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ABSTRACT ARTICLE HISTORY
The filtering problem for non-Markovian Gaussian processes on Received 25 May 2020
rigged Hilbert spaces is considered. Continuous dependence of the Accepted 16 May 2022
filter and observation error on parameters which may be present
both in the signal and observation processes is proved. The general
results are applied to signals governed by stochastic heat equations . )

- S . . . . . stochastic evolution
driven by distributed or pointwise fractional noise. The observation equations;
process may be a noisy observation of the signal at given points Gaussian processes
in the domain, the position of which may depend on
the parameter.
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Introduction

Signal processes defined by linear stochastic partial differential equations may be under-
stood as Gaussian Hilbert space-valued processes, where the state space is an appropri-
ate function space. The filtering problem for such signals in the case when observations
are finite-dimensional and perturbed by noise white in time has been recently solved in
[11, 12]. We are not aware of any other results on filtering of Gaussian processes that
would be applicable to stochastic PDEs except for the standard case of Kalman-Bucy fil-
ter, in which the signal process is Markovian (cf. [5] for a pioneering result in this dir-
ection). Of course, much more is known about the “dual” LQ control problem which
has been treated, for instance, in [3] and [2], and related statistical inference problems
that were addressed in numerous papers, like [1, 13] or [10]. In finite-dimensional state
spaces there are several papers by Kleptsyna et al. ([7, 9] or [8]) where the filtering
problem for non-Markovian Gaussian signal is studied.

In the above-mentioned papers [11, 12], the signal is a general infinite-dimensional
Gaussian process with a known covariance operator and the observation is finite-
dimensional. The covariance of the observation error is shown to satisfy a Hilbert
space-valued nonlinear integral equation and the filter itself satisfies a linear stochastic
equation in infinite dimensions (containing the covariance of the observation error).
A typical example of signal process covered by this approach is the one governed by
stochastic heat equation driven by space-dependent Brownian motion fractional in
time
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%(t,x) = Au(t,x) + "t x), (t,x) €[0,T] x D,

ult.)op= 0, t€0,T],

(0.1)

where D C R? is a bounded domain with a smooth boundary 0D, A is the Laplace
operator, and the noise " is viewed as a fractional noise with the Hurst parameter .
The observation is given by the stochastic differential

dé, = A(u(t,-))dt +dw,, t€10,T],
¢o=0,

where A is the operator of pointwise observation at given points z,...,2, in the
domain D,

A(p) = (¢(21), .- 0(2z0)), (0.2)

defined on a suitable function space and W is an R"-valued Wiener process which is
independent of #".

The filtering problem here and in similar cases is relatively delicate because the obser-
vations are well defined only if the signal process is sufficiently regular and so it is
interesting to study the stability of the filter with respect to small changes of the obser-
vation points.

In this article, we solve a more general problem of continuous dependence of the filter
on parameters which may be present both in signal and observation processes. This
research is motivated by high level of uncertainty in models described by stochastic par-
tial differential equations on one side and space-time irregularity of solutions on the other
hand. The signal equations usually contain parameters that are not precisely known and
often must be estimated in longer run of the process. Then it is important that the signal
(as well as the filter) is sufficiently robust with respect to small changes of parameters.
Also, the observations are noisy as well (nondegeneracy of the noise in observation equa-
tion is a crucial condition for a Kalman-Bucy type result) and it is of interest whether
the filter depends continuously on the changes of the “parameters” of observations.

We consider the abstract setting as in [12]. So the signal is a Hilbert space-valued
parameter-dependent Gaussian process and the observation is given by stochastic differ-
ential, the coefficients of which may also depend on the parameter. The above-men-
tioned lack of regularity is overcomed by posing the equation on a rigged Hilbert space.

The article is divided into five sections. In Section 2, the basic setting is explained in
detail and the main result from [12] is recalled, where the forms of equations for filter
and observation error are derived and existence and uniqueness of their solutions are
proved. Section 3, which contains the heart of the proof of our main result, is devoted
to continuous dependence of the covariance of observation error (Theorem 2.1). As
mentioned above, this mapping satisfies a nonlinear integral equation with non-
Lipschitz right-hand side. Hence it does not seem to be possible to proceed in a stand-
ard way by means of the Gronwall lemma. We use here a method based on compact-
ness of the family of solutions (which is proved by Arzela-Ascoli theorem for mappings
taking values in operator spaces, utilizing so-called collective compactness of solutions
and their adjoints, cf. [14]). Section 4 contains the main result of the article (Theorem
3.1), the proof of continuous dependence of the filter (finite-dimensional analogue of
this statement may be found in the unpublished work [16]). In Section 5, these results
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are applied in the case of signal defined by linear stochastic partial differential equation
(SPDE) driven by cylindrical fractional Brownian motion. Two examples of signal are
then elaborated in more detail: The heat equation perturbed either with distributed or
by pointwise fractional noise. Observations are finite-dimensional and the case of point-
wise observation at some points in the domain, that may depend on the parameter, is
also considered.

The space of bounded linear operators mapping a Banach space X to a Banach space
Y is denoted as L£(X,Y), £L(X) := L(X,X). The space of Hilbert-Schmidt operators
from a Hilbert space H into a Hilbert space V is denoted as L£,(H,V), L,(H) :=
L,(H, H). Similarly, £,(H) indicates the space of trace class operators on H.

1. Preliminaries

Let H= (H,(--)yp || - |l) be a separable Hilbert space. Consider a selfadjoint positive
operator B on H with a compact resolvent. For o > 0 consider a Hilbert space V, =
(Vi (o )y, |l - Ily,) defined by the fractional power of operator B as V, = Dom(B")
equipped with a graph norm |- [[,,. Then (H,V,) form together a rigged separable
Hilbert space such that V,, C H and identifying H with the dual H* the embeddings

Vo —=H=H"—V,

are continuous and dense. The duality pairing between V, and V is defined by the
usual extension of the form (u,v), ,V; = (uv), foru e V, CHandve H C V.

For arbitrary x,y€V, we define tensor product xoye L(V},V,),
(xoy)v=x(yv)y,V,, vEV],.

Consider a stochastic basis (Q, F, P, (F;)), a compact set of parameters A and a family
of signals {07t € [0,T],. € A} that are (F,) - progressively measurable centered
Gaussian processes with paths P-a.s. in L([0, T], V,.9) for some o > 9 > 0 such that

sup [0, < oo (L.1)
€N, tE[0, T
and for every e >0 there exists 6 >0 such that for all A€ A and for all
s, t€[0,T], |t—s| <o

E|0; — 6|3, <e. (1.2)

The Equation (1.1) will be referred to as uniform boundedness of {0%} and the prop-
erty (1.2) as (mean - square) equicontinuity.

For every . € A let & = {¢/,t €[0,T]} denotes an R" -valued observation process
given as

t
&= J AM(s)04ds + W, telo,T), (1.3)
0
where (Ai(s))se[()) 7) is a family of linear operators V, — R" such that for every 1€ A
the mapping ¢ — A*(t) is strongly measurable and uniformly bounded, that is,

sup ||Ai(t)||£(vx,R") < 0.
tel0, T), A€A
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Here W = {W,,t € [0, T]} is a standard R" -valued Wiener process independent of the
family of signals {6"}.
Further, assume that for each 2 € A and t € [0, T] the operator A*(t) can be decom-
posed into functionals A%(t), ..., A%(t) € V; such that
AH1)b = (A1), Vi (0. AL(D) vy, V)
for all b € V,. The dual operator (A*)*(t) : R" — V then satisfies
(A ()2 =) _zAl(1) (1.4)
i=1

for all z € R". N
We will study the optimal filter 6,, which is defined as

07 =E o1,

where (Ff”)te[o)T is the filtration generated by the observation process &”.

Set K*(t,s) = E[Hf‘o 0?], t,s € [0,T], A € A. In virtue of the uniform boundedness of
the processes {0-,tc[0,T],2€ A} the family of mappings K*:[0,T])* —
L(V,V,), A € A is uniformly bounded in C([0, T]?, L(V?, V,)), i.e.

7
i‘ellA’”K leio, 7, (v, vap) < 0

Then, for a fixed value of the parameter 4, we have following theorem (cf. Theorem
1.1 in [12]).

Theorem 1.1. Let A = {(t,s) € [0, T]*;0 < s <t < T} and . € A. The filter 0 satisfies
the stochastic integral equation

et = Jt D*(t,5)(A%) (s)dé, — Jt (¢, s)(A)')*(s)A)'(s)@jds, telo,T), (1.5)

where operator ®*: A — L(V},V,) defined as ®*(t,s) = E[0] o (0" — @j)] for all (t,s) €
A is strongly continuous and satisfies the integral equation

D% (t,5) = K*(t,5) —Zn: J (cpﬂ(t,r)Aj(r)) o (cpﬂ(s,r)A;(r))dr, (Ls) €A (16)
j=10

Moreover, for all t € [0, T], ®*(t,t) is the covariance of the estimation error at time
t € [0, T], that is,

Y )
(1, 1) = B[ (07 = 0)) 0 (07 — 0)] (17)
holds.
Remark 1.2. According to Lemma 2.2 in [6] process {W,t € [0, T]} defined as
. ) t ) . ; t N
W= JOE A ()OI FS [ dr = & L A(r)0dr. (1.8)

is R" -valued (Ff/) - standard Wiener process called innovation process. Equation (1.5)
can be rewritten as

éf = Jt q)’-(t,s)(Ai)*(s)de, t [0, T]. (1.9)
0
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2. Continuous dependence for the covariance

In this section, continuous dependence of the covariance operator ®* on 1€ A is
shown. The main result of the section is stated below.

Theorem 2.1. Under the assumptions in Section 2 if

K*—K» A=l J€EA (2.1)
in C([0, T, L(VE, V) and

AP AP L=y AEA (2.2)
in C([0, T], L(V,, R")) then

O — D, L=y, LEA (2.3)

in C(A, L(V3, V).

For the proof of Theorem 2.1, we need following lemma.

Lemma 2.2. Under the assumptions in Section 2 the set of functions {(I)’l}/leA is relatively
compact in C(A, L(V}, Vy)).

Proof. In virtue of the infinite-dimensional version of the Arzela-Ascoli theorem the
statement of Lemma 2.2 holds if and only if the family {®*} sen is uniformly bounded
and equicontinuous in C(A,L(V},V,)) and {®(ts)},., is relatively compact in
L(V},V,) for every (t,s) € A.

First, we show that mappings (t,s,1) — ®*(t,s), 4 € A are uniformly bounded on
A x A. For arbitrary x,y € V;, (t,s) € A and for all 1€ A using Cauchy-Schwarz
inequality we obtain

<<Z | (@enam) e (esnaic ))dr>”>V;V;

j=1

< Z * <|:((Dﬂ(t r)A;V(T)> o (CD)”(S, r)A])(T))}Xy> V|
j=1"0
=2 ) @ EA O DA 2, Vi Vil
_ZJSIW(t A1) D)y, Vil (@ (s 1A (). x)y,, V;1dr 24)

<32 ([, (e A v) @) ([ (@enaion, v) )

0
1

Z:(JO< (@ (tr)af(n) o (@ (tr)A](1) ] y> V*d">E
Al

1

<[ D% (s, 7) AA ) o <(I)’1(s, r)Aji(r))}x,x>v,V;‘dr>i.
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In the last inequality, we can increase the upper bound of the first integral from s to
t because the integrand is nonnegative. Hence we only need to estimate the term

J; < [(d)/‘»(t, r)A]%(r)) o (q;z(t, r)Aj(r))]x,x>V ,Vidr

for j=1,..,n and x € V}. By (1.6) and the uniform boundedness of the {K*},_, we

have
o= [ ([(@ensio) o renmifes) v

o

< J; < [((I)’v(t, r)Af(r)) ) ((I))v(t, r)Af(r))]x,x>V ,Vidr (2.5)

— :
Xy, Vy — (@1, t)x.X)y, V;
2y, Vi < QD|lly,, te(0.T], Ci(T) < 0.

Now, by (1.6), (2.4), (2.5) and again by the uniform boundedness of the family
{K*},.5 we obtain

(@ (t.5)x. )y, Vs
< IK*(& ) ggvs, v 1l Il

([ (v enao) o (wsnaim)ar)ey) v
(S renso)e @onmo)))

j=1 Va
< G(Dlxllvllyllv;,  G(T) <00

for all 2€ A, x,y € V; and (t,5) € A, which proves that the family of operators
{®"},., is uniformly bounded in C(A, L(V}, V,)).

Further, we show that the family {®*},_, is equicontinuous on A (as mappings with
values in £(V}, V,)). To this end, it is enough to show equicontinuity of {®*(~s)};.,
on [s, T] for all s € [0, T] and equicontinuity of {®*(t,-)},., on [0, for all ¢ € [0, T].
By definition of ®* and Cauchy - Schwarz inequality we have

‘<((Dﬂ(t1 5) — D (t,5))x.y) V., v: ‘ = ‘E( 9;' - éi’x>v7,v;<0ti1 - eé'y>v1,v;>‘
\/W Hxvv‘\/‘ i VV’Z
VEIEI, \/ It vov:

forall s € [0, T], t;,t, € [s,T], A € A and all x,y € V. Therefore, using the mean-square
equicontinuity and uniform boundedness of signals {07, € [0, T], A € A}, for € > 0 we
find 6 > 0 such that

(2.6)

(@(11.5) = OH(12.9)) 29, v, | < el

for every A€ A and all s € [0,T], t1,t, € [5, T}, |t — t1| < 0, which proves equicontinu-
ity of {®*(-5)}en-
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Furthermore, we have
(@ (t.50) — @ (t.5)xl, o
, Y AL
<0146, — 0}y, v ) I, + IE(O740, — 0520y, )y,

7 7 2 Al Al 2
g\/Euf)fni(ﬁ]wﬁ—esz)xm,v;\ +¢E\<9$2—951,x>w,v; )

for all t € [0, T}, 51,5, € [0, 2], 4 € A and all x € V. Using (1.9), (1.4), It6 isometry and
the uniform boundednes of (A*),_, and {®"},_, we have

(2.7)

[ {(@an -0 v,

=L Vi Vg
n S _ 2
+2) E J (@ (52, 1) A (). %),y AW,
— ),

n ! S1 2
= 2ZJ <(<D; (s2.7) — CDX(sl,r))A]) (s) x> dr
= Jo Vi Vi

n 3 ) . 2
+ ZZ J (D (s,, r)Af(s),x) V.. V;‘ dr
=1

< C(T)||x||%, (f;l ||q))“(52,7) - ‘DA(SLT)H(Z:([T, T],g(v;,vx))dr + |52 — 51|):0 <51 <5< T,
(2.8)

where C(T) < oc.

Using (2.7) and (2.8), the equicontinuity of {®"(-,7)},., on [r,T] for all r € [0, T]
shown in (2.6) and the mean-square equicontinuity and uniform boundedness of signals
{64t €10, T,/ € A}, for all € >0 we can find 6 > 0 such that

(@ (£:51) — D (t:52))x

v, <éllxlly, (2.9)

for every A € A and all ¢ € [0,T], 51,5, € [0,], [s2 — 51| < 0 and x € V. This completes
the proof of equicontinuity of {®*},_, on A.

It remains to show that {®"(ts)}, , is relatively compact in L£(V},V,) for every
(t,s) € A. This property is equivalent to collective compactness of the family
{[@*(t.5), (@) (£,5)] },ep in L(VE,V,) x L(V,, VE), cf. [14]. Employing the compact-
ness of embeddings

Voc+19 =V, v,

*
a9 Voz

(cf. (1.1) for the definition of ¥)) it is enough to show Range(®*(t,s)) C V.9,
Range((®")*(t,s)) C V;_, and the uniform boundedness

S_u/P\’ ||(I)A(t>5)||c(v;,v,+l,) <00 (2.10)
rLE
and

sup H((D/l)*(t’S)H[)(Va,V;#) < 00 (2.11)

AEA
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holds for arbitrarily chosen (t,s) € A. We have that

10" (5.5l eqvs, v,y = sup @4 (Es)x]ly,, < sup EIIG} — 0|

llxllys <1 llxllv; <
o

< CUDEN |y, 101y, < Cl(T),

| V7+1‘) VO(

where the constant C;(T) < co does not depend on A € A due to (1.1), which proves
(2.10). Similarly, we have

1@ C ) e ) = sup (@) (el

Hyuv,s1
= sup sup{‘ (B¥x, ) (5.8)y) v ;||B”x||V* <l,x¢€ V:_w}
Illy, <1 ’ ’
= sup sup{!d)) (t.s)B zyv} ||z|V*<1,z€V;,19}
Il <1
sup sup{‘ v, (B*( 9/1 M) BB’z),|: lz]ly. <1,z € V;ﬁ}
Hva <1 ’
A
sup sup{( B0 0B ey < 1z e Vi)
Hyuwél ’
Vi A;“ *
sup sup{ [yl lzlly. EN0;I1v, 107 — 81l i el < 1z V2, )
Hyuvzg
< C(T),

where the constant C,(T) < oo does not depend on A € A. Therefore, Equation (2.11)
holds true and the proof of Lemma 2.2 is complete. O
Now, we prove Theorem 2.1.

Proof. Set C = C(A, L(V},V,)) and assume the converse, i.e. (2.1) and (2.2) hold and (2.3)
do not. Then we can ﬁnd €0 > 0 and a sequence {/1,},y € A such that 4, — 4o and
|®* — @™, > ¢, necN. (2.12)

By the relative compactness of {®*},_, proved in Lemma 2.2, we can find a subse-
quence {4y, };.y and a limit ¥ € C such that

|®*% — ||, — 0, k— 0. (2.13)

We show that ¥ = ®”% and, therefore, (2.12) contradicts (2.13).
Using (1.6) we have

S

(l{f(t,r)AjO(r)) o (‘P(s rA; ())dr
< II‘P(t §) = @ (8.5) | gy v,y + 1K (85) = K2 (8:5) | £y, v,

+Z || (vnazm)e (vsnare)

(@A () o (¥(s A (1)) dr

0

H‘P(t,s) — K(t,5) + Jij

L(V;,Va)

L(V5, Va)
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for all (t,s) € A. The first two terms tend to zero uniformly in A as k — oo by (2.13)
and (2.1). Using uniform boundedness of {®*} and {A*} the third term can be esti-
mated by

4o 0 An 0 Za
SZ I(WA) o [(¥ — @™)AF] |l + [[(PA]) o [0 (A7 — A])]]lc)

+SZ ¥ (A7 — A7) o (@A),

L~ @ o (@ (5.1)A™ (1))
CT)(I¥ — @*|l¢ + [|1A% — A [leo, 1, £(v, my))>  C(T) < o0

which tends to zero uniformly in A as k — oo by (2.1) and (2.2). It follows that

n S

W(t,s) = K™(t,5) — ZJ (Y147 () o (Y5147 () dr
=170

for all (t,s) € A, hence W solves (1.6) with 1 = 4y. In virtue of Theorem 2.1 in [12] on

uniqueness of solutions to (1.6) we conclude that ¥ = ®%, which completes the proof
of Theorem 2.1. O

3. Continuous dependence for the filter

In this section, continuous dependence of the filter 0 on 7 € A is proved, which is the
main result of the article.

First, note that in virtue of (1.9), (1.4), It0 isometry and the uniform boundednes of
(A*),. and {®*},_, we obtain

PPV
EN0, — 6,17,

t, 2

jl (O (t.7) — D (11,1)) (A7) (AW |, + zEnj O (1,7) (A7) (r)d W]

0 t

<2E

VX
[53

t i i i
- zjo (@ (t3,r) — (12, 1) AX ()2, dr + zj |0 (1, 1) AX($)| 13, dr

ty
t
< C(T) (JO 0% (12 7) = @ (b1, )17, vy dr + |82 — f1|>

for some C(T) < oo and all t;,5, € [0,T], f; < 5.

Therefore, using the equicontinuity of {®”(~s)},., on [r, T] for all r € [0, T] shown
in (2.6) it follows that

E|0, — 0,11, =0, |tz—t]—0
for every A € A, which yields

0" e c(jo, T, L3, V).
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Theorem 3.1. Under the assumptions stated in Section 2 if

0" — 0,  A—ly LEA, (3.1)
in C([0, T}, L*(Q, V,,)) and

A" — AN, A— o, AEA, (3.2)
in C([0, T], L(V,,R")) then

00" a0 AEA (3.3)

in C([0, T), L*(Q, V).
Proof. Given A € A set

u(r) = sup ||9 —9/0|\LZQV) relo,T].

te(0, 7]

Note that u is nondecreasing and measurable on [0, T] which follows from the con-
tinuity of the filter.
Using (1.5) and (1.3) we have

u(r) S 2(11 +12),

where
t
= sup || [ @@y a0 - )
te(0, 7] 0
AL 2
@ () (aR(0F — 00|
L2(Q, V)
t ) ) 2
I, = sup IE' J D% (£,5)(A%)*(s) — DM (£, 5)(A%)*(s)dW,
te[0,7] 0 L2(Q,V,)

Furthermore, we can estimate

t ) . 2
I < sup 2112‘ J (@7 (t5) — D™ (1.5) ] (A7) (s) A% (s) <9§ - 95’)615
IG[O, 7'] 0 L2 (-Q> Va)
L . , AL 2
+ sup 2] [ (9 [0 — a2y 9]0 (0 - ) s
te[0, 7] 0 L2(Q,V,)
t ) " 2
+ sup 28] [ (e (4 () (9 - 4 (9]) (0 - s
[0, ] 0 2@V,
to , : S A &
+ sup ZE‘ J (1, 5) (A% (5) A% (5) (07 — 07 + 07 — 0 ) ds
[0, 1] 0 2@V,

< C(T)||0" — ™|, + C(T)||A* - AJVOHC([O T] LV, R”))
+ G3(T)||0" - 6A0||c( 0, TLI2(Q,V,)) + Ca(T) 5 u(
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and

n 2

L, < sup ZE

Jt D (t,5)A%(s) — " (£.5)A7° (s)dW/

S

tef0, 1] j=1 0 L2(Q, V)
n t ) 2
= sup ZJ D' (£,5)A] (s) — D™ (t,5)A7° (s) ds
tE[O, r] ]':1 0 L2 (-Q> Va()

S CS(T)”Ai - AZUHC([Q, T],L(VZ,R”)) + C6(T)||(D2 - q)iOHC’

where C; — Cq are finite constants dependent only on T. We used boundedness of {®*}
and {A*} and It6 isometry. Therefore, we have

u(r) < o(T) + J(: Cy(T)u(s)ds, relo0,T],

where
A(T) = C(T) (19 = @4 l¢ + 14" = A% (o, 1) cqv, ) 10" = Ol 2 v, )
and C(T) < oo. Using Gronwall’s inequality we obtain
u(T) < oT) exp {TC4(T)}
< C(T) (||(D/1 — % + [|A* - A}'[’”c([o, 1], £(v,, k") T 10" — GiOHC([O,T],LZ(Q, Vx)))

for a constant C(T) < oo independent of 1 € A.
Using Assumptions (3.1), (3.2) and Theorem 2.1 we obtain

AL ko ,
sup [|6, —0, HLZ(Q,V“) — 0, L= o, AEN
te(0, 7]

which completes the proof. O

4, Signal governed by stochastic evolution equation

Consider a stochastic basis (Q,F, P, (F;)) and two-sided cylindrical fractional Brownian
motion {B;,t € R} with Hurst parameter &> 1/2 on separable Hilbert space U defined
by the formal series

Bt - Zﬂn<t)en, t c R,
n=1

where {e,,n € N} is an orthonormal basis in U and {f,(t).t € R}, is a sequence of
independent real-valued fractional Brownian motions (for the definitions see [4]
and [5]).

Let H be a separable Hilbert space and for any A € A, A being a compact metric
space, let the H-valued signal 6" satisfy the equation

do* = A,0%dt + G,dB,, te[0,T], (4.1)

where the linear operator A; : Dom(A;) C H — H is strictily negative, selfadjoint and
has compact resolvent, hence it generates a compact strongly continuous analytic
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semigroup {S,(¢),¢t > 0} in H. Finally, G, is an operator defined on U with values in an
appropriate space.
By the analyticity of S;, 4 € A, the Hilbert spaces

Vi = Dom((—A;)°), 6>0 (4.2)

equipped with the graph norm topology are well defined. We assume that V{ do not
depend on Z € A for every 6 > 0 (the graph norms || - ||y, A € A are equivalent) and
we set Vs = V§°, 0 > 0, for a fixed, arbitrarily chosen 4y € A. Finally,

G,:U— V{,

where V7 is the dual of V; with respect to topology of H.
In order to use results from previous sections impose the following assumptions:

o Uniform exponential stability: For some ¢; > 0 and p; > 0 we have

1Sl iy < cre™™!, >0 (A1)
for 1 € A.

e Uniform singularity at time t = 0: For some ¢, > 0 and 0 <y < h we have

||si(t)G2||£2(U,H) <ot 7t>0 (A2)
for A € A.

e  Equicontinuity of the semigroups: There exists oo > 0 such that y + o < h and for
any x € V, the mappings

S,(-)x :[0,T] — V, are continuous uniformly in 1 € A.(A3)

e Continuous dependence: For t >0 and Ay € A we have

S)V(t)G;LEZ(E)VZ)S),O(t)GAO, A — . (A4)

Note that the above conditions imply the uniform analyticity of the family of semi-
groups (S;),.x» hence by (Al) and (A2) we obtain

1S:(t)Gall £y, vy < Coe P00, >0 (4.3)

for any 0 > 0 and a constant C;s independent of t>0 and A € A. Indeed, we may esti-
mate

HS)~<t)G?»||£2(U,V5) < ”Sl(t/z)Gﬂ”Lz(U,H)||Sl<t/2)||£2(H,V(;)’ t>0.

Also, notice that the inequality in (A2) may be verified only on a finite time interval
(0,T) for a T> 0 if we take into account (Al).

The above hypotheses imply existence of a strictly stationary solution to (4.1) with
continuous paths in V,, understood in the mild sense, which may be expressed as

Gf = Jt S;(t —u)G;dB(u), t€][0,T], (4.4)



STOCHASTIC ANALYSIS AND APPLICATIONS @ 13

(see [10] for details). Similar co utations as in [4] yield a representation for the
covariance K*(t,s) = K*(t — s) = IETHf o %T for (t,s) € A:

t 0
KA (t) = J J S;(—u)G,G3S,(t — v)y,(u — v)dudv, (4.5)

where 7, (1) = h(2h — 1)|[ul" %, u € R (note that S;(¢)* = S;(t)). The integral (4.5) is
correctly defined due to the estimate

t 0
j j 183(=7)G3GiSa(t — v) | gy 74 (7 — )y
- _too 0
<j j 18:(=r)GaG3Si(t — ) o, 0y (r — v)drd
[
<jwjwmmﬁmmmaﬂ&u—wwmﬂwmm—wwm

£
< COJ J e (=) (t = v) Ty, (r — v)drdy

for t € [0,T], with some constant ¢y < oo, which follows by (4.3) with 6=0 (so
Vs = H). The right-hand side is finite since

to
J J U (=)t — v) My (r — v)drdv < o0, t € [0,T], (4.6)

for any p > 0 and 0 < n < h which we will also use in the sequel.

We are now ready to verify the boundedness condition (1.1) and equicontinuity con-
dition (1.2) from Section 2. Take ¥ € (0,a) such that y+oa+9Y <h and any t €
[0, T], 2 € Ag. Using (4.6), (4.3), and the strict stationarity of (4.4) we have

A2 4112
El0:y,,, =El%lv,.,

0 0
<j j 1S:(=7)Gs v, 1S5(—)Gi Ly vy 74 7 — )by

0 0
j J S1(=1) GG, (—v)py(r — v)drdv

[’1 (Vaﬁ»ﬁ)

o

0 0
< C2+,9J J e”(’”)(—r)*(yww)(—v)f("’ur“w)yh(r — v)drdv < oo,

with the last integral being independent of #,4 and finite due to (4.6) with n =
7+ o+ 0. This proves the boundedness of {0"},., in C([0, T], L*(Q, V1))

By the strict stationarity, it is enough to verify the equicontinuity at zero from the
right. For t € [0, T] and 4 € A we obtain
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0 2

t
J Si(t — u)GidBu — J Si(—u)GidBu

—0o0

i

VO(

t 0
_ H S3(t — u)GydBy — J (S:(t) — DSy(—u)GodB, |,
0 —00

2 2

t
J Sﬁ”(t — u)ngBu

0

JO (S:(t) — 1)S;(—u) G,dB,

+2E'

Ve Va

t rt
< ZH J S;(t —u)G;G;S;(t — v)y,(u — v)dudv

0J0

L1(Vy)

J_ J_ (S:(t) = D)S,(—u)G,G3S:(—v)(Si(t) — I)yy(u — v)dudv

L1(Vy)

t rt
<2 | 18- 06l v,

(t =V)Gill g, v,y vn(u — v)dudy

0
+2 J 18:(8) = DS (=) Gill 2,0, v, I (Si(8) = DSi(=V)Gill £, v, v, vu(u — v)dudy

1(t, 1) +26L(8 4)

Now I; (¢, A) can be estimated

t rt
W) = | | 18,006z 0 e

)GAHQ(U, vx)“/h(u — v)dudy

t ot
< Cﬁj J e P ()"0 (4 — ) dudy.
0Jo

The last term is independent of A € A and tends to 0 as t — 0+ when we take into
account (4.6) with n =7+ a.

For I,(t, A) we construct an integrable majorant by (4.6) with # = y + « and the equi-
continuity of the semigroups in (A3) which implies that |S;(-) — |y, is bounded on
[0, T] by some N, > 0 depending only on «. Moreover,

(S:() = DS ()G, 20, +— ot (4.7)

holds for any u> 0. The convergence (4.7) is obtained by the analyticity of S; and equi-
continuity in (A3) again by Dominated Convergence Theorem. Indeed, if {f,},cy is an
orthonormal basis in U we have

18:(8) = DSi(w)Gifully, = 0, ¢ =0+,

for any n € N and u> 0. Moreover,

Z 1S (WGHully,” < N, Z 18:()Gfully,” = N3 1S2 ()Gl 2w, v,

which is finite by (4.3) with 6 = o. Hence we have verified that the family {67} sen C
C([0, T}, L*(Q, V,)) is equicontinuous.

Now, we verify the condition (3.1) on continuous dependence of 0* on A. Assume
t €[0,T] and 4, 49 € A then we have
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t t 2
E|07 — 07|}, = EH [ st-wean, [ s weam,

Va
2

t
:E’ J (Sg(t—u)G,z—Sgo(t—u)Gio)dBu

V’/".

- ‘ t Jt_ (S:(t —u)G, — S, (t — u)G,, ) (Si(t — v)G, — Sy, (t — v)G,) yp(u — v)dudv

J —00

0 Jo

= ‘ ) JOO(SA(”)GA — 87, ()G;,) (S (V)G — S;,(v) Gy ) yu(u — v)dudv

['I(Vz)

< J 15:(1)Gi = S5 (W) Gy |l 2, 0, v I1S:(V)Gi = S20 (V)G || 2, v, v (4 — v) dudy
0 0

This upper bound does not depend on t and the integrand converges pointwise to
zero as A — /4y by (A4). The Dominated Convergence Theorem (we use an upper

bound constructed using (4.6) with 1 =7y + a) yields desired convergence. We have
verified that 0* — 0 in C([0, T, L*(Q, V,,)) as 4 — Jo.

4.1. Distributed fractional noise in heat equation

Consider the stationary solution of the equation

E(t,x) = /llAu(t,x) + n’}z(t,x), (t,x) €10, T] x D,
u(t.)gp= 0, te[0,T],

(4.8)

where D C R? is a bounded domain with a smooth boundary 9D, A is the Laplace
operator and the parameter A = (1',1%) takes values in a compact metric space A =
A' x A*,A' C (0,00). The noise nﬁz is viewed as a fractional noise with the Hurst par-
ameter h> 1/2.

Equation (4.8) is treated rigorously as the Hilbert space-valued equation

do} = A;00dt + G,dB!, t<[0,T), (4.9)
for A € A as in (4.1), where we set
U=H=1*D), A,=2'A DomA;,=W>*(D)nWy*D),

B" is the cylindrical fractional Brownian motion in U and G; = G : A* — £,(U, H)
is continuous.

It is well known that A, is strictly negative and generates strongly continuous com-
pact semigroup on H which we denote by S (here we formally assume that 1 € A'). For
the semigroups S, generated by A;, 1 € A we have

Si(t) =S(A't), t>0,.¢€A. (4.10)

To establish continuous dependence of the filter we verify (A1), (A2), (A3), and (A4).
First, S is exponentially stable so the condition (Al) is satisfied.
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Furthermore,
18:()Gill 230,11y < WSO 2y 1G2ll 2yv,my < K

for some K < co by the Resonance Theorem, compactness of A' and continuous
dependence of G2 on 42 € A®. Therefore, (A2) is verified with 7 =0.
Taking arbitrary o > 0 so that

y+oao=a<h (4.11)

we obtain (A3) by analyticity of S and (4.10).
Finally, the continuous dependence in (A4) is verified as follows: First, we observe
that in our case (A4) follows from the weaker condition

5,006, 2s, (G, 2 — Jon

for £> 0. For t> 0 fixed taking ¢> 0 such that 2't > 0 for every 2' € A' we may write

. <1
15:(6)G; = $; ()Gl , v, v,y < ISl 2, vy)”S(Alt —0)G; = S(4 t = )Gl gy v, m)

and we use analyticity of the semigroup S.
Now let {f,},cy be an orthonormal basis in U, then we have

18:()G: = $(6); G5 Ml 2w, 1y ZH Gy — 83 ()G )fulli

_ iH(S(ZIt)Gﬂz A

n=0

o0

<23 IIS(2'1)(Gy: = Gl

+2ZH S(M) = S )Gl

for t > 0,4 = (2,2 € A and /. = (/1 I ) € A. The right-hand side converges to 0 if
) by the Resonance Theorem, compactness of A and continuous dependence of
G, on 1> € A

We have verified the conditions for continuous dependence of the filter 0
Theorem 3.1 for arbitrary 0 < o < h.

Assume moreover, that the condition

d
> (4.12)

is additionally satisfied. Then by the Sobolev embedding theorem and [15] we have
Vi W2(D) — (D), (4.13)

where W2%2(D) is the Sobolev space and C"#(D) is the space of uniformly f-Holder
continuous functions on D, f = (4o — d)/2. Hence, for arbitrary chosen set of points
zt, ...,z € D (possibly depending on 4 € A) the evaluation map

Ao =(0(z}), ... 0(z)), @€V, (4.14)
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is well defined for 4 € A. Suppose that the mapping A—(zf,...z%) is continuous. Then

n
A* A — L(V,,R") is continuous as well, since by (4.13) for a constant ¢y > 0 we have

sup {|p(2) — o(z;)]: llolly, <1} < co sup {lo(z]) — o(z;); lpllews < 1} — 0
@V, (pECO’p
whenever /. — A for i = 1,...,n. This verifies the condition (3.2) and we may conclude
that Theorem 3.1 with V, defined as above holds for signal defined by (4.9) and the
observation process

dél = A%0fdt +dw,, teo,T),
& =0,

with arbitrary R"-valued Wiener process W which is independent of B" and pointwise
observation A* given by (4.14). In this case the equations for the filter (1.5) and (1.6) in
Theorem 1.1 can be simplified in the same way as in the Corollary 3.1. in [12].

Note that since we assume h> 1/2, both (4.11) and (4.12) are satisfied if either d= 1,
2 ord=3and h> 3/4.

4.2. Pointwise fractional noise in heat equation

Consider the signal given as a stationary solution to the parabolic equation

Mltx)= A Bultn) o0, (63 €0.T]x D,
ult.)op= 0, te€0T]

(4.15)

The setup is similar to the previous example except that the noise #" is not distrib-
uted on the whole domain D, but is scalar and acting at the point )2 € D. Here, D C
R? is again a bounded domain with smooth boundary 9D, A is the Laplace operator,
0, stands for the Dirac distribution at y € D and the parameter 4 = (21, 7?) takes values
in a compact metric space A = A’ x A%, where A' C (0,00) and A*> C D. The noise 1"
is an one-dimensional fractional Brownian motion with the Hurst parameter h> 1/2.

We treat (4.15) as the equation

do} = A;00dt + G,dB,, t<€[0,T),
for A € A as in (4.1), where
U=R, H= LZ(D), A, = /IIA, DomA,; = WZ’Z('D) N Wé’Z(D), G, = 522

with a real fractional Brownian motion B". The semigroups S and S; are the same as in the
previous example, it is therefore sufficient to verify (A2), (A3) and (A4). Note that as U =
R, the Hilbert-Schmidt and operator norms are equal for operators defined on U.

To verify (A2) we estimate

1S:()Gill 2,0, 1) :IIS(ilt)%zllg(U,H)
< IS gy 102 v (4.16)
S Cotiy, t> 0,

for some ¢y > 0 whenever d/4 <y < 1. We used the analyticity of S, isomorphism
A= Dom(—A)"7, compactness of A and continuous dependence of J,. on 2* € A* in



18 @ V. KUBELKA ET AL.

(CFyr — V;, where § = (4y —d)/2. Assuming that

d
1 <h, (4.17)

we have verified (A2). Fix y such that d/4 < y < h. Then (A3) is satisfied for any o > 0
with

y+a<h

by the analyticity of S. Finally, to verify (A4) we examine the norm in £,(U, H) as in
the previous example and estimate

1S:(t)Gs. — S;()G; ||£2(U)H) = [|S,(1)G; — Si(t)Ginﬂ(U,H)

H1(8:(8) = $; (1)) Gl v,y =2 Ha

for 2= (%) €A and 1= (5»1,:12) € A. The term H, is estimated similarly as in
(4.16) as

Hi < cot 77|62 — 052 o, V)

by analyticity of S. We see that H, tends to 0 as A — 4 by continuous dependence of
;2 on % in (C*F)" — V. For H, we have

Hy = |(SGM) = S 0)6:2 g = I(S(AE) = SG ) (—A) (—A) 78| v 11

Now d:: € L(U, V;) and it easily follows that H, — 0 as 4 — J, which verifies (A4).
As in the previous example we may also examine the conditions under which we shall
consider pointwise observation of the signal as defined in (4.14). Similarly, we obtain
the condition d/4 < a« which can be satisfied only when d= 1.

Remark 4.1. The Hurst parameter h of the driving fractional Brownian motion in the
signal equation in Section 5 is supposed to be greater than 1/2 and there is an interest-
ing open question what happens if h< 1/2. We conjecture that analogous continuous
dependence results would hold, however, under more stringent conditions, especially in
(A4), where convergence in an appropriate Holder norm would be needed. The reason
is that the kernel in the formula for covariance (an analog of (4.5)) has a different (and
more singular) form. In our main examples, the irregularity of the noise leads to the
lost of space regularity which would be a serious limitation in our filtering problem.
For instance, in Subsection 5.1 (the distributed noise) the pointwise observation is pos-
sible only for h > %, so the singular fractional Brownian motion may be considered
only in one-dimensional case and only if h> 1/4. In Subsection 5.2 (the pointwise
noise) the signal is not regular enough to allow pointwise observation if h< 1/2 (the
corresponding regularity results in these cases have been proved in [4]).

Disclosure statement

No potential conflict of interest was reported by the authors.



STOCHASTIC ANALYSIS AND APPLICATIONS @ 19

Funding

This research was partially supported by GAUK Grant no. 980218, Czech Science Foundation
(GACR) Grant no. 19-07140S, and by the SVV Grant No. 260580.

ORCID
B. Maslowski (2 http://orcid.org/0000-0003-4408-1845

References

(1]

(2]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

Cialenco, I, Lototsky, S. V., Pospisil, J. (2009). Asymptotic properties of the maximum
likelihood estimator for stochastic parabolic equations with additive fractional Brownian
motion. Stoch. Dyn. 09(02):169-185. DOI: 10.1142/S0219493709002610.

Duncan, T., Maslowski, B., Pasik-Duncan, B. (2019). Linear stochastic differential equa-
tions driven by Gauss-Volterra processes and related linear-quadratic control problems.
Appl. Math. Optim. 80(2):369-321. DOI: 10.1007/s00245-017-9468-3.

Duncan, T. E., Maslowski, B., Pasik-Duncan, B. (2012). Linear-quadratic control for sto-
chastic equations in a Hilbert space with fractional Brownian motions. SIAM J. Control.
Optim. 50(1):507-531. DOI: 10.1137/110831416.

Duncan, T. E., Pasik-Duncan, B., Maslowski, B. (2002). Fractional Brownian motion and stochas-
tic equations in Hilbert spaces. Stoch. Dyn. 02(02):225-250. DOI: 10.1142/50219493702000340.
Falb, P. L. (1967). Infinite-dimensional filtering: The Kalman-Bucy filter in Hilbert space.
Inform. Control. 11(1-2):102-137. DOI: 10.1016/S0019-9958(67)90417-2.

Kallianpur, G., Fujisaki, M., Kunita, H. (1972). Stochastic differential equations for the
nonlinear filtering problem. Osaka J. Math. 9:19-40. DOI: 10.18910/5728.

M., Kleptsyna, A., Le, Breton. (2001). Optimal linear filtering of general multidimensional
Gaussian processes and its application to Laplace transforms of quadratic functionals. Int.
J. Stochastic Anal. 14(3):215-226. DOI: 10.1155/5S104895330100017X.

Kleptsyna, M., Breton, A. L., Roubaud, M. (1999). An elementary approach to filtering in
systems with fractional Brownian observation noise. In: Grigelionis, B. et al., ed.
Probability Theory and Mathematical Statistics: Proceedings of the Seventh Vilnius
Conference, Vilnius: VSP/TEV, pp. 373-392.

Kleptsyna, M. L., Kloeden, P. E., Anh, V. V. (1998). Linear filtering with fractional
Brownian motion. Stochast. Anal. Appl. 16(5):907-914. DOI: 10.1080/07362999808809569.
Ktiz, P., Maslowski, B. (2019). Central limit theorems and minimum-contrast estimators
for linear stochastic evolution equations. Stochastics. 91(8):1109-1140. DOI: 10.1080/
17442508.2019.1576688.

Kubelka, V., Maslowski, B. Filtering for stochastic heat equation with fractional noise, in
Proceedings of 21st European Young Statisticians Meeting, Bernoulli Society for
Mathematical Statistics and Probability, Belgrade, pp. 25-29.

Kubelka, V., Maslowski, B. (2020). Filtering of Gaussian processes in Hilbert spaces. Stoch.
Dyn. 20(03):2050020. DOI: 10.1142/50219493720500203.

Maslowski, B., Pospisil, J. (2008). Ergodicity and parameter estimates for infinite-dimen-
sional fractional Ornstein-Uhlenbeck process. Appl. Math. Optim. 57(3):401-429. DOI: 10.
1007/500245-007-9028-3.

Palmer, T. W. (1969). Totally bounded sets of precompact linear operators. Proc. Am.
Math. Soc. 20(1):101-106. DOI: 10.1090/S0002-9939-1969-0235425-3.

Seeley, R. (1972). Interpolation in L? with boundary conditions. Stud. Math. 44:47-60.
http://eudml.org/doc/217726.

Tybl, O. (2019). Kalman-Bucy filter in continuous time. Thesis. Charles University,
Prague.


https://doi.org/10.1142/S0219493709002610
https://doi.org/10.1007/s00245-017-9468-3
https://doi.org/10.1137/110831416
https://doi.org/10.1142/S0219493702000340
https://doi.org/10.1016/S0019-9958(67)90417-2
https://doi.org/10.18910/5728
https://doi.org/10.1155/S104895330100017X
https://doi.org/10.1080/07362999808809569
https://doi.org/10.1080/17442508.2019.1576688
https://doi.org/10.1080/17442508.2019.1576688
https://doi.org/10.1142/S0219493720500203
https://doi.org/10.1007/s00245-007-9028-3
https://doi.org/10.1007/s00245-007-9028-3
https://doi.org/10.1090/S0002-9939-1969-0235425-3
http://eudml.org/doc/217726

	ABSTRACT
	Introduction
	Preliminaries
	Continuous dependence for the covariance
	Continuous dependence for the filter
	Signal governed by stochastic evolution equation
	Distributed fractional noise in heat equation
	Pointwise fractional noise in heat equation

	Disclosure statement 
	Funding
	Orcid
	References


