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ABSTRACT

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimiza-
tion problem with broad real-world applications. Recent advancements in neural
network-based TSP solvers have shown promising results. Nonetheless, these
models often struggle to efficiently solve both small- and large-scale TSPs using
the same set of pre-trained model parameters, limiting their practical utility. To
address this issue, we introduce a novel neural TSP solver named GELD, built
upon our proposed broad global assessment and refined local selection frame-
work. Specifically, GELD integrates a lightweight Global-view Encoder (GE)
with a heavyweight Local-view Decoder (LD) to enrich embedding representa-
tion while accelerating the decision-making process. Moreover, GE incorporates
a novel low-complexity attention mechanism, allowing GELD to achieve low in-
ference latency and scalability to larger-scale TSPs. Additionally, we propose
a two-stage training strategy that utilizes training instances of different sizes to
bolster GELD’s generalization ability. Extensive experiments conducted on both
synthetic and real-world datasets demonstrate that GELD outperforms seven state-
of-the-art models considering both solution quality and inference speed. Further-
more, GELD can be employed as a post-processing method to exchange affordable
computing time for significantly improved solution quality, capable of solving
TSPs with up to 744,710 nodes without relying on divide-and-conquer strategies.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is one of the most well-known Combinatorial Optimization
Problems (COPs) and has extensive real-world applications (Ha et al., 2018). Due to the practical
significance of TSP, many exact, approximate, and heuristic algorithms have been developed over the
years. Recently, advances in deep learning have led researchers to develop Neural Networks (NNs)
as a kind of viable solvers for TSPs (Wu et al., 2024). Although theoretical guarantees for such
networks remain elusive, they tend to produce near-optimal solutions in practice, offering faster
inference speed and better generalization than conventional TSP solvers (Bengio et al., 2021).

Neural TSP solvers often demonstrate excellent performance when trained and tested on small-scale
TSPs (e.g., around 100 nodes) (Kwon et al., 2020). However, existing models generally face the
following four key limitations: 1) Generalizing pre-trained models to TSPs of different sizes often
results in substantial performance degradation. This limitation poses a major obstacle towards de-
ploying these models because real-world TSPs often involve tasks of varying sizes; 2) The quadratic
time-space complexity (O(n2), where n denotes the number of nodes in the underlying TSP) of the
standard attention mechanism commonly used in neural TSP solvers restricts their applicability to
large-scale TSPs (e.g., over 1,000 nodes); 3) Further elevation of solution quality, e.g., via sacri-
ficing computing time, is challenging because the NN used in neural TSP solvers typically serves
as fixed mapping functions from node features to TSP solutions (Xiao et al., 2024b); and 4) While
models based on the Divide-and-Conquer (D&C) strategy perform well when solving large-scale
TSPs (Zheng et al., 2024), they may fail to provide valuable insights for solving other COPs, such
as the Job Shop Scheduling Problem (JSSP), which requires rigid sequential execution and is not
easily divisible. Therefore, in this work, we investigate the following research question:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Can a unified pre-trained model, not based on D&C, effectively solve both small- and large-scale
TSPs in a short time period while further elevating solution quality at the cost of affordable time?

To answer this research question, we introduce GELD, a novel model that integrates a Global-
view Encoder (GE) and a Local-view Decoder (LD) to efficiently solve TSPs. Firstly, GELD is
built upon our proposed broad global assessment and refined local selection framework (see Sec-
tion 3.3). Specifically, GELD employs a lightweight GE to capture the topological information
across all nodes in the underlying TSP, paired with a heavyweight LD to autoregressively select the
most promising node within a local selection range. This dual-perspective approach enriches the
embedding representation by integrating both global and local insights while accelerating the selec-
tion process by confining the decision space to a smaller, more relevant subset, thereby improving
both efficiency and generalization. Secondly, to reduce model complexity and further accelerate
inference, we propose a novel Region-Average Linear Attention (RALA) mechanism within GE
which operates with O(n) time-space complexity. RALA partitions the nodes in the underlying
TSP into regions and facilitates efficient global information exchange through regional proxies, al-
lowing GELD to solve TSPs in a short time period and scale effectively to larger instances. Thirdly,
to further elevate solution quality, we incorporate our proposed idea of diversifying model inputs
(see Section 3.4) into GELD’s architectural design, enabling the model to function not only as a
TSP solver but also as a powerful post-processing method to efficiently exchange affordable com-
puting time for improved solution quality. Finally, to ensure GELD’s robustness across TSPs of all
sizes, we propose a two-stage training strategy, incorporating instances of varying sizes. This ap-
proach further strengthens the model’s generalization capability, allowing it to solve TSPs efficiently
with the same set of pre-trained model parameters.

To evaluate the effectiveness of GELD, we conduct extensive experiments on both synthetic and
widely adopted benchmarking real-world datasets. The results demonstrate that GELD outperforms
seven State-of-the-Art (SOTA) models considering both solution quality and inference speed. Fur-
thermore, as a post-processing method, GELD not only significantly enhances the solution quality of
baseline models with insignificant additional computing time, but also effectively solves extremely
large TSPs (up to 744,710 nodes) when integrated with conventional heuristic algorithms. Our find-
ings strongly suggest that GELD is by far the most SOTA model for solving TSPs.

The key contributions of this work are as follows.

i) To the best of our knowledge, GELD is the first unified model with a single set of pre-trained
parameters that effectively solves TSPs of all sizes while efficiently enhancing solution quality.

ii) We propose a novel low-complexity encoder-decoder backbone architecture for GELD, enabling
low-latency problem-solving and scalability to larger TSP instances.

iii) We propose a two-stage training strategy that utilizes instances of varying sizes to enhance
GELD’s generalization ability.

iv) We show the effectiveness of GELD both as a standalone TSP solver and as a powerful post-
processing method that exchanges time for solution quality by conducting extensive experiments.

2 RELATED WORK

In this section, we review the NN-based methods for solving TSPs and then introduce several recent
endeavors aimed at enhancing model generalization.

2.1 NEURAL NETWORK-BASED TSP SOLVERS

NN-based methods have shown promising results in solving TSPs and can be broadly classified
into the following two categories: 1) Neural construction methods. These methods produce TSP
solutions either autoregressively (majority) (Kool et al., 2019; Jin et al., 2023) or in a one-shot man-
ner (minority) (Xiao et al., 2023; Min et al., 2023). For instance, Kool et al. (2019) proposed a
well-known Attention Model (AM) for solving TSPs. Moreover, numerous studies extended AM
and achieved better solution quality (Kim et al., 2022; Kwon et al., 2021; Chalumeau et al., 2023),
with POMO (Kwon et al., 2020) being the most representative model. Recently, Xiao et al. (2024a)
introduced the GNARKD method, which distills autoregressive models into those capable of pro-
ducing solutions in a one-shot manner, significantly reducing inference time. 2) Neural improvement
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methods. These methods start with initial solutions and employ deep learning techniques, such as
pre-trained NNs to guide or assist the optimization of heuristics to iteratively improve the solutions
(Li et al., 2023). In this line of research, local search (Hudson et al., 2022; Ma et al., 2023) and
evolutionary computation (Ye et al., 2023; Kim et al., 2024) algorithms are often utilized.

Despite progress in both categories, these methods typically operate independently. To the best of
our knowledge, there does not exist a unified approach capable of both producing and improving
TSP solutions. To fill in this gap, in this paper, we propose a unified model that serves as both a
standalone TSP solver and a post-processing method to further elevate solution quality.

2.2 GENERALIZATION OF NEURAL TSP SOLVERS

Early studies on neural TSP solver primarily focused on small-scale instances, which limited their
applicability to practical and larger-scale scenarios. Recent efforts have sought to extend pre-trained
models to larger-scale TSPs, often employing D&C strategies (Fu et al., 2021; Li et al., 2021; Cheng
et al., 2023; Hou et al., 2023; Pan et al., 2023; Ye et al., 2024; Yu et al., 2024). These models
decompose a large-scale problem into multiple smaller sub-problems, solve them individually or in
parallel, and then combine the solutions of these sub-problems to construct the complete solution for
the original problem. While effective for large-scale TSPs, D&C-based methods may be less suitable
for more complex COPs such as JSSP, because decomposing such problems is often intractable using
a unified model or strategy (Luo et al., 2024). Additionally, D&C may overlook correlations between
sub-problems, potentially leading to suboptimal solutions (Luo et al., 2024).

Beyond D&C-based neural TSP solvers, alternative learning paradigms, such as diffusion models
(Sun & Yang, 2023), have shown excellent performance in solving large-scale TSPs. Among these
non-D&C-based neural TSP solvers, BQ (Drakulic et al., 2023) and LEHD (Luo et al., 2023) demon-
strated promising results. By leveraging the recursion nature of COPs, BQ yielded notable results
not only in solving large-scale TSPs but also in solving other challenging divisible COPs, such as
JSSP (Pirnay & Grimm, 2024). However, these models struggle to solve TSPs exceeding 1,000
nodes and require significant computing time (see Table 1), limiting their real-world applicability.

To improve the practicality of neural TSP solvers and provide insights for solving other COPs, we
aim to effectively solve both small- and large-scale TSPs without relying on D&C strategies.

3 PRELIMINARIES

This section first details the TSP setting and the autoregressive mechanisms used in neural TSP
solvers. Next, we identify potential generalization issues in neural TSP solvers and outline the moti-
vation behind the framework design of GELD. Finally, we review existing operations that exchange
computing time for elevated solution quality and discuss the rationale for diversifying model inputs.

3.1 TSP SETTING

Our research focuses on the most fundamental Euclidean TSP due to its importance and prevalence
in various application domains (Applegate et al., 2007; Qiu et al., 2022). We denote a TSP-n instance
as a graph with n nodes in the node set V , where node xi ∈ Rn×d denotes the d-dimensional node
coordinates. We define a TSP tour as a permutation of n nodes denoted by π = {π1, π2, ..., πn},
where πi ̸= πj ,∀i ̸= j. The length of a TSP tour π is defined as follows:

L(π) = d(xπ1 , xπn) +
∑n−1

i=1
d(xπi , xπi+1), (1)

where d(xπi
, xπj

) denotes the Euclidean distance, measured without considering direction, between
nodes πi and πj . The goal is to find a feasible solution π∗ that minimizes the length L(π*).

3.2 AUTOREGRESSIVE NEURAL TSP SOLVERS

Autoregressive models are commonly employed to solve TSPs following the Markov Decision Pro-
cess (MDP). At each step t of the MDP, the model whose parameters are denoted as θ, takes an
action at based on the previously taken actions a1:t−1 to choose an unvisited node, until the tour
is completed. Given a TSP instance s, this process can be factorized into a chain of conditional
probabilities as follows:

pθ(π|s) =
n∏

t=1

pθ(at|a1:t−1, s). (2)
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3.3 GENERALIZATION ISSUES

Effectively generalizing across TSPs of varying sizes is a crucial capability for NN-based models
(Joshi et al., 2022; Zong et al., 2022). This task is challenging due to the explosive growth in the
feasible solution space (O(n!)) as the size n increases. In autoregressive neural TSP solvers, larger-
size instances lead to both increased MDP steps and an expanded decision space (i.e., available
nodes) at each step (see (2)). To better deal with these issues, we propose to confine the decision
space at each step to a limited range. Our strategy has certain resemblance to the recent INViT model
(Fang et al., 2024), which utilizes multiple local views to solve large-scale TSPs. While INViT
excels in solving large-scale TSPs, its exclusive focus on local information results in suboptimal
performance on smaller-scale ones (see Table 1). Conversely, models such as ELG (Gao et al.,
2024), which integrate both global and local views, tend to prioritize local information for decision-
making without reducing the decision space. Consequently, these models still face challenges in
effectively solving large-scale TSPs (see Table 2).

Unlike previous approaches, we introduce a novel broad global assessment and refined local selec-
tion framework in this paper, which draws inspiration from common decision-making processes in
daily life: We often survey adequate relevant information broadly before carefully selecting the most
promising option from several candidates. When applied to solve COPs, this framework involves
an initial rough assessment of the entire problem, followed by a zoomed-in focus on the promising
candidates, and selection of the most promising one as the action at each decision step. Building
upon this idea, we aim to generalize our model to effectively solve TSPs of all sizes.

3.4 METHODS OF EXCHANGING TIME FOR FURTHER ELEVATED SOLUTION QUALITY

Neural TSP solvers often utilize a greedy strategy, selecting the node with the highest probability at
each MDP step. While computationally efficient, this approach often results in suboptimal solutions
(Hottung et al., 2022). To improve solution quality, researchers have proposed various methods,
often at the expense of increased computing time. These methods can be broadly categorized into
the following two types: 1) Producing multiple candidate solutions utilizing techniques such as data
augmentation (Geisler et al., 2022), multiple rollouts (Kwon et al., 2020; Hottung et al., 2024),
and various search methods (Choo et al., 2022; I. Garmendia et al., 2024); and 2) Employing post-
processing techniques, such as 2-opt (Sun & Yang, 2023), monte carlo tree search (Xia et al., 2024),
and Re-Construction (RC) (Luo et al., 2023; 2024; Ye et al., 2024) to improve the quality of initial
solutions. Given the versatility and efficiency of these approaches, we primarily employ Beam
Search (BS) and RC to balance computing time and solution quality.

BS is a breadth-first search method with a predefined width B (Kool et al., 2019). It begins with
the starting node and incrementally expands the tour by evaluating B potential successors. At each
step, BS retains the top-B sub-tours based on their cumulative logarithmic probabilities.

After obtaining initial solutions, RC randomly selects sub-solutions, reintegrates their node features
into the model, and generates new sub-solutions using a greedy strategy. If these new sub-solutions
are of higher quality, they replace the current ones. Importantly, RC is fundamentally distinct from
the D&C strategy which decomposes a large problem into multiple smaller sub-problems—a process
that can be particularly challenging for certain COPs such as JSSP. Instead, RC exploits the property
that the optimal solution of COPs comprises optimal sub-solutions. By enhancing the quality of
these sub-solutions, the overall solution quality is improved, making such an approach applicable to
a broader range of scenarios. Furthermore, when multiple sub-solutions are processed in parallel,
referred to as Parallel RC (PRC) (Luo et al., 2024), this parallel approach yields promising results
in effectively exchanging computing time for further elevated solution quality.

We attribute the effectiveness of RC to the diversification of model inputs. The rationale behind this
is as follows: RC improves solution quality by generating different sub-solutions, which essentially
expands the search space. However, NNs are often treated as fixed mapping functions from inputs
to outputs. If the model’s inputs remain relatively unchanged, the search space is restricted, leading
to relatively fixed outputs and limited solution quality improvement possibilities. Therefore, we
deem that increasing the diversification of model inputs may enhance the effectiveness of RC. Based
on this rationale, we impose the need for diversified inputs during the RC process in our model
architectural design (see Section 4.1). We present the detailed RC process in Appendix A.1.
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Figure 1: Framework of our proposed GELD, which incorporates a low complexity architecture with
a global-view encoder and a local-view decoder. Furthermore, the effectiveness of RC is improved
by considering the need for diversified inputs in the model architectural design.

4 GELD: GLOBAL-VIEW ENCODER AND LOCAL-VIEW DECODER

This section introduces a novel neural TSP solver named GELD. We detail the model architecture
and training strategy of GELD in the following subsections.

4.1 ARCHITECTURE OF GELD

In alignment with the broad global assessment and refined local selection framework, we adopt an
encoder-decoder architecture. The encoder captures the topological information across all nodes
in the underlying TSP with a global view (global assessment), while the decoder employs a local
perspective to autoregressively generate the probability distribution for selecting the next node at
each step of the MDP (local selection). We present the overall framework of GELD in Figure 1.

Global-view Encoder. To capture global information in the TSP, we account for several distribution
patterns, such as the clustered distribution (Bossek et al., 2019), which may only occupy a subset of
the graph. Before identifying the patterns, we first normalize the node coordinates x as follows:

ϕ(x) =
x−minxi∈V (xi)

maxxi,xj∈V (xi − xj)
. (3)

Furthermore, during the RC process, the normalization operation alters the node coordinates accord-
ing to the node changes in node set V , which consists of (different) nodes derived from randomly
selected sub-solutions, thereby modifying the model input and enhancing the efficacy of RC.

Then, we linearly project the normalized coordinates into an h-dimensional embedding as follows:

E = ϕ(x)W + b, E ∈ Rn×h, (4)

where W and b denote the learnable parameters of weights and biases, respectively.

In alignment with the broad global assessment aspect of the proposed framework, which involves
broadly surveying the relevant TSP information, we utilize a single (broad) attention layer to extract
global features of nodes. Notably, extracting these global features presents challenges because it
requires meeting the following three criteria: 1) Comprehensive coverage of all node information
to enable interaction among nodes and facilitate global information transfer; 2) Low computational
complexity to ensure scalability to larger-scale TSPs; and 3) The ability to obtain global information
in a vague manner, allowing for effective diversifying model inputs during the RC process.

Existing models often adopt the standard attention mechanism (Vaswani et al., 2017) to facilitate
global information transfer, which aids in mapping a query Q = EW to an output using a set of
key-value pairs K = EW and V = EW,Q,K, V ∈ Rn×h as follows:

E = Softmax(QKT )V,E ∈ Rn×h. (5)
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While the standard attention mechanism delivers strong performance, its quadratic complexity,
specifically the time complexity of O(n2h) and the space complexity of O(n2 + nh), limits a
model’s scalability to larger-scale instances.

To meet the aforementioned three criteria, we propose Region-Average Linear Attention (RALA)
that captures global node features with a reduced computational complexity. We present the detailed
computation process of RALA in Figure 2. Specifically, we first partition all nodes into m regions
according to the normalized node coordinates, denoted as R1, . . . , Rm. Here, m = mr·mc and m≪
n, h, where mr,mc ∈ Z+ denote the predefined numbers of rows and columns for partitioning,
respectively. The derived hyperparameter m controls the granularity of the regional view: a larger
value of m may capture more insights of local regions but increases complexity. Then, we employ
regional proxies to facilitate global information exchange among all nodes, thereby meeting the first
aforementioned criterion. We compute the embedding of each regional proxy Pi by averaging the
query embedding Q of all nodes in this region as follows:

Pi =

{
1

nRi

∑
Qxj , xj ∈ Ri, if nRi > 0,

01×h, otherwise,
i ∈ {1, . . .m}, P ∈ Rm×h, (6)

where nRi
denotes the number of nodes in region Ri and Qxi

∈ R1×h denotes the embedding of
node xi in the query Q.

� ∈ ℝ�×ℎ � ∈ ℝ�×ℎ � ∈ ℝ�×ℎ

� ∈ ℝ�×ℎ

+ Regional 
information

MatMul

Softmax

MatMul

Softmax

�� ∈ ℝ�×� �� ∈ ℝ�×� MatMul

MatMul
ℝ�×ℎ

� ∈ ℝ�×ℎ

� ∈ ℝ�×ℎ

Figure 2: Computation process of RALA.

Next, we compute the node’s query weight
score for each region as follows:

Qw = Softmax(QPT ), Qw ∈ Rn×m. (7)

Similarly, we compute the regional proxy’s key
weight score for each node as follows:

Kw = Softmax(PKT ),Kw ∈ Rm×n. (8)

Finally, we update the node features to facilitate
the global information transfer as follows:

E = Qw(KwV ), E ∈ Rn×h. (9)

Unlike the quadratic complexity of the standard attention mechanism, our proposed RALA achieves
a time and space complexity of O(nmh) and O(nh), respectively, without introducing any addi-
tional learnable parameters. This efficiency makes RALA meet the second aforementioned criterion,
capable of solving large-scale instances efficiently. Furthermore, during the RC process, the intro-
duction of normalization operations (see (3)) leads to nodes being assigned to different regions for
RALA execution, as illustrated in Figure 1. The diversification in regional proxies updates the global
features and then enhances the effectiveness of RC, meeting the third aforementioned criterion.

Local-view Decoder. In alignment with the refined local selection aspect of the proposed frame-
work, which selects the most promising option from several candidates, we utilize multiple (refined)
attention layers within the local-view decoder. Following the decoder design adopted in LEHD (Luo
et al., 2023) and BQ (Drakulic et al., 2023), we select the most promising node πt from a candidate
set based on the information from the previously selected node πt−1 and the destination node π1

at MDP step t. Unlike LEHD and BQ that consider all available nodes as candidates, we restrict
the candidate set to the available k-nearest neighbors Kset of node πt−1 (i.e., local selection), where
k = min{km, nt}, with hyperparameter km denoting the maximum local selection range and nt

denoting the number of remaining available nodes at step t. This approach reduces the decision
space and accelerates the decision-making process (see Table 5). Formally, we denote the features
of nodes πt−1 and π1 and the candidate set Kset as Eπt−1 ∈ R1×h, Eπ1 ∈ R1×h, and EKset ∈ Rk×h,
respectively. We concatenate these features to form the decoder’s input at MDP step t as follows:

D = (Eπt−1 , EKset , . . . , Eπ1), D ∈ R(k+2)×h. (10)

To capture subtle distinctions between the nodes within the local selection range, we employ the
attention mechanism used in Zhou et al. (2024) which integrates the distance matrix A among the
decoder input nodes (see detailed mechanisms in Appendix A.2). Additionally, to mitigate po-
tential value overflows due to repeated exponential operations, we incorporate RMSNorm (Zhang
& Sennrich, 2019) into the attention mechanism. The time and space complexity of the attention
mechanism in our decoder is O(k 2

m h) and O(k 2
m + kmh), respectively.

6
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After refining the local node features through multiple attention layers, we compute the probability
distribution of nodes in candidate set Kset being selected at MDP step t as follows:

pθ(at) = Softmax

(
DxiW ⊙

{
1, if xi ∈ Kset,

−∞, otherwise,

)
, pθ(at) ∈ Rk, (11)

where Dxi
denotes the features of node xi and ⊙ denotes the element-wise multiplication.

4.2 TRAINING STRATEGY OF GELD

Existing neural TSP solvers typically rely on Supervised Learning (SL) (Luo et al., 2023; Drakulic
et al., 2023), Reinforcement Learning (RL) (Gao et al., 2024; Fang et al., 2024), or Self-
Improvement Learning (SIL) (Luo et al., 2024; Pirnay & Grimm, 2024) for model training. We
choose not to use RL due to its requirement of generating a complete solution before calibrating the
reward, which normally requires a large amount of computational resources.

Inspired by recent advancements in fine-tuning large models (Han et al., 2024), we propose a two-
stage training approach. The first stage involves SL training on small-scale instances, followed by
SIL training on larger instances. For the first stage, we adopt the same SL method used by Drakulic
et al. (2023) and Luo et al. (2023) and utilize the publicly available training dataset contributed by
Luo et al. (2023) to ensure fair comparisons in all relevant experiments.

However, the experimental results reveal that models (e.g., GD (Pirnay & Grimm, 2024)) trained
on small-scale TSPs exhibit limited generalization capacity on larger-scale TSPs (see Table 1). We
hypothesize that this limitation arises because NN-based models typically map inputs to outputs in
a fixed manner. When the node distribution in the test data significantly differs from that in the
training data, the model struggles to generalize effectively. In this work, we expand the training data
size in the second stage to mitigate the model’s reduced effectiveness in solving larger instances. We
introduce the mechanisms of each training stage as follows (see Appendix A.3 for more details).

SL Training on Small-scale TSPs. We define TSPs with fewer than km (i.e., the maximum local
selection range) nodes as small-scale TSPs. For a TSP-n training instance s, we employ the cross-
entropy function to maximize the probability of selecting the optimal action at each step as follows:

L(θ|s) = −
∑n

i=1
yi log(pθ(i)), (12)

where n ≤ km, yi ∈ {0, 1} denotes the ground-truth label, indicating whether node xi should be
selected at the current step, and pθ(i) denotes the probability of selecting node xi.

SIL Training on Large-scale TSPs. After the first training stage, the model exhibits preliminary
generalization capability for solving large-scale TSPs. In the second stage, we enhance the model’s
generalization ability by applying SIL using larger instances, adhering to a curriculum learning
strategy that progressively scales the training instances from the small-scale size km to a predefined
maximum training size nmax. Specifically, in each training epoch, we randomly generate a batch of
nt

bs training instances and apply both BS and PRC to obtain improved solutions (over those produced
by the greedy strategy) as pseudo-labels for training. The epoch concludes when any of the following
three conditions is met: 1) The maximum number tmax of training iterations per batch is reached;
2) The gap between the greedy and improved solutions falls below a predefined threshold ϵ; or
3) There is no further improvement in solution quality after timp iterations. Furthermore, to prevent
overfitting to large-scale problems and ensure adequate focus on smaller instances, we incorporate
nt

bs labeled small-scale TSP-km instances into the training set at each epoch1.

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments on both synthetic and real-world datasets to evalu-
ate the performance of GELD as a standalone TSP solver and as a post-processing method. The de-
tailed hyperparameter configurations of GELD are provided in Appendix B.1. The synthetic datasets
comprise four distribution patterns (namely uniform, clustered, explosion, and implosion) across
five scales (100, 500, 1,000, 5,000, and 10,000 nodes). The real-world datasets comprise two collec-
tions: TSPLIB95 and National TSPs. Additionally, we select the four largest TSPs from the World
TSP dataset to evaluate GELD’s performance on extremely large TSPs. Further details on these

1The source code of GELD is available online, URL: https://anonymous.4open.science/r/ICLR-13204.
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Table 1: Performance comparisons on synthetic TSPs of different sizes and distribution patterns
Model + Inference TSP-100 (200) TSP-500 (200) TSP-1000 (200) TSP-5000 (20) TSP-10000 (20) Average

gap(%)↓gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑

un
ifo

rm
(Near-)Optimality - 2.7m, 1 - 3.7h, 1 - 15.2h, 1 - 1.7h, 1 - 1.3d, 1 -

Omni-TSP (ICML’23) + G∗ 2.22 0.3s, 200 7.80 9.6s, 200 19.56 1.2m, 100 49.43 16.1m, 5 61.39 2.0h, 1 28.09
LEHD (NeurIPS’23) + G 0.67 0.7s, 200 1.58 16.2s, 200 2.76 1.8m, 100 15.80 18.2m, 5 24.10 2.3h, 1 8.96
BQ (NeurIPS’23) + G 5.37 1.5s, 200 3.86 1.3m, 200 3.82 9.3m, 100 12.68 1.9h, 5 18.74 13.5h, 1 8.85
ELG (IJCAI’24) + G∗ 0.58 0.5s, 200 8.80 4.2s, 200 12.22 15.6s, 200 18.84 40.5s, 5 18.32 3.7m, 2 11.77
INViT-3V (ICML’24) + G† 1.47 15.2s, 200 4.26 1.5m, 200 4.96 3.1m, 200 6.60 4.4m, 20 4.80 6.5m, 20 4.42
GD (TMLR’24) + G 0.72 3.1s, 200 2.25 36.4s, 200 4.26 3.2m, 200 60.26 26.7m, 20 198.65 3.4h, 4 53.22
UDC§ (NeurIPS’24) + G∗ 0.40 8.7s, 200 2.15 28.5s, 200 2.06 57.2s, 100 6.99 29.7s, 20 8.73 2.4m, 1 4.07

GELD (Ours) + G 1.11 0.6s, 200 2.39 1.8s, 200 2.94 3.6s, 200 7.62 10.8s, 20 9.33 21.6s, 20 4.68
GELD (Ours) + BS(16) 0.12 4.2s, 200 0.99 32.4s, 200 1.30 1.1m, 200 5.32 36.6s, 20 6.71 1.2m, 20 2.89
GELD (Ours) + PRC(100) 0.81 1.8s, 200 1.90 9.0s, 200 1.68 18.6s, 200 4.66 17.4s, 20 5.75 39.6s, 20 2.96
GELD (Ours) + BS(16) + PRC(100) 0.09 5.4s, 200 0.83 36.9s, 200 0.85 1.4m, 200 3.39 44.4s, 20 4.19 1.6m, 20 1.87
GELD (Ours) + BS(16) + PRC(1000) 0.06 19.2s, 200 0.52 1.6m, 200 0.58 3.7m, 200 2.77 1.8m, 20 2.38 3.9m, 20 1.26

cl
us

te
re

d

(Near-)Optimality - 3.1m, 1 - 4.1h, 1 - 16.1h, 1 - 3.0h, 1 - 1.5d, 1 -

Omni-TSP (ICML’23) + G∗ 2.37 0.3s, 200 9.82 9.6s, 200 21.20 1.2m, 100 54.49 16.1m, 5 71.60 2.0h, 1 26.56
LEHD (NeurIPS’23) + G 1.43 0.7s, 200 4.60 16.2s, 200 8.56 1.8m, 100 23.46 18.2m, 5 35.33 2.3h, 1 12.30
BQ (NeurIPS’23) + G 5.33 1.5s, 200 6.66 1.3m, 200 9.43 9.3m, 100 27.65 1.9h, 5 41.80 13.5h, 1 15.21
ELG (IJCAI’24) + G∗ 2.67 0.5s, 200 11.31 4.2s, 200 15.27 15.6s, 200 25.73 40.5s, 5 31.01 3.7m, 2 14.34
INViT-3V (ICML’24) + G† 2.29 15.2s, 200 5.21 1.5m, 200 6.03 3.1m, 200 7.17 4.4m, 20 6.31 6.5m, 20 4.49
GD (TMLR’24) + G 2.29 3.1s, 200 6.87 36.4s, 200 25.26 3.2m, 200 329.10 26.7m, 20 627.83 3.4h, 4 198.41
UDC§ (NeurIPS’24) + G∗ 2.54 8.7s, 200 5.89 28.6s, 100 8.26 57.2s, 100 15.19 29.5s, 20 15.41 2.4m, 1 9.46

GELD (Ours) + G 3.28 0.6s, 200 4.41 1.8s, 200 5.93 3.6s, 200 11.62 10.8s, 20 12.53 21.6s, 20 7.55
GELD (Ours) + BS(16) 1.32 4.2s, 200 3.14 32.4s, 200 4.82 1.1m, 200 8.92 36.6s, 20 9.61 1.2m, 20 5.56
GELD (Ours) + PRC(100) 2.24 1.8s, 200 3.27 9.0s, 200 3.35 18.6s, 200 6.59 17.4s, 20 7.87 39.6s, 20 4.66
GELD (Ours) + BS(16) + PRC(100) 0.92 5.4s, 200 2.50 36.9s, 200 3.19 1.4m, 200 5.16 44.4s, 20 5.92 1.6m, 20 3.54
GELD (Ours) + BS(16) + PRC(1000) 0.46 19.2s, 200 1.23 1.6m, 200 2.24 3.7m, 200 4.27 1.8m, 20 3.44 3.9m, 20 2.33

ex
pl

os
io

n

(Near-)Optimality - 2.7m, 1 - 3.8h, 1 - 15.6h, 1 - 1.7h, 1 - 1.3d, 1 -

Omni-TSP (ICML’23) + G∗ 2.05 0.3s, 200 9.25 9.6s, 200 19.95 1.2m, 100 51.28 16.1m, 5 65.37 2.0h, 1 24.69
LEHD (NeurIPS’23) + G 0.63 0.7s, 200 2.65 16.2s, 200 5.76 1.8m, 100 21.07 18.2m, 5 30.55 2.3h, 1 10.12
BQ (NeurIPS’23) + G 5.97 1.5s, 200 4.88 1.3m, 200 7.11 9.3m, 100 29.39 1.9h, 5 51.54 13.5h, 1 16.41
ELG (IJCAI’24) + G∗ 0.87 0.5s, 200 9.27 4.2s, 200 13.67 15.6s, 200 22.79 40.5s, 5 23.46 3.7m, 2 11.68
INViT-3V (ICML’24) + G† 1.62 15.2s, 200 5.54 1.5m, 200 7.32 3.1m, 200 9.92 4.4m, 20 7.85 6.5m, 20 5.37
GD (TMLR’24) + G 0.68 3.1s, 200 3.32 36.4s, 200 12.33 3.2m, 200 271.55 26.7m, 20 682.40 3.4h, 4 194.07
UDC§ (NeurIPS’24) + G∗ 0.66 8.6s, 200 4.60 28.6s, 200 6.96 57.2s, 100 16.15 29.5s, 20 17.44 2.4m, 1 9.16

GELD (Ours) + G 1.67 0.6s, 200 3.79 1.8s, 200 5.40 3.6s, 200 12.13 10.8s, 20 14.27 21.6s, 20 7.45
GELD (Ours) + BS(16) 0.41 4.2s, 200 2.39 32.4s, 200 3.62 1.1m, 200 9.52 36.6s, 20 11.13 1.2m, 20 5.41
GELD (Ours) + PRC(100) 0.96 1.8s, 200 2.76 9.0s, 200 2.90 18.6s, 200 7.13 17.4s, 20 9.28 39.6s, 20 4.61
GELD (Ours) + BS(16) + PRC(100) 0.27 5.4s, 200 1.74 36.9s, 200 2.23 1.4m, 200 5.86 44.4s, 20 7.45 1.6m, 20 3.51
GELD (Ours) + BS(16) + PRC(1000) 0.18 19.2s, 200 0.95 1.6m, 200 1.52 3.7m, 200 4.55 1.8m, 20 4.70 3.9m, 20 2.39

im
pl

os
io

n

(Near-)Optimality - 2.6m, 1 - 3.6h, 1 - 15.2h, 1 - 2.2h, 1 - 1.3d, 1 -

Omni-TSP (ICML’23) + G∗ 2.04 0.3s, 200 8.63 9.6s, 200 19.18 1.2m, 100 50.37 16.1m, 5 62.58 2.0h, 1 23.83
LEHD (NeurIPS’23) + G 1.13 0.7s, 200 2.57 16.2s, 200 4.10 1.8m, 100 17.48 18.2m, 5 26.46 2.3h, 1 8.62
BQ (NeurIPS’23) + G 5.44 1.5s, 200 4.84 1.3m, 200 5.22 9.3m, 100 16.42 1.9h, 5 25.23 13.5h, 1 9.56
ELG (IJCAI’24) + G∗ 0.91 0.5s, 200 8.44 4.2s, 200 12.40 15.6s, 200 18.95 40.5s, 5 18.73 3.7m, 2 9.89
INViT-3V (ICML’24) + G† 1.79 15.2s, 200 4.84 1.5m, 200 5.64 3.1m, 200 6.85 4.4m, 20 5.41 6.5m, 20 4.07
GD (TMLR’24) + G 1.45 3.1s, 200 4.29 36.4, 200 8.68 3.2m, 200 100.05 26.7m, 20 259.46 3.4h, 4 74.74
UDC§ (NeurIPS’24) + G∗ 0.54 8.7s, 200 3.29 28.7s, 200 3.74 57.2s, 100 7.74 29.5s, 20 10.04 2.4m, 1 5.07

GELD (Ours) + G 2.23 0.6s, 200 4.71 1.8s, 200 4.98 3.6s, 200 9.23 10.8s, 20 10.02 21.6s, 20 6.25
GELD (Ours) + BS(16) 0.83 4.2s, 200 4.06 32.4s, 200 4.07 1.1m, 200 6.13 36.6s, 20 7.45 1.2m, 20 4.52
GELD (Ours) + PRC(100) 1.55 1.8s, 200 3.54 9.0s, 200 2.93 18.6s, 200 5.68 17.4s, 20 6.19 39.6s, 20 3.96
GELD (Ours) + BS(16) + PRC(100) 0.53 5.4s, 200 3.22 36.9s, 200 2.54 1.4m, 200 4.06 44.4s, 20 4.71 1.6m, 20 3.02
GELD (Ours) + BS(16) + PRC(1000) 0.22 19.2s, 200 1.29 1.6m, 200 1.64 3.7m, 200 3.14 1.8m, 20 2.81 3.9m, 20 1.84

Symbols “G”, ‘G∗”, “G†”, “BS(i)”, and “PRC(j)” denote the greedy strategy, greedy multiple rollouts
(Kwon et al., 2020), greedy multiple rollouts with data augment technique (Fang et al., 2024), BS with a
width of i, and PRC with j iterations, respectively. The number in parentheses following “TSP-n” indicates
the total number of TSP-n test instances. Symbol “§” indicates the model adopts a D&C strategy.

datasets are presented in Appendix B.2. For performance comparisons, we select seven SOTA mod-
els as baselines, with their settings outlined in Appendix B.3. For all baseline models and GELD,
we report their average gap to the (near-)optimal solutions, inference time, and parallel processing
capability on the test datasets (see Appendix B.4 for more details).

5.1 PERFORMANCE ANALYSIS OF GELD ON SYNTHETIC AND REAL-WORLD DATASETS

We analyze GELD’s performance on synthetic and real-world datasets, respectively.

Synthetic Datasets. We present the performance comparison of GELD against baseline models
on synthetic datasets in Table 1. The results indicate that all models, including ours, exhibit per-
formance degradation when generalizing to TSPs of varying scales, underscoring the critical need
for investigating model generalization. Despite the overall trend of declining performance, our pro-
posed GELD, when paired with the greedy strategy, achieves solution quality on-par with the SOTA
INViT-3V model, which employs greedy multiple rollouts and data augment techniques. Moreover,
GELD offers a significant advantage in inference speed, consistently outperforming other models
across different scales, except for TSP-100. This can be attributed to the efficient, low time com-
plexity backbone architecture of our model. Furthermore, when integrated with BS and PRC, GELD
achieves the highest solution quality across all scales and patterns. This superior performance arises
from its design, which incorporates diversified model inputs to enhance the effectiveness of RC.
Additionally, GELD’s capability to process all nbs test instances simultaneously across all scales
makes it particularly well-suited for practical applications with limited computing resources.

Real-world Datasets. We present the performance comparison of GELD against baselines on real-
world datasets in Table 2. For clarity, the experimental results are grouped by the scale, with detailed
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Table 2: Performance comparisons on real-world TSPLIB95 and National TSP instances
TSP-{set} <101 101-500 501-1000 1001-5000 5001-10000 >10000 (Total) gap↓, time↓

T
SP

L
IB

95

Total number of instances 12 30 6 22 2 5 77

Omni-TSP (ICML’23) + G∗ 6.87% 8.79% 19.59% 32.31% 63.28% OOM (72) 18.07%, 3.8s
LEHD (NeurIPS’23) + G 0.61% 2.96% 4.05% 11.27% 24.14% (3) 50.21% (75) 7.56%, 47.0s
BQ (NeurIPS’23) + G 8.64% 8.40% 8.08% 13.33% 27.37% (1) 45.21% (73) 10.92%, 1.4m
ELG (IJCAI’24) + G∗ 1.56% 4.55% 9.25% 12.61% 17.31% OOM (72) 7.25%, 6.1s
INViT-3V (ICML’24) + G† 1.15% 3.38% 6.33% 7.47% 9.34% 7.57% 4.86%, 26.2s
GD (TMLR’24) + G 1.78% 4.29% 8.53% 52.17% 325.62% 991.24% 90.34%, 2.7m
UDC§ (NeurIPS’24) + G∗ (6) 0.19% 2.18% 10.58% 13.00% 26.26% (1) 23.37% (67) 7.34%, 5.6s

GELD (Ours) + G 0.89% 4.92% 4.43% 8.91% 11.76% 15.90% 6.28%, 3.8s
GELD (Ours) + BOTH 0.26% 1.56% 1.92% 3.44% 7.09% 5.96% 2.35%, 27.6s

N
at

io
na

lT
SP

s

Total number of instances 2 1 3 4 9 8 27

Omni-TSP (ICML’23) + G∗ 2.63% 10.44% 17.88% 71.65% 83.24% (1) 71.67% (20) 58.83%, 2.3m
LEHD (NeurIPS’23) + G 0.12% 27.15% 44.20% 56.58% 93.92% (1) 98.52% (20) 66.51%, 2.8m
BQ (NeurIPS’23) + G 24.29% 12.18% 10.25% 40.55% 94.96% (1) 55.65% (20) 58.20%, 14.8m
ELG (IJCAI’24) + G∗ 2.28% 7.06% 12.55% 34.93% 48.95% (1) 22.44% (20) 32.60%, 3.7m
INViT-3V (ICML’24) + G† 0.03% 2.88% 5.63% 10.17% 11.17% (7) 9.48% (26) 8.75%, 3.4m
GD (TMLR’24) + G 3.51% 236.40% 921.61% 2093.71% 3868.87% (4) 5236.23% (23) 2919.47% , 8.9m
UDC§ (NeurIPS’24) + G∗ - 0.58% 10.04% 18.18% 25.44% (1) 18.41% (18) 19.49%, 6.3s

GELD (Ours) + G 0.41% 0.53% 5.10% 14.80% 17.99% 18.80% 14.39%, 23.4s
GELD (Ours) + BOTH 0.02% 0.02% 2.12% 6.97% 7.66% 8.21% 6.26%, 1.4m

For each model, we report the average gap and inference time for the instances it successfully solves within
a given set. We use “BOTH” to denote the operation of BS(16) + PRC(1000) for brevity. Symbol “OOM”
(Out of Memory) is used to indicate cases where the model fails to solve all instances in the set due to
the GPU memory constraint. Symbol “(i)” denotes the number of instances the model successfully solves
in this set. The absence of these two symbols indicates that the model can solve all instances in the set.
Moreover, UDC fails to solve instances with sizes smaller than 100 nodes due to unknown errors.

Table 3: Performance of baselines on National TSPs using GELD as a post-processing method
TSP-{set} <101 101-500 501-1000 1001-5000 5001-10000 >10000 (Total) gap↓, time↓ Gain↑
Total number 2 1 3 4 9 8 27

Omni-TSP + GELD 0.02% 0.67% 1.61% 5.49% 7.13% (1) 5.40% (20) 4.85%, +26.6s 91.76%
LEHD + GELD 0.02% 7.12% 3.24% 8.40% 9.30% (1) 11.64% (20) 7.29%, +26.6s 89.04%
BQ + GELD 0.02% 4.52% 3.48% 7.01% 9.59% (1) 8.81% (20) 6.91%, +26.6s 88.13%
ELG + GELD 2.15% 0.67% 2.56% 8.78% 17.00% (1) 7.99% (20) 10.44%, +26.6s 67.98%
INViT-3V + GELD 0.02% 0.68% 2.24% 4.57% 5.35% (7) 4.74% (26) 4.12%, +34.0s 52.91%
GD + GELD 0.29% 4.52% 22.66% 65.78% 131.14% (4) 140.89% (23) 90.43%, +28.3s 96.90%
UDC + GELD - 0.58% 7.59% 11.30% 16.45% (1) 11.19% (18) 12.66%, +26.2s 35.05%

Random Insertion 8.77% 11.54% 11.53% 12.49% 13.48% 13.34% 12.66%, 1.1s 78.59%+ GELD 0.02% 2.35% 1.75% 3.14% 3.29% 2.90% 2.71%, +36.8s

Gain is calculated as 1-(the result of baseline with GELD)/(the result of baseline without GELD).

performance presented in Appendix B.5. The results demonstrate that GELD consistently outper-
forms baseline models across all sets of TSP instances in terms of both solution quality and inference
speed. Additionally, due to the GPU memory constraint (24GB), all baseline models are unable to
solve certain large-scale TSP instances, whereas our model successfully solves all instances. This
advantage is attributed to the low space complexity of our model’s backbone architecture, again
underscoring its suitability for practical applications with limited computing resources.

5.2 PERFORMANCE OF GELD AS A POST-PROCESSING TECHNIQUE FOR BASELINES

We apply GELD in combination with PRC(1000) to assess its effectiveness as a post-processing
method for improving the solution quality of baseline models. Because the baseline models struggle
with certain large-scale instances (e.g., CH71009 with 71,009 nodes), we introduce a simple and
generic heuristic—Random Insertion—as an additional baseline. Random Insertion greedily selects
the insertion point for each node, minimizing the insertion cost. We use the National TSPs dataset
as the benchmark and apply GELD to reconstruct the solution generated by these baselines.

The results, as presented in Table 3, demonstrate that our model significantly improves the solution
quality by at least 35% with an affordable increase in computing time, thereby highlighting the
efficacy of GELD as a post-processing method. Moreover, the successful integration with Random
Insertion, characterized by low latency and high solution quality, suggests that combining GELD
with heuristic algorithms is a promising approach for efficiently solving large-scale TSPs.

To further demonstrate the effectiveness of combining GELD with heuristic algorithms, we con-
duct additional experiments on the four extremely large TSPs, with sizes ranging from 104,815 to
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Table 4: Performance of GELD on extremely large TSP instances
Instances sra104815 ara238025 lra498378 lrb744710

Random
Insertion

gap 21.26% 20.65% 18.94% 21.08%
time 52.2s 5.39m 30.1m 1.69h

+GELD gap (gain) 9.67% (54.66%) 9.25% (55.21%) 6.58% (65.26%) 8.97% (57.45%)
time +2.7m +5.9m +12.9m +19.7m

Table 5: Ablation studies on synthetic TSP instances of the uniform distribution
Model + Inference TSP-100 (200) TSP-500 (200) TSP-1000 (200) TSP-5000 (20) TSP-10000 (20)

gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑

w/o RALA
G 1.12 0.8s, 200 2.61 2.0s, 200 3.63 4.1s, 200 11.67, 45.2s, 5 12.48 3.7m, 2
BOTH 0.05 20.1s, 200 0.48 1.7m, 200 0.64 3.6m, 200 4.18 3.9m, 5 4.04 27.3m, 1
- Norm 0.05 20.1s, 200 0.50 1.7m, 200 0.72 3.6m, 200 5.25 3.9m, 5 5.76 27.3m, 1

w/o second
stage training

G 0.86 0.6s, 200 3.28 1.8s, 200 4.17 3.6s, 200 13.61, 10.8s, 20 15.21 21.6s, 20
BOTH 0.05 19.2s, 200 0.69 1.6m, 200 1.14 3.7m, 200 3.73 1.8m, 20 3.10 3.9m, 20
- Norm 0.05 19.2s, 200 0.74 1.6m, 200 1.39 3.7m, 200 5.50 1.8m, 20 5.62 3.9m, 20

w/o global
view

G 1.33 0.5s, 200 3.03 1.5s, 200 3.79 3.2s, 200 10.14, 9.9s, 20 11.13 20.2s, 20
BOTH 0.06 18.5s, 200 0.54 1.6m, 200 0.65 3.5m, 200 3.08 1.8m, 20 3.41 3.8m, 20
- Norm 0.06 18.5s, 200 0.54 1.6m, 200 0.67 3.5m, 200 3.84 1.8m, 20 4.78 3.8m, 20

w/o local
view

G 1.32 0.6s, 200 2.13 6.1s, 200 2.51 33.6s, 200 4.82 4.1m, 20 5.57 30.9m, 5
BOTH 0.08 19.2s, 200 0.44 3.0m, 100 0.42 12.6m, 40 1.92 1.4h, 1 OOM- Norm 0.09 19.2s, 200 0.45 3.0m, 100 0.47 12.6m, 40 2.28 1.4h, 1

GELD
G 1.11 0.6s, 200 2.39 1.8s, 200 2.94 3.6s, 200 7.62 10.8s, 20 9.33 21.6s, 20
BOTH 0.06 19.2s, 200 0.52 1.6m, 200 0.58 3.7m, 200 2.77 1.8m, 20 2.38 3.9m, 20
- Norm 0.06 19.2s, 200 0.53 1.6m, 200 0.61 3.7m, 200 3.29 1.8m, 20 3.64 3.9m, 20

Symbol “- Norm” denotes without the normalization operation during the RC process.

744,710 nodes. As shown in Table 4, GELD efficiently solves these extremely large TSPs. To the
best of our knowledge, our proposed approach is the first neural model capable of solving TSPs
with up to 744,710 nodes without relying on D&C strategies.

5.3 ABLATION STUDIES ON GELD DESIGN CHOICES

We conduct extensive ablation studies to assess the effectiveness of the key design choices in GELD,
by investigating the following five aspects: 1) The efficacy of RALA; 2) The impact of the second-
stage training; 3) The benefit of the global view in GE; 4) The importance of the local view in LD;
and 5) The effectiveness of diversifying model inputs.

We present the ablation study results in Table 5. Firstly, while GELD with the standard attention
mechanism performs comparably to GELD with RALA on small-scale instances (TSP-{100, 500}),
it experiences a performance degradation (especially in inference speed and parallel processing ca-
pability) on large-scale instances (TSP-{5000, 10000}). This finding demonstrates that RALA is
critical for enabling GELD to solve TSPs in a short time period and scale effectively to larger in-
stances. Secondly, incorporating the second-stage training leads to a 39.1% improvement in solution
quality compared to only applying the first-stage training, underscoring the importance of the two-
stage training strategy. Notably, even without the second-stage training, GELD achieves an average
gap of 1.74%, outperforming all seven baseline models (see Table 1). Thirdly, integrating the global
view into GELD improves the average gap by 31.6% when compared to using a local view only (i.e.,
removing the global information transfer module from GE), demonstrating the benefit of exploiting
global information. Fourthly, while extending LD’s local view to a global view (i.e., considering all
available nodes as candidates instead of set Kset) enhances solution quality, it significantly hampers
inference speed and parallel processing capability, particularly in large-scale instances (TSP-10000).
These results highlight the effectiveness of the local view in enabling GELD to efficiently solve TSPs
of varying sizes. Last but not least, removing the normalization operation in the RC process deteri-
orates model performance in all aspects, illustrating the importance of diversifying model inputs.

6 CONCLUSION

In this study, we positively answer the proposed research question with ample experimental results
as supporting evidence. Specifically, we introduce GELD, which effectively solves TSPs of all sizes
while capable of exchanging affordable computing time for significantly improved solution quality.
We believe the proposed broad global assessment and refined local selection framework will offer
valuable insights towards solving other COPs. Going forward, we plan to extend the capability of
GELD to solve more complex COPs, such as the capacitated vehicle routing problem and JSSP.
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salesman problem with drone. Transportation Research Part C: Emerging Technologies, 86:597–
621, 2018.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024. arXiv:2403.14608.

Keld Helsgaun. An extension of the Lin–Kernighan–Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, pp. 24–50, 2017.
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A APPENDIX OF METHOD

A.1 DETAILED RE-CONSTRUCTION PROCESS

This section presents the detailed RC process employed in our study, comprising two main steps.
Firstly, after obtaining the initial solutions, denoted as π = {π1, π2, ..., πn}, RC randomly selects
a starting index i and a sub-solution length j to form a sub-solution {πi, πi+1, ..., πi+j}, where
i ∈ {1, . . . , n} and j > 2. This condition ensures that the sub-solution length is sufficient to
impact the outcome, as sub-problems smaller than size 4 do not alter the sub-solutions during the
RC process (i.e., there must be at least two nodes in the candidate set Kset for selection). Since the
TSP solution π forms a cyclic sequence, i.e., πn+i = πi, RC adapts the sampling direction based
on the iteration count, alternating between clockwise (πi, πi+1, . . . , πi+j) and counterclockwise
(πi, πi−1, . . . , πi−j). To further enhance model input diversity, the solution sequence is shifted by a
randomly selected offset nϵ from {1, . . . , n}. In the second step, RC reintegrates the selected node
features into the model. To introduce additional model input diversity, we randomly apply one of the
×8 data augmentation techniques proposed by Kwon et al. (2020), such as rotating the TSP topology
by 90 degrees. The model then generates new sub-solutions using a greedy strategy. If these newly
generated sub-solutions outperform the existing ones, they replace the current sub-solutions.

A.2 DETAILED COMPUTATION PROCESS OF ATTENTION MECHANISM USED IN DECODER

This section outlines a detailed computational process of the attention mechanism employed in the
decoder, as introduced by (Zhou et al., 2024). Specifically, given the query Q = DW , key K =
DW , and value V = DW , where Q,K, V ∈ R(k+2)×h, the updated embedding is computed as
follows:

D = Sigmoid(Q)⊙
exp(Atmp)(exp(K)⊙ V )

exp(Atmp) exp(K)
, D ∈ R(k+2)×h, (13)

Atmp = α · log2(k + 2) ·A,Atmp ∈ R(k+2)×(k+2), (14)

where α denotes a learnable parameter.

A.3 TRAINING ALGORITHM OF GELD

We adopt the SL method used in Drakulic et al. (2023); Luo et al. (2023), which enhances
the diversity of training data by focusing on partial optimal solutions. Given a solution π =
{π1, π2, ..., πn}—either ground-truth or pseudo labels—we randomly select a partial solution for
model training, e.g., {πi, πi+1, ..., πi+j}, where j > 2. Furthermore, we present the overall two-
stage training strategy of GELD in Algorithm 1.

B APPENDIX OF EXPERIMENTS

B.1 HYPERPARAMETER CONFIGURATION

We follow the convention and focus on the d = 2-dimensional TSP (Kwon et al., 2020). Our
proposed GELD comprises 1 (broad) global-view encoder layer and 6 (refined) local-view decoder
layers, each with a hidden dimension of h = 128 and 8 attention heads, following Luo et al. (2023).
To balance performance and computational complexity, we set the numbers of rows and columns
to mr = 3 and mc = 3, respectively, resulting in m = mr · mc = 3 × 3 = 9 regions. For fair
comparisons with SL-trained models (Drakulic et al., 2023; Luo et al., 2023), we adhere to the same
training scale, with the small-scale size set to km = 100. While increasing the maximum training
size nmax intuitively improves model generalization, it also increases computational costs. To strike
a balance, we set nmax to 1000. In the first training stage, we utilize the publicly available training
dataset datas from Luo et al. (2023) for fair comparisons. The learning rate is set to 1e–4 with a
decay rate of 0.97. In the second training stage, the training termination hyperparameters are set to
tmax = 5, ϵ =1e–3, and timp = 3. The learning rate is adjusted to 1e–5, and the training batch size
nt

bs is set to 64. The width of BS and iteration number of PRC are set to 16 and 1,000, respectively.
All training instances are randomly generated by sampling the node locations based on the uniform

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 Two-stage training strategy of GELD.
Input: the small-scale TSP-km dataset datas, training batch size nt

bs, maximum training size nmax,
epoch numbers ne1 and ne2 for the first stage and the second stage, respectively, training termi-
nation hyperparameters tmax, ϵ, and timp.

1: Initialize θ
2: The first-stage SL training on small-scale TSPs
3: for epoch in 1, ..., ne1 do
4: data1, label1 ← TSP-n instances from datas, where n ≤ km
5: θ ← GELD(θ, data1, label1)
6: end for
7: The second-stage SIL training on large-scale TSPs
8: for epoch in 1, ..., ne2 do
9: lscale ← km + epoch · (nmax − km) | ne2

10: data2 ← Randomly generate nt
bs TSP-lscale instances

11: lenG, ← Greedy strategy(GELD, data2)
12: lenI , solution← PRC(BS(GELD, data2))
13: t1 ←0, t2 ←0
14: while t1 < tmax and lenG

lenI
− 1 > ϵ and t2 < timp do

15: data1, label1 ← Randomly sample nt
bs TSP-km instances from datas

16: data, label← {data2, solution} ∪ {data1, label1}
17: θ ← GELD(θ, data, label)
18: lenG, ← Greedy strategy(GELD, data2)
19: lenItmp , solutiontmp ← PRC(BS(GELD, data2))
20: if lenItmp < lenI then
21: t2 ← 0, lenI ← lenItmp , solution← solutiontmp
22: else
23: t2 ← t2 + 1
24: end if
25: t1 ← t1 + 1
26: end while
27: end for

distribution pattern. To control the overall training time—approximately 20 hours for the first stage
and 31 hours for the second stage—we set the number of epochs ne1 = 50 and ne2 = 50 for the
first and second stages, respectively. All experiments were conducted on a computer equipped with
an Intel(R) Core(TM) i9-12900K CPU and an NVIDIA RTX 4090 GPU (24GB).

B.2 DATASETS COMPONENT

We conduct a comprehensive evaluation of model performance using both synthetic datasets and
widely recognized real-world benchmark datasets.

Synthetic Datasets. For the synthetic data, we generate TSP instances of varying sizes and distri-
butions. Specifically, we synthesize 20 subsets of TSP instances, encompassing four distribution
patterns (uniform, clustered, explosion, and implosion) across five scales (100, 500, 1,000, 5,000,
and 10,000 nodes), following Fang et al. (2024); Bossek et al. (2019). We provide a visualization of
TSP-10000 instances for each distribution patterns in Figure 3. The number of instances per subset
is determined by the scale, comprising 200 instances for TSP-100, TSP-500, and TSP-1000, and 20
instances for TSP-5000 and TSP-10000.

Real-world Datasets. To assess the model’s performance in real-world scenarios, we utilize the
widely recognized TSPLIB and World TSP datasets as benchmarks. For TSPLIB, we include all
symmetric instances from TSPLIB952 with nodes represented as Euclidean 2D coordinates, cover-
ing 77 instances with sizes ranging from 51 to 18,512 nodes. For World TSP, we include all sym-

2URL: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Figure 3: Visualization of TSP-10000 instances (synthetic) with four distribution patterns.

metric instances from National TSPs3, also represented as Euclidean 2D coordinates, comprising 27
instances with sizes ranging from 29 to 71,009 nodes.

Extremely Large TSP Instances. To assess the performance of combining GELD with heuristic
algorithms, we utilize the four largest TSP instances from the VLSI dataset4 within the World TSP
collection, which include TSP instances with sizes ranging from 104,815 to 744,710 nodes.

B.3 BASELINE METHODS

To evaluate generalization performance of a pre-trained model across both small- and large-scale
TSPs, we select seven baseline models that have recently demonstrated SOTA performance across
various scales. These models include 1) RL-based models: Omni-TSP (Zhou et al., 2023), ELG
(Gao et al., 2024), INViT-3V (Fang et al., 2024), and UDC (Zheng et al., 2024); 2) SL-based models:

3URL: https://www.math.uwaterloo.ca/tsp/world/countries.html
4URL: https://www.math.uwaterloo.ca/tsp/vlsi/page11.html
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LEHD (Luo et al., 2023) and BQ (Drakulic et al., 2023); and 3) SIL-based model: GD Pirnay &
Grimm (2024). All baseline models were trained on a uniform distribution pattern, except for Omni-
TSP, which was trained on diverse distribution patterns. Among these, UDC utilizes a D&C strategy,
whereas the others are non-D&C neural TSP solvers. For the comparative experiments, we used the
publicly available pre-trained parameters and default settings for all models, with two exceptions:
For INViT, we adjust the configuration to handle multiple instances simultaneously, rather than the
originally designed single-instance setup, to reduce execution time and ensure a fair comparison;
For UDC, we set the hyperparameter values to x=250 and α=1 in all relevant experiments. Further-
more, for a fair comparison in terms of computational efficiency, we report results only for the two
baseline models (LEHD and BQ) combined with the greedy search strategy.

B.4 EVALUATION MATRICES

For all baselines and GELD, we report the average gap to the (near-)optimal solutions. The solutions
for synthetic datasets are computed using LKH3 (Helsgaun, 2017), while for real-world datasets,
we use the best known solutions. To control a reasonable computing time consumption, TSP-{100,
500, 1000} instances are solved by LKH3 with 20000 iterations over 10 runs, whereas TSP-{5000,
10000} instances are solved by LKH3 with 20000 iterations over a single run. We present the solu-
tion length computed by LKH on the synthetic dataset in Table 6. The gap for each TSP instance is
computed as follows:

gap =
L(πmodel)− L(πopt)

L(πopt)
× 100%, (15)

where πmodel denotes the solution produced by the model and πopt denotes the (near-)optimal so-
lution. Furthermore, we report the inference time for each baseline method across all dataset. To
ensure a fair comparison of inference time for the synthetic dataset, we intend to maintain an equal
batch size for all models. However, due to the GPU memory constraint (24GB), we use the maxi-
mum batch size nbs that each model can solve simultaneously. This batch size, reflecting the model’s
parallel processing capability, serves as a practical measure of inference efficiency under real-world,
resource-constrained conditions.

Table 6: Solution length computed by LKH3 on the synthetic dataset

TSP-100 TSP-500 TSP-1000 TSP-5000 TSP-10000

uniform 7.8693 16.5601 23.2215 50.9830 73.1436
clustered 5.3876 10.3447 14.0982 28.8359 40.2628
explosion 6.5397 12.0101 16.0543 31.9792 41.2801
implosion 7.1135 14.4128 20.1932 45.0435 63.7273

B.5 DETAILED RESULTS ON REAL-WORLD DATASETS

We conduct a comprehensive evaluation of the baseline models and GELD on both TSPLIB and
World TSP instances, as detailed in Tables 7 and 8, respectively. Additionally, the performance of
baseline models, when integrated with GELD on the World TSP dataset, is presented in Table 9.

The largest TSP instance each baseline model can solve is as follows: Omni-TSP (10,639), LEHD
(14,051), BQ (11,849), ELG (10,639), INViT-3V (33,708), GD (18,512), and UDC (10,639). Addi-
tionally, UDC failed to solve instances with fewer than 100 nodes due to unknown errors.

The results on real-world datasets and synthetic datasets demonstrate GELD outperforms all base-
line models, including the SOTA D&C-based model UDC (Zheng et al., 2024). This superior per-
formance can be attributed to GELD’s effective integration of global and local information, whereas
UDC is suboptimal in these experiments because it may overlook correlations between sub-prob-
lems.
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Table 7: Detailed results (gap (%)) for all included TSPLIB instances

Instance UDC GD INViT-3V BQ LEHD ELG Omni-TSP GELD (Ours)
G∗ G G† G G G∗ G∗ G BOTH

eil51 - 6.66 0.94 2.71 1.64 1.41 2.82 1.39 0.70
berlin52 - 0.99 0.11 17.08 0.03 0.01 12.97 0.04 0.03

st70 - 0.33 1.19 2.06 0.33 0.15 2.22 1.63 0.31
pr76 - 0.99 0.36 0.11 0.22 0.69 2.45 0.13 0.00
eil76 - 2.81 2.79 4.92 2.54 1.49 5.20 2.65 1.37
rat99 - 0.91 1.57 18.49 1.10 4.54 13.13 0.96 0.68

kroA100 0.02 0.13 0.42 12.15 0.12 1.67 9.07 0.43 0.02
kroE100 0.50 0.07 1.15 13.63 0.43 2.21 5.12 0.57 0.00
kroB100 0.18 0.45 0.26 4.35 0.26 1.65 12.78 0.31 0.00

rd100 0.37 0.15 2.48 9.50 0.01 0.44 1.29 1.10 0.01
kroD100 0.07 7.24 2.18 11.13 0.38 2.62 5.35 1.43 0.00
kroC100 0.01 0.64 0.34 7.50 0.32 1.87 10.07 0.01 0.01
eil101 2.81 3.57 3.82 4.77 2.31 0.64 3.82 2.38 2.07
lin105 0.03 0.19 1.72 12.35 0.34 2.57 11.01 0.19 0.03
pr107 0.65 4.89 1.22 13.74 11.24 3.60 3.66 4.39 0.00
pr124 0.88 1.78 0.53 16.84 1.11 0.26 1.46 21.03 0.08

bier127 1.09 2.04 2.79 6.30 4.76 4.70 8.34 7.55 0.01
ch130 0.15 1.11 1.90 0.20 0.55 0.43 4.19 1.30 0.58
pr136 0.42 0.24 1.97 9.87 0.45 2.28 1.04 2.42 1.74
pr144 0.50 0.38 1.30 14.73 0.19 0.55 4.21 2.42 0.38

kroA150 0.00 0.93 1.08 4.95 1.40 2.04 4.91 1.03 0.37
kroB150 0.08 0.51 2.74 7.19 0.76 1.47 6.02 0.04 0.04

ch150 0.37 0.70 2.10 5.64 0.52 1.10 2.45 0.89 0.04
pr152 1.57 11.53 6.63 11.92 12.14 0.41 1.20 9.34 6.48
u159 0.88 0.92 1.84 0.00 1.13 1.39 2.06 0.88 0.74

rat195 0.92 2.25 2.80 10.93 1.42 6.11 19.80 1.50 0.82
d198 4.44 10.34 10.44 10.31 9.23 14.23 14.25 13.25 6.46

kroA200 0.06 1.13 1.49 8.79 0.64 2.09 6.46 0.84 0.16
kroB200 0.20 0.39 2.86 10.74 0.16 1.58 9.25 0.16 0.16
tsp225 0.00 0.46 1.53 4.70 0.00 4.52 8.48 0.16 0.00
ts225 0.19 0.33 4.68 13.48 0.28 2.52 2.56 1.10 0.00
pr226 0.30 0.62 3.73 11.75 1.11 1.43 2.01 10.72 0.01
gil262 3.38 0.85 2.99 4.76 1.60 2.06 43.99 5.92 1.05
pr264 0.15 16.89 3.47 12.50 5.48 5.66 6.17 17.40 9.48
a280 2.95 2.34 3.88 0.46 3.02 5.93 8.72 2.03 1.02
pr299 2.34 1.59 4.31 6.65 2.81 4.92 10.65 0.69 0.21
lin318 7.10 1.98 3.16 10.36 1.41 4.42 8.17 1.53 0.97
rd400 1.79 2.36 3.91 3.05 1.00 6.26 5.14 3.10 0.52
f1417 7.24 33.66 4.99 19.01 7.76 7.55 15.15 20.75 7.77
pr439 12.87 3.03 7.02 7.14 3.37 7.45 12.06 7.93 1.55

pcb442 4.88 9.26 2.96 0.90 3.11 7.05 8.59 0.35 0.33
d493 7.95 12.19 7.68 8.00 9.49 31.18 27.95 6.20 3.91
u574 4.15 3.02 5.22 1.76 2.73 10.40 18.73 1.37 0.40

rat575 7.78 8.98 4.36 10.07 3.02 9.49 21.48 2.24 0.77
p654 33.07 22.37 10.78 16.03 3.30 4.32 14.60 10.04 6.41
d657 10.25 4.81 8.91 8.62 8.05 11.36 15.09 9.02 1.77
u724 3.75 4.88 3.86 2.18 3.27 10.35 19.35 1.96 0.86

rat783 4.49 7.11 4.85 9.81 3.91 9.56 28.26 1.95 1.28
pr1002 1.84 7.84 7.53 8.75 4.44 11.54 20.55 5.85 2.80
u1060 9.23 18.00 6.39 8.63 10.00 12.18 31.32 12.33 2.87

vm1084 3.75 22.47 6.24 10.39 5.42 15.81 25.62 3.47 1.18
pcb1173 9.15 11.62 5.51 11.70 8.01 13.95 27.28 2.38 1.34
d1291 12.90 22.51 13.16 11.13 14.13 9.39 32.43 12.44 4.62
r11304 13.59 15.40 6.83 8.77 8.14 13.30 25.62 4.37 1.41
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Instance UDC GD INViT-3V BQ LEHD ELG Omni-TSP GELD (Ours)
G∗ G G† G G G∗ G∗ G BOTH

r11323 9.73 18.19 6.75 7.64 9.26 12.42 29.76 12.59 2.27
nrw1379 9.57 104.77 4.38 9.83 15.49 12.57 23.00 2.27 1.00

f1400 25.11 84.65 11.89 31.19 18.80 8.74 18.18 23.12 7.15
u1432 6.61 10.30 4.25 4.98 7.96 10.65 22.30 5.07 2.80
f1577 23.75 65.74 7.53 21.61 14.68 8.35 32.75 9.44 5.15
d1655 9.11 47.28 10.58 17.01 13.89 15.66 34.92 14.10 6.45

vm1748 7.68 19.12 8.41 11.18 10.10 17.13 30.84 4.35 0.86
u1817 8.39 28.70 6.90 9.43 10.32 12.62 39.72 9.43 3.08
rl1889 22.28 26.59 9.08 14.91 7.49 17.12 37.50 6.32 3.41
d2103 17.96 57.66 10.48 17.47 14.57 6.90 36.05 10.88 4.42
u2152 13.55 32.67 7.20 9.08 12.65 12.12 43.01 8.68 5.16
u2319 6.06 19.98 0.62 3.41 4.18 3.88 17.61 0.43 0.34
pr2392 11.17 32.68 6.80 9.26 12.33 16.95 40.08 6.12 3.04

pcb3038 7.14 35.92 7.05 13.44 13.44 16.75 40.08 8.63 2.73
fl3795 40.23 331.22 11.29 32.09 13.55 13.46 54.24 21.26 10.66

fn14461 17.29 134.34 5.58 21.38 19.05 15.98 47.99 12.38 2.99
r15915 21.10 288.03 8.68 24.58 24.17 16.17 62.61 11.83 7.02
r15934 31.41 363.20 10.00 30.17 24.11 18.08 63.94 11.68 7.17

r111849 23.37 598.01 9.05 45.21 38.04 OOM OOM 14.94 6.11
usa13509 OOM 2252.54 8.23 OOM 71.11 OOM OOM 17.39 8.97
brd14051 OOM 700.75 7.40 OOM 41.22 OOM OOM 17.32 4.17
d15112 OOM 660.57 6.21 OOM OOM OOM OOM 14.57 3.58
d18512 OOM 744.35 6.99 OOM OOM OOM OOM 15.26 6.64

Avg. gap 7.34 90.34 4.86 10.92 7.56 7.25 18.07 6.28 2.35
Avg. time 5.6s 2.7m 26.2s 1.4m 47.0s 6.1s 3.8s 3.8s 27.6s

End of Table

Table 8: Detailed results (gap(%)) for all included National TSPs

Instance UDC GD INViT-3V BQ LEHD ELG Omni-TSP GELD (Ours)
G∗ G G† G G G∗ G∗ G BOTH

WI29 - 0.60 0.00 19.95 0.06 4.54 0.05 0.71 0.00
DJ38 - 6.41 0.06 28.63 0.17 0.02 5.21 0.11 0.06

QA194 0.58 236.40 2.88 12.18 27.15 7.06 10.44 0.53 0.02
UY734 5.54 284.43 5.38 9.26 20.98 10.77 14.83 3.35 2.00
ZI929 12.80 111.47 6.54 13.67 18.34 14.61 21.24 9.05 2.97
LU980 11.78 2368.93 4.96 7.83 93.28 12.27 17.58 2.89 1.40

RW1621 17.34 2722.21 7.42 12.79 58.53 11.42 27.20 7.99 3.61
MU1979 15.41 1351.43 13.06 48.92 42.65 22.54 52.06 17.55 9.06
NU3496 17.57 3616.20 10.74 22.12 84.94 17.20 44.75 10.91 3.58
CA4663 22.39 684.98 9.47 78.38 40.22 88.57 162.60 22.77 11.64
TZ6117 23.26 2007.00 9.45 32.11 51.24 20.69 59.20 14.68 5.64
EG7146 27.11 1281.81 12.88 170.87 42.15 209.58 151.05 19.06 5.55
YM7663 28.03 3632.62 13.37 82.37 93.84 60.12 79.25 18.06 7.17
PM8079 20.85 7728.54 10.47 103.36 207.10 22.85 72.56 17.00 7.52
EI8246 15.70 4568.96 7.09 39.19 131.26 20.73 61.70 14.98 7.73
AR9152 29.17 1753.86 12.63 64.43 56.54 21.66 72.70 16.74 9.10
JA9847 46.86 10429.63 12.20 197.73 132.74 37.71 80.34 23.58 12.61
GR9882 19.44 2245.37 13.25 78.22 74.69 23.95 70.10 18.57 6.10
KZ9976 18.58 1172.08 9.15 86.37 55.72 23.30 102.23 19.25 7.55
FI10639 18.14 3709.73 10.04 55.65 98.52 22.44 71.67 14.62 6.53

MO14185 OOM 3629.80 8.41 OOM OOM OOM OOM 16.07 7.07
HO14473 OOM 9842.77 13.13 OOM OOM OOM OOM 18.35 8.16
IT16862 OOM 3762.62 9.13 OOM OOM OOM OOM 18.88 7.39
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Continued from previous page

Instance UDC GD INViT-3V BQ LEHD ELG Omni-TSP GELD (Ours)
G∗ G G† G G G∗ G∗ G BOTH

VM22775 OOM OOM 9.75 OOM OOM OOM OOM 20.41 8.32
SW24978 OOM OOM 8.58 OOM OOM OOM OOM 17.87 6.88
BM33708 OOM OOM 7.35 OOM OOM OOM OOM 18.76 7.42
CH71009 OOM OOM OOM OOM OOM OOM OOM 25.41 13.92
Avg. gap 19.44 2919.47 8.75 58.20 66.51 32.60 58.83 14.39 6.26
Avg. time 6.3s 8.9m 3.4m 14.8m 2.8m 3.7m 2.3m 23.4s 1.4m

End of Table

Table 9: Detailed results (gap(%)) for all included National TSPs using
GELD (with PRC(1000)) as a post-processing method

Instance UDC GD INViT-3V BQ LEHD ELG Omni-TSP Random Insertion
+Ours +Ours +Ours +Ours +Ours +Ours +Ours - +Ours

WI29 - 0.53 0.00 0.00 0.00 4.25 0.00 0.00 0.00
DJ38 - 0.05 0.05 0.05 0.05 0.05 0.05 17.55 0.05

QA194 0.58 4.52 0.68 4.52 7.12 0.67 0.67 11.54 2.35
UY734 4.07 20.72 1.37 2.88 2.90 1.91 1.51 13.23 1.26
ZI929 11.87 13.43 2.95 5.91 3.61 4.30 1.92 9.35 2.68
LU980 6.83 33.83 2.42 1.64 3.21 1.48 1.39 12.00 1.30

RW1621 12.71 70.19 1.98 1.26 4.84 1.74 3.55 12.48 1.41
MU1979 11.33 70.43 7.22 14.58 8.65 7.27 5.34 9.09 2.39
NU3496 7.82 94.52 3.65 4.77 10.14 4.39 4.53 13.58 3.83
CA4663 13.25 27.96 5.43 7.42 9.97 21.71 8.54 14.81 4.94
TZ6117 13.44 87.03 3.89 8.73 8.15 6.12 4.64 14.42 2.76
EG7146 20.14 60.27 6.56 7.93 7.58 63.24 18.72 14.35 4.07
YM7663 17.43 207.35 8.59 10.19 10.82 25.99 7.24 13.79 3.68
PM8079 9.79 203.51 2.53 7.15 11.90 8.41 5.83 12.07 3.12
EI8246 9.95 188.51 3.02 7.71 10.70 7.92 4.24 14.14 3.31
AR9152 18.64 141.87 7.46 9.18 8.39 9.16 6.23 13.73 3.58
JA9847 34.18 135.25 5.58 15.65 7.08 16.33 5.94 12.80 3.89
GR9882 13.62 97.99 7.13 9.78 9.43 8.22 3.03 12.02 1.92
KZ9976 10.89 58.46 3.36 9.94 9.68 7.62 8.30 14.02 3.32
FI10639 11.19 158.62 5.49 8.81 11.64 7.99 5.40 13.63 3.00

MO14185 - 106.41 3.41 - - - - 13.45 2.86
HO14473 - 194.83 7.69 - - - - 11.68 3.11
IT16862 - 103.73 4.71 - - - - 13.77 2.66

VM22775 - - 5.50 - - - - 12.44 2.19
SW24978 - - 3.55 - - - - 13.87 3.02
BM33708 - - 2.81 - - - - 13.72 2.77
CH71009 - - - - - - - 14.21 3.61
Avg. gap 12.66 90.43 4.12 6.91 7.29 10.44 4.85 12.66 2.71
Gain(%) 35.05 96.90 52.91 88.13 89.04 67.98 91.76 78.59

Avg. time + 26.2s +28.3s +34.0s +26.6s +26.6s +26.6s +26.6s 1.1s +36.8s
End of Table

B.6 COMPARATIVE ANALYSIS WITH HEATMAP-BASED MODELS AND HEURISTIC
ALGORITHMS

In this subsection, we conduct additional comparative experiments involving heatmap-based mod-
els and heuristic algorithms. Specifically, we select DIFUSCO (Sun & Yang, 2023) and the nearest
neighbor+2-opt method as representatives of heatmap-based models and heuristic algorithms, re-
spectively. For DIFUSCO, we utilize its publicly available pre-trained parameters (trained on 100-
node instances) and adopt its default inference settings: a sampling number of 4 and 5000 iterations
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for the 2-opt optimization. For the nearest neighbor+2-opt algorithm, the solution generated by the
nearest neighbor algorithm serves as the initial solution, followed by 2-opt optimization with 1000
iterations.

We present the comparison results on the synthetic TSP instances of the uniform distribution in Ta-
ble 10. As shown, the performance of DIFUSCO is heavily dependent on the iterative optimization
process of 2-opt that (often) specifically tailored to TSP, while our method does not. More impor-
tantly, our proposed GELD + BOTH outperforms DIFUSCO (Sun & Yang, 2023) and the nearest
neighbor+2-opt heuristic across all problem sizes in terms of both solution quality and computational
efficiency.

Table 10: Performance comparisons with DIFUSCO and the nearest neighbor + 2-opt algorithm on
synthetic TSP instances of the uniform distribution

Method TSP-100 (200) TSP-500 (200) TSP-1000 (200) TSP-5000 (20) TSP-10000 (20) Average
gap(%)↓gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑ gap(%)↓ time↓, nbs ↑

Nearest neighbor + 2-opt 5.69 3.7s, 1 5.55 9.4s, 1 5.24 34.9s, 1 5.53 2.7m, 1 4.32 13.5m, 1 5.27
DIFUSCO + S + 2-opt 0.06 2.0m, 1 3.95 22.1m, 1 3.33 1.6h, 1 6.54 37.8m, 1 4.72 2.1h, 1 3.72
GELD + G 1.11 0.6s, 200 2.39 1.8s, 200 2.94 3.6s, 200 7.62 10.8s, 20 9.33 21.6s, 20 4.68
GELD + BOTH 0.06 19.2s, 200 0.52 1.6m, 200 0.58 3.7m, 200 2.77 1.8m, 20 2.38 3.9m, 20 1.26

Symbol “S” denotes the sampling operation used in Sun & Yang (2023).

B.7 SENSITIVITY ANALYSIS

In this subsection, we conduct ablation studies to evaluate the sensitivity of two hyperparameters:
the number of regions m and the range of local selection km. To examine the impact of m, we use
the first-stage training for GELD with three configurations, testing its effect on model performance
across various TSP sizes and distributions: 1) mr=2, mc=2, resulting in m = 4 regions; 2) mr=3,
mc=3, resulting in m = 9 regions; and 3) mr=4, mc=4, resulting in m = 16 regions.

The results presented in Table 11 indicate that increasing m generally improves model performance
albeit with a slight reduction in inference speed. Additionally, the variations in m have minimal im-
pact on overall performance, demonstrating the model’s robustness across different configurations.

For the range of local selection k, we test three values (50, 100, 150) on the synthetic TSP instances
of the uniform distribution. As shown in Table 12, larger values of k improve model performance
while decreasing inference speed. These findings further highlight the importance of adopting LD
in our model design.

B.8 PERFORMANCE OF GELD ON OTHER PUBLICLY AVAILABLE SYNTHETIC DATASETS

In this subsection, we evaluate the performance of GELD using publicly available synthetic datasets.
Specifically, three datasets are employed: Dataset 15 (used by T2T (Li et al., 2023)), Dataset 26 (used
by DIMES (Qiu et al., 2022)), and Dataset 37 (used by Att-GCN (Fu et al., 2021) and DIFUSCO
(Sun & Yang, 2023)). The results of GELD’s performance on these datasets are presented in Tables
13, 14, and 15, respectively. As shown, our proposed GELD achieves excellent performance across
all datasets.

C SOLUTION VISUALIZATIONS

In this section, we present a visualization of three TSP solutions in the World TSP dataset. Specif-
ically, we select DJ38, TZ6117, and FI10639 as representatives of small-, medium- and large-scale
TSP instances, respectively. The solutions for these instances are illustrated in Figures 4, 5 and

5URL: https://github.com/Thinklab-SJTU/T2TCO/tree/main/data/tsp
6URL: https://github.com/DIMESTeam/DIMES/tree/main/TSP/data
7URL: https://github.com/Spider-scnu/TSP/tree/master/MCTS
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Table 11: Performance of the first-stage trained GELD with different m

Value Inference TSP-100 TSP-500 TSP-1000 TSP-5000 TSP-10000 Average
gap(%)↓gap(%)↓ time↓ gap(%)↓ time↓ gap(%)↓ time↓ gap(%)↓ time↓ gap(%)↓ time↓

un
ifo

rm

4 G 0.71 0.6s 3.81 1.7s 4.81 3.4s 15.75 10.3s 17.08 20.8s 8.43
BOTH 0.05 19.0s 0.75 1.5m 1.23 3.6m 4.1 1.7m 3.69 3.8m 1.96

9 G 0.86 0.6s 3.28 1.8s 4.17 3.6s 13.61 10.8s 15.21 21.6s 7.43
BOTH 0.05 19.2s 0.69 1.6m 1.14 3.7m 3.73 1.8m 3.1 3.9m 1.74

16 G 0.94 0.6s 3.44 1.9s 5.15 3.9s 12.68 11.4s 12.15 23.4s 6.87
BOTH 0.05 20.4s 0.78 1.7m 1.35 3.8m 3.86 2.0m 2.87 4.1m 1.78

cl
us

te
re

d 4 G 3.49 0.6s 7.4 1.7s 10.83 3.4s 20.59 10.3s 32.15 20.8s 14.89
BOTH 0.51 19.0s 1.86 1.5m 3.20 3.6m 5.81 1.7m 5.48 3.8m 3.37

9 G 2.80 0.6s 6.73 1.8s 10.34 3.6s 16.36 10.8s 15.31 21.6s 10.31
BOTH 0.49 19.2s 1.87 1.6m 3.24 3.7m 5.42 1.8m 4.01 3.9m 3.01

16 G 2.65 0.6s 6.9 1.9s 9.76 3.9s 14.63 11.4s 16.06 23.4s 10.00
BOTH 0.42 20.4s 1.66 1.7m 2.79 3.8m 5.36 2.0m 4.23 4.1m 2.89

ex
pl

os
io

n 4 G 1.28 0.6s 5.52 1.7s 9.37 3.4s 18.79 10.3s 28.56 20.8s 12.70
BOTH 0.10 19.0s 1.52 1.5m 2.35 3.6m 6.28 1.7m 5.31 3.8m 3.11

9 G 1.00 0.6s 4.68 1.8s 8.02 3.6s 17.11 10.8s 17.87 21.6s 9.74
BOTH 0.13 19.2s 1.25 1.6m 2.09 3.7m 5.57 1.8m 5.01 3.9m 2.81

16 G 1.34 0.6s 5.9 1.9s 9.59 3.9s 14.71 11.4s 17.51 23.4s 9.81
BOTH 0.27 20.4s 1.5 1.7m 2.5 3.8m 5.55 2.0m 5.05 4.1m 2.97

im
pl

os
io

n 4 G 1.85 0.6s 5.47 1.7s 8.07 3.4s 18.1 10.3s 21.36 20.8s 10.97
BOTH 0.17 19.0s 1.37 1.5m 2.17 3.6m 5.18 1.7m 4.3 3.8m 2.64

9 G 1.84 0.6s 5.2 1.8s 6.61 3.6s 14.84 10.8s 15.69 21.6s 8.84
BOTH 0.17 19.2s 1.35 1.6m 1.9 3.7m 4.39 1.8m 3.78 3.9m 2.32

16 G 1.86 0.6s 5.05 1.9s 7.37 3.9s 13.89 11.4s 12.92 23.4s 8.22
BOTH 0.23 20.4s 1.44 1.7m 2.23 3.8m 4.62 2.0m 3.27 4.1m 2.36

Table 12: Performance of GELD with different km on synthetic TSP instances of the uniform dis-
tribution

Value Inference TSP-100 TSP-500 TSP-1000 TSP-5000 TSP-10000 Average
gap(%)↓gap(%)↓ time↓ gap(%)↓ time↓ gap(%)↓ time↓ gap(%)↓ time↓ gap(%)↓ time↓

50 G 2.00 0.4s 4.02 1.2s 5.00 2.9s 10.19 9.2s 11.03 18.9s 6.45
BOTH 0.17 18.7s 0.85 1.4m 1.06 2.9m 3.20 1.5m 3.15 3.5m 1.69

100 G 1.11 0.6s 2.39 1.8s 2.94 3.6s 7.62 10.8s 9.33 21.6s 4.68
BOTH 0.06 19.2s 0.52 1.6m 0.58 3.7m 2.77 1.8m 2.38 3.9m 1.26

150 G 1.11 0.7s 2.28 2.4s 2.33 5.4s 7.05 12.1s 9.52 24.1s 4.46
BOTH 0.06 21.6s 0.45 2.0m 0.49 4.3m 3.11 2.4m 2.04 4.9m 1.23

6, respectively. In each Figure, panel (a) shows the optimal solution (i.e., the best-known solu-
tion), and panels (b), (c), (d), (e), (f) show the solution produced by LEHD (G), INViT-3V (G†),
GELD (BOTH), Random insertion, and Random insertion + GELD (PRC(1000)), respectively.

D LICENSES FOR USED RESOURCES

Table 16 summarizes the open-source codes and datasets used in this study, all of which are freely
available for academic purposes.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 13: Performance of GELD on publicly available dataset 1
Method TSP-50 (1280) TSP-100 (1280) TSP-500 (128) TSP-1000 (128)

Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑
Concorde 5.6876 - - 7.7559 - - 16.5458 - - 23.1181 - -
GELD + G 5.7467 1.04 0.6s, 1280 7.8377 1.05 1.2s, 1280 16.9601 2.50 1.2s, 128 23.9285 3.50 2.4s, 128
GELD + BOTH 5.6889 0.02 35.4s, 1280 7.7604 0.06 1.6m, 1280 16.6334 0.53 1.1m, 128 23.3209 0.88 2.2m, 128

Table 14: Performance of GELD on publicly available dataset 2
Method TSP-100 (10000) TSP-500 (128) TSP-1000 (128) TSP-10000 (16)

Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑
Concorde/LKH3 7.7645 - - 16.5836 - - 23.2268 - - 71.7700 - -
GELD + G 7.8419 1.00 9.1s, 1000 16.9601 2.27 1.2s, 128 23.9285 3.02 2.4s, 128 79.7566 11.13 18.2s, 16
GELD + BOTH 7.7659 0.02 11.9m, 1000 16.6334 0.30 1.1m, 128 23.3209 0.41 2.2m, 128 75.1468 4.71 3.2m, 16

Table 15: Performance of GELD on publicly available dataset 3
Method TSP-20 (10000) TSP-50 (10000) TSP-100 (10000) TSP-200 (128)

Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑
Concorde/LKH3 3.8306 - - 5.6918 - - 7.7645 - - 10.7280 - -
GELD + G 3.8838 1.39 0.6s, 10000 5.7502 1.03 3.0s, 2500 7.8419 1.00 10.8s, 1250 10.9159 1.75 0.6s, 128
GELD + BOTH 3.8306 0.00 1.8m, 10000 5.6919 0.00 5.0m, 2500 7.7659 0.02 12.3m, 1250 10.7485 0.19 0.4m, 128

Method TSP-500 (128) TSP-1000 (128) TSP-10000 (16)
Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑ Length↓ gap(%)↓ time↓, nbs ↑

Concorde/LKH3 16.5836 - - 23.2268 - - 71.7700 - -
GELD + G 16.9601 2.27 1.2s, 128 23.9285 3.02 18.3s, 128 79.7566 11.13 18.6s, 16
GELD + BOTH 16.6334 0.30 1.1m, 128 23.3209 0.41 3.2m, 128 75.1468 4.71 3.2m, 16

Table 16: List of licenses for the codes and datasets used in this work
Resource Type URL License

LKH3 Code http://webhotel4.ruc.dk/ keld/research/LKH-3/ Available for academic research use
Omni-TSP Code https://github.com/RoyalSkye/Omni-VRP MIT License

BQ Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0 license
LEHD Code https://github.com/CIAM-Group/NCO code/tree/main/single objective/LEHD Available for any non-commercial use
ELG Code https://github.com/gaocrr/ELG MIT License

INViT-3V Code https://github.com/Kasumigaoka-Utaha/INViT Available for academic research use
GD Code https://github.com/grimmlab/gumbeldore Available for academic research use

UDC Code https://github.com/CIAM-Group/NCO code/tree/main/single objective/UDC-Large-scale-CO-master Available for academic research use

TSPLib Dataset https://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Available for academic research use
World TSP Dataset https://www.math.uwaterloo.ca/tsp/world/index.html Available for academic research use
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(a) Optimal solution (b) LEHD: gap=0.17%

(c) INViT: gap=0.06% (d) GELD(Ours): gap=0.05%

(e) Random Insertion: gap=17.55% (f) Random Insertion + GELD(Ours): gap=0.06%

Figure 4: Visualization of solutions on DJ38 (small-scale) TSP instance with 38 nodes.
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(a) Optimal solution (b) LEHD: gap=51.24%

(c) INViT: gap=9.45% (d) GELD(Ours): gap=5.64%

(e) Random Insertion: gap=14.42% (f) Random Insertion + GELD(Ours): gap=2.76%

Figure 5: Visualization of solutions on TZ6117 (medium-scale) TSP instance with 6117 nodes.
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(a) Optimal solution (b) LEHD: gap=98.52%

(c) INViT: gap=10.04% (d) GELD(Ours): gap=6.53%

(e) Random Insertion: gap=13.63% (f) Random Insertion + GELD(Ours): gap=3.00%

Figure 6: Visualization of solutions on FI10639 (large-scale) TSP instance with 10639 nodes.
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