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Abstract001

In Natural Language Understanding (NLU), intent002

detection is crucial for improving human-computer003

interaction. However, traditional supervised learn-004

ing models rely heavily on large annotated datasets,005

limiting their effectiveness in low-resource scenarios006

with limited labeled data. Siamese networks, which007

are effective at learning similarity-based representa-008

tions, provide a promising alternative by enabling009

few-shot learning. However, Siamese networks typi-010

cally rely on contrastive loss or triplet loss, both of011

which introduce challenges. This study introduces012

a similarity-based intent detection model using an013

enhanced Siamese network to address these limita-014

tions. Our model employs Manhattan, Euclidean,015

and Cosine similarity metrics combined with a fu-016

sion layer to improve intent classification accuracy.017

We evaluated the model on the Airline Travel In-018

formation System (ATIS) and SNIPS datasets and019

demonstrated its superiority over state-of-the-art020

methods, particularly in low-resource and few-shot021

learning scenarios. The results highlight significant022

accuracy gains while maintaining computational ef-023

ficiency, making it a robust solution for real-world024

dialog systems.025

1 Introduction026

In today’s interconnected world, dialog systems such027

as chatbots play a crucial role in facilitating human-028

machine interaction across applications such as cus-029

tomer service and digital assistants. Central to these030

systems is intent detection, which classifies users’ ut-031

terances into predefined classes. A key challenge in032

intent detection is its reliance on labeled data, mak-033

ing data acquisition and annotation labor-intensive,034

time-consuming, and costly. Moreover, models of-035

ten struggle with out-of-domain or unseen intents,036

reducing their real-world adaptability.037

Traditional approaches to intent detection, such038

as rule-based methods and shallow machine learning,039

struggle with the complexities of natural language.040

The rise of deep learning models has significantly041

improved performance under the supervised learning042

paradigm. However, these approaches require large043

annotated datasets for each intent class, which limits044

their adaptability to new labels.045

Siamese networks are designed to compute the046

similarity or dissimilarity between pairs of inputs, 047

making them well suited for tasks where a model 048

must identify novel classes based on minimal labeled 049

examples [1]. These architectures have shown ef- 050

fectiveness in various domains, including computer 051

vision [2], text similarity [1], and domain represen- 052

tation [3]. However, Siamese networks are often 053

trained with contrastive loss [4], or triplet loss [5]. 054

Both approaches aim to minimize the distance be- 055

tween similar pairs while maximizing the distance 056

between dissimilar pairs. Triplet loss, in particular, 057

requires the careful selection of triplets, consisting 058

of an anchor, a positive example (similar to the 059

anchor), and a negative example (dissimilar to the 060

anchor). This selection process can be computa- 061

tionally expensive and is sensitive to the choice of 062

margin parameter. 063

To address these challenges, this study pro- 064

poses an enhanced intent detection model using 065

a similarity-based Siamese network with multiple 066

distance layers and a fusion layer. The fusion layer 067

improves the similarity measures between sentences 068

with the same intent and helps to better separate 069

dissimilar intents using a binary classification ap- 070

proach. This eliminates the need for triplet loss, 071

reducing model complexity while maintaining the 072

model’s ability to differentiate between similar and 073

dissimilar intents. 074

Our main contributions are as follows: 075

• We learn sentence representations using an en- 076

coder in a Siamese network which serves as a 077

feature extractor. 078

• We demonstrate the efficacy of using multiple 079

distance layers combined with a fusion layer 080

through ablation studies. 081

• In comparison to benchmark approaches, the 082

proposed model has shown state-of-the-art 083

(SOTA) performance, with accuracy well above 084

99%. 085

2 Related Work 086

Early intent detection relied on rule-based systems 087

and statistical models, such as HMM, SVM, and 088

Näıve Bayes, which struggled with scalability, seman- 089

tic nuances, and context. [6] linked seen and unseen 090

intents using manual attributes such as “action,” 091
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“object,” “location,” and “time.” Meanwhile, [7] and092

[8] improved intent detection using prosodic cues093

and n-grams, although extensive feature engineering094

was still required [9].095

The introduction of deep learning revolutionized096

intent detection by enabling neural networks to au-097

tomatically learn data patterns and representations.098

[10] applied a modified RNN with pre-trained embed-099

dings for dialog act classification. CNNs, introduced100

by [11] for encoding, struggled with long-range de-101

pendencies, which [12] addressed through dual fea-102

ture fusion with capsule networks. Similarly, [13]103

proposed a Bi-model based RNN for joint intent104

detection and slot filling, achieving state-of-the-art105

results on benchmark datasets.106

Few-shot learning approaches have further ad-107

vanced the field by allowing rapid adaptation to108

unseen intents with minimal labeled data. For in-109

stance, [14] leveraged pretrained models for few-shot110

intent detection, overcoming large-scale data depen-111

dency challenges. Building on this, [15] introduced112

self-supervised pretraining with prototype-aware at-113

tention for few-shot intent detection, which improved114

performance in scenarios with limited labeled data.115

Siamese networks, widely successful in computer116

vision [2], have been adapted for few-shot learning in117

text classification. [1] applied Siamese networks to118

measure text similarity in ambiguous domains, while119

[3] extended them to learn semantic relationships120

with triplet loss in domain-specific contexts. Despite121

their success, Siamese networks with triplet loss are122

computationally expensive and sensitive to margin123

selection [16, 17].124

While these approaches have significantly ad-125

vanced intent detection, they often require extensive126

preprocessing and computational resources. Our ap-127

proach builds on these advancements by integrating128

combined distance metrics for similarity checking,129

balancing efficiency and accuracy. This method by-130

passes large-scale triplet selection and margin tuning,131

making it more robust to noisy data and better at132

generalizing across domains.133

3 Methodology134

Figure 1 shows the architecture of the proposed135

similarity-based intent detection model using a136

Siamese Neural Network. The model consists of137

two identical subnetworks, a distance layer, a met-138

ric transformation layer, a fusion layer, and dense139

layers. The details of the model are presented in the140

following subsections.141

3.1 Data Preprocessing142

In the proposed model, the dataset was preprocessed143

by first creating pairs of texts and their correspond-144

ing intents. For each pair, a label of 1 was assigned if145

the intent matched the actual intent of the text, and146

Figure 1. Proposed similarity based Siamese architec-
ture

0 otherwise. Both positive pairs(matching intents) 147

and negative pairs (non-matching intents) were used 148

to help the model learn to distinguish between simi- 149

lar and dissimilar intents. The text and intent were 150

then tokenized using the Keras Tokenizer, which 151

converted each word into a unique integer based on 152

its frequency in the entire dataset. This process 153

involved fitting the tokenizer on both the text and 154

intent columns to build a shared vocabulary. 155

After tokenization, each text and intent pair was 156

transformed into numerical sequences. To ensure 157

uniform input dimensions for the model, the se- 158

quences were padded to a fixed length. Specifically, 159

each sequence was padded to a maximum length of 160

45 tokens for the ATIS dataset and 36 tokens for 161

the SNIPS dataset for efficient batch processing. 162

3.2 Embedding Layer 163

An embedding layer is created to convert the in- 164

put sequences into dense vector representations. 165

The embedding weights were initialized with pre- 166

trained Word2Vec embeddings trained on 100 bil- 167

lion words from Google News [18]. The pretrained 168

embeddings help capture the semantic relationship 169

between words, where words with similar mean- 170

ings have similar vector representations, aiding in 171

better text processing. The embedding layer is 172

shared between both input sequences to ensure iden- 173

tical embeddings for the same words, regardless of 174

their position in the pair. Each word was repre- 175

sented by 300-dimensional vectors, with padding 176

applied to maintain a uniform sentence length. 177

Formally, for an utterance of length T , the ith 178

word is mapped to d-dimensional embedding. Let 179

X1 = [x1,1, x1,2, . . . , x1,T ] be the first input sequence 180

of length T and X2 = [x2,1, x2,2, . . . , x2,T ] be the sec- 181

ond input sequence of length T , both mapped to 182

d-dimensional embeddings. The embedding matrices 183

E1 and E2 can be expressed as: 184

E1 = [E(x1,1), E(x1,2), . . . , E(x1,T )] (1) 185

E2 = [E(x2,1), E(x2,2), . . . , E(x2,T )] (2) 186
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Where E1, E2 ∈ RT×d.187

3.3 Siamese Layer188

The proposed model employs Bidirectional long189

short-term memory (BiLSTM) as the subnetwork190

of the Siamese layer. BiLSTMs are particularly ef-191

fective for processing sequences of data [19]. Unlike192

traditional feedforward neural networks, BiLSTMs193

have connections that form directed cycles, enabling194

them to maintain a hidden state that captures in-195

formation from the previous steps in the sequence.196

This makes BiLSTMs particularly effective for tasks197

in which the order and context of input data are198

crucial, such as language modeling [20], time series199

prediction [21], and sequence-to-sequence tasks [22].200

In the proposed model, the embedded sequences201

E1 and E2 are passed through a BiLSTM, which202

processes the sequence step by step and generates a203

hidden state at each step. The recurrence relations204

for the hidden states at time step t for the first and205

second sequences can be expressed as:206

h
(1)
t = σ(Wh · h(1)

t−1 + U · E(x1,t) + bh) (3)207

h
(2)
t = σ(Wh · h(2)

t−1 + U · E(x2,t) + bh) (4)208

where h
(1)
t and h

(2)
t are the hidden states of BiL-209

STM at time step t for the first and second sequences,210

respectively. σ represents the activation function,211

Wh and U are weight matrices, and bh is the bias212

term. The final hidden states, h
(1)
T and h

(2)
T , rep-213

resent the encoded information for the complete214

sequences X1 and X2.215

3.4 Distance Layer216

To compute the similarity between encoded inputs217

h
(1)
T and h

(2)
T , a distance layer with three different218

metrics: Euclidean distance, Cosine similarity, and219

Manhattan distance. These metrics were chosen220

carefully for their complementary strengths. Eu-221

clidean distance provides overall similarities, while222

Cosine similarity focuses on the orientation of vec-223

tors [23]. Manhattan distance captures absolute224

differences and is efficient for high dimensional data225

[24]. This combination enhances the model’s ability226

to generalize across varied intents and domains.227

DEuclidean =

√√√√ d∑
i=1

(
h
(1)
T [i]− h

(2)
T [i]

)2

(5)228

DManhattan =

d∑
i=1

∣∣∣h(1)
T [i]− h

(2)
T [i]

∣∣∣ (6)229

DCosine = 1−
h
(1)
T · h(2)

T∥∥∥h(1)
T

∥∥∥∥∥∥h(2)
T

∥∥∥ (7) 230

Where DEuclidean, DManhattan, and DCosine repre- 231

sent the Euclidean, Manhattan, and cosine similarity 232

distance metrics, respectively. 233

A logarithmic function was used to scale the dis- 234

tances for better learning and generalization [25]. 235

The transformed distance values are then concate- 236

nated into a feature vector that captures multi- 237

ple types of similarities between the two input se- 238

quences. 239

3.5 Dense Layer 240

The feature vector is passed through dense layers 241

to refine the similarity score. The first dense layer 242

was activated with ReLU function to learn complex 243

patterns from the concatenated distance metrics. 244

This layer ensures that the different distance metrics 245

are jointly processed, enhancing the model’s ability 246

to capture nuanced relationships. 247

Another dense layer with a sigmoid activation 248

function was added to output the probability scores. 249

ŷ = σ(z) =
1

1 + e−z
(8) 250

where z is the output from the final layer before 251

the activation function. 252

This score represents the likelihood that the input 253

sequences corresponds to same intent. 254

For training, we used binary cross-entropy loss 255

as the objective function, given that the task is 256

framed as a binary classification problem: determin- 257

ing whether two input sequences correspond to the 258

same intent. The binary cross-entropy loss is defined 259

as: 260

Loss = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

(9) 261

where N is the total number of samples, yi is the 262

ground truth label (0 or 1), and ŷi is the predicted 263

probability for sample i. 264

This loss function ensures that the model effec- 265

tively learns to distinguish between similar and dis- 266

similar intent pairs by minimizing the error in pre- 267

dicting similarity probabilities. 268

4 Experimental Study 269

4.1 Dataset 270

To verify the validity of our proposed model, we 271

conducted experiments on two widely used NLU 272

datasets, ATIS [26] and SNIPS [27], chosen for their 273

complementary characteristics: ATIS, with 4978 274
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training samples, 21 intents, and 128 slots [28], offers275

a domain-specific challenge focused on flight-related276

information, while SNIPS, with 15884 utterances,277

7 intents, and 72 slots, provides a broader, more278

diverse set of challenges across various domains such279

as weather and entertainment, offering a comprehen-280

sive test bed for evaluating our model’s effectiveness281

and generalizability.282

4.2 Experimental Setup283

In the proposed model, We set the BiLSTM encoders284

to 128 hidden units and used the ReLU activation285

function. To further improve training, we apply a286

recurrent dropout and regular dropout rate of 0.5287

to randomly drop some units. The batch size was288

set to 32, and only ten epochs were used to train289

the model due to computational cost constraints.290

A learning rate of 0.001 was used with the Adam291

optimizer [29]. For the dense layers, we set the unit292

to 32 and 1, respectively.293

For both the ATIS and SNIPS datasets, the294

train test split function from scikit-learn library295

was used to split the data into an 80% training set296

and a 20% test set, following the practice used in297

previous studies [28].To ensure robust result, the ex-298

periments were conducted with five different random299

seeds, and the average performance across these runs300

was reported. Accuracy was used as the evaluation301

metric, as it is the most widely adopted metric in302

existing models [30], [5], [31].303

The model was implemented using the TensorFlow304

framework and trained on a machine equipped with305

an Intel Core i7 processor and 16.0 GB of RAM.306

Due to these hardware limitations, we focused on307

optimizing model performance within the constraints308

of the available computational resources.309

4.3 Comparative Method310

To further demonstrate the efficiency of the proposed311

model, we identified the best-performing settings of312

our model and subsequently compared it with the313

following baseline models:314

• C2A-SLU [32]: This uses a contrastive at-315

tention mechanism to compare input sets and316

extract features for intent detection.317

• LIDSNet [30]: A Siamese model with triplet318

loss was to reduce the distance between anchor319

and positive examples relative to negative ex-320

amples.321

• BERT+PSN [33]: Proposes a pseudo Siamese322

Network for intent detection using BERT en-323

coders.324

• SN-TripletLoss [5]: Proposes a Siamese net-325

work with a triplet training framework.326

5 Results and Discussion 327

The performance results of the proposed Siamese 328

network across the ATIS and SNIPS datasets, as 329

presented in Table 1, demonstrate the significant im- 330

pact of distance metric selection on intent detection 331

task. The choice of distance metrics plays a role in 332

determining the model’s ability to generalize across 333

datasets, particularly when the datasets vary in lin- 334

guistic diversity and domain specificity. A detailed 335

analysis of these results reveals key patterns regard- 336

ing how individual and combined metrics influence 337

model performance, providing valuable insights into 338

the effectiveness of the Siamese network for intent 339

detection. 340

The models employing individual distance met- 341

rics: Manhattan distance, Cosine similarity, 342

and Euclidean distance, display notable varia- 343

tions in performance across the two datasets. On 344

ATIS dataset, Manhattan and Euclidean metrics 345

achieve relatively high accuracy with score of 95.41% 346

and 95.42%, respectively. This can be attributed to 347

the structured and domain-specific nature of ATIS 348

queries, which often involve repetitive patterns and 349

similar syntax. Metrics like Manhattan and Eu- 350

clidean are particularly well-suited for this scenario 351

because they measure numerical differences and ge- 352

ometric distances between vector representations. 353

These metrics help the model capture small differ- 354

ences in query formulations, which is essential for 355

distinguishing intents that are syntactically close but 356

semantically distinct, such as flight queries differing 357

by destination or departure time. 358

However, the same metrics do not perform as well 359

on the SNIPS dataset, with accuracies dropping 360

to 86.10% (Manhattan) and 85.23% (Euclidean). 361

SNIPS contains more diverse and varied language in- 362

puts, covering multiple domains and informal phras- 363

ing patterns. This variability makes Manhattan and 364

Euclidean metrics less effective, as they struggle to 365

handle the semantic richness and lexical variability 366

present in the dataset. In this context, the reliance 367

on numerical distance alone limits the model’s ability 368

to capture the underlying meaning of the queries. 369

On SNIPS, Cosine similarity performs slightly bet- 370

ter than Manhattan and Euclidean metrics, achiev- 371

ing an accuracy of 85.75%. Cosine similarity fo- 372

cuses on the angular relationship between vectorized 373

inputs, disregarding magnitude differences. This 374

makes makes it more suitable for datasets like SNIPS, 375

where different word choices and query lengths might 376

convey the same intent. Cosine similarity helps the 377

model recognize semantic alignment between differ- 378

ent formulations of the same query, even when the 379

exact phrasing differs significantly. 380

The result show a substantial improvement 381

in performance when multiple metrics are com- 382

bined,highlighting the benefits of metric fusion. 383
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Model4 ( Euclidean + Cosine) achieves the high-384

est accuracy ob both datasets, with 99.81% on ATIS385

and 99.67% on SNIPS. The success of this combi-386

nation suggests that Euclidean distance and Cosine387

similarity play complementary roles in capturing388

intent. Euclidean distance provides a measure of389

positional and magnitude-based differences, which is390

useful for distinguishing between queries with over-391

lapping terms but different meanings. On the other392

hand, Cosine similarity captures the semantic re-393

lationships between queries, allowing the model to394

generalize across variations in language use.395

Similarly, Model6 (Cosine + Manhattan) demon-396

strates strong performance, especially on SNIPS,397

with an accuracy of 99.36%. This combination lever-398

ages Manhattan distance’s ability to measure po-399

sitional differences along with Cosine similarity’s400

strength in detecting semantic alignment. The im-401

proved performance on SNIPS reflects the impor-402

tance of accounting for both the semantic meaning403

and the positional variations in user queries, espe-404

cially when dealing with multi-domain data.405

However, adding a third metric does not always406

lead to further improvements. Model7 (Cosine +407

Manhattan + Euclidean), which combines all three408

metrics, achieves slightly lower accuracy than sim-409

pler combinations, with 99.65% on ATIS and 98.91%410

on SNIPS. This drop in performance can be at-411

tributed to redundancy between the metrics, as well412

as the increased complexity of balancing the influ-413

ence of multiple metrics during training. In some414

cases, adding more metrics introduces noise and415

makes it harder for the model to learn effectively,416

leading to overfitting or diminishing returns in ac-417

curacy. These results highlight the importance of418

careful metric selection, as simpler combinations419

may often be more effective than using all available420

metrics.421

The ability of the fused models to perform con-422

sistently across both datasets indicates that metric423

fusion improves the generalization of the Siamese424

network. While individual metrics perform well425

only on specific datasets, such as Manhattan and426

Euclidean on ATIS or Cosine similarity on SNIPS,427

their combination allows the model to leverage the428

strengths of each metric. This enables the model429

to handle both domain-specific queries (ATIS) and430

multi-domain queries (SNIPS) effectively. For in-431

stance, the combination of Euclidean and Cosine432

metrics captures both the magnitude-based distinc-433

tions needed for structured queries and the semantic434

alignment needed for diverse inputs.435

The logarithmic transformation applied to each436

metric further enhances the model’s generalization.437

By normalizing the values of the metrics, the trans-438

formation smooths out large differences and prevents439

any single metric from dominating the fusion layer.440

This ensures that the model benefits equally from441

the complementary strengths of multiple metrics, 442

leading to improved convergence during training. 443

The results suggest that metric selection should 444

align with the nature of the dataset. For datasets 445

like ATIS, where queries are relatively uniform and 446

domain-specific, metrics that measure numerical dif- 447

ferences or geometric distances are more effective. 448

In contrast, for datasets like SNIPS, where semantic 449

richness and diversity are key characteristics, Cosine 450

similarity or combinations of metrics that capture 451

both semantic and positional differences yield better 452

performance. 453

Additionally, the performance decline observed in 454

Model7 highlights the need to balance model com- 455

plexity with performance gains. While combining 456

metrics can enhance generalization, using too many 457

metrics may lead to redundancy and hinder perfor- 458

mance. These findings emphasize the importance of 459

selecting complementary metrics that align with the 460

specific requirements of the task and dataset. 461

Table 1. Performance of Different Versions of the
Proposed Model

Models Distance Metrics Accuracy (%)

ATIS SNIPS

Model1 Manhattan 95.41 86.10
Model2 Cosine Similarity 95.32 85.75
Model3 Euclidean 95.42 85.23
Model4 Euclidean + Cosine 99.81 99.67
Model5 Euclidean + Manhattan 99.80 86.13
Model6 Cosine + Manhattan 99.74 99.36
Model7 Cosine + Manhattan + Euclidean 99.65 98.91

6 Comparison with State-of- 462

the-Art Models 463

To evaluate our proposed model, we compared the 464

best performing setting, Model4 against state-of-the- 465

art models. The results in Table 2 demonstrate the 466

superiority of our model on both ATIS and SNIPS 467

datasets.

Table 2. Comparison with Published Results on ATIS
and SNIPS Datasets

Model ATIS (%) SNIPS (%)

C2A-SLU [32] 96.84 -
LIDSNet [30] 95.97 98.00
BERT+PSN [33] - 92.89
SN-TripletLoss [5] 99.56 99.31
Ours 99.81 99.67

468

Our model outperformed the C2A-SLU model by 469

3.06% on the ATIS dataset. This improvement can 470

be attributed to the fact that contrastive learning 471

primarily focuses on representation learning, which 472
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may not be as directly optimized for task-specific473

objectives as in the proposed approach.474

Compared to LIDSNet, which uses triplet loss for475

training, our model achieved a 4% higher accuracy476

on the ATIS dataset and a 1.70% improvement on477

the SNIPS dataset. Compared with SN-TripletLoss,478

which also uses a triplet loss framework, our model479

showed an improvement in accuracy of 0.25% and480

0.36% on the ATIS and SNIPS datasets, respectively.481

The more efficient performance of our model can482

be attributed to its reliance on distance metrics,483

which involve fewer hyperparameters and are less484

prone to the challenges of tuning margin parameters,485

learning rates, and triplet mining strategies that486

often lead to suboptimal performance in LIDSNet487

and SN-TripletLoss.488

In contrast to BERT+PSN, which uses a pseudo-489

Siamese network for few-shot intent detection, our490

model demonstrated a notable 7.3% improvement491

in accuracy on the SNIPS dataset. This significant492

margin underscores the robustness of our approach,493

particularly in scenarios with limited labeled data494

for intent detection.495

7 Conclusion496

This study presented a novel intent detection ap-497

proach using an enhanced Siamese network that498

integrates multiple distance metrics with a fusion499

layer. The proposed model demonstrated superior500

performance on the ATIS and SNIPS datasets, out-501

performing state-of-the-art methods. The combi-502

nation of Manhattan, Euclidean, and Cosine sim-503

ilarity metrics proved crucial in handling diverse504

and domain-specific tasks, improving generalization505

and reducing dependence on annotated datasets. By506

simplifying the architecture and minimizing hyperpa-507

rameter tuning, our model offers an efficient, scalable508

solution, particularly in low-resource environments.509

Despite the promising results, this study has some510

limitations. A key limitation lies in the use of ATIS511

and SNIPS datasets, which, although widely adopted512

benchmarks, have become overused in recent re-513

search. As a result, the performance gains observed514

on these datasets may not translate directly to real-515

world applications with more complex and evolving516

intent structures. Additionally, while the fusion of517

multiple metrics improved accuracy, the individual518

metrics produced only marginal improvements. This519

suggests that the impact of individual metrics might520

be limited when dealing with datasets that are not521

as saturated with patterns as ATIS. Another limita-522

tion is the absence of a detailed investigation into523

the learned representations and the specific contri-524

butions of each metric. This leaves room for further525

exploration into how the metrics complement each526

other.527
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