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Parameter-dependent filtering of Gaussian processes
in Hilbert spaces

V. Kubelka, B. Maslowski , and O. T�ybl
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ABSTRACT
The filtering problem for non-Markovian Gaussian processes on
rigged Hilbert spaces is considered. Continuous dependence of the
filter and observation error on parameters which may be present
both in the signal and observation processes is proved. The general
results are applied to signals governed by stochastic heat equations
driven by distributed or pointwise fractional noise. The observation
process may be a noisy observation of the signal at given points
in the domain, the position of which may depend on
the parameter.
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Introduction

Signal processes defined by linear stochastic partial differential equations may be under-
stood as Gaussian Hilbert space-valued processes, where the state space is an appropri-
ate function space. The filtering problem for such signals in the case when observations
are finite-dimensional and perturbed by noise white in time has been recently solved in
[11, 12]. We are not aware of any other results on filtering of Gaussian processes that
would be applicable to stochastic PDEs except for the standard case of Kalman–Bucy fil-
ter, in which the signal process is Markovian (cf. [5] for a pioneering result in this dir-
ection). Of course, much more is known about the “dual” LQ control problem which
has been treated, for instance, in [3] and [2], and related statistical inference problems
that were addressed in numerous papers, like [1, 13] or [10]. In finite-dimensional state
spaces there are several papers by Kleptsyna et al. ([7, 9] or [8]) where the filtering
problem for non-Markovian Gaussian signal is studied.
In the above-mentioned papers [11, 12], the signal is a general infinite-dimensional

Gaussian process with a known covariance operator and the observation is finite-
dimensional. The covariance of the observation error is shown to satisfy a Hilbert
space-valued nonlinear integral equation and the filter itself satisfies a linear stochastic
equation in infinite dimensions (containing the covariance of the observation error).
A typical example of signal process covered by this approach is the one governed by
stochastic heat equation driven by space-dependent Brownian motion fractional in
time
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@u
@t

ðt, xÞ ¼ Duðt, xÞ þ ghðt, xÞ, ðt, xÞ 2 0,T½ � � D,

uðt, �Þj@D ¼ 0, t 2 0,T½ �,
(0.1)

where D � R
d is a bounded domain with a smooth boundary @D, D is the Laplace

operator, and the noise gh is viewed as a fractional noise with the Hurst parameter h.
The observation is given by the stochastic differential

dnt ¼ Aðuðt, �ÞÞ dt þ dWt , t 2 0,T½ �,
n0 ¼ 0,

where A is the operator of pointwise observation at given points z1, :::, zn in the
domain D,

AðuÞ ¼ ðuðz1Þ, :::,uðznÞÞ, (0.2)

defined on a suitable function space and W is an R
n-valued Wiener process which is

independent of gh.
The filtering problem here and in similar cases is relatively delicate because the obser-

vations are well defined only if the signal process is sufficiently regular and so it is
interesting to study the stability of the filter with respect to small changes of the obser-
vation points.
In this article, we solve a more general problem of continuous dependence of the filter

on parameters which may be present both in signal and observation processes. This
research is motivated by high level of uncertainty in models described by stochastic par-
tial differential equations on one side and space-time irregularity of solutions on the other
hand. The signal equations usually contain parameters that are not precisely known and
often must be estimated in longer run of the process. Then it is important that the signal
(as well as the filter) is sufficiently robust with respect to small changes of parameters.
Also, the observations are noisy as well (nondegeneracy of the noise in observation equa-
tion is a crucial condition for a Kalman–Bucy type result) and it is of interest whether
the filter depends continuously on the changes of the “parameters” of observations.
We consider the abstract setting as in [12]. So the signal is a Hilbert space-valued

parameter-dependent Gaussian process and the observation is given by stochastic differ-
ential, the coefficients of which may also depend on the parameter. The above-men-
tioned lack of regularity is overcomed by posing the equation on a rigged Hilbert space.
The article is divided into five sections. In Section 2, the basic setting is explained in

detail and the main result from [12] is recalled, where the forms of equations for filter
and observation error are derived and existence and uniqueness of their solutions are
proved. Section 3, which contains the heart of the proof of our main result, is devoted
to continuous dependence of the covariance of observation error (Theorem 2.1). As
mentioned above, this mapping satisfies a nonlinear integral equation with non-
Lipschitz right-hand side. Hence it does not seem to be possible to proceed in a stand-
ard way by means of the Gronwall lemma. We use here a method based on compact-
ness of the family of solutions (which is proved by Arzela–Ascoli theorem for mappings
taking values in operator spaces, utilizing so-called collective compactness of solutions
and their adjoints, cf. [14]). Section 4 contains the main result of the article (Theorem
3.1), the proof of continuous dependence of the filter (finite-dimensional analogue of
this statement may be found in the unpublished work [16]). In Section 5, these results
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are applied in the case of signal defined by linear stochastic partial differential equation
(SPDE) driven by cylindrical fractional Brownian motion. Two examples of signal are
then elaborated in more detail: The heat equation perturbed either with distributed or
by pointwise fractional noise. Observations are finite-dimensional and the case of point-
wise observation at some points in the domain, that may depend on the parameter, is
also considered.
The space of bounded linear operators mapping a Banach space X to a Banach space

Y is denoted as LðX,YÞ, LðXÞ :¼ LðX,XÞ: The space of Hilbert–Schmidt operators
from a Hilbert space H into a Hilbert space V is denoted as L2ðH,VÞ, L2ðHÞ :¼
L2ðH,HÞ: Similarly, L1ðHÞ indicates the space of trace class operators on H.

1. Preliminaries

Let H ¼ ðH, h�, �iH , k � kHÞ be a separable Hilbert space. Consider a selfadjoint positive
operator B on H with a compact resolvent. For a > 0 consider a Hilbert space Va ¼
ðVa, h�, �iVa

, k � kVa
Þ defined by the fractional power of operator B as Va ¼ DomðBaÞ

equipped with a graph norm k � kVa
: Then ðH,VaÞ form together a rigged separable

Hilbert space such that Va � H and identifying H with the dual H� the embeddings

Va ,!H ¼ H� ,!V�
a

are continuous and dense. The duality pairing between Va and V�
a is defined by the

usual extension of the form hu, viVa
,V�

a ¼ hu, viH for u 2 Va � H and v 2 H � V�
a :

For arbitrary x, y 2 Va we define tensor product x � y 2 LðV�
a ,VaÞ,

ðx � yÞv ¼ xhy, viVa
,V�

a , v 2 V�
a :

Consider a stochastic basis ðX, F,P, ðFtÞÞ, a compact set of parameters K and a family
of signals fhkt , t 2 ½0,T�, k 2 Kg that are ðFtÞ – progressively measurable centered
Gaussian processes with paths P-a.s. in L2ð½0,T�,Vaþ#Þ for some a > # > 0 such that

sup
k2K, t2 0,T½ �

Ekhkt k2Vaþ#
< 1 (1.1)

and for every � > 0 there exists d > 0 such that for all k 2 K and for all
s, t 2 ½0,T�, t � sj j < d

Ekhkt � hks k2Va
< �: (1.2)

The Equation (1.1) will be referred to as uniform boundedness of hkf g and the prop-
erty (1.2) as (mean - square) equicontinuity.
For every k 2 K let nk ¼ fnkt , t 2 ½0,T�g denotes an R

n -valued observation process
given as

nkt ¼
ðt
0
AkðsÞhks dsþWt, t 2 0,T½ �, (1.3)

where ðAkðsÞÞs2½0,T� is a family of linear operators Va ! R
n such that for every k 2 K

the mapping t ! AkðtÞ is strongly measurable and uniformly bounded, that is,

sup
t2 0,T½ �, k2K

kAkðtÞkLðVa,RnÞ < 1:

STOCHASTIC ANALYSIS AND APPLICATIONS 3



Here W ¼ fWt , t 2 ½0,T�g is a standard R
n -valued Wiener process independent of the

family of signals fhkg:
Further, assume that for each k 2 K and t 2 ½0,T� the operator AkðtÞ can be decom-

posed into functionals Ak
1ðtÞ, :::,Ak

nðtÞ 2 V�
a such that

AkðtÞb ¼ ðhb,Ak
1ðtÞiVa

,V�
a , :::, hb,Ak

nðtÞiVa
,V�

a ÞT

for all b 2 Va: The dual operator ðAkÞ�ðtÞ : Rn ! V�
a then satisfies

ðAkÞ�ðtÞz ¼
Xn
i¼1

ziA
k
i ðtÞ (1.4)

for all z 2 R
n:

We will study the optimal filter ĥ
k

t , which is defined as

ĥ
k

t ¼ E hkt jFnkt
h i

,

where ðFnk
t Þt2½0,T� is the filtration generated by the observation process nk:

Set Kkðt, sÞ ¼ E½hkt � hks �, t, s 2 ½0,T�, k 2 K: In virtue of the uniform boundedness of
the processes fhkt , t 2 ½0,T�, k 2 Kg the family of mappings Kk : ½0,T�2 !
LðV�

a ,VaÞ, k 2 K is uniformly bounded in Cð½0,T�2,LðV�
a ,VaÞÞ, i.e.

sup
k2K

kKkkC 0,T½ �2,L V�
a ,Vað Þð Þ < 1:

Then, for a fixed value of the parameter k, we have following theorem (cf. Theorem
1.1 in [12]).

Theorem 1.1. Let D ¼ fðt, sÞ 2 ½0,T�2; 0 	 s 	 t 	 Tg and k 2 K. The filter ĥ
k
satisfies

the stochastic integral equation

ĥ
k

t ¼
ðt
0
Ukðt, sÞðAkÞ�ðsÞdns �

ðt
0
Ukðt, sÞðAkÞ�ðsÞAkðsÞĥksds, t 2 0,T½ �, (1.5)

where operator Uk: D ! LðV�
a ,VaÞ defined as Ukðt, sÞ ¼ E½hkt � ðhks � ĥ

k

s Þ� for all ðt, sÞ 2
D is strongly continuous and satisfies the integral equation

Ukðt, sÞ ¼ Kkðt, sÞ �
Xn
j¼1

ðs
0

Ukðt, rÞAk
j ðrÞ

� �
� Ukðs, rÞAk

j ðrÞ
� �

dr, ðt, sÞ 2 D: (1.6)

Moreover, for all t 2 ½0,T�, Ukðt, tÞ is the covariance of the estimation error at time
t 2 ½0,T�, that is,

Ukðt, tÞ ¼ E ðhkt � ĥ
k

t Þ � ðhkt � ĥ
k

t Þ
h i

(1.7)
holds.

Remark 1.2. According to Lemma 2.2 in [6] process f ~Wt , t 2 ½0,T�g defined as

~W
k
t ¼ nkt �

ðt
0
E AkðrÞhkr jFnkt
h i

dr ¼ nkt �
ðt
0
AkðrÞĥkrdr: (1.8)

is Rn -valued ðFnkt Þ – standard Wiener process called innovation process. Equation (1.5)
can be rewritten as

ĥ
k

t ¼
ðt
0
Ukðt, sÞðAkÞ�ðsÞd ~W

k
s , t 2 0,T½ �: (1.9)
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2. Continuous dependence for the covariance

In this section, continuous dependence of the covariance operator Uk on k 2 K is
shown. The main result of the section is stated below.

Theorem 2.1. Under the assumptions in Section 2 if

Kk ! Kk0 , k ! k0, k 2 K (2.1)

in Cð½0,T�2,LðV�
a ,VaÞÞ and

Ak ! Ak0 , k ! k0, k 2 K (2.2)

in Cð½0,T�,LðVa,R
nÞÞ then

Uk ! Uk0 , k ! k0, k 2 K (2.3)

in CðD,LðV�
a ,VaÞÞ:

For the proof of Theorem 2.1, we need following lemma.

Lemma 2.2. Under the assumptions in Section 2 the set of functions fUkgk2K is relatively
compact in CðD,LðV�

a ,VaÞÞ:

Proof. In virtue of the infinite-dimensional version of the Arzela–Ascoli theorem the
statement of Lemma 2.2 holds if and only if the family fUkgk2K is uniformly bounded
and equicontinuous in CðD,LðV�

a ,VaÞÞ and fUkðt, sÞgk2K is relatively compact in
LðV�

a ,VaÞ for every ðt, sÞ 2 D:
First, we show that mappings ðt, s, kÞ ! Ukðt, sÞ, k 2 K are uniformly bounded on

D� K: For arbitrary x, y 2 V�
a , ðt, sÞ 2 D and for all k 2 K using Cauchy–Schwarz

inequality we obtain����
� Xn

j¼1

ðs
0

Ukðt, rÞAk
j ðrÞ

� �
� Ukðs, rÞAk

j ðrÞ
� �

dr

 !
x, y

�
Va

,V�
a

����
	
Xn
j¼1

ðs
0

����
�

Ukðt, rÞAk
j ðrÞ

� �
� Ukðs, rÞAk

j ðrÞ
� �h i

x, y

�
Va

,V�
a

����dr
¼
Xn
j¼1

ðs
0
jhUkðt, rÞAk

j ðrÞhUkðs, rÞAk
j ðrÞ, xiVa

,V�
a , yiVa

,V�
a jdr

¼
Xn
j¼1

ðs
0
jhUkðt, rÞAk

j ðrÞ, yiVa
,V�

a j jhUkðs, rÞAk
j ðrÞ, xiVa

,V�
a jdr

	
Xn
j¼1

ðs
0

hUkðt, rÞAk
j ðrÞ, yiVa

,V�
a

� �2
dr

� �1
2
ðs
0

hUkðs, rÞAk
j ðrÞ, xiVa

,V�
a

� �2
dr

� �1
2

¼
Xn
j¼1

ðs
0

�
Ukðt, rÞAk

j ðrÞ
� �

� Ukðt, rÞAk
j ðrÞ

� �h i
y, y

�
Va

,V�
adr

 !1
2

ðs
0

�
Ukðs, rÞAk

j ðrÞ
� �

� Ukðs, rÞAk
j ðrÞ

� �h i
x, x

�
Va

,V�
adr

 !1
2

:

(2.4)
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In the last inequality, we can increase the upper bound of the first integral from s to
t because the integrand is nonnegative. Hence we only need to estimate the termðt

0

�
Ukðt, rÞAk

j ðrÞ
� �

� Ukðt, rÞAk
j ðrÞ

� �h i
x, x

�
Va

,V�
adr

for j ¼ 1, :::, n and x 2 V�
a : By (1.6) and the uniform boundedness of the fKkgk2K we

have

0 	
ðt
0

�
Ukðt, rÞAk

j ðrÞ
� �

� Ukðt, rÞAk
j ðrÞ

� �h i
x, x

�
Va

,V�
adr

	
Xn
j¼1

ðt
0

�
Ukðt, rÞAk

j ðrÞ
� �

� Ukðt, rÞAk
j ðrÞ

� �h i
x, x

�
Va

,V�
adr

¼ hKkðt, tÞx, xiVa
,V�

a � hUkðt, tÞx, xiVa
,V�

a

	 hKkðt, tÞx, xiVa
,V�

a 	 C1ðTÞkxk2V�
a
, t 2 0,T½ �, C1ðTÞ < 1:

(2.5)

Now, by (1.6), (2.4), (2.5) and again by the uniform boundedness of the family
fKkgk2K we obtain

jhUkðt, sÞx, yiVa
,V�

a j
	 kKkðt, sÞkLðV�

a ,VÞkxkV�
a
kykV�

a

þ
����
� Xn

j¼1

ðs
0

Ukðt, rÞAk
j ðrÞ

� �
� Ukðs, rÞAk

j ðrÞ
� �

dr

 !
x, y

�
Va

,V�
a

����
	 C2ðTÞkxkV�

a
kykV�

a
, C2ðTÞ < 1

for all k 2 K, x, y 2 V�
a and ðt, sÞ 2 D, which proves that the family of operators

fUkgk2K is uniformly bounded in CðD,LðV�
a ,VaÞÞ:

Further, we show that the family fUkgk2K is equicontinuous on D (as mappings with
values in LðV�

a ,VaÞ). To this end, it is enough to show equicontinuity of fUkð�, sÞgk2K
on ½s,T� for all s 2 ½0,T� and equicontinuity of fUkðt, �Þgk2K on ½0, t� for all t 2 ½0,T�:
By definition of Uk and Cauchy - Schwarz inequality we have

h Ukðt1, sÞ � Ukðt2, sÞ
	 


x, yiVa,V�
a

��� ��� ¼ E hhks � ĥ
k

s , xiVa,V�
a
hhkt1 � hkt2 , yiVa,V�

a

� ���� ���
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E hhks � ĥ

k

s , xiVa,V�
a

��� ���2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E hhkt1 � hkt2 , yiVa,V�

a

��� ���2r

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekhks k2Va

q
kxkV�

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E hhkt1 � hkt2 , yiVa,V�

a

��� ���2r

for all s 2 ½0,T�, t1, t2 2 ½s,T�, k 2 K and all x, y 2 V�
a : Therefore, using the mean-square

equicontinuity and uniform boundedness of signals fhkt , t 2 ½0,T�, k 2 Kg, for � > 0 we
find d > 0 such that

h Ukðt1, sÞ � Ukðt2, sÞ
	 


x, yiVa,V�
a

��� ��� < �kxkV�
a
kykV�

a
(2.6)

for every k 2 K and all s 2 ½0,T�, t1, t2 2 ½s,T�, t2 � t1j j < d, which proves equicontinu-
ity of fUkð�, sÞgk2K:

6 V. KUBELKA ET AL.



Furthermore, we have

k Ukðt, s1Þ � Ukðt, s2Þ
	 


xkVa

	 kE hkt hhks1 � hks2 , xiVa,V�
a

� �
kVa

þ kE hkt hĥ
k

s2 � ĥ
k

s1 , xiVa,V�
a

� �
kVa

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekhks k2Va

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E hhks1 � hks2 , xiVa,V�

a

��� ���2r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E hĥks2 � ĥ

k

s1 , xiVa,V�
a

��� ���2r ! (2.7)

for all t 2 ½0,T�, s1, s2 2 ½0, t�, k 2 K and all x 2 V�
a : Using (1.9), (1.4), Itô isometry and

the uniform boundednes of ðAkÞk2K and fUkgk2K we have

E hĥks2 � ĥ
k

s1 , xiVa,V�
a

��� ���2
	 2
Xn
j¼1

E

ðs1
0

�
Ukðs2, rÞ � Ukðs1, rÞ
	 


Ak
j ðsÞ, x

�
Va,V�

a

d ~W
k
j, r

�����
�����
2

þ 2
Xn
j¼1

E

ðs2
s1

hUkðs2, rÞAk
j ðsÞ, xiVa,V�

a
d ~W

k
j, r

����
����2

¼ 2
Xn
j¼1

ðs1
0

�
Ukðs2, rÞ � Ukðs1, rÞ
	 


Ak
j ðsÞ, x

�
Va,V�

a

�����
�����
2

dr

þ 2
Xn
j¼1

ðs2
s1

hUkðs2, rÞAk
j ðsÞ, xiVa,V�

a

��� ���2dr
	 CðTÞkxk2V�

a

Ð s1
0 kUkðs2, rÞ � Ukðs1, rÞk2C r,T½ �,LðV�

a ,VaÞð Þdr þ s2 � s1j j
� �

, 0 	 s1 < s2 	 T,

(2.8)

where CðTÞ < 1:

Using (2.7) and (2.8), the equicontinuity of fUkð�, rÞgk2K on ½r,T� for all r 2 ½0,T�
shown in (2.6) and the mean-square equicontinuity and uniform boundedness of signals
fhkt , t 2 ½0,T�, k 2 Kg, for all � > 0 we can find d > 0 such that

k Ukðt, s1Þ � Ukðt, s2Þ
	 


xkVa
< �kxkV�

a
(2.9)

for every k 2 K and all t 2 ½0,T�, s1, s2 2 ½0, t�, s2 � s1j j < d and x 2 V�
a : This completes

the proof of equicontinuity of fUkgk2K on D.
It remains to show that fUkðt, sÞgk2K is relatively compact in LðV�

a ,VaÞ for every
ðt, sÞ 2 D: This property is equivalent to collective compactness of the family
Ukðt, sÞ, ðUkÞ�ðt, sÞ
� 
� �

k2K in LðV�
a ,VaÞ � LðVa,V�

a Þ, cf. [14]. Employing the compact-
ness of embeddings

Vaþ# ,!Va, V�
a�# ,!V�

a

(cf. (1.1) for the definition of #) it is enough to show RangeðUkðt, sÞÞ � Vaþ#,
RangeððUkÞ�ðt, sÞÞ � V�

a�# and the uniform boundedness

sup
k2K

kUkðt, sÞkLðV�
a ,Vaþ#Þ < 1 (2.10)

and

sup
k2K

kðUkÞ�ðt, sÞkLðVa,V�
a�#

Þ < 1 (2.11)

STOCHASTIC ANALYSIS AND APPLICATIONS 7



holds for arbitrarily chosen ðt, sÞ 2 D: We have that

kUkðt, sÞkLðV�
a ,Vaþ#Þ ¼ sup

kxkV�a	1
kUkðt, sÞxkVaþ#

	 sup
kxkV�a	1

Ekhkt kVaþ#
khks � ĥ

k

s kVa
kxkV�

a

	 ~C1ðTÞEkhkt kVaþ#
khks kVa

	 C1ðTÞ,
where the constant C1ðTÞ < 1 does not depend on k 2 K due to (1.1), which proves
(2.10). Similarly, we have

kðUkð�ðt, sÞkLðVa,V�
a�#

Þ ¼ sup
kykVa	1

kðUkÞ�ðt, sÞykV�
a�#

¼ sup
kykVa	1

sup hB2#x, ðUkÞ�ðt, sÞyiV�
a

��� ���; kB#xkV�
a
	 1, x 2 V�

a�2#

� �
¼ sup

kykVa	1
sup hUkðt, sÞB#z, yiVa

�� ��; kzkV�
a
	 1, z 2 V�

a�#

n o
	 sup

kykVa	1
sup hhkt , yiVa

hBaðhks � ĥ
k

s Þ,B�aB#ziH
��� ���; kzkV�

a
	 1, z 2 V�

a�#

� �

	 sup
kykVa	1

sup hhkt , yiVa
hBaþ#ðhks � ĥ

k

s Þ,B�aziH
��� ���; kzkV�

a
	 1, z 2 V�

a�#

� �

	 sup
kykVa	1

sup kykVa
kzkV�

a
Ekhkt kVa

khks � ĥ
k

s kVaþ#
; kzkV�

a
	 1, z 2 V�

a�#

n o
	 CðTÞ,

where the constant C2ðTÞ < 1 does not depend on k 2 K: Therefore, Equation (2.11)
holds true and the proof of Lemma 2.2 is complete. w

Now, we prove Theorem 2.1.

Proof. Set C ¼ CðD,LðV�
a ,VaÞÞ and assume the converse, i.e. (2.1) and (2.2) hold and (2.3)

do not. Then we can find �0 > 0 and a sequence knf gn2N 2 K such that kn ! k0 and

kUkn � Uk0kC > �0, n 2 N: (2.12)

By the relative compactness of fUkgk2K proved in Lemma 2.2, we can find a subse-
quence knkf gk2N and a limit W 2 C such that

kUknk �WkC ! 0, k ! 0: (2.13)

We show that W ¼ Uk0 and, therefore, (2.12) contradicts (2.13).
Using (1.6) we have����Wðt, sÞ � Kk0ðt, sÞ þ

Xn
j¼1

ðs
0

Wðt, rÞAk0
j ðrÞ

� �
� Wðs, rÞAk0

j ðrÞ
� �

dr

����
LðV�

a ,VaÞ
	 kWðt, sÞ � Uknk ðt, sÞkLðV�

a ,VaÞ þ kKknk ðt, sÞ � Kk0ðt, sÞkLðV�
a ,VaÞ

þ
Xn
j¼1

ðs
0

Wðt, rÞAk0
j ðrÞ

� �
� Wðs, rÞAk0

j ðrÞ
� �����

����
� Uknk ðt, rÞAknk

j ðrÞ
� �

� Uknk ðs, rÞAknk
j ðrÞ

� �
dr

����
����
LðV�

a ,VaÞ
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for all ðt, sÞ 2 D: The first two terms tend to zero uniformly in D as k ! 1 by (2.13)
and (2.1). Using uniform boundedness of Ukf g and Akf g the third term can be esti-
mated by

s
Xn
j¼1

ðkðWAk0
j Þ � ½ðW� Uknk ÞAk0

j �kC þ kðWAk0
j Þ � ½Uknk ðAk0

j � A
knk
j Þ�kCÞ

þ s
Xn
j¼1

ðk½WðAk0
j � A

knk
j Þ� � ðUknk A

knk
j ÞkC

þ k½ðW� Uknk ÞAknk
j � � ðUknk ðs, rÞAknk

j ðrÞÞkCÞ
	 CðTÞðkW� UknkkC þ kAk0 � AknkkCð½0,T�,LðVa,RnÞÞÞ, CðTÞ < 1

which tends to zero uniformly in D as k ! 1 by (2.1) and (2.2). It follows that

Wðt, sÞ ¼ Kk0ðt, sÞ �
Xn
j¼1

ðs
0

Wðt, rÞAk0
j ðrÞ

� �
� Wðs, rÞAk0

j ðrÞ
� �

dr

for all ðt, sÞ 2 D, hence W solves (1.6) with k ¼ k0: In virtue of Theorem 2.1 in [12] on
uniqueness of solutions to (1.6) we conclude that W ¼ Uk0 , which completes the proof
of Theorem 2.1. w

3. Continuous dependence for the filter

In this section, continuous dependence of the filter ĥ
k
on k 2 K is proved, which is the

main result of the article.
First, note that in virtue of (1.9), (1.4), Itô isometry and the uniform boundednes of

ðAkÞk2K and fUkgk2K we obtain

Ekĥkt2 � ĥ
k

t1k2Va

	 2E

����
ðt1
0

Ukðt2, rÞ � Ukðt1, rÞ
	 


ðAkÞ�ðrÞd ~W
k
rk2Va

þ 2Ek
ðt2
t1

Ukðt2, rÞðAkÞ�ðrÞd ~W
k
r

����2
Va

¼ 2
ðt1
0
k Ukðt2, rÞ � Ukðt1, rÞ
	 


Ak
j ðsÞk2Va

dr þ 2
ðt2
t1

kUkðt2, rÞAk
j ðsÞk2Va

dr

	 CðTÞ
ðt1
0
kUkðt2, rÞ � Ukðt1, rÞk2LðV�

a ,VaÞdr þ t2 � t1j j
 !

for some CðTÞ < 1 and all t1, t2 2 ½0,T�, t1 < t2:
Therefore, using the equicontinuity of fUkð�, sÞgk2K on ½r,T� for all r 2 ½0,T� shown

in (2.6) it follows that

Ekĥkt2 � ĥ
k

t1k2Va
! 0, t2 � t1j j ! 0

for every k 2 K, which yields

ĥ
k 2 C 0,T½ �, L2ðX,VaÞ

	 

:
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Theorem 3.1. Under the assumptions stated in Section 2 if

hk ! hk0 , k ! k0, k 2 K, (3.1)

in Cð½0,T�, L2ðX,VaÞÞ and
Ak ! Ak0 , k ! k0, k 2 K, (3.2)

in Cð½0,T�,LðVa,R
nÞÞ then

ĥ
k ! ĥ

k0
, k ! k0, k 2 K, (3.3)

in Cð½0,T�, L2ðX,VaÞÞ:
Proof. Given k 2 K set

uðrÞ ¼ sup
t2 0, r½ �

kĥkt � ĥ
k0
t kL2ðX,VaÞ, r 2 0,T½ �:

Note that u is nondecreasing and measurable on ½0,T� which follows from the con-
tinuity of the filter.
Using (1.5) and (1.3) we have

uðrÞ 	 2ðI1 þ I2Þ,
where

I1 ¼ sup
t2½0, r�

E

����
����
ðt
0
Ukðt, sÞðAkÞ�ðsÞAkðsÞðhks � ĥ

k

s Þ

� Uk0ðt, sÞðAk0Þ�ðsÞAk0ðsÞðhk0s � ĥ
k0
s Þds

����
����2
L2ðX,VaÞ

,

I2 ¼ sup
t2½0, r�

E

����
ðt
0
Ukðt, sÞðAkÞ�ðsÞ � Uk0ðt, sÞðAk0Þ�ðsÞdWs

����2
L2ðX,VaÞ

:

Furthermore, we can estimate

I1 	 sup
t2 0, r½ �

2E

����
ðt
0
Ukðt, sÞ � Uk0ðt, sÞ
� 


ðAkÞ�ðsÞAkðsÞ hks � ĥ
k

s

� �
ds

����2
L2ðX,VaÞ

þ sup
t2 0, r½ �

2E

����
ðt
0
Uk0ðt, sÞ ðAkÞ�ðsÞ � ðAk0Þ�ðsÞ

� 

AkðsÞ hks � ĥ

k

s

� �
ds

����2
L2ðX,VaÞ

þ sup
t2 0, r½ �

2E

����
ðt
0
Uk0ðt, sÞðAk0Þ�ðsÞ AkðsÞ � Ak0ðsÞ

� 

hks � ĥ

k

s

� �
ds

����2
L2ðX,VaÞ

þ sup
t2 0, r½ �

2E

����
ðt
0
Uk0ðt, sÞðAk0Þ�ðsÞAk0ðsÞ hks � hk0s þ ĥ

k0
s � ĥ

k

s

� �
ds

����2
L2ðX,VaÞ

	 C1ðTÞkUk � Uk0kC þ C2ðTÞkAk � Ak0kC 0,T½ �,LðVa,R
nÞð Þ

þ C3ðTÞkhk � hk0kC 0,T½ �, L2ðX,VaÞð Þ þ C4ðTÞ
Ð r
0 uðsÞds
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and

I2 	 sup
t2 0, r½ �

Xn
j¼1

E

����
ðt
0
Ukðt, sÞAk

j ðsÞ � Uk0ðt, sÞAk0
j ðsÞdWj

s

����2
L2ðX,VaÞ

¼ sup
t2 0, r½ �

Xn
j¼1

ðt
0

����Ukðt, sÞAk
j ðsÞ � Uk0ðt, sÞAk0

j ðsÞ
����2
L2ðX,VaÞ

ds

	 C5ðTÞkAk � Ak0kC 0,T½ �,LðVa,RnÞð Þ þ C6ðTÞkUk � Uk0kC,

where C1 � C6 are finite constants dependent only on T. We used boundedness of Ukf g
and Akf g and Itô isometry. Therefore, we have

uðrÞ 	 aðTÞ þ
ðr
0
C4ðTÞuðsÞds, r 2 0,T½ �,

where

aðTÞ ¼ �CðTÞ kUk � Uk0kC þ kAk � Ak0kC 0,T½ �,LðVa,R
nÞð Þ þ khk � hk0kC 0,T½ �, L2ðX,VaÞð Þ

� �
and �CðTÞ < 1: Using Gronwall’s inequality we obtain

uðTÞ 	 aðTÞ exp TC4ðTÞ
� �

	 CðTÞ kUk � Uk0kC þ kAk � Ak0kC 0,T½ �,LðVa,RnÞð Þ þ khk � hk0kC 0,T½ �, L2ðX,VaÞð Þ
� �

for a constant CðTÞ < 1 independent of k 2 K:
Using Assumptions (3.1), (3.2) and Theorem 2.1 we obtain

sup
t2 0, r½ �

kĥkt � ĥ
k0
t kL2ðX,VaÞ ! 0, k ! k0, k 2 K,

which completes the proof. w

4. Signal governed by stochastic evolution equation

Consider a stochastic basis ðX, F,P, ðFtÞÞ and two-sided cylindrical fractional Brownian
motion fBt , t 2 Rg with Hurst parameter h> 1=2 on separable Hilbert space U defined
by the formal series

Bt ¼
X1
n¼1

bnðtÞen, t 2 R,

where fen, n 2 Ng is an orthonormal basis in U and fbnðtÞ, t 2 Rgn2N is a sequence of
independent real-valued fractional Brownian motions (for the definitions see [4]
and [5]).
Let H be a separable Hilbert space and for any k 2 K, K being a compact metric

space, let the H-valued signal hk satisfy the equation

dhkt ¼ Akh
k
t dt þ GkdBt , t 2 0,T½ �, (4.1)

where the linear operator Ak : DomðAkÞ � H ! H is strictily negative, selfadjoint and
has compact resolvent, hence it generates a compact strongly continuous analytic
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semigroup fSkðtÞ, t 
 0g in H. Finally, Gk is an operator defined on U with values in an
appropriate space.
By the analyticity of Sk, k 2 K, the Hilbert spaces

Vk
d ¼ Domðð�AkÞdÞ, d 
 0 (4.2)

equipped with the graph norm topology are well defined. We assume that Vk
d do not

depend on k 2 K for every d 
 0 (the graph norms k � kVk
d
, k 2 K are equivalent) and

we set Vd ¼ Vk0
d , d 
 0, for a fixed, arbitrarily chosen k0 2 K: Finally,

Gk : U ! V 0
1,

where V 0
1 is the dual of V1 with respect to topology of H.

In order to use results from previous sections impose the following assumptions:

� Uniform exponential stability: For some c1 > 0 and q1 > 0 we have

kSkðtÞkLðHÞ 	 c1e�q1t , t > 0 (A1)
for k 2 K:

� Uniform singularity at time t ¼ 0: For some c2 > 0 and 0 	 c < h we have

kSkðtÞGkkL2ðU,HÞ 	 c2t�c, t > 0 (A2)
for k 2 K:

� Equicontinuity of the semigroups: There exists a 
 0 such that cþ a < h and for
any x 2 Va the mappings

Skð�Þx : ½0,T� ! Va are continuous uniformly in k 2 K:(A3)

� Continuous dependence: For t> 0 and k0 2 K we have

SkðtÞGk !L2ðU,VaÞ
Sk0ðtÞGk0 , k ! k0: (A4)

Note that the above conditions imply the uniform analyticity of the family of semi-
groups ðSkÞk2K, hence by (A1) and (A2) we obtain

kSkðtÞGkkL2ðU,VdÞ 	 Cde
�qtt�ðcþdÞ, t > 0 (4.3)

for any d 
 0 and a constant Cd independent of t> 0 and k 2 K: Indeed, we may esti-
mate

kSkðtÞGkkL2ðU,VdÞ 	 kSkðt=2ÞGkkL2ðU,HÞkSkðt=2ÞkL2ðH,VdÞ, t > 0:

Also, notice that the inequality in (A2) may be verified only on a finite time interval
ð0,TÞ for a T> 0 if we take into account (A1).
The above hypotheses imply existence of a strictly stationary solution to (4.1) with

continuous paths in Va, understood in the mild sense, which may be expressed as

hkt ¼
ðt
�1

Skðt � uÞGkdBðuÞ, t 2 0,T½ �, (4.4)
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(see [10] for details). Similar computations as in [4] yield a representation for the
covariance Kkðt, sÞ ¼ Kkðt � sÞ ¼ E hkt � hk0

h i
for ðt, sÞ 2 D :

KkðtÞ ¼
ðt
�1

ð0
�1

Skð�uÞGkG
�
kSkðt � vÞchðu� vÞdudv, (4.5)

where chðuÞ ¼ hð2h� 1Þjuj2h�2, u 2 R (note that SkðtÞ� ¼ SkðtÞ). The integral (4.5) is
correctly defined due to the estimate

ðt
�1

ð0
�1

kSkð�rÞGkG
�
kSkðt � vÞkLðHÞchðr � vÞdrdv

	
ðt
�1

ð0
�1

kSkð�rÞGkG
�
kSkðt � vÞkL1ðHÞchðr � vÞdrdv

	
ðt
�1

ð0
�1

kSkð�rÞGkkL2ðU,HkSkðt � vÞGkkL2ðU,HÞchðr � vÞdrdv

	 c0

ðt
�1

ð0
�1

eqðrþvÞð�rÞ�cðt � vÞ�cchðr � vÞdrdv

for t 2 ½0,T�, with some constant c0 < 1, which follows by (4.3) with d¼ 0 (so
Vd ¼ H). The right-hand side is finite since

ðt
�1

ð0
�1

eqðrþvÞð�rÞ�gðt � vÞ�gchðr � vÞdrdv < 1, t 2 0,T½ �, (4.6)

for any q > 0 and 0 	 g < h which we will also use in the sequel.
We are now ready to verify the boundedness condition (1.1) and equicontinuity con-

dition (1.2) from Section 2. Take # 2 ð0, aÞ such that cþ aþ # < h and any t 2
½0,T�, k 2 K0: Using (4.6), (4.3), and the strict stationarity of (4.4) we have

Ekhkt k2Vaþ#
¼ Ekhk0k2Vaþ#

¼
����
ð0
�1

ð0
�1

Skð�rÞGkG
�
kSkð�vÞchðr � vÞdrdv

����
L1ðVaþ#Þ

	
ð0
�1

ð0
�1

kSkð�rÞGkkL2ðU,Vaþ#ÞkSkð�vÞGkkL2ðU,Vaþ#Þchðr � vÞdrdv

	 C2
aþ#

ð0
�1

ð0
�1

eqðrþvÞð�rÞ�ðcþaþ#Þð�vÞ�ðcþaþ#Þchðr � vÞdrdv < 1,

with the last integral being independent of t, k and finite due to (4.6) with g ¼
cþ aþ h: This proves the boundedness of fhkgk2K in Cð½0,T�, L2ðX,Vaþ#ÞÞ:
By the strict stationarity, it is enough to verify the equicontinuity at zero from the

right. For t 2 ½0,T� and k 2 K we obtain
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E

����
ðt
�1

Skðt � uÞGkdBu �
ð0
�1

Skð�uÞGkdBu

����2
Va

¼ E

����
ðt
0
Skðt � uÞGkdBu �

ð0
�1

ðSkðtÞ � IÞSkð�uÞGkdBuk2Va

	 2E

����
ðt
0
Skðt � uÞGkdBu

����2
Va

þ 2E

����
ð0
�1

ðSkðtÞ � IÞSkð�uÞGkdBu

����2
Va

	 2

����
ðt
0

ðt
0
Skðt � uÞGkG

�
kSkðt � vÞchðu� vÞdudv

����
L1ðVaÞ

þ2

����
ð0
�1

ð0
�1

ðSkðtÞ � IÞSkð�uÞGkG
�
kSkð�vÞðSkðtÞ � IÞchðu� vÞdudv

����
L1ðVaÞ

	 2
ðt
0

ðt
0
kSkðt � uÞGkkL2ðU,VaÞkSkðt � vÞGkkL2ðU,VaÞchðu� vÞdudv

þ2
ð0
�1

ð0
�1

kðSkðtÞ � IÞSkð�uÞGkkL2ðU ,VaÞkðSkðtÞ � IÞSkð�vÞGkkL2ðU,VaÞchðu� vÞdudv
¼: 2I1ðt, kÞ þ 2I2ðt, kÞ

Now I1ðt, kÞ can be estimated

I1ðt, kÞ ¼
ðt
0

ðt
0
kSkðuÞGkkL2ðU,VaÞL2ðU ,VaÞkSkðvÞGkkL2ðU,VaÞchðu� vÞdudv

	 C2
a

ðt
0

ðt
0
e�qðuþvÞðuvÞ�ðcþaÞchðu� vÞdudv:

The last term is independent of k 2 K and tends to 0 as t ! 0þ when we take into
account (4.6) with g ¼ cþ a:
For I2ðt, kÞ we construct an integrable majorant by (4.6) with g ¼ cþ a and the equi-

continuity of the semigroups in (A3) which implies that jSkð�Þ � IjLðVaÞ is bounded on
½0,T� by some Na > 0 depending only on a. Moreover,

ðSkðtÞ � IÞSkðuÞGk !L2ðU,VaÞ
0, t ! 0þ (4.7)

holds for any u> 0. The convergence (4.7) is obtained by the analyticity of Sk and equi-
continuity in (A3) again by Dominated Convergence Theorem. Indeed, if ffngn2N is an
orthonormal basis in U we have

kðSkðtÞ � IÞSkðuÞGkfnkVa
! 0, t ! 0þ ,

for any n 2 N and u> 0. Moreover,X1
n¼0

kðSkðtÞ � IÞSkðuÞGkfnkVa

2 	 N2
a

X1
n¼0

kSkðuÞGkfnkVa

2 ¼ N2
akSkðuÞGkkL2ðU,VaÞ,

which is finite by (4.3) with d ¼ a: Hence we have verified that the family fhkgk2K �
Cð½0,T�, L2ðX,VaÞÞ is equicontinuous.
Now, we verify the condition (3.1) on continuous dependence of hk on k. Assume

t 2 ½0,T� and k, k0 2 K then we have
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Ekhkt � hk0t k2Va
¼ E

����
ðt
�1

Skðt � uÞGkdBu �
ðt
�1

Sk0ðt � uÞGk0dBu

����2
Va

¼ E

����
ðt
�1

ðSkðt � uÞGk � Sk0ðt � uÞGk0ÞdBu

����2
Va

¼
����
ðt
�1

ðt
�1

ðSkðt � uÞGk � Sk0ðt � uÞGk0ÞðSkðt � vÞGk � Sk0ðt � vÞGk0Þ�chðu� vÞdudv
����
L1ðVaÞ

¼
����
ð1
0

ð1
0
ðSkðuÞGk � Sk0ðuÞGk0ÞðSkðvÞGk � Sk0ðvÞGk0Þ�chðu� vÞdudv

����
L1ðVaÞ

	
ð1
0

ð1
0
kSkðuÞGk � Sk0ðuÞGk0kL2ðU ,VaÞkSkðvÞGk � Sk0ðvÞGk0kL2ðU,VaÞchðu� vÞdudv

This upper bound does not depend on t and the integrand converges pointwise to
zero as k ! k0 by (A4). The Dominated Convergence Theorem (we use an upper
bound constructed using (4.6) with g ¼ cþ a) yields desired convergence. We have
verified that hk ! hk0 in Cð½0,T�, L2ðX,VaÞÞ as k ! k0:

4.1. Distributed fractional noise in heat equation

Consider the stationary solution of the equation

@u
@t

ðt, xÞ ¼ k1Duðt, xÞ þ gh
k2
ðt, xÞ, ðt, xÞ 2 0,T½ � � D,

uðt, �Þj@D ¼ 0, t 2 0,T½ �,
(4.8)

where D � R
d is a bounded domain with a smooth boundary @D, D is the Laplace

operator and the parameter k ¼ ðk1, k2Þ takes values in a compact metric space K ¼
K1 � K2,K1 � ð0,1Þ: The noise gh

k2
is viewed as a fractional noise with the Hurst par-

ameter h> 1=2.
Equation (4.8) is treated rigorously as the Hilbert space-valued equation

dhkt ¼ Akh
k
t dt þ GkdB

h
t , t 2 0,T½ �, (4.9)

for k 2 K as in (4.1), where we set

U ¼ H ¼ L2ðDÞ, Ak ¼ k1D, DomAk ¼ W2, 2ðDÞ \W1, 2
0 ðDÞ,

Bh is the cylindrical fractional Brownian motion in U and Gk ¼ Gk2 : K
2 ! L2ðU,HÞ

is continuous.
It is well known that A1 is strictly negative and generates strongly continuous com-

pact semigroup on H which we denote by S (here we formally assume that 1 2 K1). For
the semigroups Sk generated by Ak, k 2 K we have

SkðtÞ ¼ Sðk1tÞ, t > 0, k 2 K: (4.10)

To establish continuous dependence of the filter we verify (A1), (A2), (A3), and (A4).
First, S is exponentially stable so the condition (A1) is satisfied.
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Furthermore,

kSkðtÞGkkL2ðU,HÞ 	 kSðk1tÞkLðHÞkGk2kL2ðU ,HÞ 	 K

for some K < 1 by the Resonance Theorem, compactness of K1 and continuous
dependence of Gk2 on k2 2 K2: Therefore, (A2) is verified with c¼ 0.
Taking arbitrary a > 0 so that

cþ a ¼ a < h (4.11)

we obtain (A3) by analyticity of S and (4.10).
Finally, the continuous dependence in (A4) is verified as follows: First, we observe

that in our case (A4) follows from the weaker condition

SkðtÞGk ���!L2ðU,HÞ
Sk0ðtÞGk0 , k ! k0,

for t> 0. For t> 0 fixed taking c> 0 such that k1t > 0 for every k1 2 K1 we may write

kSkðtÞGk � S~kðtÞG~kkL2ðU ,VaÞ 	 kSðcÞkLðH,VaÞkSðk1t � cÞGk � Sð~k1t � cÞG~kkL2ðU,HÞ

and we use analyticity of the semigroup S.
Now let ffngn2N be an orthonormal basis in U, then we have

kSkðtÞGk � SðtÞ~kG~k kL2ðU,HÞ ¼
X1
n¼0

kðSkðtÞGk2 � S~kðtÞG~k
2Þfnk2H

¼
X1
n¼0

kðSðk1tÞGk2 � Sð~k1tÞG~k
2Þfnk2H

	 2
X1
n¼0

kSðk1tÞðG~k
2 � Gk2Þfnk2H

þ2
X1
n¼0

kðSðk1tÞ � Sð~k1tÞÞG~k
2 fnk2H

for t > 0, k ¼ ðk1, k2Þ 2 K and ~k ¼ ð~k1, ~k2Þ 2 K: The right-hand side converges to 0 if
k ! ~k by the Resonance Theorem, compactness of K and continuous dependence of
Gk2 on k2 2 K2:

We have verified the conditions for continuous dependence of the filter ĥ
k

in
Theorem 3.1 for arbitrary 0 < a < h:
Assume moreover, that the condition

a >
d
4

(4.12)

is additionally satisfied. Then by the Sobolev embedding theorem and [15] we have

Va ,!W2a, 2ðDÞ ,!C0,bðDÞ, (4.13)

where W2a, 2ðDÞ is the Sobolev space and C0,bðDÞ is the space of uniformly b-H€older
continuous functions on D, b ¼ ð4a� dÞ=2: Hence, for arbitrary chosen set of points
zk1 , :::, z

k
n 2 D (possibly depending on k 2 K) the evaluation map

Aku ¼ ðuðzk1Þ, :::,uðzknÞÞ, u 2 Va (4.14)
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is well defined for k 2 K: Suppose that the mapping k7!ðzk1, :::zknÞ is continuous. Then
Ak : K ! LðVa,R

nÞ is continuous as well, since by (4.13) for a constant c0 > 0 we have

sup
u2Va

fjuðzki Þ � uðzi~kÞj, kukVa
	 1g 	 c0 sup

u2C0, b
fjuðzki Þ � uðzi~kÞj, kukC0, b 	 1g ! 0

whenever k ! ~k for i ¼ 1, :::, n: This verifies the condition (3.2) and we may conclude
that Theorem 3.1 with Va defined as above holds for signal defined by (4.9) and the
observation process

dnkt ¼ Akhkt dt þ dWt, t 2 0,T½ �,
nk0 ¼ 0,

with arbitrary R
n-valued Wiener process W which is independent of Bh and pointwise

observation Ak given by (4.14). In this case the equations for the filter (1.5) and (1.6) in
Theorem 1.1 can be simplified in the same way as in the Corollary 3.1. in [12].
Note that since we assume h> 1=2, both (4.11) and (4.12) are satisfied if either d¼ 1,

2 or d¼ 3 and h> 3=4.

4.2. Pointwise fractional noise in heat equation

Consider the signal given as a stationary solution to the parabolic equation

@u
@t

ðt, xÞ ¼ k1Duðt, xÞ þ dk2g
hðtÞ, ðt, xÞ 2 0,T½ � � D,

uðt, �Þj@D ¼ 0, t 2 0,T½ �:
(4.15)

The setup is similar to the previous example except that the noise gh is not distrib-
uted on the whole domain D, but is scalar and acting at the point k2 2 D: Here, D �
R

d is again a bounded domain with smooth boundary @D, D is the Laplace operator,
dy stands for the Dirac distribution at y 2 D and the parameter k ¼ ðk1, k2Þ takes values
in a compact metric space K ¼ K1 � K2, where K1 � ð0,1Þ and K2 � D: The noise gh

is an one-dimensional fractional Brownian motion with the Hurst parameter h> 1=2.
We treat (4.15) as the equation

dhkt ¼ Akh
k
t dt þ GkdBt , t 2 0,T½ �,

for k 2 K as in (4.1), where

U ¼ R, H ¼ L2ðDÞ, Ak ¼ k1D, DomAk ¼ W2, 2ðDÞ \W1, 2
0 ðDÞ, Gk ¼ dk2

with a real fractional Brownian motion Bh. The semigroups S and Sk are the same as in the
previous example, it is therefore sufficient to verify (A2), (A3) and (A4). Note that as U ¼
R, the Hilbert-Schmidt and operator norms are equal for operators defined on U.
To verify (A2) we estimate

kSkðtÞGkkL2ðU,HÞ ¼ kSðk1tÞdk2kLðU,HÞ
	 kSðk1tÞkLðV�

c ,HÞkdk2kLðU ,V�
c Þ

	 c0t�c, t > 0,

(4.16)

for some c0 > 0 whenever d=4 < c < 1: We used the analyticity of S, isomorphism
V�
c ffi Domð�AÞ�c, compactness of K and continuous dependence of dk2 on k2 2 K2 in
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ðC0,bÞ� ,!V�
c , where b ¼ ð4c� dÞ=2: Assuming that

d
4
< h, (4.17)

we have verified (A2). Fix c such that d=4 < c < h: Then (A3) is satisfied for any a 
 0
with

cþ a < h

by the analyticity of S. Finally, to verify (A4) we examine the norm in L2ðU,HÞ as in
the previous example and estimate

kSkðtÞGk � S~kðtÞG~k kL2ðU,HÞ ¼ kSkðtÞGk � S~kðtÞG~kkLðU,HÞ

	 kSkðtÞðGk � G~kÞkLðU,HÞ ¼: H1

þkðSkðtÞ � S~kðtÞÞG~kkLðU,HÞ ¼: H2

for k ¼ ðk1, k2Þ 2 K and ~k ¼ ð~k1, ~k2Þ 2 K: The term H1 is estimated similarly as in
(4.16) as

H1 	 c0t
�ckdk2 � d~k2kLðU ,V�

c Þ

by analyticity of S. We see that H1 tends to 0 as k ! ~k by continuous dependence of
dk2 on k2 in ðC0,bÞ� ,!V�

c : For H2 we have

H2 ¼ kðSðk1tÞ � Sð~k1tÞÞd~k2kLðU,HÞ ¼ kðSðk1tÞ � Sð~k1tÞÞð�AÞcð�AÞ�cd~k2kLðU,HÞ:

Now d~k2 2 LðU,V�
c Þ and it easily follows that H2 ! 0 as k ! ~k, which verifies (A4).

As in the previous example we may also examine the conditions under which we shall
consider pointwise observation of the signal as defined in (4.14). Similarly, we obtain
the condition d=4 < a which can be satisfied only when d¼ 1.

Remark 4.1. The Hurst parameter h of the driving fractional Brownian motion in the
signal equation in Section 5 is supposed to be greater than 1/2 and there is an interest-
ing open question what happens if h< 1=2. We conjecture that analogous continuous
dependence results would hold, however, under more stringent conditions, especially in
(A4), where convergence in an appropriate H€older norm would be needed. The reason
is that the kernel in the formula for covariance (an analog of (4.5)) has a different (and
more singular) form. In our main examples, the irregularity of the noise leads to the
lost of space regularity which would be a serious limitation in our filtering problem.
For instance, in Subsection 5.1 (the distributed noise) the pointwise observation is pos-
sible only for h > d

4 , so the singular fractional Brownian motion may be considered
only in one-dimensional case and only if h> 1=4. In Subsection 5.2 (the pointwise
noise) the signal is not regular enough to allow pointwise observation if h< 1=2 (the
corresponding regularity results in these cases have been proved in [4]).
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