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Abstract
Extracting patient information from unstructured
text is a critical task in health decision-support
and clinical research. Large language models
(LLMs) have shown the potential to accelerate
clinical curation via few-shot in-context learning,
in contrast to supervised learning, which requires
costly human annotations. However, despite dras-
tic advances, modern LLMs such as GPT-4 still
struggle with issues regarding accuracy and inter-
pretability, especially in safety-critical domains
such as health. We explore a general mitigation
framework using self-verification, which lever-
ages the LLM to provide provenance for its own
extraction and check its own outputs. This frame-
work is made possible by the asymmetry between
verification and generation, where the former is
often much easier than the latter. Experimen-
tal results show that our method consistently im-
proves accuracy for various LLMs across standard
clinical information extraction tasks. Addition-
ally, self-verification yields interpretations in the
form of a short text span corresponding to each
output, which makes it efficient for human ex-
perts to audit the results, paving the way towards
trustworthy extraction of clinical information in
resource-constrained scenarios. To facilitate fu-
ture research in this direction, we release our code
and prompts. 1

1. Introduction and related work
Clinical information extraction plays a pivotal role in the
analysis of medical records and enables healthcare practi-
tioners to efficiently access and utilize patient data (Zweigen-

*Equal contribution 1Microsoft Research. Correspondence to:
Zelalem Gero <zelalemgero@microsoft.com>, Chandan Singh
<chansingh@microsoft.com>.

Workshop on Interpretable ML in Healthcare at International Con-
ference on Machine Learning (ICML), Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

1All code is made available at � github.com/microsoft/clinical-
self-verification.

baum et al., 2007; Wang et al., 2018). Few-shot learning
approaches have emerged as a promising solution to tackle
the scarcity of labeled training data in clinical information
extraction tasks (Agrawal et al., 2022; Laursen et al., 2023).
However, these methods continue to struggle with accuracy
and interpretability, both critical concerns in the medical
domain (Gutiérrez et al., 2022).

Here, we address these issues by using self-verification (SV)
to improve few-shot clinical information extraction. SV
builds on recent works that chain together large language
model (LLM) calls to improve an LLM’s performance (Wu
et al., 2022; Wang et al., 2022; Chase, 2023). Intuitively,
these chains succeed because an LLM may be able to per-
form individual steps in a task, e.g. evidence verification,
more accurately than the LLM can perform an entire task,
e.g. information extraction (Ma et al., 2023; Madaan et al.,
2023; Zhang et al., 2023). Such chains have been success-
ful in settings such as multi-hop question answering (Press
et al., 2022), retrieval-augmented/tool-augmented question
answering (Peng et al., 2023; Paranjape et al., 2023; Schick
et al., 2023; Gao et al., 2023), and code execution (Jojic
et al., 2023). Here, we analyze whether building such a
chain can improve clinical information extraction.

Fig. 1 shows the SV pipeline we build here. We broadly
define self-verification as using multiple calls to the same
LLM to verify its output, and also to ground each element of
its output in evidence. Our SV pipeline consists of four steps,
each of which calls the same LLM with different prompts.
First, the Original extraction step queries the LLM directly
for the desired information. Next, the Omission step finds
missing elements in the output, the Evidence step grounds
each element in the output to a text span in the input, and
the Prune step removes inaccurate elements in the output.
Taken together, we demonstrate that these steps improve the
reliability of extracted information.

Additionally, SV provides interpretable grounding for each
output, in the form of a short text span in the input. Inter-
pretability has taken many forms in NLP, including posthoc
feature importance (Lundberg & Lee, 2017; Ribeiro et al.,
2016), intrinsically interpretable models (Rudin, 2019; Tan
et al., 2022; Singh et al., 2022a), and visualizing model in-
termediates, e.g. attention (Wiegreffe & Pinter, 2019). The

1

https://github.com/microsoft/clinical-self-verification
https://github.com/microsoft/clinical-self-verification


Self-Verification Improves Few-Shot Clinical Information Extraction

Omission
Find missed 

elements

•  Hypertension
+  Right adrenal mass
+  Liver fibrosis

Prune
Remove inaccurate 

elements

•  Hypertension
•  Right adrenal mass

Evidence
Ground elements 

in evidence

•  Hypertension
    “past medical history of hypertension”
•  Right adrenal mass
     “has right 10 cm nonfunctional adrenal mass”
•  Liver fibrosis
     “postoperative diagnosis: liver fibrosis ruled out”

Original 
Extraction

•  Hypertension

Figure 1. Overview of self-verification pipeline for clinical information extraction. Each step calls the same LLM with different prompts
to refine the information from the previous steps. Below each step we show abbreviated outputs for extracting a list of assigned diagnoses
from a sample clinical note.

interpretable grounding we generate comes directly from
an LLM, similar to recent works that use LLMs to gener-
ate explanations (Rajani et al., 2019; MacNeil et al., 2022;
Singh et al., 2023) and ground those explanations in evi-
dence (Rashkin et al., 2021; Gao et al., 2022; Xue et al.,
2023).

Experiments on various clinical information extraction tasks
and various LLMs, including ChatGPT (GPT-4) (OpenAI,
2023) and ChatGPT (GPT-3.5) (Ouyang et al., 2022), show
the efficacy of SV. In addition to improving accuracy, we
find that the extracted interpretations match human judge-
ments of relevant information, enabling auditing by a human
and helping to build a path towards trustworthy extraction
of clinical information in resource-constrained scenarios.

2. Methods and experimental setup
2.1. Methods: Self-verification

Fig. 1 shows the four different steps of the introduced SV
pipeline. The pipeline takes in a raw text input, e.g. a clinical
note, and outputs information in a pre-specified format, e.g.
a bulleted list. It consists of four steps, each of which calls
the same LLM with different prompts in order to refine and
ground the original output.

The original extraction step uses a task-specific prompt
which instructs the model to output a variable-length bul-
leted list. In the toy example in Fig. 1, the goal is to identify
the two diagnoses Hypertension and Right adrenal mass,
but the original extraction step finds only Hypertension.

After the original LLM extraction, the Omission step finds
missing elements in the output; in the Fig. 1 example it finds
Right adrenal mass and Liver fibrosis. For tasks with long
inputs (mean input length greater than 2,000 characters),
we repeat the omission step to find more potential missed
elements (we repeat five times, and continue repeating until
the omission step stops finding new omissions).

Next, the Evidence step grounds each element in the out-
put to a text span in the input. The grounding in this step
provides interpretations that can be inspected by a human.
In the Fig. 1 example, we find quotes supporting the first
two diagnoses, but the quote for liver fibrosis shows that it
was in fact ruled out, and is therefore an incorrect diagno-
sis. Finally, the Prune step uses the supplied evidence to
remove inaccurate elements from the output. In Fig. 1 this
results in removing liver fibrosis to return the correct final
list. Taken together, these steps help to extract accurate and
interpretable information, with the omission step improving
recall, the evidence step grounding findings, and the pruning
step improving precision.

We provide the exact prompts used in all steps in the Github
repo. For the tasks with short inputs, we include 5 random
data demonstrations in the original extraction prompt; oth-
erwise all prompts are fixed across examples. Prompts are
straightforward instructions that specify the desired output
format, e.g. (i) Create a bulleted list of which medications
are mentioned and whether they are active, discontinued, or
neither, or (ii) List all medication names in the patient note
that were missed in Extracted medications list. Put the med-
ication name in quotes and the status in parentheses (active,
discontinued, or neither). If no additional medications are
found, return ”None”.

2.2. Experimental setup

Datasets Table 1 gives the details of each task we study
here. Each task requires extracting a variable-length list of
elements. In clinical trial arm extraction, these are names
of different clinical trial arms, manually annotated from the
EBM-NLP dataset (Nye et al., 2018). In the medication
status extraction task, in addition to medication names the
medication status must additionally be classified as active,
discontinued, or neither. The text inputs for arm extraction
/ medication status extraction are relatively small (average
length is 1,620 characters and 382 characters, respectively).
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In the case of MIMIC-III and MIMIC-IV (Johnson et al.,
2016; 2021), we predict ICD-9 or ICD-10 codes (corre-
sponding to diagnoses and procedures). We predict ICD
codes using relevant sections from all types of clinical notes
for MIMIC-III (average length: 5,200 words) but only dis-
charge summaries for MIMIC-IV (average length: 1,400
words). The ICD codes are not directly present in the text in-
put, and therefore the task requires translating the diagnoses
to their relevant code. MIMIC data is preprocessed using a
standard pipeline (see Appendix A.1) and we evaluate on a
random subset of 250 inputs for each task.

Models We evaluate three different models: GPT-
3.5 (Brown et al., 2020), text-davinci-003, ChatGPT
(GPT-3.5) (Ouyang et al., 2022) gpt-3.5-turbo, and
ChatGPT (GPT-4) (OpenAI, 2023) gpt4-0314 (in chat
mode), all accessed securely through the Azure OpenAI
API. We set the sampling temperature for LLM decoding to
0.1.

Evaluation Extraction is evaluated via case-insensitive
exact string matching, and we report the resulting macro
F1 scores, recall, and precision. In some cases, this eval-
uation may underestimate actual performance as a result
of the presence of acronyms or different names within the
output; nevertheless, the relative performance of different
models/methods should still be preserved. Following com-
mon practice, we restrict ICD code evaluation to the top 50
codes appearing in the dataset.

3. Results
3.1. Self-verification improves prediction performance

Table 2 shows the results for clinical extraction performance
with and without self-verification. Across different models
and tasks, SV consistently provides a performance improve-
ment. The performance improvement is occasionally quite
large (e.g. ChatGPT (GPT-4) shows more than a 0.1 im-
provement in F1 for clinical trial arm extraction and more
than a 0.3 improvement for medication status extraction),
and the average F1 improvement across models and tasks
is 0.056. We also compare to a baseline where we concate-
nate the prompts across different steps into a single large
prompt which is then used to make a single LLM call for
information extraction. We find that this large-prompt base-
line performs slightly worse than the baseline reported in
Table 2, which uses a straightforward prompt for extraction
(see comparison details in Table A5).

For tasks with short inputs, we find that GPT-3.5 performs
best, even outperforming ChatGPT (GPT-4), as has been
seen in some recent works (e.g. Patil et al. 2023). For the
MIMIC tasks with larger inputs, ChatGPT (GPT-4) performs
best. In fact, GPT-3.5 performs very poorly on ICD-code

Her aspirin (81 mg q.d.) is discontinued, 
and the patient is advised that she needs 
to avoid ibuprofen, Naprosyn, alcohol, 
caffeine, and chocolate. She is advised 
that Tylenol 325 mg or Tylenol ES (500 
mg) is safe to take at 1 or 2 q.4-6h. 
p.r.n. for pain or fever. Discharge 
activity is without restriction. 
DISCHARGE MEDICATIONS: 1. Plavix 75 mg 
p.o. q.d. 

- aspirin: discontinued
- ibuprofen: neither
- Naprosyn: neither
- Tylenol: active
- Plavix: active

Evidence highlighting

Medication status output

Figure 2. Example output and interpretation for medication status.
For each element of the output list, our pipeline outputs the text
span which contains evidence for that generated output (shown
with highlighting).

extraction, perhaps because the task requires not only ex-
tracting diagnoses from the input text but also knowing the
mapping between diagnoses and ICD codes.

Table 3 contains ablations showing how the different self-
verification modules affect the results. The Omission step
finds missing elements, which increases recall but at the
cost of decreased precision.2 In contrast, the Prune step
(that incorporates the span from the Evidence step) removes
extraneous elements, thereby increasing precision. Together
(Full SV), the steps achieve a balance which improves F1.
For tasks with longer inputs (e.g. MIMIC-IV ICD-10), the
Omission step seems to provide more of the improvement in
F1, likely because it is able to find evidence that was missed
by a single extraction step.

3.2. Self-verification yields interpretations

Fig. 2 shows an example output from the self-verification
pipeline for medication status (the underlying model is Chat-
GPT (GPT-4)). In the example, the pipeline correctly iden-
tifies each medication and its corresponding status. In ad-
dition, the pipeline supplies the span of text which serves
as evidence for each returned medication (shown with high-
lighting). This highlighting enables efficient auditing by a
human for each element. In a human-in-the-loop setting, a
human could also see results/highlights for elements which
were pruned, to quickly check for any mistakes.

Table 4 evaluates the evidence spans provided by SV against

2It is possible that some false positives identified by the Omis-
sion step are in fact correct, as the the ICD codes in the MIMIC
dataset generally reflect top codes that were billed for rather than
all that were present in a note.
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Table 1. Tasks and associated datasets studied here.

Task Data Example output

ICD code extraction
(ICD-9 and ICD-10)

250 MIMIC III reports (Johnson et al., 2016),
250 MIMIC IV discharge summaries (Johnson et al., 2021)

[205.0, 724.1, 96.04]

Clinical trial arm extraction 100 annotations to EBM-NLP abstracts (Nye et al., 2018) [propofol, droperidol, placebo]

Medication status extraction 105 Annotations (Agrawal et al., 2022) to snippets from
CASI (Moon et al., 2012)

{aspirin: discontinued, plavix: active}

Table 2. F1 scores for extraction with and without self-verification (SV). Across different models and tasks, SV consistently provides a
performance improvement, although it is sometimes small. Bolding shows SV compared to original, underline shows best model for each
task. Averaged over 3 random seeds; error bars show the standard error of the mean.

ChatGPT (GPT-3.5) ChatGPT (GPT-4) GPT-3.5

Clinical trial arm (Original / SV) 0.342 ±0.010 / 0.456 ±0.007 0.419 ±0.008 / 0.530 ±0.010 0.512 ±0.009 / 0.575 ±0.003
Medication name (Original / SV) 0.892 ±0.004 / 0.898 ±0.002 0.884 ±0.003 / 0.910 ±0.001 0.929 ±0.002 / 0.935 ±0.001
MIMIC-III ICD-9 (Original / SV) 0.593 ±0.003 / 0.619 ±0.005 0.652 ±0.02 / 0.678 ±0.007 0.431 ±0.03 / 0.435 ±0.01
MIMIC-IV ICD-9 (Original / SV) 0.693 ±0.04 / 0.713 ±0.005 0.718 ±0.03 / 0.755 ±0.004 0.691 ±0.02 / 0.702 ±0.02
MIMIC-IV ICD-10 (Original / SV) 0.448 ±0.04 / 0.464 ±0.003 0.487 ±0.02 / 0.533 ±0.002 0.434 ±0.03 / 0.442 ±0.01

Table 3. Ablation results when using different combinations of
self-verification steps for two tasks. Omission increases Recall and
Prune increases Precision. Together they increase both, improving
F1. Evidence improves F1 for Medication Status. Underlying
model is the best model for each task (GPT-3.5 for Medication
name and Chat-GPT (GPT-4) for MIMIC-IV ICD-10). Averaged
over 3 random seeds; error bars are standard error of the mean.

Medication name
F1 Precision Recall

Original 0.929±0.002 0.929±0.003 0.928±0.003
+ Omission 0.913±0.001 0.881±0.003 0.946±0.001
+ Prune 0.932±0.002 0.949±0.002 0.916±0.003
+ Full SV 0.935±0.001 0.942±0.002 0.928±0.001

MIMIC-IV ICD-10
F1 Precicion Recall

Original 0.487±0.002 0.544±0.003 0.448±0.002
+ Omission 0.517±0.003 0.553±0.003 0.501±0.004
+ Prune 0.504±0.004 0.557±0.005 0.451±0.003
+ Full SV 0.533±0.002 0.558±0.002 0.498±0.002

human judgements collected in prior work (Nye et al., 2018).
Human reviewers annotated spans in the original text which
correspond to interventions, which include clinical trial arms
as a subset. Table 4 gives the fraction of generated evidence
spans that overlap with a span provided by the human an-
notators. The fraction is quite large, e.g. 93% for ChatGPT
(GPT-4). At baseline, human annotators identify less than
3.7% of tokens as interventions, so these span overlap accu-
racies are much higher than expected by random chance.

Table 4. Evaluating evidence spans provided by the self-
verification pipeline with human-annotated spans. Averaged over
3 random seeds; error bars show standard error of the mean.

Span overlap accuracy Span length

ChatGPT (GPT-4) 0.93 ±0.02 8.20 ±0.48
GPT-3.5 0.84 ±0.03 7.33 ±0.47

4. Discussion
Self-verification constitutes an important step towards un-
locking the potential of LLMs in healthcare settings. As
LLMs continue to generally improve in performance, clini-
cal information extraction with LLMs + SV seems likely to
improve as well.

One limitation of SV is that it incurs a high computational
cost as multiple LLM calls are chained together; however,
these costs may continue to decrease as models become
more efficient (Dao et al., 2022). Another limitation is that
LLMs and SV continue to be sensitive to prompts, increas-
ing the need for methods to make LLMs more amenable to
prompting (Ouyang et al., 2022; Scheurer et al., 2023) and
to make finding strong prompts easier (Shin et al., 2020; Xu
et al., 2023; Singh et al., 2022b).

Finally, SV can be harnessed in a variety of ways to improve
clinical NLP beyond what is studied here, e.g. for studying
clinical decision rules (Kornblith et al., 2022), clinical deci-
sion support systems (Liu et al., 2023), or improving model
distillation (Wu et al., 2023; Toma et al., 2023).
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A. Appendix
A.1. Dataset details

MIMIC To preprocess MIMIC data, we follow the steps used by (Edin et al., 2023). For MIMIC IV, we use the available
discharge summaries for each patient while we retrieve more relevant sections from other types of clinical notes for MIMIC
III. See the code on Github for complete details.

During LLM extraction, we find that directly extracting ICD codes with an LLM is difficult. Instead, we use the LLM to
extract diagnoses, and then postprocess them at the end by asking the LLM to convert each diagnosis to its corresponding
ICD code.

Clinical trial arm dataset We manually annotate the clinical trial arms from the first 100 abstract in EBM-NLP (Nye
et al., 2018) without the use of any LLMs. All annotations are made available on Github. The mean number of extracted
clinical trial arms is 2.14, the maximum is 5 and the minimum is 1.

A.2. Extended extraction results

Table A5. F1 scores for two tasks extracted using a single prompt which concatenates all steps in the SV pipeline. Results are slightly
worse than the original extraction presented in Table 2. The prompt contains a paragraph similar to the following: Before you provide your
final response:\n(1) Find any medications in the patient note that were missed.\n(2) Find evidence for each medication as a text span in
the input.\nn(3) Verify whether each extracted medication is actually a medication and that its status is correct. Averaged over 3 random
seeds; error bars are standard error of the mean.

ChatGPT (GPT-3.5) ChatGPT (GPT-4) GPT-3.5

Clinical trial arm, original 0.316 ±0.006 0.420 ±0.009 0.436 ±0.008
Medication name, original 0.758 ±0.003 0.850 ±0.016 0.913 ±0.002

7


