white linens and a ...

The grand interior of a Jewish synagogue unfolds, showcasing intricate architectural details and a serene atmosphere. The space is adorned with ...
An expansive aerial view reveals the vast interior of a bustling warehouse, where rows of towering shelves are meticulously organized with a ...

In an opulent ballroom, grand chandeliers hang from the ornate ceiling, their crystal prisms casting a kaleidoscope of light across the polished ...

In a dimly lit, abandoned indoor swimming pool, the once vibrant tiles now cracked and faded, echo tales of forgotten laughter and splashes. ...
Inside the grand, decaying halls of an abandoned mansion, vibrant graffiti art covers the cracked, peeling walls, transforming the space into a ...

A cozy living room is transformed into a warm haven, featuring a plush beige sofa adorned with soft, colorful cushions, and a rustic wooden coffee ...
A cozy bedroom features a striking exposed brick wall, adding rustic charm to the space. The room is softly lit by a vintage floor lamp, ...

In a sleek, contemporary home studio, a state-of-the-art digital audio workstation sits at the center, surrounded by dual high-resolution monitors ...

A pristine bathroom bathed in soft, natural light features a sleek, modern design. The centerpiece is a freestanding white bathtub with elegant ...

A winding forest road, flanked by towering trees with lush green foliage, stretches into the distance under a canopy of dappled sunlight. ...

A cozy, sunlit kitchen with rustic wooden cabinets and a large farmhouse sink, where morning light streams through a window adorned with lace ...
A grand, indoor library with towering wooden bookshelves filled with countless books, their spines in various colors and textures, stretches up to ...
A cozy nursery bathed in soft, natural light features pastel-colored walls adorned with whimsical animal murals. A white crib with a mobile of ...
Rising from the icy expanse of Antarctica, a breathtaking ice palace shimmers like a crystalline jewel. Walls of translucent ice refract the ...

With its soaring dome and marble facade, a grand Renaissance cathedral dominates the skyline of Florence. Ornate carvings and frescoed ceilings ...
In the heart of a sun-drenched Spanish town, a historic square comes alive with vibrant energy. Encircled by whitewashed buildings with ...

Sunlight floods through large windows into a vibrant artist’s studio, illuminating canvases propped against the walls. An easel stands at the ...

Rich mahogany shelves, filled with leather-bound books, line the walls of a vintage library. A crackling fireplace casts flickering light on the ...

A minimalist home gym is equipped with sleek black dumbbells, a stationary bike, and a yoga mat laid out on the polished wooden floor. Large ...

In a bright, cheerful kitchen, the air is filled with the scent of freshly cut flowers and citrus fruits. A vase of sunflowers sits on ...

Raindrops patter gently against the window, creating a soothing backdrop to a cozy living room. A soft sofa, draped with knitted blankets and ...

A vintage study filled with leather-bound books and antique furniture exudes timeless elegance. A mahogany desk, cluttered with handwritten notes ...
A tranquil meditation room bathed in soft natural light offers a space for quiet reflection. Floor cushions in earthy tones are arranged in a ...

In a rustic workshop with exposed wooden beams and stone walls, the air is filled with the scent of freshly cut wood and sawdust. ...

Soft lighting and warm textiles create a haven of comfort in a cozy bedroom. A bed, dressed in linen sheets and a knitted blanket, rests ...

A futuristic skyscraper, with its twisting glass facade, pierces the skyline of a bustling metropolis. Its reflective surface mirrors the clouds ...

A colossal Art Nouveau opera house commands attention with its flowing, organic forms and intricate ironwork. Delicate floral motifs swirl across ...
A majestic Renaissance cathedral stands proudly in the heart of an ancient European city, its marble facade adorned with intricate carvings and ...

A grand Byzantine basilica, with its massive central dome and gilded mosaics, stands as a testament to centuries of architectural mastery. ...

Figure A.14: Evaluation prompts for the scene dataset. Our high-quality text prompts are curated from

existing benchmarks and generated by a large language model, followed by human annotation to ensure motion
consistency and video fidelity in the generated videos.
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(a) Object Dataset (b) Scene Dataset

Figure A.15: Additional examples of our curated dataset. (a) An object dataset for dynamic object-centric
videos and (b) a scene dataset for static scenes with camera motion. The dataset includes predefined starting
points in the first frame and their pseudo ground-truth trajectories, obtained using an off-the-shelf tracking
method.
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The survey comprises 10 sections with a total of 30 questions and will take approximately 5—7 minutes to complete.
In the following pages, you will be presented with pairs of videos and a text prompt.

Please choose the video you consider superior based on the following criteria:

1. Text Alignment: The degree to which the video reflects the given text.
2. Video Quality: The overall visual quality of the video.

3. Motion Fidelity: The naturalness and smoothness of motion in the video.

Video 1 Video 2

Text Prompt: A man is playing the electronic guitar, high electronic guitar.

Text Alignment:

Which video better O O

reflects the given
text prompt?

Video Quality:

Which video has O O

better overall visual
quality?

Motion Fidelity:

Which video has O O

natural and smooth
motion?

Figure A.16: An example of human evaluation. Participants are presented with a pair of videos and a text
prompt and are instructed to evaluate text alignment, video quality, and motion fidelity.
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Figure A.17: Cross-frame attention visualization across layers at timestep ¢ = 1. (a) Top-3 layers (I =
13,17,21) exhibit sharp and precise localization. (b) Bottom-3 layers (I = 8,24, 29) display diffuse and
scattered attention.

Frame 1 Frame 5 Frame 9 Frame 13 Frame 17 Frame 21 Frame 25 Frame 29 Frame 33 Frame 37 Frame 41 Frame 45 Frame 49

t=50

36 t=43

t=1 8 t=29

t=22

Figure A.18: Cross-frame attention visualization across denoising timesteps at layer [ = 17. Attention
progressively sharpens and localizes throughout denoising (t = 50 to 1).
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Figure A.19: Text-to-frame attention visualization for the word ‘“‘shark” across denoising timesteps at layer
I = 17. Attention evolves from coarse to fine throughout denoising (¢ = 50 to 1), indicating that the text prompt
primarily guides the global semantic layout in early timesteps.
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Figure A.20: Additional qualitative comparison for zero-shot point tracking. Our method produces smoother
and more accurate trajectories compared to VFS [83]], which struggle with temporal dynamics and often yield
inconsistent tracks.

A.20



CogVideoX-5B Cross-Attention Guidance on CogVideoX-5B

la

Prompt : “A raccoon is playing the electronic guitar.”

Prompt : “A motorcycle cruising along a coastal highway.”

Prompt : “A person playing guitar”

Figure A.21: Additional qualitative results on motion-enhanced generation with CogVideoX-5B. Our
sampling method, CAG, produces videos with improved motion consistency.
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J Broader Impact

DiffTrack advances the understanding of temporal correspondence in video diffusion transformers
(DiTs), enabling applications such as zero-shot tracking and motion-enhanced video generation.
These capabilities can benefit diverse downstream tasks, including point tracking [[16} 43| 44]], 4D
point tracking [[15]], and motion-manipulated video generation [24].

However, DiffTrack’s ability to enhance video quality may raise ethical concerns if misused to create
misleading or fake content. It is essential to ensure that advancements from DiffTrack are applied
responsibly, especially in video synthesis and manipulation.

K Limitations

DiffTrack relies on pre-trained video diffusion transformers (DiTs), meaning that advancements in
video backbones could enhance its performance, resulting in more accurate tracking and coherent
motion generation.

While DiffTrack effectively analyzes temporal correspondences and improves motion consistency, it
does not currently support motion manipulation—direct control of video synthesis with user-defined
motion trajectories. Extending DiffTrack for motion-conditioned video generation is a potential
future direction.

Furthermore, DiffTrack performs zero-shot point tracking without fine-tuning on specific datasets.
Incorporating fine-tuning could further improve real-world performance, which we plan to explore in
future research.
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