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Abstract

In this paper, we present DetKDS, the first frame-
work that searches for optimal detection distil-
lation policies. Manual design of detection dis-
tillers becomes challenging and time-consuming
due to significant disparities in distillation be-
haviors between detectors with different back-
bones, paradigms, and label assignments. To
tackle these challenges, we leverage search al-
gorithms to discover optimal distillers for ho-
mogeneous and heterogeneous student-teacher
pairs. Firstly, our search space encompasses
global features, foreground-background features,
instance features, logits response, and localiza-
tion response as inputs. Then, we construct omni-
directional cascaded transformations and obtain
the distiller by selecting the advanced distance
function and common weight value options. Fi-
nally, we present a divide-and-conquer evolution-
ary algorithm to handle the explosion of the search
space. In this strategy, we first evolve the best
distiller formulations of individual knowledge in-
puts and then optimize the combined weights of
these multiple distillation losses. DetKDS auto-
mates the distillation process without requiring
expert design or additional tuning, effectively re-
ducing the teacher-student gap in various scenar-
ios. Based on the analysis of our search results,
we provide valuable guidance that contributes
to detection distillation designs. Comprehen-
sive experiments on different detectors demon-
strate that DetKDS outperforms state-of-the-art
methods in detection and instance segmentation
tasks. For instance, DetKDS achieves significant
gains than baseline detectors: +3.7, +4.1, +4.0,
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Figure 1. Illustration of DetKDS. Our DetKDS presents the first
distiller search framework for different teacher-student pairs. Our
search space consists of extensive input knowledge, advanced trans-
formations, distance functions, and loss weights, encompassing
almost excellent detection distillation methods (e.g., FGD (Yang
et al., 2022a), Defeat (Guo et al., 2021), GID (Dai et al., 2021),
LD (Zheng et al., 2022), PKD (Cao et al., 2022)).

+3.7, and +3.5 AP on RetinaNet, Faster-RCNN,
FCOS, RepPoints, and GFL, respectively. Code
at: https://github.com/lliai/DetKDS.

1. Introduction
Object detection plays a crucial role in vision tasks (Gir-
shick et al., 2014; Girshick, 2015; Ren et al., 2015; He
et al., 2017), including autonomous driving, security mon-
itoring, and pedestrian detection (Sun et al., 2021; Cao
et al., 2023b;a). However, the computational complexity
and resource requirements of these detectors present chal-
lenges for real-time deployment on devices with limited
capabilities (Cao et al., 2019). To address this, knowledge
distillation (KD) (Hinton et al., 2015) has emerged as a
promising way for enhancing smaller student detectors via
information from larger, more powerful teacher detectors.
This transfer of knowledge allows the student detectors to
achieve comparable performance while being more efficient
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in computation and memory usage.

Knowledge distillation for object detection faces greater
challenges than for general tasks (e.g., image classifica-
tion) due to the added complexities of localization (Zheng
et al., 2022). Successful detection requires not only accu-
rate instance classification and localization, but also pre-
cise foreground-background context modeling (Guo et al.,
2021). To address this, some detection distillation methods
focus on localization knowledge and decoupled foreground-
background processing. However, designing optimal dis-
tillation strategies remains challenging due to several fac-
tors. (1) Heterogeneous detectors: detection architectures
are diversifying with different backbone networks (e.g.,
CNNs, ViTs), detection paradigms (e.g., one-stage, two-
stage), and labeling schemes (e.g., anchor-based and anchor-
free). These different teacher-student detectors perform
differently in localization, categorization, and foreground-
background learning. While some works attempt to address
this problem, they always need to add extra structure or lack
generality. (2) Balancing multiple losses: detection distilla-
tion involves new losses like instance and localization that
expand the loss function space. However, the performance
of detection distillation is sensitive to the weight settings
of these losses (Zhang & Ma, 2021). Thus, effectively op-
timizing multiple losses in detection is a critical challenge.
(3) Reliance on expert design: selecting appropriate distiller
types and debugging hyperparameters for object detection
distillation heavily relies on domain expertise. This limits
general applicability and scalability to new scenarios and
models. These challenges raise two key questions: (1) How
to find optimal distillation settings for diverse detectors
adaptively? (2) Can we minimize expert involvement and
efficiently discover optimal KD recipes?

For the first question, based on empirical investigations,
some interesting findings come to light: (1) Some trans-
forms and distance functions benefit distillation gains. For
example, channel normalization allows simple MSE loss
to work with heterogeneous detectors (Cao et al., 2022).
(2) Combining advanced distillation operations can create
stronger distillers. Our trials show that cascading atten-
tion and normalizing transforms can bring added gains than
PKD (Cao et al., 2022) on RetinaNet-R50. (3) Combina-
tions of some common values can balance multiple losses
well. These observations inspire us to assemble useful trans-
forms, distance functions, and loss weights and explore
their optimization. However, how can we efficiently solve
this combination problem? Recent AutoML approaches
(e.g., Auto-KD (Li et al., 2023b)) present a promising so-
lution: building a vast search space encompassing options
and searching for optimal distillers. However, there are
three drawbacks for Auto-KD on detection tasks: (1) Auto-
KD only searches on the classification task and transfers
to the detection task. Numerous task-customized AutoML

Figure 2. Left: Results of different distilled detectors. Right: Re-
sults of RetinaNet distilled with different teacher detectors.

methods (Chen et al., 2020) point out that directly search-
ing on the target task is superior to transferring from other
tasks. For example, DetNAS (Chen et al., 2019) directly
searches the detection backbone and achieves clear gains
with similar methods in classification NAS. (2) Auto-KD
only searches for general knowledge (i.e., global features
and logits) as inputs. Many detection distillation meth-
ods argue that distilling on detection-related knowledge
(e.g., foreground-background, instance features) is superior
to generalized knowledge. For example, GID (Dai et al.,
2021) follows relation distillation but works on instance fea-
tures. (3) Auto-KD’s small search space makes it difficult to
transfer to complex detectors for satisfactory performance.
Meanwhile, Auto-KD only searches small datasets, and its
search strategy is not flexible and efficient enough to handle
large-scale detection tasks. These limitations demonstrate
that detection distillation search is a new research track. and
encourage us to develop new task-related search space &
strategies to solve them.

Based on the above analysis, we introduce DetKDS, the
first automated framework to discover the best distillation
settings for different detectors without manual design. De-
tKDS develops extensive search spaces and efficient search
algorithms to automate the process of knowledge distilla-
tion in object detection. For the search space, we involve
task-customized features and response knowledge as inputs,
including global features, foreground-background features,
instance features, logits response, and localization response.
Then, various options in transform operations, distance func-
tions, and loss weights construct our specific space. For
feature inputs, we cascade the attention-based, scale-based,
and normalize-based options in different dimensions as the
transforms. Advanced distance options like ℓPearson, and
ℓSSIM distance and common weight values are leveraged
for feature losses. For response inputs, we opt for some
customized options like ℓG−IoU , and ℓC−IoU distance in
distilling localization information. This extensive search
space covers over 30,000 candidates, encompassing existing
excellent distillation methods and designs. We divide the
task of challenging full distillation configuration search into
two sub-tasks, i.e., individual distillation loss search and
combined weight optimization for multiple losses. In this
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way, we can more efficiently identify the best single distiller
and directly transfer it to a different detector to save the
search cost. Furthermore, DetKDS incorporates evolution-
ary algorithms to enable effective exploration of the search
space and helps discover potential distillation configurations.
To accelerate the search process, DetKDS employs proxy
settings and loss-rejection protocol for faster convergence
and search efficiency. Finally, we train the student detectors
using the discovered distiller without extra manual design
and tuning.

Extensive experiments are conducted to elaborate on the
effectiveness of DetKDS. On different detectors with varied
backbones, our DetKDS achieves state-of-the-art perfor-
mance among detection KD methods (see Figure 2). For
example, using DetKDS, the AP of Faster-RCNN is ele-
vated from 38.4 to 42.5 (+4.1) and RetinaNet from 37.4 to
41.1 (+3.7), benefiting from enhanced knowledge transfer.
For anchor-free detectors, DetKDS improves FCOS with a
remarkable +4.0 AP boost and RepPoints with a substantial
+3.7 AP gain. These results demonstrate the effectiveness
of DetKDS across various models. Based on the search
results, we derive guidances for KD designs: (1) Global and
instance feature distillations outperform other distillations.
(2) Channel attention and normalizationN,C are the favored
transforms. (3) Simple distance functions and loss weights
ranging from 0.1 to 10 are sufficient for distillation. To sum
up, our paper makes the following contributions:

• We present DetKDS, the first distillation search frame-
work for homogeneous and heterogeneous detector
pairs. Our DetKDS allows universal gains of different
detectors and frees from expert design and tuning.

• We build the first detection distiller search space, in-
cluding extensive knowledge inputs, advanced trans-
forms, distance functions, and loss weights. We de-
velop divide-and-conquer evolution and acceleration
strategies to efficiently achieve the best solutions.

• Comprehensive experiments verify that DetKDS can
achieve state-of-the-art performance on different detec-
tors (e.g., two-stage, one-stage, anchor-free). We also
summarize guidances for detection distiller design.

2. Related work
Knowledge Distillation (KD) (Dong et al., 2023a) is exten-
sively uesed for classification tasks using techniques like
logits mimicking (Li & Jin, 2022), and feature imitation (Xi-
aolong et al., 2023). On detection tasks, two-stage detec-
tors (Girshick et al., 2014) use the RPN for proposal genera-
tion, while one-stage detectors (Lin et al., 2017) directly pre-
dict classification scores and bounding boxes. Anchor-based
one-stage detectors (Tian et al., 2019) rely on dense anchor

Table 1. Summary of recent SOTA detection distillation methods.
Method KD op types KD loss types Algorithm note

GID (2021) relation-based Lins+Llogits+Lloc instance relation distillation
FRS (2021) attention-based Lglobal+Llogits+Lloc feature-richness score to select key features
FKD (2021) attention-based Lglobal+Lfbgb attention-guided and non-local distillation
Defeat (2021) decoupled-based Lglobal+Lfbgb+Llogits+Lloc decoupled features
PKD (2022) normalize-based Lglobal imitate features via pearson correlation
LD (2022) location-based Lglobal+Lloc localization representation of bounding box
FGD (2022a) attention-based Lglobal+Lfbgb separates fbgb, global relation distillation
SKD (2022) SSIM Lglobal structural similarity for feature importance

boxes for detection, while anchor-free detectors (Tian et al.,
2019) predict center points without predefined anchors. Dis-
tilling these detectors needs to address the challenges posed
by different types of detectors and region-level location
regression & classification. Thus, in contrast to general
distillation, detection distillation develops as a new and vital
research track. As summarized in Table 1, these methods
favor distilling in task-related knowledge (e.g., instance
features) and advanced distillation operations (e.g., atten-
tion mechanisms). For example, DeFeat (Guo et al., 2021)
proposes to decouple the foreground and background fea-
tures for distillation and FGD (Yang et al., 2022a) tries
global relational distillation and tried different distillation
operations for foreground-background features. However,
manual design and tuning for distillers on large-scale and
complex detection tasks are challenging. Compared to these
handcrafted methods (Cao et al., 2023c), our DetKDS fo-
cus on searching with full distillation configurations for
different detectors. In contrast to Auto-KD methods (Li
et al., 2023b;a) on classification tasks, our DetKD searches
directly on detection tasks and involves different search
spaces with task-customized knowledges & operations (see
Table 2 & 3) and efficient search strategies (see Table 4).

3. Methodology
3.1. Detection Distiller Search Space

Unified DetKD optimization objectives. Detection distil-
lation aims to minimize disparities between features fT &
responses pT of teacher and features fS & responses pS
of student. As shown in Figure 3, DetKDS unifies most
detection distillation methods into one search space, with
the total loss L as follows:

L = Lorig+Lglobal+Lfgbg+Lins+Llogits+Lloc, (1)

where Lorig is the original task loss for detectors. Lglobal,
Lfgbg, and Lins are feature KD losses on global fea-
tures, foreground-background features, and instance fea-
tures. Llogits and Lloc are logits and localized distillation
losses on the prediction heads. We extract the global hier-
archical feature of teacher-students for Lglobal, which can
be easily applied to different detectors. For Lfgbg , we set a
binary mask to separate foreground the background features
generated by the ground-truth boxes. Similarly, we use the
ground-truth boxes as cropping to obtain instance features.
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Figure 3. Overview of the detection distillation search framework of our DetKDS. We search the best transform, distance, and loss weight
options to create comprehensive task-customized distillation strategies, including distillation of global feature, foreground-background
(fgbg) feature, instance feature, logits responses, and localization responses between teacher-student detectors.

Their detailed formulation is defined as follows:

L{global,fgbg,ins} = Wf ×Df

(
Tf1

〈
Tf2

〈
Tf3

〈
fS , fT

〉〉〉)
,

(2)
where Wf is the loss weighted factor, and Tf is feature trans-
formations.

〈
·, ·
〉

means to perform the same operation on
two primitives. We assign three transform options as Tf1→
Tf2 → Tf3 for the transformation part to ensure effective
processing of the feature knowledge. Df (·, ·) as distance
function measuring the difference of feature representations.
For response knowledge, we use the classification and local-
ization outputs for response distillation, as:

L{logits,loc} = Wp ×Dp

(
Tp

〈
pS , pT

〉)
, (3)

where Wp is loss weight, Tp is response transformations,
and Dp(·, ·) is distance function measuring the difference of
responses. Note that we follow the same LD implementa-
tion (Zheng et al., 2022) to capture the localization outputs.

Search space options. Our search space includes vari-
ous advanced options for the transformation and distance
functions, the common values of loss weights. Specifi-
cally, for feature knowledge, different detectors tend to have
large distributional differences. Therefore, we assign three
cascade transform options as attention-transform→scale-
transform→normalize-transform for the transformation part
to ensure effective processing of the input knowledge. As
shown in Table 2, we opt to perform attention transforma-
tions for feature fN,C,H,W in the channel C and spatial
HW dimensions, as:

Tcatt = HW × ψ(fC)× f, Tsatt = C × ψ(fHW )× f, (4)

where ψ stands for softmax function. In addition, local and
multi-scale features are important for detection tasks (Li
et al., 2020; Pengguang et al., 2021), so we consider local

Table 2. Options for detection distillers in DetKDS.

Feature knowledge

Transform
attention-based: satt, catt,mask
scale-based: scale1,2,4, local1,2,4
normalize-based : normHW,C,N,Min−max

Distance ℓsmooth1, ℓ1, ℓ2, ℓKL, ℓCosine, ℓPearson, ℓSSIM

Weight 0.1, 0.5, 1, 2, 5, 8, 10

Logits response
Transform normN,C,Min−max, reshapeN,C

Distance ℓSmooth l1, ℓ1, ℓ2, ℓKL, ℓCosine, ℓPearson, ℓCor

Weight 0.1, 0.5, 1, 2, 5, 8, 10

Localization response
Transform softmaxN,C , pow2, sigmoid

Distance ℓIoU , ℓC−IoU , ℓE−IoU , ℓG−IoU , ℓD−IoU

Weight 0.1, 0.5, 1, 2, 5, 8, 10

and dimensional transformations for different dimensions:

Tscale−n = fN,C,H/n,W/n, Tlocal−n = fn2×N,C,H/n,W/n,
(5)

where the scale transform is implemented via pooling, and
the local transform treats various local region features as
different samples. Finally, we consider the normalization
operation on {N,C,HW} dimensions:

Tnorm{N,C,HW} = (f{N,C,HW}−µ{N,C,HW})/σ{N,C,HW},
(6)

where µ and σ represent the mean and standard deviation. In
addition, we consider some desirable distance functions with
common loss weights as options (see Table 2). For response
knowledge, we employ a single transform from different ac-
tivation and normalization options. Considering differences
between logits and localization response, we individually
configure the logits distance options (e.g., ℓPearson ) and
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Algorithm 1 Divide-and-conquer Evolution in DetKDS
Input: Search space S, population P , max iteration T , sample ratio r, sampled pool R, topk k.
Output: Distiller with highest validation AP score.

1: for L = Lglobal, Lfgbg, Lins, Llogits, Lloc do
2: P0 := Initialize population(Pi); Sample pool R := ∅;
3: for i = 1, 2, . . . ,T do
4: Clear sample pool R := ∅;
5: Randomly select R ∈ P ;
6: Parent Gp

i := RandomSelect(Gik) where Gik := GetTopk(R, k);

7: Mutate Gm
i := MUTATE(Gp

i );

8: Randomly Sample E;
9: Compare E with Gm

i and append better distiller to P ;

10: Remove the distiller with lowest validation AP score.
11: end for
12: end for
13: P1 := Random sample population(N ,S);
14: for Candidates{Wi} ∈ W do
15: Get W1Lglobal + W2Lfgbg + W4Lins + W4Llogits + W5Lloc;

16: Get validation AP score ;
17: Crossover and mutation Wi .
18: end for

localization distance options (e.g., ℓG−IoU and ℓD−IoU ).
ℓIoU , ℓG−IoU and ℓD−IoU differ in optimizing the localiza-
tion response of the teacher-student detectors.

Novelty of our search space. (1) Comprehensive. De-
tKDS not only considers common distillations in global
features and logits responses but also involves task-specific
distillations (e.g., foreground-background and localization)
in detection tasks. As shown in Table 3, DetKDS contains
many task-related KD designs including various transforms
and distances. (2) Innovative: Our DetKDS not only in-
cludes many existing detection distillation methods but also
extends the advanced operations to omni-dimensions and
new combinations. For example, we scale the normalize op
to {N,C,HW} dimensions, and most of our combined ad-
vanced transformations and distance functions are different
from previous forms. Please see Appendix Sec. D for more
details of our search space.

3.2. Divide and Conquer Evolution Search

Divide-and-Conquer. Different from the naive strategy of
Auto-KD that takes distiller search as a whole problem, we
develop a novel divide-and-conquer strategy in Alg. 1 by
making use of the modular nature of the search space. We
provide analyses to confirm that our divide-and-conquer
strategy offers theoretical advantages regarding effective
search space exploration, convergence guarantees, and com-
putational complexity:

The overall distillation search space is modeled as a high-
dimensional discrete space Ω, where each point ω ∈ Ω
represents a specific policy configuration. The goal is to
find the optimal policy ω∗ that minimizes the loss function
L(ω):

ω∗ = argmin
ω∈Ω

L(ω) (7)

DetKDS employs a divide-and-conquer strategy by breaking
Ω into subspaces Ω = Ω1 ×Ω2 × ...×Ωm, where each Ωi

corresponds to the search space for an individual knowledge
component (e.g. global features, instance features). Theo-
retically, this decomposition can improve convergence rates.
If the search on each Ωi is modeled as an absorbing Markov
chain with stationary distribution πi and hitting time Hi to
ωi , then the overall hitting time H to ω satisfies:

E[H] ≤
∑
i

E[Hi] (8)

Assuming each |Ωi| = n and |Ω| = nm, this divide-and-
conquer reduces the complexity from O(nm) to O(m · n).
Furthermore, the decomposition can provide better approxi-
mation guarantees by avoiding high dimensionality issues.
If each L(ωi) has approximation ratio αi, the overall L(ω∗)
is within a factor

∏
i αi of the global optimal, which is

tighter than evolving the full Ω directly. These analyses of
the convergence rates clearly demonstrate how our DetKDS
effectively explores the vast search space and facilitates the
transfer of knowledge between different detectors. These
theoretical guarantees complement the empirical results and
provide a deeper understanding of the optimization advan-
tages offered by our search methodology.

Evolution production and acceleration. Firstly, we search
in parallel for the optimal distillation configuration for the
single input. During the search, our algorithm evolves the
population over generations using genetic operators such
as selection, crossover, and mutation to generate better val-
idation of AP results as fitting objectives. After obtaining
the best individual KD functions, we additionally search for
their combined weights to different detectors. In addition,
we employ several strategies to accelerate the search space:
(1) Distiller filter. We will filter out candidates with ex-
cessive loss values (>100 & nan) during search. (2) Proxy
settings. We only adopt 20% subsets for searching and early
stop the validation process once the student model performs
well enough to determine the quality of the candidates. This
strategy improves search efficiency and guarantees strong
correlation and true performance (see Appendix Sec. A.1).

Advantages of our search algorithm can be summarized
as: (1) Effective. Our search space includes more than
30,000 candidates and many weak solutions. Our divide-
and-conquer manner effectively shrinks the search space and
allows for easy procedure refinement. For example, we can
remove some weak losses that are difficult to optimize from
our combined search. (2) General. Because we divide the
search object into sub-parts, we can avoid some repeating
searches by transferring some excellent losses for different
detectors. As shown in Table 5, we observe that the Lglobal
(catt → scale2 → normN ) can generalize well to different
student pairs. (3) Efficient. During the search process,
our bag of acceleration strategies achieves at least 100×
speed-ups in the process.

Comparison with Auto-KD. Our DetKDS differs from
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Table 3. Comparison of search space for DetKDS with Auto-KD.
Methods Space size Knowledge Typical T ops Typical ℓ ops Included KDs

Auto-KD 2,000 Lglobal,Llogits mask ℓ2, ℓGram SP, ICKD, CWD

DetKDS 30,000
Lglobal,Lfgbg ,Lins normHW,C,N ℓPearson, ℓSSIM FGD, PKD, GID, LD
Lins,Llogits softmaxN,C ℓG−IoU , ℓD−IoU Defeat, FKD, PGD

Table 4. Comparison of search alg. for DetKDS with Auto-KD.
Methods Search task Det-distiller Search alg. Typical strategy

Auto-KD classification transfered MTCS None

DetKDS detection auto-search Evolution divide-and-conquer

Auto-KD (Li et al., 2023b) in: (1) Search space. As shown
in Table 4, DetKDS constructs a tailored search space,
including inputs like foreground-background features, in-
stance features, localization responses, etc., and specialized
operations like local/multi-scale ops and advanced distance
metrics like IoU-based losses - all tailored specifically for
localization and detection tasks. As a result, our search
space covers more existing detection distillation methods
than Auto-KD. (2) Search tasks. As shown in Table 4, our
method directly searches on the detection task, while Auto-
KD only searches for classification. DetKDS Handling
diverse detectors and architectural variations than Auto-
KD. Object detection datasets/models are typically more
complex and larger-scale compared to Auto-KD. DetKDS
employs proxy settings and evolutionary search strategies
to efficiently navigate this large search space of complex
object detectors. (3) Search algorithms. DetKDS uses a
novel divide-and-conquer strategy to first search individual
distillation losses before combining them - a technique moti-
vated by the unique challenges of balancing multiple losses
(global, instance, localization, etc.) in detection distillation,
which is not in Auto-KD. For search engines, we employ
more flexible and efficient evolutionary search compared to
Monte Carlo tree search of Auto-KD.

3.3. Search Result Analysis

Table 5 presents searched distillers for different detectors. In
addition, we provide stripping experiments for individually
searched losses in Table 11 and extensive experiments on
homogeneous and heterogeneous student-teacher pairs in
Table 7, 9 and 8. By analyzing these extensive results, we
can summarize some practical guidance for distillers design
and tuning on object detection.

For various types of knowledge: In our experiments of
Table 11, global distillation and instance distillation enjoy
superior performance than other losses. Response distilla-
tions are weaker than feature distillations on detection tasks,
consistent with other work’s findings (Huang et al., 2022).

For different distillation options: We can derive several
interesting common patterns from the specific forms in Ta-

Table 5. Detailed forms of found distillers of DetKDS.

Input Transform T Distance ℓ

Two-stage detectors
Lglobal catt → scale2 → normN ℓl1
Lfgbg catt → normC ℓSmooth l1
Lins mask → scale1 → normC ℓ
Llogits softmaxC ℓPearson
Lloc sigmoid ℓC-IoU

One-stage detectors
Lglobal catt → scale2 → normN ℓl1
Lfgbg local4 → normHW ℓl1
Lins catt → scale1 → normC ℓSmooth l1
Llogits normbatch ℓPearson
Lloc sigmoid ℓC-IoU

Anchor-free detectors
Lglobal catt → scale2 → normN ℓl1
Lfgbg mask → scale1 → normC ℓl1
Lins satt → scale4 → normN ℓl1
Llogits normbatch ℓl2
Lloc sigmoid ℓE-IoU

ble 5. For feature transformations, channel attention, scale
operations, and normalization in {N,C} dimensions are
commonly employed options. Similarly, sigmoid and batch-
wise normalization are always adopted for the response
transformation. For the distance function, we observe that
some simple options (e.g., ℓl1) can be generalized to differ-
ent detectors. This could be attributed to that our transfor-
mation part already deals with knowledge well, and these
easily optimizable distance functions are always selected in
our frameworks. In addition, ℓC−IoU and ℓE−IoU are more
suitable for localization distillation. For the loss weights,
we can pick the optimal solution from a range of 0.1 to 10.

Generalization of distillers: If the searched distillers can
be effectively applied to different detectors, it becomes
highly meaningful as it eliminates the need for additional
search efforts. We find that our searched distillers for
Lglobal, Llogits, and Lloc have the same or similar forms
for different detectors. In contrast, the search results of
Lfgbg and Lins are dissimilar, which may be related to the
properties of the detectors.

Take-home messages: In summary, we can create distillers
for new detectors using feature knowledge as inputs. These
functions involve transformations like channel attention,
scaling, and normalizationN,C . We can use simple distance
functions and choose loss weights between 0.1 ∼ 10.

4. Experiments
In this section, we first perform extensive experiments to
evaluate the efficiency of our DetKDS in distilling homo-
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Table 6. Comparison with state-of-the-art object detection KD
methods on COCO val set. Results of other methods are refer-
enced from their original results. DetKD (feature) refers to DetKD
with L{global,fgbg,ins}. DetKDS report best results of DetKD
with L{global,fgbg,ins} or L{global,fgbg,ins,logits,loc}.

Method AP AP50 AP75 APS APM APL

Two-stage detectors
Faster RCNN-R101 (T) 39.8 60.1 43.3 22.5 43.6 52.8
Faster RCNN-R50 (S) 38.4 59.0 42.0 21.5 42.1 50.3
FitNets (2014) 38.9 (0.5↑) 59.5 42.4 21.9 42.2 51.6
GID (2021) 40.2 (1.8↑) 60.7 43.8 22.7 44.0 53.2
FRS (2021) 39.5 (1.1↑) 60.1 43.3 22.3 43.6 51.7
FGD (2022a) 40.4 (2.0↑) - - 22.8 44.5 53.5
PKD (2022) 40.5 (2.1↑) 60.9 44.4 22.6 44.8 53.1
Auto-KD (2023b) 40.1 (1.7↑) 60.6 43.7 22.7 44.0 52.8
DiffKD (2023b) 40.6 (2.2↑) 60.9 43.9 23.0 44.5 54
DetKDS 41.0 (2.6↑) 61.6 45.0 24.5 45.6 53.7
DetKDS (feature) 40.6 (2.2↑) 60.8 44.1 22.9 44.8 53.5

One-stage detectors
RetinaNet-R101 (T) 38.9 58.0 41.5 21.0 42.8 52.4
RetinaNet-R50 (S) 37.4 56.7 39.6 20.0 40.7 49.7
FitNets 37.4 (0.0↑) 57.1 40.0 20.8 40.8 50.9
GID (2021) 39.1 (1.7↑) 59.0 42.3 22.8 43.1 52.3
FRS (2021) 39.3 (1.9↑) 58.8 42.0 21.5 43.3 52.6
FGD (2022a) 39.6 (2.2↑) - - 22.9 43.7 53.6
Auto-KD (2023b) 39.5 (2.1↑) 58.5 42.4 22.8 43.5 53.3
DiffKD (2023b) 39.7 (2.3↑) 58.6 42.1 21.6 43.8 53.3
MasKD (2023a) 39.8 (2.4↑) 59.0 42.5 21.5 43.9 54.0
DetKDS 40.2 (2.8↑) 59.5 43.0 22.6 44.3 53.4
DetKDS (feature) 39.8 (2.4↑) 58.7 42.8 21.8 43.8 53.5

One-stage detectors
GFL-R101 (T) 44.9 63.1 49.0 28.0 49.1 57.2
GFL-R50 (S) 40.2 58.4 43.3 23.3 44.0 52.2
FitNets (2014) 40.7 (0.5↑) 58.6 44.0 23.7 44.4 53.2
Defeat (2021) 40.8 (0.6↑) 58.6 44.2 24.3 44.6 53.7
FGFI (2019) 41.1 (0.9↑) 58.8 44.8 23.3 45.4 53.1
FGD (2022a) 41.3 (1.1↑) 58.8 44.8 24.5 45.6 53.0
GID (2021) 41.5 (1.3↑) 59.6 45.2 24.3 45.7 53.6
SKD (2022) 42.3 (2.1↑) 60.2 45.9 24.4 46.7 55.6
LD (2022) 43.0 (2.8↑) 61.6 46.6 25.5 47.0 55.8
PKD (2022) 43.3 (3.1↑) 61.3 46.9 25.2 47.9 56.2
DetKDS 43.7 (3.5↑) 62.1 47.4 26.9 48.0 56.2
DetKDS (feature) 43.7 (3.5↑) 62.1 47.4 26.9 48.0 56.2

Anchor-free detectors
FCOS-R101 (T) 40.8 60.0 44.0 24.2 44.3 52.4
FCOS-R50 (S) 38.5 57.7 41.0 21.9 42.8 48.6
FitNets (2014) 39.9 (1.4↑) 58.6 43.1 23.1 43.4 52.2
GID (2021) 42.0 (3.5↑) 60.4 45.5 25.6 45.8 54.2
FRS (2021) 40.9 (2.4↑) 60.3 43.6 25.7 45.2 51.2
FGD (2022a) 42.1 (3.6↑) - - 27.0 46.0 54.6
Auto-KD (2023b) 42.0 (3.5↑) 60.4 45.5 25.9 45.8 54.4
DiffKD (2023b) 42.4 (3.9↑) 61.0 45.8 26.6 45.9 54.8
DetKDS 42.5 (4.0↑) 60.9 46.1 25.7 46.7 54.1
DetKDS (feature) 42.3 (3.8↑) 60.8 45.6 26.1 46.2 54.7

Table 7. Comparison with state-of-the-art object detection KD
methods on DETR detectors..

Method AP APS APM APL

Deformable DETR-R101 (T) 45.5 27.5 48.7 60.3
Deformable DETR-R50 (S) 44.1 27.0 47.4 58.3
FGD (2022a) 44.1 (+0.0↑) 25.9 47.7 58.8
MGD (2022b) 44.0 (-0.1) 25.9 47.3 58.6
DetKDS 46.2 (+2.1↑) 29.1 49.7 60.5

Table 8. Results with heterogeneous teachers on COCO val set.
Note that all students are distilled via DetKDS.

Detector AP AP50 AP75 APS APM APL

RetinaNet-R50 (S) 37.4 56.7 39.6 20.0 40.7 49.7
Faster-RCNN-X101 (T) 41.2 61.7 44.8 23.9 44.9 54.3
DetKDS 40.1 (2.7↑) 59.3 42.9 22.3 43.0 53.3
FCOS-X101 (T) 42.7 62.5 45.7 26.0 46.5 54.7
DetKDS 40.4 (3.0↑) 59.8 43.0 22.8 44.3 53.8
GFL-R101 (T) 44.9 63.1 49.0 28.0 49.1 57.2
DetKDS 40.8 (3.4↑) 59.9 43.7 24.4 45.2 54.4
Mask-RCNN-Swin-S (T) 48.2 69.8 52.9 32.1 51.8 62.7
DetKDS 41.4 (4.0↑) 60.8 44.4 23.4 45.1 55.5

geneous and heterogeneous detectors. Then, we extend
DetKDS for instance segmentation and provide detailed
analyses of our individual losses, search algorithms, and
generalizations. Please see Appendix Sec. B for more visu-
alizations.

4.1. Datasets and Implement Details

We evaluate our method on the COCO dataset (Lin et al.,
2014), which contains 80 object classes. For search settings,
we utilize all searches on the subsets of COCO training set
(i.e., mini-COCO), which consists of 25K training images
and 5K validation images. Note that our validation set
does not overlap with the test set, and we search using
the validation results to ensure fair comparisons. We
configure 20 iterations of parallel searching for individual
losses and 40 iterations for combined weights for multiple
losses. We set training to one epoch for each search iter-
ation. For EA settings, we set (P , T , r, k) in Alg. 1 as
(20, 40, 0.9, 5). After searching, we train student detectors
with the best distiller on the full COCO dataset, including
120K train images. Following the same training settings as
FGD, we develop our experiments using 8 NVIDIA V100
GPUs with a mini-batch of two images per GPU. We train
all the detectors for 24 epochs with SGD optimizer, in which
the momentum is 0.9, and the weight decay is 0.0001.

4.2. Main Results on Homogeneous Detectors

We first compare the different distillation methods under var-
ious homogeneous detectors with ResNet101 as the teacher
backbone and ResNet50 as the student backbone in Table 7.
The results indicate that our DetKDS surpasses existing
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Table 9. Results with heterogeneous backbone on COCO val
set. CM RCNN: Cascade Mask RCNN. DetKDS report best results
of DetKD with L{global,fgbg,ins} or L{global,fgbg,ins,logits,loc}.

Method AP AP50 AP75 APS APM APL

Two-stage detectors
CM RCNN-X101 (T) 45.6 64.1 49.7 26.2 49.6 60.0
Faster RCNN-R50 (S) 38.4 59.0 42.0 21.5 42.1 50.3
FGFI (2019) 39.1 (0.7↑) 59.8 42.8 22.2 42.9 51.1
COFD (2019) 38.9 (0.5↑) 60.1 42.6 21.8 42.7 50.7
FKD (2021) 41.5 (3.1↑) 62.2 45.1 23.5 45.0 55.3
CWD (2021) 41.7 (3.3↑) 62.0 45.5 23.3 45.5 55.5
KD-Zero (2023a) 41.9 (3.5↑) 62.7 45.5 23.6 45.6 55.6
FGD (2022a) 42.0 (3.6↑) - - 23.7 46.4 55.5
MGD (2022b) 42.1 (3.7↑) - - 23.7 46.7 56.1
DiffKD (2023b) 42.2 (3.8↑) 62.8 46.0 24.2 46.6 55.3
MasKD (2023a) 42.4 (4.0↑) 62.9 46.8 24.2 46.7 55.9
DetKDS 42.5 (4.1↑) 62.9 46.2 24.4 46.6 56.2
DetKDS (feature) 42.3 (3.9↑) 62.8 46.2 24.8 46.1 56.0

One-stage detectors
RetinaNet-X101 (T) 41.6 61.4 44.3 23.9 45.5 54.5
RetinaNet-R50 (S) 37.4 56.7 39.6 20.0 40.7 49.7
COFD (2019) 37.8 (0.4↑) 58.3 41.1 21.6 41.2 48.3
FKD (2021) 39.6 (2.2↑) 58.8 42.1 22.7 43.3 52.5
FRS (2021) 40.1 (2.7↑) 59.5 42.5 21.9 43.7 54.3
CWD (2021) 40.8 (3.4↑) 60.4 43.4 22.7 44.5 55.3
FGD (2022a) 40.4 (3.0↑) - - 23.4 44.7 54.1
PKD (2022) 40.8 (3.4↑) 60.3 43.4 23 45.1 54.7
MasKD (2023a) 40.9 (3.5↑) 60.1 43.6 22.8 45.3 55.1
DiffKD (2023b) 40.7 (3.3↑) 60.0 43.2 22.2 45.0 55.2
KD-Zero (2023a) 40.9 (3.5↑) 60.4 43.5 23.2 45.2 54.8
DetKDS 41.1 (3.7↑) 60.4 43.9 23.2 45.1 55.1
DetKDS (feature) 41.0 (3.8↑) 60.2 43.6 23.0 45.2 55.0

Anchor-free detectors
RepPoints-X101 (T) 44.2 65.5 47.8 26.2 48.4 58.5
RepPoints-R50 (S) 38.6 59.6 41.6 22.5 42.2 50.4
FKD (2021) 40.6 (2.0↑) 61.7 43.8 23.4 44.6 53.0
CWD (2021) 42.0 (3.4↑) 63.0 45.3 24.1 46.1 55.0
FGD (2022a) 41.3 (2.7↑) - - 24.5 45.2 54.0
MasKD (2023a) 41.8 (3.2↑) 62.6 45.1 24.2 45.4 55.2
DiffKD (2023b) 41.7 (3.1↑) 62.6 44.9 23.6 45.4 55.9
MKD 42.2 (3.6↑) 63.0 45.6 24.3 46.4 55.7
DetKDS 42.3 (3.7↑) 63.1 45.8 24.1 46.4 55.9
DetKDS (feature) 42.3 (3.7↑) 63.1 45.8 24.1 46.4 55.9

Table 10. Results of instance segmentation via Cascade Mask R-
CNN (ResNeXt-101) as teacher. AP means Mask AP.

Method AP APS APM APL

Mask RCNN-R50 (S) 35.4 19.1 38.6 48.4
FKD (2021) 37.4 19.7 40.5 52.1
FGD (2022a) 37.8 17.1 40.7 56.0
MGD (2022b) 38.1 17.1 41.1 56.3
DetKDS 38.4 18.8 41.3 55.8

Table 11. Ablation study of individual distillation loss with
RetinaNet-R50 as student, RetinaNet-X101 as teacher.

Method AP AP50 AP75 APS APM APL

Baseline 37.4 56.7 39.6 20.0 40.7 49.7
Lglobal 41.0 60.2 43.6 23.0 45.2 55.0
Lfgbg 40.7 60.2 43.4 23.8 44.6 53.9
Lins 40.9 60.7 43.4 23.5 44.9 53.9
Lloc 39.4 58.3 42.3 22.6 43.5 51.2
Llogits 38.6 57.9 41.0 21.6 42.0 51.8

Table 12. Ablation study of search algorithm on RetinaNet-R50
(student) and RetinaNet-X101 (teacher). DC: Divide-and-Conquer,
DF: Distiller Filter, MCTS: Monte-Carlo tree search.

DC DF Search Alg. AP AP50 AP75 APS APM APL

✓ ✓ Evolution 41.1 60.4 43.4 23.8 44.6 53.4
✓ ✓ MCTS 40.8 60.1 43.2 23.2 44.3 53.1
✓ ✓ Random 40.5 59.7 43.0 22.6 44.3 53.2
- ✓ Evolution 40.4 59.6 43.3 23.7 44.9 54.2
✓ - Evolution 39.8 58.6 42.3 22.3 43.7 54.4

state-of-the-art methods by meaningful margins across pop-
ular detectors. For example, the student detectors of Faster-
RCNN, RetinaNet, GFL, and FCOS with DetKDS exhibit
significant +2.6, +2.8, +3.5, and +4.0 AP improvements
on the COCO dataset, respectively. Compared to other
methods, DetKDS obtains improvements of 0.5 AP over
Auto-KD, and consistently outperforms GID across detec-
tors, with larger AP gains of 2.6 vs. 1.8 for Faster-RCNN
and 4.0 vs. 3.5 for FCOS. With vanilla feature knowledge,
our DetKDS (feature) also obtains more stable gains than
FGD. As shown in Table 7, distilling Deformable DETR
consistently achieves an AP of 46.2 in our method. These
state-of-the-art improvements over other methods highlight
the effectiveness of DetKDS at compressing detection mod-
els.

4.3. More Results with Heterogeneous Detectors

In contrast to current techniques only for homogeneous
detectors, DetKDS can also be well-generalized to het-
erogeneous detector pairs. To verify this, we individually
conduct experiments under various detectors with hetero-
geneous backbones and cross-detector paradigms. In Ta-
ble 9, we first configure the heterogeneous backbones like
ResNeXt-101 and ResNet50 for teacher-student detectors.
DetKDS achieves 3.77 ∼ 4.1 gains on student baseline and
0.37 ∼ 3.6 higher AP gains over other methods on all de-
tector paradigms. Particularly for the anchor-free detector,
DetKDS improves the student by 1 AP compared to FGD.
DetKDS achieves significant performance gains, surpassing
prior work on homogeneous networks, and establishes itself
as the state-of-the-art in distilling object detection mod-
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Table 13. Search time (hours) of search iterations on 8× V100
GPUs for RetinaNet-R50 with RetinaNet-X101 as teacher.

Iters. Time AP AP50 AP75 APS APM APL

20 2.5 h 40.8 60.2 43.6 22.8 44.9 55.5
30 3.7 h 40.9 60.3 43.8 22.9 45.1 55.0
40 5 h 41.1 60.4 43.4 23.8 44.6 53.4

Table 14. Results of DetKDS for lightweight detectors With
ResNet-X101-based RetinaNet as teacher.

Student DetKDS AP AP50 AP75 APS APM APL

ResNet-18 32.6 50.6 34.6 17.8 35.2 43.5
✓ 36.1 54.3 38.0 18 39.5 50.5

ResNet-34 34.9 54.8 37.0 20.9 38.9 44.8
✓ 39.8 58.6 42.3 22.3 43.7 54.4

ResNet-50 37.4 56.7 39.6 20.0 40.7 49.7
✓ 41.1 60.4 43.4 23.8 44.6 53.4

els with different structures. Then, we apply Auto-DeKD
for distilling RetinaNet with cross-paradigm teachers. As
shown in Table 8, our DetKDS demonstrates remarkable
2.7 ∼ 4.0 AP gains in AP across different teachers. These
observations suggest that DetKDS unlocks newfound po-
tential for heterogeneous scenarios where detectors have
different backbones, paradigms and label assignments.

4.4. Extended Instance Segmentation Experiments

For instance segmentation, we conduct experiments on
Mask RCNN (He et al., 2017). As shown in Table 10,
our DetKDS obtains 3.0 Mask AP gains for Mask RCNN
and surpasses the other methods on instance segmentation.

4.5. Ablation Studies

Analysis of different losses. We perform ablation stud-
ies for individual loss on RetinaNet. As demonstrated in
Table 11, each type of loss yields different improvements.
The Lglobal loss outperforms the others, followed by the
Lins and Lfgbg. The Llogit and Lloc losses also obtain im-
provements over the baseline. Thus, for different detector
distillations, we favor the feature KD losses and select other
KD losses during the combined multi-loss search.

Analysis of search algorithm. (1) As shown in Table 12 and
Figure 4, our Evolution Algorithm (EA) significantly outper-
forms random search and obtains some gains than MCTS in
Auto-KD. These results confirm that EA can flexibly control
the exploration process. In addition, our divide-and-conquer
and distiller filter strategies play important roles in pruning
search space, making the search process more efficient and
effective. (2) As shown in Figure 4, our search algorithm
with different initialization seeds performs searching stably.

Analysis of search efficiency. We dramatically optimize
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Figure 4. Search curves of different methods on RetinaNet-R50.

the search cost by employing distiller filter, proxy settings,
and transferring found distiller. As shown in Table 13, our
default settings need only 5 hours on 8× NVIDIA V100
GPU for the complete search process, which can be further
reduced by fewer iterations. Note that for our almost distil-
lation experiments, we directly transfer the found distiller
without additional searching.

Scaling up to Different Students We implement our
proposed Auto-DetKD on various backbones, including
ResNet18, ResNet34, and ResNet50. As shown in Table 14,
all the backbones obtain significant improvements in AP
when used with the ResNeXt101-based RetinaNet.

5. Conclusion
In this paper, we present DetKDS framework for detection
distillation search. DetKDS employs divide-and-conquer
strategy and evolutionary search to navigate large search
space of complex object detectors efficiently. By analyz-
ing the search results, we derive novel insights and guide-
lines relevant specifically to detection distillation, such as
favouring global/instance distillation, channel attention, and
simple loss functions. Such guidance is valuable for future
detection distillation designs. Extensive experiments evalu-
ated various modern object detectors—two-stage, one-stage,
anchor-based, and anchor-free detectors with different back-
bones. This breadth highlights DetKDS’s applicability to
diverse detection paradigms in object detection and instance
segmentation. We hope that our work can inspire future
research on distillation designs for dense prediction tasks.

Limitations: AutoML methods (Wang et al., 2021) all
involve extra search costs but are far more efficient and auto-
mated than manual tuning. We inevitably share these same
properties and make great efforts to propose acceleration
strategies. In addition, our found distillers and guidance for
detection distillation designs are valuable and novel.
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A. More Ablations
A.1. More Ablation Study on Proxy settings

To accelerate the search process, we adopt a subset of the COCO train2017 dataset, known as ”COCO minitrain (Samet
et al., 2020).” This subset consists of 25,000 images, which is approximately 20% of the original train2017 dataset, and
contains around 184,000 objects across 80 different object categories. We utilize this subset to reduce the search cost
while maintaining our method’s effectiveness. To validate the suitability of COCO minitrain as a representative subset,
HoughNet (Samet et al., 2020) assesses the correlation between the model’s performance when trained on minitrain
compared to when trained on the full train2017 dataset. Figure 5 displays the object detection results obtained on train2017
and minitrain (Samet et al., 2020). Notably, the figure showcases a robust positive correlation between the results obtained
from train2017 and minitrain. The Pearson correlation coefficients are 0.74 and 0.92 for the COCO evaluation metrics AP
and AP50 respectively. Such strong positive correlations give us high confidence that the relative ordering of distillation
configurations by minitrain score will translate accurately to their ranking according to the train2017 evaluation. This allows
us to efficiently search for effective distillations without extensive evaluation of the entire dataset, significantly reducing the
search cost and accelerating the overall process.

B. Result Visualization
Detection Error Analysis. The analysis of the detection error, based on the error analysis results in Figure 6 and precision-
recall curves in Figure 7, demonstrates the effectiveness of our distillation method in improving the locating and classifying
abilities of the student baseline detector. The findings indicate that our distillation approach leads to a reduction in various
types of errors. Notably, it effectively reduces background errors, minimizes false detections, and improves the specificity of
the detector. Additionally, our method addresses missed ground truth errors, enhancing the detector’s sensitivity in detecting
and classifying objects accurately. In summary, our distillation method significantly improves the detector’s localization and
classification abilities, making it more reliable and robust in object detection tasks.

Qualitative Analysis. Figure 8, Figure 9, Figure 10, and Figure 11 visualize the detection outputs of different detectors
respectively. The qualitative analysis of the detection visualization results highlights several vital features exhibited by our
DetKDS distillation detector compared to the student baseline detector. Firstly, our method demonstrates improved accuracy
in detecting small targets, thereby enhancing the overall detection ability for such objects. This improvement is evident
in the figures, where the distilled model consistently and correctly identifies cars, handbags, and people inside the car,
showcasing the effectiveness of our distillation approach in accurately detecting small objects. Additionally, our DetKDS
method effectively reduces false positives and instances where the detector mistakenly identifies non-existent objects. This
reduction in false positives is crucial as it allows for more reliable and accurate object detection, minimizing the chances
of erroneous interpretations and decisions based on incorrect detections. Moreover, our approach also addresses the issue
of false negatives, where the detector fails to detect objects that are present in the image. By reducing false negatives,
our distillation detector ensures that essential objects are not missed, enhancing the comprehensiveness and reliability of
the detection results. Furthermore, our DetKDS method mitigates the risk of performance degradation, ensuring that the
overall performance of the detector remains robust and reliable. By reducing errors and improving accuracy, our distillation
approach prevents performance degradation, making the detector more effective and dependable for various applications.
These findings highlight the strengths of our method and its potential for enhancing object detection performance.

C. More Discussions
C.1. Discussion on Limitations and Future Work

As a search-based distillation method, DetKDS naturally inherits similar limitations with other knowledge distillation and
search methodologies (Hu et al., 2021; Dong et al., 2022; 2023b; Zhu et al., 2024; Dong et al., 2024; Wei et al., 2023; Lu
et al., 2024; Wei et al., 2024). One such limitation is the potential introduction of teacher model bias and the associated
cost of additional teacher model preparation. Similar to most distillation methods (Li et al., 2022; Li, 2022), our approach
relies on a teacher model to transfer knowledge to the student model. However, the teacher model’s biases and limitations
may influence the student model’s learning process, potentially impacting its performance. Preparing the teacher model
requires additional computational resources and time, which can be a significant cost. Nevertheless, it is essential to note
that our work can be extended to self-KD scenarions in distiller search, thereby avoiding these limitations. In self-KD,
the teacher model is generated internally within the distiller search process, eliminating the need for an external teacher
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Figure 5. Correlation visualization of different detector performances in full COCO dataset and COCO minitrain (Samet et al., 2020).
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Figure 6. Error analyses (Bolya et al., 2020) of baseline students (First Row) and students distilled by our approach (Second Row) on
COCO benchmarks. Cls: classification errors; Loc: localization errors; Both: both cls and loc errors; Dupe: duplicate detection errors;
Bkg: background errors; Miss: missed GT errors.
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Figure 7. Precision-Recall curves of baseline students (First Row) and students distilled by our approach (Second Row) on COCO
benchmarks. FN: false negative prediction; BG: Background false positive prediction; Oth: classification errors; Sim: wrong class but
correct supercategory; Loc: localization errors
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Figure 8. Qualitative analysis of baseline Faster RCNN (First Row) and Faster RCNN distilled by our approach (Second Row) on COCO
benchmarks.

Figure 9. Qualitative analysis of baseline RetinaNet (First Row) and RetinaNet distilled by our approach (Second Row) on COCO
benchmarks.

model. This mitigates teacher model bias and reduces the cost associated with its preparation. Furthermore, our approach
introduces some additional overhead, as is common with many search-based methods (Li et al., 2021). The search process
can be computationally intensive and time-consuming, particularly when exploring an ample search space. However, we
have implemented several search acceleration and transfer strategies to alleviate this issue. These strategies aim to optimize
the search process, minimize redundancy, and expedite the identification of practical distillation configurations. While our
efforts address these limitations to some extent, it is crucial to recognize that certain limitations are inherent to knowledge
distillation and search methodologies. In future work, we will continue refining these approaches, developing more efficient
search techniques, and exploring alternative strategies to mitigate teacher model bias and reduce computational overhead.
The applicability and effectiveness of search-based distillation methods like DetKDS can be further enhanced by addressing
these limitations.

D. Detailed Analysis of Distiller Search Space
In this part, we present a detailed formulation and discussion of distillation operations in our search space.
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Figure 10. Qualitative analysis of baseline FCOS (First Row) and FCOS distilled by our approach (Second Row) on COCO benchmarks.

Figure 11. Qualitative analysis of baseline Mask RCNN (First Row) and Mask RCNN distilled by our approach (Second Row) on COCO
benchmarks.

D.0.1. TRANSFORM OPTIONS

Channel attention transform (catt). Channel-wise features GS and GT are transformed by the attention transform
operations as follows:

GC(F ) =
1

HW
·

H∑
i=1

W∑
j=1

|Fi,j |, AC(F ) = C · σ
(
GC(F )/τ

)
, (9)

where H , W , and C denote the feature’s height, width, and channel. GS and GC are the spatial and channel attention maps.
AS and AC are the spatial and channel attention masks, where τ is the temperature hyperparameter to adjust the distribution.

Mask transform (mask). We use the corresponding l-th mask to cover the student’s l-th feature, which can be formulated
as follows:

M l
i,j =

{
0, if Rl

i,j < λ

1, Otherwise
(10)

where Rl
i,j is a random number in (0, 1) and i, j are the horizontal and vertical coordinates of the feature map, respectively.

Scale transform (scale). Our multi-scale transformation operation extracts different levels of knowledge from the feature
using spatial pyramid pooling.
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Local transform (Local). We select the local transformation operation to divide the original feature into n2 patches (e.g.,
n = 1, 2, 4), then distill each patch into separate instances.

D.0.2. DISTANCE FUNCTIONS OPTIONS.

In distillation, different distance functions are used to measure the difference between teacher and student output. Let Pi

denote the predicted probability of class i by the teacher network and Qi denote the predicted probability of class i by the
student network.

L2 distance. The L2 distance measures the square root of the sum of the squared differences between the probabilities of
each class in the two distributions. The L2 distance between P and Q is defined as:

ℓ2 =

√√√√ n∑
i=1

(Pi −Qi)2

Cosine distance. The cosine distance measures the cosine of the angle between the two probability vectors. This distance measure is
useful when the magnitudes of the probability vectors are not important, only their directions. The cosine distance between P and Q is
defined as:

ℓCosine = 1−
∑n

i=1 PiQi√∑n
i=1 P

2
i

√∑n
i=1Q

2
i

Pearson distance. The Pearson distance measures the correlation between the two probability vectors. The Pearson distance between P
and Q is defined as:

ℓPearson = 1−
∑n

i=1(Pi − P̄ )(Qi − Q̄)√∑n
i=1(Pi − P̄ )2

√∑n
i=1(Qi − Q̄)2

where P̄ and Q̄ are the means of the two distributions.Similarly, Pearson distance is also correlated with the normalized L2 distance.

KL distance. The KL distance measures the information lost when approximating the probability distribution P with the probability
distribution Q, as follows:

ℓKL =

n∑
i=1

Pi log
Pi

Qi
=

n∑
i=1

Pi logPi −
n∑

i=1

Pi logQi

Correlation distance. Let P ∈n×d and Q ∈n×d denote a batch of representations from the student and teacher, respectively. These
matrices are computed before the final fully-connected layer to preserve the structural information of the data, thus enabling a strong
distillation signal for the student. We first normalize these representations to zero mean and unit variance across the batch dimension and
then propose to construct a cross-correlation matrix, Cst = PTQ/n ∈d×d. A perfect correlation between the two sets of representations
is achieved if all of the diagonal entries vi = (Cst)ii are equal to one. To formulate this as a minimization problem, we propose the
following loss:

ℓCor = log2

d∑
i=1

|vi − 1|2α (11)

SSIM distance. The Structural Similarity Index (SSIM) can also be applied to compare probability distributions (De Rijk et al., 2022),
such as the distributions of pixel intensities in two images. The formula for SSIM in the context of probability distributions P and Q is as
follows:

ℓSSIM =
(2µPµQ + C1)(2σPQ + C2)

(µ2
P + µ2

Q + C1)(σ2
P + σ2

Q + C2)

where the variables µP and µQ represent the means (averages) of the probability distributions P and Q, respectively. The variables σP

and σQ represent the distributions P and Q standard deviations, respectively. σPQ represents the covariance between the distributions P
and Q. Similar to the image-based SSIM formula, the constants C1 and C2 are small positive constants added to stabilize the division and
prevent division by zero. These constants are typically chosen to be small values, such as C1 = (k1 · L)2 and C2 = (k2 · L)2, where L
represents the dynamic range of the probability values, and k1 and k2 are constants to control the impact of the means and variances. The
SSIM formula for probability distributions compares the distributions’ means, covariances, and variances to compute a similarity index. It
measures how similar P and Q distributions are in their central tendency, spread, and relationship. Higher SSIM values indicate a higher
similarity between the distributions.

IoU-Series. IoU (Intersection over Union) is a widely used metric in computer vision for evaluating the accuracy of object detection and
segmentation algorithms. It measures the overlap between a predicted region and the ground truth region. By calculating the ratio of
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the intersection area to the union area, IoU provides a value between 0 and 1, where higher values indicate better overlap. IoU helps
researchers and practitioners objectively assess and compare different algorithms, serving as a standard benchmark in computer vision
tasks. Here are the equations for IoU (Intersection over Union), C-IoU (Complete IoU), E-IoU (Exclusive IoU), G-IoU (Generalized IoU),
and D-IoU (Distance-IoU) as:

1. IoU (Intersection over Union):

IoU =
Area of Intersection

Area of Union
=

Intersection ∩ Union
Intersection ∪ Union

2. C-IoU (Complete IoU):

C − IoU = IoU − Area of Enclosing Box − Area of Union
Area of Enclosing Box

3. E-IoU (Exclusive IoU):

E − IoU = IoU − Area of Intersection
Area of Enclosing Box

4. G-IoU (Generalized IoU):

G− IoU = IoU − α · Area of Enclosing Box − Area of Union
Area of Enclosing Box

5. D-IoU (Distance-IoU):

D − IoU = IoU − β · Distance
Diagonal Length of Enclosing Box

In these equations, ”Intersection” refers to the overlapping region between two bounding boxes, ”Union” represents the combined area of
the two bounding boxes, ”Area of Intersection” is the size of the intersecting region, ”Area of Union” is the size of the union region,
”Area of Enclosing Box” is the area covered by the smallest bounding box that encloses both boxes, ”Distance” is the distance between
the centers of the bounding boxes, and α and β are weighting parameters.
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