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ABSTRACT

Understanding the reasons for misclassification is a critical point to
improve a black-box classifier’s performance. We propose a method
to characterize these classification errors while considering the
challenges that NLP applications pose, such as sparse and high
dimensional discrete input spaces. Our approach discovers patterns
over the input of a model that strongly correlate with the correct-
ness of the classification. This allows identifying the systematic
errors made by themodels.We formalize the problem in terms of the
Minimum Description Length principle to obtain non-redundant
and easily interpretable results, and we propose the Premise algo-
rithm to find good patterns in practice. The discovered patterns
allow the user to take action and improve the model, e.g. through
changes to the training data or model definition. On synthetic data
and two real-world NLP tasks, we show that Premise performs
well in practice. For two Visual Question Answering classifiers, we
discover that they struggle with aspects like counting, location and
reading, and for a Named Entity Recognition model, we leverage
the found patterns to improve the F1 performance by almost 10%
through targeted fine-tuning.
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1 INTRODUCTION

State-of-the-art deep learning achieves human-like performance
on many computer vision and natural language processing tasks.
However, just as much as ‘to err is human’, these models make
errors too. Some of the errors they make are relatively benign as
they are due to noise in the process we’re trying to model, i.e. they
are random. As there is no structure to these errors, adding more
training data will not or only barely change the model’s overall
performance. Systematic errors, on the other hand, such as those
due to misspecification of the model or bias in the training data, are
much more serious as they lead to mistreatment of entire groups of
instances. At the same time, these errors are nice in the sense that
once we are aware of them, we can actively intervene and either
adapt the model, or augment the training data in a targeted fashion
to improve the overall performance. Before we can do so, we first
need to identify whether a model makes systematic errors, and,
how to characterize those errors in easily understandable terms.
How to do so is precisely what we answer in this paper.

We study the problem of characterizing the errors of a black
box classification model, with a specific focus on the setting where

we have sparse high dimensional discrete input spaces, such as
found in natural language processing. In particular, we propose to
discover patterns over the input of these models, such that these
strongly correlate with the correctness of answers. We are, for
example, interested in discovering that state-of-the-art visual ques-
tion answering (VQA) models significantly often incorrectly answer
questions involving the words how and many, signifying that they
are bad at counting. We are not just interested in conjunctive pat-
terns, but also want to handle synonyms, and therefore consider
a rich pattern language of noise-robust conjunctions and mutual
exclusivity. This allows us, for the same VQA to discover the mis-
classification pattern ∧⃝(what, ×⃝(color, colors, colours)), which is to
say, it is also bad at answering questions about colors in the image.

To ensure that the results we discover are useful, we aim for small
and non-redundant sets of highly informative patterns. We formal-
ize this problem in information-theoretic terms using the Minimum
Description Length (MDL) principle, by which we define the set of
patterns that best characterizes the classification behaviour of the
model as the one that best compresses its errors and successes. The
search space over such pattern sets is twice exponential, however,
and as it does not exhibit any easy-to-exploit structure that can
steer us to the optimal result, we therefore propose Premise, an ef-
ficient bottom-up heuristic to discover high quality sets of patterns
that explain the conditions, the premises, under which the model
under inspection tends to make classification errors.

We evaluate Premise on synthetic data, as well as on two real-
world NLP tasks. The experiments show that unlike the state of
the art, Premise is robust against noise and gives clear insights
into the biases of two VQA classifiers. Its results clearly show that
these models have issues with different aspects including counting,
relative location and higher reasoning tasks like reading. For Named
Entity Recognition (NER) we show that we can use the patterns that
Premise discovers to actively intervene and fine-tune the classifier
with additional training data to improve its F1-score performance
by 9.8% from 0.61 to 0.67.

The remainder of this paper is organized as usual. We provide
additional detail for reproducibility in the supplementary, and make
our code and data publicly available for research purposes.1

2 RELATEDWORK

We propose to mine those patterns that best characterize the clas-
sification behaviour of the model under consideration, and hence
work in pattern mining is strongly related. Frequent pattern mining
was first proposed by Agrawal and Srikant [1], after which research
focused on more efficient algorithms [15, 46] and succinct repre-
sentations [3, 4, 15, 27]. By measuring interestingness per pattern,

1https://bit.ly/39TAl7a

https://bit.ly/39TAl7a


and asking for all patterns that meet an interestingness threshold,
the results of traditional approaches are extremely large and re-
dundant [42]. Pattern set mining circumvents this by asking for a
small set of non-redundant patterns that together generalize the
data well [23, 25, 37]. All of the above are unsupervised in nature,
i.e. they do not take label information into account and are hence
not directly applicable to the task at hand.

Supervised pattern mining is known under different names, of
which subgroup discovery [44] and emerging pattern mining [6] are
themost well-known [28]. The task is to discover those patterns that
correlate strongly with the class labels. Emerging pattern mining
returns all patterns that meet a user-specified ‘growth’ threshold,
and hence suffers from the same problems as frequent pattern
mining. Subgroup discovery instead returns the top-k patterns that
correlate most strongly. This keeps the result sets of manageable
size, but does not solve the problem of redundancy [40]. For recent
surveys we refer to Atzmueller [2], García-Vico et al. [10].

Statistical pattern mining avoids discovery of spurious results
by reporting only patterns that correlate significantly to a class
label [21, 29, 31]. While it is (relatively) easy to test one pattern
for significance, in practice we have to evaluate many millions of
candidates, and hencemultiple hypothesis testing becomes a serious
problem: these methods tend to discover millions of ‘significant’
patterns even from small data, making the results hard to use.

Rule mining aims to discover rules of the form X → Y [1, 14],
and could hence also be used to explain misclassifications. Like
the methods above, most existing methods again evaluate patterns
individually, and therewith run into similar problems as frequent
itemset mining, discovering millions of rules even if the data is
pure noise. Grab [7] combines the idea of pattern set mining with
rule mining, with the goal of discovering a small set of rules that
together summarize the data well. We compare to Grab in the
experiments. We can already reveal that it does not work well in
our setting: association rules reflect that the consequence is likely to
co-occur with the antecedent, and unlikely to occur otherwise. As
a result, rule mining techniques such as Grab fail to pick up subtle
patterns, e.g. one that occurs in 70% of the misclassified instances,
and 40% of the correctly classified instances.

Besides the problem of redundancy and being able to detect
subtle patterns, all above approaches are restricted to conjuctions.
Natural language data is sparse, and contains many synonyms and
language variations.We therefore build upon and extend the pattern
language Fischer et al. [8] recently proposed for the unsupervised
setting, as it allows us to express noise-robust conjunctions and
mutual exclusive relationships between words.

There also exists work in NLP research for identifying the is-
sues leading to classification errors. Challenge and contrast sets
are test sets to evaluate models on difficult instances or concepts
unseen in the training distribution [11, 33]. They require man-
ual creation and some of them do not directly indicate reasons
for the misclassification, hence are more suited for benchmarking.
Approaches exist to verify user-provided hypotheses for misclassi-
fication causes [18, 36, 45]. SliceFinder [5] is a method to find small
sets of slices that describe where the model loss is high. They focus
on numerical and categorical features and—as we confirm in our
experiments—their method does not scale to the large input spaces
of text data.

Here, we propose to mine sets of patterns that provide a succinct
and descriptive representation of the misclassified instances. We
formulate the problem based on the Minimum Description Length
principle and propose an efficient heuristic to discover pattern
sets that describe misclassification in practice. We compare our
approach to the state-of-the-art in rule mining, subgroup discovery,
emerging pattern mining, and statistical pattern mining.

3 PRELIMINARIES

In this section, we introduce the notation we use throughout the
paper and give a brief primer to MDL.

3.1 Notation

We consider datasets of sequences X of length |X | over an alphabet
I, i.e.X ∈ I |X | , alongwith a classification labely for each sequence.
Additionally, we consider indicator ℓf (X ,y) that specifies whether
machine learning model f classifies a sample correctly or not,

ℓf (X ,y) =

{
l− if f (X ) , y (misclassification),
l+ otherwise (correct classification).

We transform the sequence data into a binary transaction database
D over the set of itemsI. Additionally, we define amapping of trans-
actions to corresponding misclassification labels λ (t) ∈ {l−, l+},
and define the partition of D by label as D+ = {t ∈ D | λ (t) = l+},
respectively D− = {t ∈ D | λ (t) = l−}. In general, X ⊆ I de-
notes an itemset, the set of transactions that contain X is defined
as TX = {t ∈ D | X ⊆ t}. The projection of D on an itemset X is
given as πX (D) = {t ∩ X | t ∈ D}.

We use the definition by Fischer and Vreeken [8], hence for a
logical condition c , we consider a selection operator

σc (D) = {t ∈ D | c(t) ≡ ⊤}.

For an item I ∈ I, it holds that [cI (t) ≡ ⊤ ↔ I ∈ t]. The k-ary
AND operator ∧⃝(c1, . . . , ck ) describes patterns of co-occurrence
and holds iff all its conditions hold, i.e.(

∧⃝c1, ...,ck (t) ≡ ⊤
)
↔

(
∀ki=1ci (t) ≡ ⊤

)
.

Similarly, the k-ary XOR operator ×⃝ describes patterns of mutual
exclusivity, where(
×⃝c1, ...,ck (t) ≡ ⊤

)
↔

(
∃i ∈{1, ...,k }ci (t) ≡ ⊤ ∧ ∀j,ic j (t) ≡ ⊥

)
.

We denote it(c) for the items in the condition and define the projec-
tion on a condition as πc (D) = πit(c) (D). Conditions can be nested;
specifically we are interested in patterns of AND operator over XOR
operations, i.e. ∧⃝(×⃝c1, ...,ck , . . . , ×⃝c ′1, ...,c

′
k
)(t). An XOR operation

is called clause, γ (c) lists all clauses in conjunctive condition c .
To simplify notation, we drop t where it is obvious from context

and write I for conditions on a single item c(I ). In the text, condition
and pattern are used interchangeably.

3.2 Minimum Description Length

The Minimum Description Length (MDL) principle [34] is an ap-
proximation of Kolmogorov complexity [20] that is both statistically
well-founded and computable. It identifies the best modelM∗ for
data D out of a class of modelsM as the one that obtains the maxi-
mal lossless compression. For refined, or one-part, MDL, the length



of the encoding in bits is obtained using the entire model class
L(D |M). While this variant of MDL provides strong optimiality
guarantess [13], it is only attainable for certain model classes. In
practice, crude two-part MDL is often used, which computes the
length of the model encoding L(M) and the length of the description
of the data given the model L(D |M) separately. The total length
of the encoding is then given as L(M) + L(D |M). We use one-part
MDL where possible and two-part MDL otherwise. When applying
MDL, we are only interested in the codelengths and not the actual
code. Codelength is measured in bits, hence all log operations are
base 2 and we define 0 log 0 = 0.

4 THEORY

To discover patterns characterizing classification error using MDL,
we here introduce the class of modelsM and correpsonding code-
length functions that yield the number of bits required to encode
a model, respectively the number of bits needed to encode data
given a model. Before we define these formally, we give the intu-
ition behind the model classM and why it naturally captures our
problem.

4.1 The Problem, informally

Given a dataset of binarized input and prediction error observed
from a model, we aim to find a set of patterns that together identify
the systematic errors made by the model. Focusing on NLP tasks,
we are specifically interested in patterns that capture combinations
of words that describe a label, e.g. ∧⃝(how, many) occuring predom-
inantly when a misclassifcation happens, but are also capable of
expressing synonyms or different writing styles. Those we express
as mutual exclusive patterns, e.g. ×⃝(color, colour). The pattern lan-
guage we use here is a combination of the two, namely conjunctions
of mutual exclusive clauses such as ∧⃝(what, ×⃝(color, colour)). We
provide an example in Figure 1.

Thus, we define amodelM ∈ M as a set of patternsP containing
all patterns that help to characterise the labels. Additionally, M
contains all singleton words I ∈ I, describing the entire data D
label unspecific, and hence serve as a baseline assuming that there is
no structural error that led to misclassification. Furthermore, these
singletons ensure that we can always encode any data over the set
of words using our model. Whenever there is a structural error in
the labels that can be explained by a pattern, we transmit the data
using that pattern for correctly, respectively incorrectly, classified
data separately. This allows us to more succinctly transmit where
this pattern holds.

Consider the example in Figure 1, we would first send ∧⃝(A, ×⃝(B,
C)) occurrences in D+, and then its occurrences in D−. Thus, we
identify where A,C, and D hold at once, and we leverage the fact
that ∧⃝(A, ×⃝(B,C)) occurs predominantly in D+, resulting in more
efficient transmission. Intuitively, a bias of a pattern to occur in
one label more than in the other corresponds to a large deviation
between the conditional probability — the pattern occurrence con-
ditioned on the label — and the unconditional probability — the
pattern occurence in the whole database. Due to the one-to-one
correspondance between codelength and probabilities, we hence
transmit more efficiently by sending the pattern separately for D+
and D− if there is a large deviation between these two probabilities.

Figure 1: Example database andmodel.A toy databaseD over

a set of items, separated by misclassification labels into D+

andD−, is given on the left. The correspondingmodelM con-

taining patterns that explain misclassification (D−) and cor-

rect classification (D+) is given on the right.

Coming back to the example, F however occurs similarly often in
both labels — there is almost no deviation between conditional and
unconditional probability — hence it is unlikely that it identifies
a structural error. Here, the baseline encoding transmitting F as
singleton in all ofD will be most efficient to transmit. This approach
allows us to identify patterns that occur predominantly for one
of the labels as the patterns that yield better compression when
conditioned on the labels, and thus characterise misclassification in
easily understandable terms. We are hence after the modelM∗ ∈ M
that minimizes the cost of transmitting the data and the model.

4.2 MDL for Misclassification Patterns

We now formalize the above intuition using an MDL score to iden-
tify the best pattern setM∗ ∈ M to describe classification errors in
a given dataset. We will first detail how to compute the encoding
costs for the data given the model and then for the model itself.

Cost of Data Given Model. We will start by explaining how to
encode a database D with singleton items I in the absence of any
labels, whichwill later serve as the baseline encoding corresponding
to independence between items and labels. To encode in which
transaction an item I holds, optimal data-to-model codes are used,
which are indices over canonically ordered enumerations [20]. For
the data cost, we thus obtain

L(πI (D) | I ) = log
(
|D |

|σI (D) |

)
.

Taking into account the split of D along the label, D− = {t ∈ D |
λ (t) = l−} and D+ correspondingly, we encode I separately:

L
(
πI (D

−) ,πI
(
D+

)
| I

)
= log

(
|D− |

|σI (D−) |

)
+ log

(
|D+ |

|σI (D+) |

)
.

Due to the properties of the binomial, this code length will be
shorter than the baseline code if there is a difference between
the unconditional probability – i.e. frequency in D – of I and the
conditional probability of I conditioned on the label – i.e. frequency
inD− respectivelyD+ . It models the property that we are interested
in; a pattern that is specific to an (in)correct classification. It is
straightforward to extend to patterns of co-occurring items P =



∧⃝(X1, . . . ,Xk ) by selecting on transaction where the pattern holds

L(πP (D) | P) = log
(
|D− |

|σP (D−) |

)
+ log

(
|D+ |

|σP (D+) |

)
.

There might be transactions where individual items of P are present,
but not the full pattern holds. To ensure a lossless encoding, the
singleton code L(πI (D) | I ) is adapted to cover all item occurrences
left unexplained after transmitting all patterns. Hence, we get

Ls (πI (D) | P) = log
(

|D |

|σI (D) \
( ⋃

P ∈P, I ∈P σP (D)
)
|

)
.

For patterns expressing conjunctions over mutual exclusive
items, e.g. ∧⃝(×⃝(A,B), ×⃝(C,D)), we first send for both D− and D+
for which transactions the pattern holds, after which we specify
which of the items is active where. That we do one by one, as
when we know that the pattern holds and A is present, B cannot be
present too. Hence, with each item of the clause that is transmitted,
the codelength needed to identify transactions of the remaining
items is reduced. More formally, the codelength for a pattern P of
conjunctions of clauses is given as

L(πP (D) | P) =
∑

l ∈{−,+}

log
(
|Dl |

|σP
(
Dl ) |) +

∑
cl∈γ (P )

∑
I ∈cl

log
(
|σP

(
Dl

)
| −

∑
I ′∈cl, I ′≤I |σI ′

(
σP

(
Dl

))
|

|σI
(
σP

(
Dl ) ) |

)
.

assuming an arbitrary order on I. With clauses of only length 1
we arrive at a simple conjunctive pattern, where the second term
evaluates to 0 and thus resolves to the codelength function for
conjunctive patterns discussed above. Note here that the codelength
is the same regardless of the order assumed on theI. This statement
trivially holds for clauses of length 2, we provide a proof for the
case of 3 items in App. A.2, the case for an arbitrary number of l
items follows the same reasoning.

This concludes the definition of codelength functions for trans-
mitting the data, and we can define the overall cost of transmitting
the data D given a modelM as

L(D | M) =
( ∑
P ∈P

L(πP (D) | P)
)
+

( ∑
I ∈I

Ls (πI (D) | P)
)
.

Cost of the Model. To transmit the modelM of patterns P, first,
the number of patterns |P | are transmitted using the MDL-optimal
code for integers LN(|P|). It is defined as LN(n) = log∗ n + loдc0
with log∗ n = logn + log logn + . . . and c0 being a constant so that
LN(n) satisfies the Krafft-inequality [35]. Then, for each pattern P ,
the number of clauses is transmitted via LN(|γ (P)|). For each such
clause the items it contains are transmitted using a log binomial,
requiring log

( |I |
|cl |

)
bits plus a parametric complexity term Lpc (|I|).

The log binomial along with the parametric complexity form the
normalized maximum likelihood code for multinomials, which is a
refined MDL code. The parametric complexity for multinomials is
computable in linear time Kontkanen and Myllymäki [17]. Lastly,
we transmit the parametric complexities of all binomials used in
the data encoding.

Combining the above, the overall cost of the model is

L(M) = LN(|P|) +
∑
P ∈P

(
LN(|γ (P)|) +

∑
cl∈P

(
log

(
|I |

|cl |

)
+ Lpc (|I|)

)

+ Lpc (|D+ |) + Lpc (|D− |)

)
+

∑
I ∈I

Lpc (|D |) ,

by which we have a lossless MDL score.

The Problem. We can now formally state the problem.

Minimal Misclassification Description Problem Given data D
over I and a split into D− and D+, find the best modelM our of all
modelsM that minimizes the codelength L(M,D).

Solving this problem through enumeration of all possible mod-
els is computationally infeasible as the model space is too large.
Specifically, the size of the model space is given by

|M| = 2
∑|I |
i=1 (

|I |
i )×

∑i
j=1 {

i
j} ,

where the first term in the summation specifies the number of
possible item combinations in a pattern of length i , the second term
counts the number of possible ways to separate them into j different
clauses via the Stirling number of the second kind and the exponent
is introduced as anM consists of arbitrary combinations of patterns.
Next, we introduce an efficient bottom-up search heuristic that—in
terms of MDL—identifies a good pattern set.

5 PREMISE

To find a good pattern set in practice, we present Premise, which dis-
covers Patterns REconstructing MISclassification Errors. Instead of
enumerating all possible patterns, it efficiently explores the search
space in a bottom-up heuristical fashion.

5.1 Creating and Merging Patterns

Premise iteratively improves the model by adding, extending, and
merging patterns until no more gain in the MDL score can be
achieved. To ease the explanation, we will first introduce the setting
without mutual exclusivity, but only conjunctive patterns. We start
with an empty set of patterns M , the dataset is initially encoded
only using singletons. We then search for candidate patterns that
improve L(M,D). These can be created in the following ways:
• single items: a single item I ∈ I that improves the MDL score
when transmitted separately for D− and D+,
• pairs of items: a new conjunctive pattern ∧⃝(I1, I2) ∈ I × I,
• patterns and items: a new conjunctive pattern ∧⃝(P , I ) obtained
by merging an existing pattern P ∈ M with an item I ∈ I,
• pairs of patterns: a new conjunctive pattern ∧⃝(P1, P2) obtained
by merging two existing patterns P1, P2 ∈ M .

Pairs of items for which the transaction sets barely overlap do not
make for conjunctive patterns that compress well, hence, we in-
troduce a minimum overlap threshold of 0.05 in all experiments,
to speed up the search by pruning infrequent and therewith unin-
teresting patterns. We so have algorithm createCandidates that,
based on a current model M , outputs a set of possible candidate
patterns that we will consider as additions to the model.



5.2 Filtering Noise

Additionally to the MDL score, Fischer and Vreeken [8] proposed to
use Fisher’s exact test as a filter for spurious patterns in their setting.
Here, we use it to test our candidate patterns. Fisher’s exact test
allows to assess statistically whether two items co-occur indepen-
dently based on contingency tables. We assume the hypothesis of
homogeneity; in our case that there is no difference in the pattern’s
probability between D− and D+. Fisher showed that the values of
the contingency table follow a hypergeometric distribution [9]. We
can then compute the p-value for the one-sided test directly via

p =

min(a,d )∑
i=0

(a+b
a−i

) (c+d
c+i

)( n
a+c

) .

with c = |σP (D) |, a = |D | − c , d = |σP
(
D+

)
|, b = |D+ | − d and

n = |D | for a pattern P that points towards misclassification. For
patterns that point towards correct classification, the other tail of
the distribution is tested (with a and b as well as c and d switching
places). As with statistical pattern mining, an appropriate multiple
test correction is not available. We however only use the test to
filter candidates, hence false positive patterns passing the test are
still evaluated in terms of MDL.

5.3 The Premise Algorithm

Combining the candidate generation and the MDL score from Sec-
tion 4.2, we obtain Premise. We give the pseudo-code in Algorithm
1. Starting with the empty model, we generate candidates and for
each of those, we compute the gain in terms of MDL (line 6) as well
as the pattern’s p-value (line 7). We select the candidate below a
significance threshold α that reaches the highest gain (line 8-10)
and add it to the model. If we created the pattern through a merge,
we remove its parent patterns fromM . We repeat the process until
no candidate provides further gain in codelength.

Algorithm 1: Premise
input: D with D− and D+, significance threshold α
output: Heuristic approximationM ofM *

1 do

2 ∆′ ← 0;
3 M ′ ← M ;
4 C ←createCandidates(M);
5 for P ∈ C do

6 ∆← L(D,M ⊕ P) − L(D,M) ; // gain
7 p ←FishersExactTest(P); // p-value
8 if p < α and ∆ > ∆′ then
9 ∆′ ← ∆;

10 M ′ ← M ⊕ P ;
11 end

12 end

13 M ← M ′;
14 while ∆′ > 0;
15 returnM

Word 5-nearest neighborhood

photo photograph, photos, picture, pic, pictures
color colour, colors, purple, colored, gray
can could, will, may, might, able
say know, think, tell, mean, want

Table 1: Words and their nearest neighbors on Visual7W.

5.4 Mutual Exclusivity and Word Neighbors

For the clauses of mutually exclusive items, we are interested in find-
ing words that are synonyms or that reflect similar concepts, such
as ×⃝(color, colour) or ×⃝(could, can). Research in NLP has proposed
various techniques for identifying such pairs including manually
created ontologies such as WordNet [26] or word embeddings that
are learned through co-occurrences in text and map words to vector
representations. This information about related words can be used
to guide the search for mutually exclusive patterns. Using such
pretrained embeddings rather than deriving them from the given
input data has the advantage that we are independent of the size
of the input data set, and receive reliable embeddings, which were
trained on very large, domain independent text corpora.

While our approach is independent of the specific method, we
have chosen FastText word embeddings [12]. In contrast to word
ontologies, word embeddings have a broader vocabulary coverage.
They also do not impose strict restrictions such as a particular
definition of synonyms and instead reflect relatedness concepts
learned from the text. FastText embeddings have the additional
benefit that they use subword information, removing the issue of
out-of-vocabulary words. The word embeddings are independent
of the machine learning classifier we study. As measure of relat-
edness m between two items I1, I2, we use cosine similarity, i.e.
m = cos(emb(I1), emb(I2)) where emb is the mapping between an
item/word and its vector representation. We define nb(I ,k) as the
I ′ ∈ I for whichm(I , I ′) is the k-highest. Examples for words and
their neighbours in FastText embeddings are given in Table 1.

Based on the information of the embedding, we derive ×⃝-clauses.
For each item I , we explore mutual exclusivity in its 1 . . .K closest
neighbors, i.e. from ×⃝(I , nb(I , 1)) until ×⃝(I , nb(I , 1), . . . , nb(I ,K))
where K is the maximum neighborhood size. For that, we adapt the
createCandidates algorithm from Section 5.1 so that whenever
we consider merging with an item I , we also consider merging
with the ×⃝-clauses containing additionally the 1, 2, . . .K closest
neighbours. We give the full algorithm in App. A.1.

Since not all words have K neighbors that represent similar
words, we additionally filter neighbourhoods such that

⋂
I σI (D)⋃
I σI (D)

<

a andm(I , nb(I ,k)) > bk for all items I in the clause, i.e. we require
that their transactions barely overlap (mutual exclusivity), and that
their embeddings are reasonably close. In all experiments we set
K = 5, a = 0.05 and bk to the 3rd quartile of {m(I , nb(I ,k)) | I ∈ I}.

6 EXPERIMENTS

We evaluate and compare our approach on synthetic data with
known ground truth as well as on real world classification settings.
We compare against several methods that lend themselves for our



setting. In particular, we compare to patterns derived from classi-
fication trees obtained from predicting the misclassification flag
from the input tokens, subgroup discovery with misclassification
flags as target variable, using weighted relative accuracy as quality
function [2], the recent significant pattern miner SPuManTe [30],
and the state of the art rule miner Grab, which similar to Premise
is based on MDL [7]. We exclude SliceFinder [5] and the miner of
disjunctive emerging patterns using hypergraphs by Vimieiro [41]
from the experiments as they did not complete within 12 hours for a
single run. If not specified otherwise, English FastText embeddings
trained on CommonCrawl and Wikipedia are used [12]. Further
training details are given in the Appendix. All experiments were
performed on an Intel i7-7700 machine with 31GB RAM running
Linux. The single-threaded C++ implementation of Premise re-
quired less then 10 minutes on all synthetic datasets. On the VQA
datasets it finished within 20 minutes and on the NER data within
4 hours. For all existing methods we use the publicly available code,
and make our code available for research purposes.2

6.1 Synthetic Data

To obtain a synthetic data set with similar token distributions as
natural language text, we derive samples from the around 3.4k
instances in the development set of the PennTreebank Corpus [24].
In particular, we draw 12 distinct patterns, for each pattern choosing
items from the vocabulary tokens at random. To ensure that we
introduce only new patterns into the data, we verify that none of
the items in the patterns co-occur in the original data. We then
insert each pattern into a random subset of the PennTreebank
instances, where the number of instances to be covered is drawn
from a normal N(150, 20). Each instance containing a pattern is
then flagged as misclassification. Furthermore, we introduce two
types of noise. Shift indicates the percentage of instances with a
pattern that are actually labeled as misclassifications. The second
type of noise is labeling of instances as misclassification although
there is no pattern occurrence, which we refer to as label noise.

Experimental setups. We generate four different sets of experi-
ments. In the first set, we introduce conjunctive patterns varying
pattern length of the introduced patterns between 1 and 8 without
noise. In the second set of experiments we vary the amount of Shift
noise, introducing Shifts of {0.6, 0.7, 0.8, 0.9, 1}, and chosing pat-
tern length uniformly in 1 to 5. In the third set we instead change
the amount label noise, varying in {0, 0.05, 0.1, 0.15, 0.2}. In the
fourth set of experiments, we introduce patterns consisting of con-
junctions of mutual exclusive itemsets. The number of clauses per
pattern and the number of items for each clause is chosen uniformly
at random between 1 and 5. Patterns are created and planted in the
data as in the previous experiments. Additionally, a pattern is only
added to an instance if this would not break the mutual exclusivity
assumptions of all patterns. For the word neighborhoods, items in
the same clause obtain embeddings located around a randomly cho-
sen centroid. All other items obtain random embeddings. We repeat
all experiments 10 times and report the F1 score – the harmonic
mean between precision and recall – as average across repetitions.

2https://bit.ly/39TAl7a

Results. For the first experiment set (Fig. 2a) of varying pattern
length, we observe that subgroup discovery is able to retrieve short
patterns well, failing however to discover any larger patterns, in-
stead retrieving large sets of redundant patterns. Decision trees
perform similarly due to overfitting, finding a plethora of highly
redundant patterns. The statistical testing based SPuManTe consis-
tently finds thousands of redundant patterns, performing worst of
all in this regard. The rule set miner Grab recovers small patterns
well, it performs however much poorer in retrieving patterns of
larger size. Premise is the only approach to consistently recover
the ground truth in all data sets.

For both noise experiments, visualized in Fig. 2b and 2c, the
tree based method completely breaks down even for just moderate
amounts of noise. Subgroup Discovery and SPuManTe both per-
form consistently bad with F1 scores below .2. Out of the existing
approaches, only Grab– due to its explicit noise encoding – is able
to recover the ground truth well. Premise outperforms all existing
methods in each of our noise experiments, achieving consistently
high F1 scores beyond .92.

Since most baselines do not support discovering mutual exclu-
sivity or proved to fail in the more simple setup of conjunctions,
we only evaluate our proposed method on the fourth set of exper-
iments. We observe that Premise is still able to retrieve patterns
even in this challenging setup of complex clauses of length up to
20, with F1 scores close to .9, and is able to discover clauses in the
presence of noise (Fig. 2d).

6.2 Real Data: VQA

Visual Question Answering (VQA) is the task of answering textual
questions about a given image. It is a popular and challenging task
at the intersection of vision and natural language processing. In
this section, we analyze the misclassification of Visual7W [47] and
the state-of-the-art LXMERT [38], both specific architectures for
different VQA tasks. The pretrained Visual7W reaches 54% accuracy
in 4-option multiple choice, LXMERT a validation score of 70% on
their minival split. Both classifiers perform far from optimal and
thus serve as interesting applications for our setting. Here, we
derive misclassification data sets from application of the classifiers
to the development sets.

In Tab. 2 we provide statistics about the data and retrieved pat-
terns. Both the tree based method and SPuManTe retrieve several
hundred or thousand patterns making it difficult to interpret the
results. Furthermore, we know from the previous experiments that
these methods find thousands of patterns even when there exist
only few ground truth patterns. The subgroup discovery approach
requires the user to specify the number of patterns a-priori, which
is not known, hence we search for the top 100 patterns to get a
succinct set of patterns. For the retrieved results, there are some pat-
terns showing reasons for misclassification. However, the patterns
are highly redundant with often ten or more patterns expressing
the same cause for misclassification. It is thus hard to get a full
description of what goes wrong, it lacks the power of a set mining
approach that evaluates patterns together. Grab fails to retrieve
meaningful results, likely due to the heuristic search.

Only Premise is able to provide a succinct and non-redundant
description of misclassification, and is the only method to recover

https://bit.ly/39TAl7a
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Figure 2: Synthetic data results. On synthetic data, varying the number of items per pattern (a), the amount of shift noise (b),
and the amount of label noise (c), we visualize the results in terms of F1 score with respect to the ground truth for existing

methods and Premise. We additionally provide the results of Premise on data containing patterns ofmutual exclusive clauses

for varying amounts of shift noise (d).

Premise (this paper) Tree Subgroup SPuManTe Grab

Dataset |I | |D | |P− | |P+ | |p | |P | |p | |P | |p | |P | |p | |P | |p |

Visual7W 2429 28032 29 26 3.38 4309 3.55 100 2.32 575 2.92 1 1
LXMERT 5351 25994 41 34 2.69 3371 2.71 100 2.52 951 3.90 1 1

Table 2: VQA data statistics. For the two VQA classifiers, we provide general statistics about data dimensions, and for each

method the number of discovered patterns (|P |) or if applicable number of patterns explaining misclassification (|P− |), respec-

tively correct classification (|P+ |). Additionally, we provide the average pattern length |p |.

patterns that reflect synonyms or different styles of writings. In
Tab. 3a, we list patterns found by Premise for the Visual7W classi-
fier, where we can clearly see the advantage of the richer pattern
language, allowing to find patterns such as ∧⃝(what, ×⃝(color, col-
ors, colour)). Generally, the patterns found by Premise highlight
different types of wrongly answered questions, including counting
questions, identification of specific objects and their colors, spatial
reasoning, as well as higher reasoning tasks like reading signs. Fur-
thermore, Premise retrieves both frequent patterns, such as ∧⃝(how,
many), rare and highly specific patterns, such as ∧⃝(on, wall, hang-
ing), and patterns containing related concepts and synonyms.

Premise also finds patterns explaining correct classification.
These could indicate questions that are easy to answer but also
questions that are just memorized by the network, since within the
data set the answer is always the same. For instance, ∧⃝(who, took,
×⃝(photo, picture, pic, photos, photograph)), although a difficult ques-
tion, is nearly always answered by ”photographer“. Thus, patterns
that are biased towards correct classification can indicate issues
with the dataset. Another type of problematic questions is indicated
by the pattern ∧⃝(clock, time), where usually the answer is ”UNK“,
the actual time being replaced with the unknown word token by
the limited vocabulary of Visual7W. The pattern hence indicates a
setting where the VQA classifier undeservedly gets a good score.

By adding additional information as items to each instance, it is
possible to gain further insights. Appending for example the correct
output to each instance, we observe for instances regarding the ques-
tion when the picture was taken two different trends. On the one
hand, the discovered pattern ∧⃝(when, ×⃝(daytime, nighttime)) is as-
sociated with correct classification, the pattern ∧⃝(when, ×⃝(evening,
morning, afternoon, lunchtime)), on the other hand, points towards

misclassification. This is intuitively consistent as the answers ”day-
time“ and ”nighttime“ are easier to choose based on a picture.

For the LXMERT classifier, a similar set of patterns is discovered
by Premise, with examples given in Table 3b. We observe that both
classifiers share certain issues, like the counting questions. However,
no patterns regarding color or spatial position are retrieved. This
seems to indicate that the more modern LXMERT classifier can
handle these better. Instead, many pattern indicate setting that
require advanced capabilities like noticing fine-grained details or
reading text on the images.

For the considered VQA classifiers, existing methods do not give
succinct descriptions, and can not handle the richer language over
conjunctions andmutual exclusivity. Such a language, however, pro-
vides a deeper understanding of misclassification errors. In contrast,
the patterns discovered by Premise give intuitive and informative
descriptions over such a richer language that allow to understand
both, the issues of the dataset, as well as limits of the VQA classifier
and hence can be used to improve classifier performance.

6.3 Real Data: NER

A machine learning classifier might perform well on the training
and test data, its performance when deployed ”in the wild“ however
is often much worse. Understanding the difference between the
restricted training set-up and the open application of the classifier
in real-life is important for being able to adapt and improve. Here,
we investigate the popular LSTM+CNN+CRF architecture [22] for
Named Entity Recognition (NER). NER is a sequence labeling task
that identifies entities such as persons, locations and organizations
in text and it is the basis for more advanced tasks like text search
or virtual assistants. The classifier is trained on the standard NER



pattern example

UNK how are the UNK covered
∧⃝(how, many) how many elephants are there
∧⃝(what, ×⃝(color, what color is the bench

colors, colour))
∧⃝(on, top, of ) what is on the top of the cake
∧⃝(left, to) what can be seen to the left
∧⃝(on, wall, hanging) what is hanging on the wall
∧⃝(how, does, look) how does the woman look
∧⃝(what, does, ×⃝(say, what does the sign say

like, think, know, want))

(a) Visual7W

pattern example

∧⃝(How, many) How many kites are flying?
∧⃝(hanging, from) What is hanging from a hook?
∧⃝(×⃝(kind, sort), of) What kind of birds are these?
∧⃝(×⃝(would, could, How would you describe the decor?

might, can), you)
∧⃝(name, of ) What is the name of this restaurant?
number What is the pitchers number?
×⃝(letter, letters) What letter appears on the box?
∧⃝(How, much, ×⃝(cost, How much does the fruit cost?

costs))

(b) LXMERT

Table 3: Our method discovers meaningful and easily interpretable patterns. For Visual7W (left) and LXMERT (right), we

show a subset of the patterns highlighting different reasons formisclassification along with examples from the corresponding

datasets. The full list of retrieved patterns for all methods is given in the additional material.

dataset CoNLL03 [39], where it achieves an F1-score of 0.93, a
performance good enough for a production setting.When evaluated
on OntoNotes [43], a dataset which covers a wider range of text
domains than CoNLL03, similar to how an open application of the
classifier would encounter different text contexts, the performance
drops to 0.61 F1-score on the development set.

We take each sentence as one instance and label it as misclassifi-
cation if at least one token in the sentence is predicted incorrectly.
This results in a misclassification dataset with about 16k instances
and 23k unique items. Premise discovers patterns such as ∧⃝(-LRB-,
-RRB-) that indicate different preprocessing of the text, where -LRB-
is an alternative form for the opening bracket, which is specific
to the OntoNotes data, and thus should be properly handled by
the NER classifier. Patterns also indicate problems with differing
labeling conventions. For example, we find the patterns ∧⃝(’s) and
∧⃝(Wall, Street), which turn out to be handled differently for en-
tities in OntoNotes, respectively CoNLL03. Apart from patterns
that highlight dataset differences, we can also isolate issues with
OntoNotes alone, which contains bible excerpts that are not labeled
at all. We discover this via several found patterns that describe this
domain (God, Jesus, Samuel).

While these patterns do give insight in what is going wrong
when applying a classifier to a different dataset, it is left to show
that we can act upon them. Hence, we select the top 50 patterns
according to gain in MDL and sample for each pattern 5 sentences
containing the pattern uniformly at random from the OntoNotes
training data. Using this data, we fine-tune the CoNLL03 classifier
and compare it to fine-tuning on the same number of random
sentences from the training data. The sampling and fine-tuning is
repeated 20 times with different seeds. Using the pattern-guided
data, the performance is improved by 9.8% to a mean F1-score of
0.67 (SE 0.003). The randomly chosen instances only result in a
small improvement of 1.6% percent to a mean F1 score of 0.62 (SE
0.005), showing that we can act on patterns discovered by Premise,
using them to guide fine-tuning based on the original training data
to improve performance on deployment.

7 DISCUSSION & CONCLUSION

We considered the problem of characterizing classification errors of
machine learning models, in particular for NLP settings with high
dimensional, sparse input spaces. In particular, we are interested in
easily interpretable statements about the data that describe where
it went wrong. Here, we formulated this problems in terms of the
Minimum Description Length Principle to discover a succinct set
of interpretable patterns that describe the observed classification
error. Considering a pattern language expressing conjunctions of
mutual exclusive tokens, these patterns are human interpretable
and easy to act upon, while capturing important features of natural
language, such as related words or synonyms. To find related words
in a robust and classifier-agnostic way, we leverage information
from pretrained word embeddings to guide the search for good sets
of mutual exclusive tokens. To discover pattern sets efficiently, we
proposed Premise, which employs a bottom-up heuristic search
scheme and showed to yield good approximations to the optimal
model on data with known ground truth.

In contrast to the state-of-the-art, Premise can model both con-
junctions and mutual exclusivity, while at the same time being
robust to noise and scalable to the large input spaces encountered
in NLP tasks. In experiments on synthetic data, we showed that
Premise consistently recovers the ground truth patterns across
varying length, and different types of noises. Existing methods
work only in very limited settings of extremely low amounts of
noise and for short patterns.

On real data, we compared the existing methods in a case study,
analyzing the misclassifications of two modern Visual Question
Answering classifiers. While some of the competing methods did
retrieve reasonable explanations, these were highly redundant and
barely interpretable for human experts with several hundred or
thousand patterns. Moreover, important concepts, such as patterns
that are similar across related words or synonyms, are completely
missed. Premise, on the other hand, discovers succinct sets of pat-
terns that provide interesting characterizations of classification
errors, revealing that models struggle with counting, spatial orien-
tation, reading, and identifies shortcomings in training data.



To show that the pattern sets is not only interpretable and gives
interesting insights, but also actionable, we analyzed a popular
classifier for Named Entity Recognition. In particular, we consider
a model applied to text of a different source and characterize the re-
sulting classification errors with Premise. Inspecting the retrieved
patterns confirms that also for NER models Premise is able to re-
trieve meaningful patterns explaining misclassification. To show
actionability, we fine-tune the NER model using samples from the
training data that contain discovered patterns, increasing F1 classi-
fier performance by almost 10%, whereas fine-tuning with arbitrary
training samples does not yield much improvement.

Premise discovers interpretable and actionable relation between
input and classification errors. It makes for engaging future work
to also consider elements of the classifier itself – such as neuron
activations – to search for interesting patterns, to relate elements
of the model itself with the classification error. While this would
give interesting insights, it is much harder to act upon, and requires
a model specific approach. In that line, considering the hundreds of
thousands of neuron activations of an entire network at once poses
additional challenges regarding scalability, which again serve as an
interesting direction of future research.
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A APPENDIX

A.1 Algorithm createCandidates

Algorithm 2: createCandidates
input: D, set of patterns P from the currentM , max

neighbour distance K
output: Set of candidate patterns P
// Define nb(I , 0) = I for simplicity

1 C ← {};
// Single item and its neighbours

2 foreach I ∈ I do

3 A← {};
4 foreach k ∈ {0, . . . ,K} do
5 A← A ∪ {nb(I ,k)};
6 C ← C ∪ {×⃝(A)};
7 end

8 end

// Pairs of items and their neighbours
9 foreach (I1, I2) ∈ I × I do

10 A1 ← {};
11 foreach k1 ∈ {0, . . . ,K} do
12 A1 ← A1 ∪ {nb(I1,k1)};
13 A2 ← {};
14 foreach k2 ∈ {0, . . . ,K} do
15 A2 ← A2 ∪ {nb(I2,k2)};
16 C ← C ∪ {∧⃝(×⃝(A1), ×⃝(A2))};
17 end

18 end

19 end

// Pattern + item and its neighbours
20 foreach P in P do

21 foreach I ∈ I do

22 A← {};
23 foreach k ∈ {0, . . . ,K} do
24 A← A ∪ {nb(I ,k)};
25 C ← C ∪ {∧⃝(γ (P) ∪ {A})};
26 end

27 end

28 end

// Pattern + Pattern
29 foreach (P1, P2) ∈ P × P do

30 C ← C ∪ {∧⃝(γ (P1) ∪ γ (P2)};
31 end

/* see Sections 4 and 5 for filter criteria */
32 C ← Filter(C) ;
33 return C

A.2 Proof: Order of Items

Here, we provide a proof that the codelength is independent on
the order of items in mutual exclusive clauses. The proof closely
follows that of Fischer and Vreeken [8].

Theorem A.1. Given a clause cl = ×⃝(i, j,k) with corresponding
margins ni ,nj ,nk , it does not matter in which order we transmit
where the items hold.

Proof. We show that we can flip the item order without chang-
ing the cost. Assume a new order P = ×⃝(k, i, j), then we show

log
(
n

ni

)
+ log

(
n − ni
nj

)
+ log

(
n − ni − nj

nk

)
!
= log

(
n

nk

)
+ log

(
n − nk
ni

)
+ log

(
n − ni − nk

nj

)
.

With the definition of the binomial using factorials and standard
math, adding new terms that add up to 0, we show that the above
equation hold.

log
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−(((((((log((n − ni − nj )!) − log(nj !) +(((((((log((n − ni − nj )!)
− log((n − ni − nj − nk )!) − log(nk !)
+ log((n − nk )!) − log((n − nk )!)︸                                    ︷︷                                    ︸

=0
+ log((n − ni − nk )!) − log((n − ni − nk )!)︸                                                  ︷︷                                                  ︸

=0

= log
n!

(n − nk )!nk !
+ log

(n − nk )!
(n − ni − nk )!ni !

+ log
(n − ni − nk )!

(n − ni − nj − nk )!nj !
.

Other permutations and larger clauses follow the same reasoning.
□

A.3 Experimental Details

For the decision tree, patterns are exracted from a tree trained
on the misclassification data. Each of the tree’s inner nodes is a
binary decision regarding the presence of an item and a pattern is
the conjunctive path from the tree’s root to one of its leafs. The
model is trained with Gini impurity as decision criterion in the
implementation from scikit-learn.

For the subgroup discovery, the implementation by Lemmerich
and Becker [19] is used with depth-first search. The size of the
result set and the maximum depth are set to the ground truth for
the synthetic data and to 100 and 5 for the VQA datasets. SPuManTe
is used with the authors’ default parameters, setting its sample size
to the dataset size. Grab is used in the authors’ implementation but
restricting the head to the labels and the tail to all other items.

For Visual7W and LXMERT, we use the published, pretrained
models by the corresponding authors. For the LSTM+CNN+CRF
classifier for NER, we follow the specific set-up from [16] with
the English FastText embeddings. For OntoNotes, the data split by
Pradhan et al. [32] is used. The fine-tuning data consists of 240
instances/sentences as two patterns did not match any training
data. Fine-tuning on the additional data is performed for 30 epochs.
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